1
|
Chornyi S, Koster J, IJlst L, Waterham HR. Studying the topology of peroxisomal acyl-CoA synthetases using self-assembling split sfGFP. Histochem Cell Biol 2024; 161:133-144. [PMID: 38243092 PMCID: PMC10822792 DOI: 10.1007/s00418-023-02257-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2023] [Indexed: 01/21/2024]
Abstract
Peroxisomes are membrane-bounded organelles that contain enzymes involved in multiple lipid metabolic pathways. Several of these pathways require (re-)activation of fatty acids to coenzyme A (CoA) esters by acyl-CoA synthetases, which may take place inside the peroxisomal lumen or extraperoxisomal. The acyl-CoA synthetases SLC27A2, SLC27A4, ACSL1, and ACSL4 have different but overlapping substrate specificities and were previously reported to be localized in the peroxisomal membrane in addition to other subcellular locations. However, it has remained unclear if the catalytic acyl-CoA synthetase sites of these enzymes are facing the peroxisomal lumen or the cytosolic side of the peroxisomal membrane. To study this topology in cellulo we have developed a microscopy-based method that uses the previously developed self-assembling split superfolder (sf) green fluorescent protein (GFP) assay. We show that this self-assembling split sfGFP method can be used to study the localization as well as the topology of membrane proteins in the peroxisomal membrane, but that it is less suited to study the location of soluble peroxisomal proteins. With the method we could demonstrate that the acyl-CoA synthetase domains of the peroxisome-bound acyl-CoA synthetases SLC27A2 and SLC27A4 are oriented toward the peroxisomal lumen and the domain of ACSL1 toward the cytosol. In contrast to previous reports, ACSL4 was not found in peroxisomes.
Collapse
Affiliation(s)
- Serhii Chornyi
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC-University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - Janet Koster
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC-University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lodewijk IJlst
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC-University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hans R Waterham
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam UMC-University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Landowski M, Gogoi P, Ikeda S, Ikeda A. Roles of transmembrane protein 135 in mitochondrial and peroxisomal functions - implications for age-related retinal disease. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1355379. [PMID: 38576540 PMCID: PMC10993500 DOI: 10.3389/fopht.2024.1355379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Aging is the most significant risk factor for age-related diseases in general, which is true for age-related diseases in the eye including age-related macular degeneration (AMD). Therefore, in order to identify potential therapeutic targets for these diseases, it is crucial to understand the normal aging process and how its mis-regulation could cause age-related diseases at the molecular level. Recently, abnormal lipid metabolism has emerged as one major aspect of age-related symptoms in the retina. Animal models provide excellent means to identify and study factors that regulate lipid metabolism in relation to age-related symptoms. Central to this review is the role of transmembrane protein 135 (TMEM135) in the retina. TMEM135 was identified through the characterization of a mutant mouse strain exhibiting accelerated retinal aging and positional cloning of the responsible mutation within the gene, indicating the crucial role of TMEM135 in regulating the normal aging process in the retina. Over the past decade, the molecular functions of TMEM135 have been explored in various models and tissues, providing insights into the regulation of metabolism, particularly lipid metabolism, through its action in multiple organelles. Studies indicated that TMEM135 is a significant regulator of peroxisomes, mitochondria, and their interaction. Here, we provide an overview of the molecular functions of TMEM135 which is crucial for regulating mitochondria, peroxisomes, and lipids. The review also discusses the age-dependent phenotypes in mice with TMEM135 perturbations, emphasizing the importance of a balanced TMEM135 function for the health of the retina and other tissues including the heart, liver, and adipose tissue. Finally, we explore the potential roles of TMEM135 in human age-related retinal diseases, connecting its functions to the pathobiology of AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Purnima Gogoi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, United States
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
3
|
Singin Ö, Astapenka A, Costina V, Kühl S, Bonekamp N, Drews O, Islinger M. Analysis of the Mouse Hepatic Peroxisome Proteome-Identification of Novel Protein Constituents Using a Semi-Quantitative SWATH-MS Approach. Cells 2024; 13:176. [PMID: 38247867 PMCID: PMC10814758 DOI: 10.3390/cells13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Ongoing technical and bioinformatics improvements in mass spectrometry (MS) allow for the identifying and quantifying of the enrichment of increasingly less-abundant proteins in individual fractions. Accordingly, this study reassessed the proteome of mouse liver peroxisomes by the parallel isolation of peroxisomes from a mitochondria- and a microsome-enriched prefraction, combining density-gradient centrifugation with a semi-quantitative SWATH-MS proteomics approach to unveil novel peroxisomal or peroxisome-associated proteins. In total, 1071 proteins were identified using MS and assessed in terms of their distribution in either high-density peroxisomal or low-density gradient fractions, containing the bulk of organelle material. Combining the data from both fractionation approaches allowed for the identification of specific protein profiles characteristic of mitochondria, the ER and peroxisomes. Among the proteins significantly enriched in the peroxisomal cluster were several novel peroxisomal candidates. Five of those were validated by colocalization in peroxisomes, using confocal microscopy. The peroxisomal import of HTATIP2 and PAFAH2, which contain a peroxisome-targeting sequence 1 (PTS1), could be confirmed by overexpression in HepG2 cells. The candidates SAR1B and PDCD6, which are known ER-exit-site proteins, did not directly colocalize with peroxisomes, but resided at ER sites, which frequently surrounded peroxisomes. Hence, both proteins might concentrate at presumably co-purified peroxisome-ER membrane contacts. Intriguingly, the fifth candidate, OCIA domain-containing protein 1, was previously described as decreasing mitochondrial network formation. In this work, we confirmed its peroxisomal localization and further observed a reduction in peroxisome numbers in response to OCIAD1 overexpression. Hence, OCIAD1 appears to be a novel protein, which has an impact on both mitochondrial and peroxisomal maintenance.
Collapse
Affiliation(s)
- Öznur Singin
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Artur Astapenka
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Victor Costina
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
| | - Sandra Kühl
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Nina Bonekamp
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| | - Oliver Drews
- Institute of Clinical Chemistry, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (V.C.); (O.D.)
- Biomedical Mass Spectrometry, Center for Medical Research, Johannes Kepler University Linz, 4020 Linz, Austria
| | - Markus Islinger
- Neuroanatomy, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany; (Ö.S.); (A.A.); (S.K.); (N.B.)
| |
Collapse
|
4
|
Yao Y, Shi B, Zhang X, Wang X, Li S, Yao Y, Guo Y, Chen D, Wang B, Yuan Y, Sha J, Guo X. Germ cell-specific deletion of Pex3 reveals essential roles of PEX3-dependent peroxisomes in spermiogenesis. J Biomed Res 2023; 38:24-36. [PMID: 38062668 PMCID: PMC10818173 DOI: 10.7555/jbr.37.20230055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 01/29/2024] Open
Abstract
Peroxisomes are organelles enclosed by a single membrane and are present in various species. The abruption of peroxisomes is correlated with peroxisome biogenesis disorders and single peroxisomal enzyme deficiencies that induce diverse diseases in different organs. However, little is known about the protein compositions and corresponding roles of heterogeneous peroxisomes in various organs. Through transcriptomic and proteomic analyses, we observed heterogenous peroxisomal components among different organs, as well as between testicular somatic cells and different developmental stages of germ cells. As Pex3 is expressed in both germ cells and Sertoli cells, we generated Pex3 germ cell- and Sertoli cell-specific knockout mice. While Pex3 deletion in Sertoli cells did not affect spermatogenesis, the deletion in germ cells resulted in male sterility, manifested as the destruction of intercellular bridges between spermatids and the formation of multinucleated giant cells. Proteomic analysis of the Pex3-deleted spermatids revealed defective expressions of peroxisomal proteins and spermiogenesis-related proteins. These findings provide new insights that PEX3-dependent peroxisomes are essential for germ cells undergoing spermiogenesis, but not for Sertoli cells.
Collapse
Affiliation(s)
- Yejin Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Baolu Shi
- Reproductive and Genetic Branch, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xin Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Shuangyue Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ying Yao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dingdong Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine and Offspring Health, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| |
Collapse
|
5
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Silva AR, Vilarinho BG, Francisco T, Azevedo JE. Glutathione and peroxisome redox homeostasis. Redox Biol 2023; 67:102917. [PMID: 37804696 PMCID: PMC10565873 DOI: 10.1016/j.redox.2023.102917] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023] Open
Abstract
Despite intensive research on peroxisome biochemistry, the role of glutathione in peroxisomal redox homeostasis has remained a matter of speculation for many years, and only recently has this issue started to be experimentally addressed. Here, we summarize and compare data from several organisms on the peroxisome-glutathione topic. It is clear from this comparison that the repertoire of glutathione-utilizing enzymes in peroxisomes of different organisms varies widely. In addition, the available data suggest that the kinetic connectivity between the cytosolic and peroxisomal pools of glutathione may also be different in different organisms, with some possessing a peroxisomal membrane that is promptly permeable to glutathione whereas in others this may not be the case. However, regardless of the differences, the picture that emerges from all these data is that glutathione is a crucial component of the antioxidative system that operates inside peroxisomes in all organisms.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana R Silva
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Beatriz G Vilarinho
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
6
|
Abstract
Peroxisomes are involved in a multitude of metabolic and catabolic pathways, as well as the innate immune system. Their dysfunction is linked to severe peroxisome-specific diseases, as well as cancer and neurodegenerative diseases. To ensure the ability of peroxisomes to fulfill their many roles in the organism, more than 100 different proteins are post-translationally imported into the peroxisomal membrane and matrix, and their functionality must be closely monitored. In this Review, we briefly discuss the import of peroxisomal membrane proteins, and we emphasize an updated view of both classical and alternative peroxisomal matrix protein import pathways. We highlight different quality control pathways that ensure the degradation of dysfunctional peroxisomal proteins. Finally, we compare peroxisomal matrix protein import with other systems that transport folded proteins across membranes, in particular the twin-arginine translocation (Tat) system and the nuclear pore.
Collapse
Affiliation(s)
- Markus Rudowitz
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Ralf Erdmann
- Systems Biochemistry , Institute of Biochemistry and Pathobiochemistry, Faculty of Medicine, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
7
|
Ferreira MJ, Rodrigues TA, Pedrosa AG, Gales L, Salvador A, Francisco T, Azevedo JE. The mammalian peroxisomal membrane is permeable to both GSH and GSSG - Implications for intraperoxisomal redox homeostasis. Redox Biol 2023; 63:102764. [PMID: 37257275 DOI: 10.1016/j.redox.2023.102764] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Despite the large amounts of H2O2 generated in mammalian peroxisomes, cysteine residues of intraperoxisomal proteins are maintained in a reduced state. The biochemistry behind this phenomenon remains unexplored, and simple questions such as "is the peroxisomal membrane permeable to glutathione?" or "is there a thiol-disulfide oxidoreductase in the organelle matrix?" still have no answer. We used a cell-free in vitro system to equip rat liver peroxisomes with a glutathione redox sensor. The organelles were then incubated with glutathione solutions of different redox potentials and the oxidation/reduction kinetics of the redox sensor was monitored. The data suggest that the mammalian peroxisomal membrane is promptly permeable to both reduced and oxidized glutathione. No evidence for the presence of a robust thiol-disulfide oxidoreductase in the peroxisomal matrix could be found. Also, prolonged incubation of organelle suspensions with glutaredoxin 1 did not result in the internalization of the enzyme. To explore a potential role of glutathione in intraperoxisomal redox homeostasis we performed kinetic simulations. The results suggest that even in the absence of a glutaredoxin, glutathione is more important in protecting cysteine residues of matrix proteins from oxidation by H2O2 than peroxisomal catalase itself.
Collapse
Affiliation(s)
- Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Luís Gales
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Armindo Salvador
- Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), University of Coimbra, 3004-535, Coimbra, Portugal; CNC-Center for Neuroscience and Cell Biology, 3004-504, Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
8
|
Ranea-Robles P, Houten SM. The biochemistry and physiology of long-chain dicarboxylic acid metabolism. Biochem J 2023; 480:607-627. [PMID: 37140888 PMCID: PMC10214252 DOI: 10.1042/bcj20230041] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Mitochondrial β-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal β-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and β-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal β-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
9
|
Pedrosa AG, Francisco T, Rodrigues TA, Ferreira MJ, van der Heden van Noort GJ, Azevedo JE. The Extraction Mechanism of Monoubiquitinated PEX5 from the Peroxisomal Membrane. J Mol Biol 2023; 435:167896. [PMID: 36442669 DOI: 10.1016/j.jmb.2022.167896] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The AAA ATPases PEX1•PEX6 extract PEX5, the peroxisomal protein shuttling receptor, from the peroxisomal membrane so that a new protein transport cycle can start. Extraction requires ubiquitination of PEX5 at residue 11 and involves a threading mechanism, but how exactly this occurs is unclear. We used a cell-free in vitro system and a variety of engineered PEX5 and ubiquitin molecules to challenge the extraction machinery. We show that PEX5 modified with a single ubiquitin is a substrate for extraction and extend previous findings proposing that neither the N- nor the C-terminus of PEX5 are required for extraction. Chimeric PEX5 molecules possessing a branched polypeptide structure at their C-terminal domains can still be extracted from the peroxisomal membrane thus suggesting that the extraction machinery can thread more than one polypeptide chain simultaneously. Importantly, we found that the PEX5-linked monoubiquitin is unfolded at a pre-extraction stage and, accordingly, an intra-molecularly cross-linked ubiquitin blocked extraction when conjugated to residue 11 of PEX5. Collectively, our data suggest that the PEX5-linked monoubiquitin is the extraction initiator and that the complete ubiquitin-PEX5 conjugate is threaded by PEX1•PEX6.
Collapse
Affiliation(s)
- Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Gerbrand J van der Heden van Noort
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
10
|
Gato WE, Wu J, Appiah I, Smith O, Rochani H. Hepatic proteomic assessment of oral ingestion of titanium dioxide nano fiber (TDNF) in Sprague Dawley rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 57:1116-1123. [PMID: 36622359 DOI: 10.1080/10934529.2022.2159733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanofibers (TDNF) have been widely employed in pigments, sunscreens, paints, ointments, toothpaste and photocatalytic splitting of water. However, their potential toxicity has not been thoroughly examined. The goal of the present study is to examine hepatic effects associated with the ingestion of TDNF. TDNF was fabricated via electrospinning method and characterized. Six to seven weeks old male Sprague Dawley rats ingested (oral gavage) a total of 0 ppm, 40, 60 ppm TDNF for two weeks. After sacrifice, the liver was assessed for cellular effects using proteomic approach. The fibers diameter ranged from 0.18 - 0.29 μm, forming clusters and majority of the fibers were in the rutile phase. Proteomics assessment revealed more that more than 400 hundred proteins in the liver may be affected. These proteins are involved in such processes as catalysis of fatty acids by CoA, homocysteine metabolism, beta oxidation and the condensation of carbamoyl phosphate in the urea cycle among others. Further analysis of the protein associations showed that 325 biological processes, 140 molecular functions and 70 cellular components appear to be affected from the ingestion of TNDF. Quantitative analysis of specific mRNA transcripts indicated CMBL, GSTM1 and SDS were differentially expressed.
Collapse
Affiliation(s)
- Worlanyo E Gato
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Ji Wu
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Isaac Appiah
- Department of Chemistry & Biochemistry, Georgia Southern University, Statesboro, Georgia, USA
| | - Olivia Smith
- Department of Chemistry, Otterbein University, Westerville, Ohio, USA
| | - Haresh Rochani
- Department of Environmental Health and Biostatistics, Jiann-Ping Hsu College of Public Health, Georgia Southern University, Statesboro, Georgia, USA
| |
Collapse
|
11
|
Landowski M, Bhute VJ, Grindel S, Haugstad Z, Gyening YK, Tytanic M, Brush RS, Moyer LJ, Nelson DW, Davis CR, Yen CLE, Ikeda S, Agbaga MP, Ikeda A. Transmembrane protein 135 regulates lipid homeostasis through its role in peroxisomal DHA metabolism. Commun Biol 2023; 6:8. [PMID: 36599953 PMCID: PMC9813353 DOI: 10.1038/s42003-022-04404-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
Transmembrane protein 135 (TMEM135) is thought to participate in the cellular response to increased intracellular lipids yet no defined molecular function for TMEM135 in lipid metabolism has been identified. In this study, we performed a lipid analysis of tissues from Tmem135 mutant mice and found striking reductions of docosahexaenoic acid (DHA) across all Tmem135 mutant tissues, indicating a role of TMEM135 in the production of DHA. Since all enzymes required for DHA synthesis remain intact in Tmem135 mutant mice, we hypothesized that TMEM135 is involved in the export of DHA from peroxisomes. The Tmem135 mutation likely leads to the retention of DHA in peroxisomes, causing DHA to be degraded within peroxisomes by their beta-oxidation machinery. This may lead to generation or alteration of ligands required for the activation of peroxisome proliferator-activated receptor a (PPARa) signaling, which in turn could result in increased peroxisomal number and beta-oxidation enzymes observed in Tmem135 mutant mice. We confirmed this effect of PPARa signaling by detecting decreased peroxisomes and their proteins upon genetic ablation of Ppara in Tmem135 mutant mice. Using Tmem135 mutant mice, we also validated the protective effect of increased peroxisomes and peroxisomal beta-oxidation on the metabolic disease phenotypes of leptin mutant mice which has been observed in previous studies. Thus, we conclude that TMEM135 has a role in lipid homeostasis through its function in peroxisomes.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Vijesh J Bhute
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical Engineering, Imperial College London, South Kensington, London, UK
| | - Samuel Grindel
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Zachary Haugstad
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Yeboah K Gyening
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Madison Tytanic
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Richard S Brush
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Lucas J Moyer
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Christopher R Davis
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Sakae Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Martin-Paul Agbaga
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Dean A. McGee Eye Institute, Oklahoma City, OK, USA
| | - Akihiro Ikeda
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Manner A, Islinger M. Isolation of Mammalian Peroxisomes by Density Gradient Centrifugation. Methods Mol Biol 2023; 2643:1-12. [PMID: 36952174 DOI: 10.1007/978-1-0716-3048-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Sophisticated organelle fractionation strategies were the workhorse of early peroxisome research and led to the characterization of the principal functions of the organelle. However, even in the era of molecular biology and "omics" technologies, they are still of importance to unravel peroxisome-specific proteomes, confirm the localization of still uncharacterized proteins, analyze peroxisome metabolism or lipid composition, or study their protein import mechanism. To isolate and analyze peroxisomes for these purposes, density gradient centrifugation still represents a highly reliable and reproducible technique. This article describes two protocols to purify peroxisomes from either liver tissue or the HepG2 hepatoma cell line. The protocol for liver enables purification of peroxisome fractions with high purity (95%) and is therefore suitable to study low-abundant peroxisomal proteins or analyze their lipid composition, for example. The protocol presented for HepG2 cells is not suitable to gain highly pure peroxisomal fractions but is intended to be used for gradient profiling experiments and allows easier manipulation of the peroxisomal compartment, e.g., by gene knockdown or protein overexpression for functional studies. Both purification methods therefore represent complementary tools to be used to analyze different aspects of peroxisome physiology. Please note that this is an updated version of a protocol, which has been published in a former volume of Methods in Molecular Biology.
Collapse
Affiliation(s)
- Andreas Manner
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, Mannheim, Germany
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, Mannheim, Germany.
| |
Collapse
|
13
|
Das H, Zografakis A, Oeljeklaus S, Warscheid B. Analysis of Yeast Peroxisomes via Spatial Proteomics. Methods Mol Biol 2023; 2643:13-31. [PMID: 36952175 DOI: 10.1007/978-1-0716-3048-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Peroxisomes are ubiquitous organelles with essential functions in numerous cellular processes such as lipid metabolism, detoxification of reactive oxygen species, and signaling. Knowledge of the peroxisomal proteome including multi-localized proteins and, most importantly, changes of its composition induced by altering cellular conditions or impaired peroxisome biogenesis and function is of paramount importance for a holistic view on peroxisomes and their diverse functions in a cellular context. In this chapter, we provide a spatial proteomics protocol specifically tailored to the analysis of the peroxisomal proteome of baker's yeast that enables the definition of the peroxisomal proteome under distinct conditions and to monitor dynamic changes of the proteome including the relocation of individual proteins to a different cellular compartment. The protocol comprises subcellular fractionation by differential centrifugation followed by Nycodenz density gradient centrifugation of a crude peroxisomal fraction, quantitative mass spectrometric measurements of subcellular and density gradient fractions, and advanced computational data analysis, resulting in the establishment of organellar maps on a global scale.
Collapse
Affiliation(s)
- Hirak Das
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Alexandros Zografakis
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Silke Oeljeklaus
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
| | - Bettina Warscheid
- Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
14
|
Cui X, Zhang Y, Zhang L, Liu J, Bai Y, Cui Y, Wang B, Zhang S, Li X. Role of LONP2 in head and neck squamous cell carcinoma. Gene 2022; 851:147033. [DOI: 10.1016/j.gene.2022.147033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
15
|
Gorukmez O, Havalı C, Gorukmez O, Dorum S. Newly defined peroxisomal disease with novel ACBD5 mutation. J Pediatr Endocrinol Metab 2022; 35:11-18. [PMID: 34668366 DOI: 10.1515/jpem-2020-0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/30/2021] [Indexed: 11/15/2022]
Abstract
Peroxisomal disorders are a heterogeneous group of diseases caused by mutations in a large number of genes. One of the genetic disorders known to cause this situation is ACBD5 (Acyl-CoA binding-domain-containing-5) gene mutations that have been described in recent years. Here, we report two siblings with a novel homozygous nonsense variation (c.1297C>T, p.Arg433*) in ACBD5 (NM_145698.4) gene using Clinical Exome Sequencing (Sophia Genetics).
Collapse
Affiliation(s)
- Ozlem Gorukmez
- Department of Medical Genetics, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Cengiz Havalı
- Department of Pediatrics, Division of Neurology, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Orhan Gorukmez
- Department of Medical Genetics, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sevil Dorum
- Department of Pediatrics, Division of Metabolism, Bursa Yüksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
16
|
Gao B, Zhao L, Wang F, Bai H, Li J, Li M, Hu X, Cao J, Wang G. Knockdown of ISOC1 inhibits the proliferation and migration and induces the apoptosis of colon cancer cells through the AKT/GSK-3β pathway. Carcinogenesis 2021; 41:1123-1133. [PMID: 31740942 PMCID: PMC7422624 DOI: 10.1093/carcin/bgz188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 12/28/2022] Open
Abstract
Isochorismatase domain-containing 1 (ISOC1) is a coding gene that contains an isochorismatase domain. The precise functions of ISOC1 in humans have not been clarified; however, studies have speculated that it may be involved in unknown metabolic pathways. Currently, it is reported that ISOC1 is associated with breast cancer. In this research, the aim is to investigate the critical role of ISOC1 in colorectal cancer (CRC) and to explore its biological function and mechanism in colon cancer cells. In 106 paired clinical samples, we found that the levels of ISOC1 expression were widely increased in cancer tissues compared with matched adjacent non-tumor tissues and that increased expression of ISOC1 was significantly associated with tumor size, tumor invasion, local lymph node metastasis and Tumor, Node and Metastasis (TNM) stage. Moreover, higher expression levels of ISOC1 were correlated with shorter disease-free survival in patients 2 years after surgery. In vitro, ISOC1 knockdown inhibited the proliferation and migration and induced the apoptosis of colon cancer cells, and in vivo, the xenograft tumors were also inhibited by ISOC1 silencing. We also used MTS, Transwell and cell apoptosis assays to confirm that ISOC1 plays a critical role in regulating the biological functions of colon cancer cells through the AKT/GSK-3β pathway. Additionally, the results of confocal microscopy and western blot analysis indicated that ISOC1 knockdown could promote p-STAT1 translocation to the nucleus.
Collapse
Affiliation(s)
- Bo Gao
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lianmei Zhao
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feifei Wang
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hanyu Bai
- Scientific Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuhua Hu
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Cao
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- The Second General Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
17
|
Christopher JA, Stadler C, Martin CE, Morgenstern M, Pan Y, Betsinger CN, Rattray DG, Mahdessian D, Gingras AC, Warscheid B, Lehtiö J, Cristea IM, Foster LJ, Emili A, Lilley KS. Subcellular proteomics. NATURE REVIEWS. METHODS PRIMERS 2021; 1:32. [PMID: 34549195 PMCID: PMC8451152 DOI: 10.1038/s43586-021-00029-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 12/11/2022]
Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
Collapse
Affiliation(s)
- Josie A. Christopher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - Charlotte Stadler
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Claire E. Martin
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Marcel Morgenstern
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yanbo Pan
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Cora N. Betsinger
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - David G. Rattray
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Diana Mahdessian
- Department of Protein Sciences, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bettina Warscheid
- Institute of Biology II, Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS and CIBSS Signaling Research Centers, University of Freiburg, Freiburg, Germany
| | - Janne Lehtiö
- Department of Oncology and Pathology, Karolinska Institutet, Science for Life Laboratory, Solna, Sweden
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Leonard J. Foster
- Department of Biochemistry & Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Emili
- Center for Network Systems Biology, Boston University, Boston, MA, USA
| | - Kathryn S. Lilley
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Milner Therapeutics Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| |
Collapse
|
18
|
Chornyi S, IJlst L, van Roermund CWT, Wanders RJA, Waterham HR. Peroxisomal Metabolite and Cofactor Transport in Humans. Front Cell Dev Biol 2021; 8:613892. [PMID: 33505966 PMCID: PMC7829553 DOI: 10.3389/fcell.2020.613892] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are membrane-bound organelles involved in many metabolic pathways and essential for human health. They harbor a large number of enzymes involved in the different pathways, thus requiring transport of substrates, products and cofactors involved across the peroxisomal membrane. Although much progress has been made in understanding the permeability properties of peroxisomes, there are still important gaps in our knowledge about the peroxisomal transport of metabolites and cofactors. In this review, we discuss the different modes of transport of metabolites and essential cofactors, including CoA, NAD+, NADP+, FAD, FMN, ATP, heme, pyridoxal phosphate, and thiamine pyrophosphate across the peroxisomal membrane. This transport can be mediated by non-selective pore-forming proteins, selective transport proteins, membrane contact sites between organelles, and co-import of cofactors with proteins. We also discuss modes of transport mediated by shuttle systems described for NAD+/NADH and NADP+/NADPH. We mainly focus on current knowledge on human peroxisomal metabolite and cofactor transport, but also include knowledge from studies in plants, yeast, fruit fly, zebrafish, and mice, which has been exemplary in understanding peroxisomal transport mechanisms in general.
Collapse
Affiliation(s)
- Serhii Chornyi
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Lodewijk IJlst
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Huttanus HM, Senger RS. A synthetic biosensor to detect peroxisomal acetyl-CoA concentration for compartmentalized metabolic engineering. PeerJ 2020; 8:e9805. [PMID: 33194349 PMCID: PMC7485502 DOI: 10.7717/peerj.9805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/03/2020] [Indexed: 11/20/2022] Open
Abstract
Background Sub-cellular compartmentalization is used by cells to create favorable microenvironments for various metabolic reactions. These compartments concentrate enzymes, separate competing metabolic reactions, and isolate toxic intermediates. Such advantages have been recently harnessed by metabolic engineers to improve the production of various high-value chemicals via compartmentalized metabolic engineering. However, measuring sub-cellular concentrations of key metabolites represents a grand challenge for compartmentalized metabolic engineering. Methods To this end, we developed a synthetic biosensor to measure a key metabolite, acetyl-CoA, in a representative compartment of yeast, the peroxisome. This synthetic biosensor uses enzyme re-localization via PTS1 signal peptides to construct a metabolic pathway in the peroxisome which converts acetyl-CoA to polyhydroxybutyrate (PHB) via three enzymes. The PHB is then quantified by HPLC. Results The biosensor demonstrated the difference in relative peroxisomal acetyl-CoA availability under various culture conditions and was also applied to screening a library of single knockout yeast mutants. The screening identified several mutants with drastically reduced peroxisomal acetyl-CoA and one with potentially increased levels. We expect our synthetic biosensors can be widely used to investigate sub-cellular metabolism and facilitate the “design-build-test” cycle of compartmentalized metabolic engineering.
Collapse
Affiliation(s)
- Herbert M Huttanus
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| | - Ryan S Senger
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America.,Department of Chemical Engineering, Virginia Polytechnic Institute and State University (Virginia Tech), Blacksburg, VA, United States of America
| |
Collapse
|
20
|
Peroxisomal Cofactor Transport. Biomolecules 2020; 10:biom10081174. [PMID: 32806597 PMCID: PMC7463629 DOI: 10.3390/biom10081174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
Peroxisomes are eukaryotic organelles that are essential for growth and development. They are highly metabolically active and house many biochemical reactions, including lipid metabolism and synthesis of signaling molecules. Most of these metabolic pathways are shared with other compartments, such as Endoplasmic reticulum (ER), mitochondria, and plastids. Peroxisomes, in common with all other cellular organelles are dependent on a wide range of cofactors, such as adenosine 5′-triphosphate (ATP), Coenzyme A (CoA), and nicotinamide adenine dinucleotide (NAD). The availability of the peroxisomal cofactor pool controls peroxisome function. The levels of these cofactors available for peroxisomal metabolism is determined by the balance between synthesis, import, export, binding, and degradation. Since the final steps of cofactor synthesis are thought to be located in the cytosol, cofactors must be imported into peroxisomes. This review gives an overview about our current knowledge of the permeability of the peroxisomal membrane with the focus on ATP, CoA, and NAD. Several members of the mitochondrial carrier family are located in peroxisomes, catalyzing the transfer of these organic cofactors across the peroxisomal membrane. Most of the functions of these peroxisomal cofactor transporters are known from studies in yeast, humans, and plants. Parallels and differences between the transporters in the different organisms are discussed here.
Collapse
|
21
|
Imanaka T, Kawaguchi K. A novel dynein-type AAA+ protein with peroxisomal targeting signal type 2. J Biochem 2020; 167:429-432. [PMID: 32027355 DOI: 10.1093/jb/mvaa018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 01/28/2020] [Indexed: 11/14/2022] Open
Abstract
Peroxisomal matrix proteins are imported into peroxisomes in a process mediated by peroxisomal targeting signal (PTS) type 1 and 2. The PTS2 proteins are imported into peroxisomes after binding with Pex7p. Niwa et al. (A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018;164:437-447) identified a novel Pex7p-binding protein in CHO cells and characterized the subcellular distribution and molecular properties of the human homologue, 'P7BP2'. Interestingly, P7BP2 possesses PTS2 at the NH2 terminal and six putative AAA+ domains. Another group has suggested that the protein also possesses mitochondrial targeting signal at the NH2 terminal. In fact, the P7BP2 expressed in mammalian cells is targeted to both peroxisomes and mitochondria. The purified protein from Sf9 cells is a monomer and has a disc-like ring structure, suggesting that P7BP2 is a novel dynein-type AAA+ family protein. The protein expressed in insect cells exhibits ATPase activity. P7BP2 localizes to peroxisomes and mitochondria, and has a common function related to dynein-type ATPases in both organelles.
Collapse
Affiliation(s)
- Tsuneo Imanaka
- Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshinkai, Kure, Hiroshima 737-0112, Japan
| | - Kosuke Kawaguchi
- Department of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
22
|
Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E. Slc25a17 Gene Trapped Mice: PMP34 Plays a Role in the Peroxisomal Degradation of Phytanic and Pristanic Acid. Front Cell Dev Biol 2020; 8:144. [PMID: 32266253 PMCID: PMC7106852 DOI: 10.3389/fcell.2020.00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 12/04/2022] Open
Abstract
Mice lacking PMP34, a peroxisomal membrane transporter encoded by Slc25a17, did not manifest any obvious phenotype on a Swiss Webster genetic background, even with various treatments designed to unmask impaired peroxisomal functioning. Peroxisomal α- and β-oxidation rates in PMP34 deficient fibroblasts or liver slices were not or only modestly affected and in bile, no abnormal bile acid intermediates were detected. Peroxisomal content of cofactors like CoA, ATP, NAD+, thiamine-pyrophosphate and pyridoxal-phosphate, based on direct or indirect data, appeared normal as were tissue plasmalogen and very long chain fatty acid levels. However, upon dietary phytol administration, the knockout mice displayed hepatomegaly, liver inflammation, and an induction of peroxisomal enzymes. This phenotype was partially mediated by PPARα. Hepatic triacylglycerols and cholesterylesters were elevated and both phytanic acid and pristanic acid accumulated in the liver lipids, in females to higher extent than in males. In addition, pristanic acid degradation products were detected, as wells as the CoA-esters of all these branched fatty acids. Hence, PMP34 is important for the degradation of phytanic/pristanic acid and/or export of their metabolites. Whether this is caused by a shortage of peroxisomal CoA affecting the intraperoxisomal formation of pristanoyl-CoA (and perhaps of phytanoyl-CoA), or the SCPx-catalyzed thiolytic cleavage during pristanic acid β-oxidation, could not be proven in this model, but the phytol-derived acyl-CoA profile is compatible with the latter possibility. On the other hand, the normal functioning of other peroxisomal pathways, and especially bile acid formation, seems to exclude severe transport problems or a shortage of CoA, and other cofactors like FAD, NAD(P)+, TPP. Based on our findings, PMP34 deficiency in humans is unlikely to be a life threatening condition but could cause elevated phytanic/pristanic acid levels in older adults.
Collapse
Affiliation(s)
| | - Evelyn de Schryver
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - An Zwijsen
- Laboratory of Developmental Signaling, Department Human Genetics, VIB-KU Leuven, Leuven, Belgium
| | - Marc Fransen
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Marc Espeel
- Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University, Ghent, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Faculty of Pharmaceutical Sciences, KU Leuven, Leuven, Belgium
| | - Elke Van Ael
- LIPIT, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
The Mitochondrial Lon Protease: Novel Functions off the Beaten Track? Biomolecules 2020; 10:biom10020253. [PMID: 32046155 PMCID: PMC7072132 DOI: 10.3390/biom10020253] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
To maintain organellar function, mitochondria contain an elaborate endogenous protein quality control system. As one of the two soluble energy-dependent proteolytic enzymes in the matrix compartment, the protease Lon is a major component of this system, responsible for the degradation of misfolded proteins, in particular under oxidative stress conditions. Lon defects have been shown to negatively affect energy production by oxidative phosphorylation but also mitochondrial gene expression. In this review, recent studies on the role of Lon in mammalian cells, in particular on its protective action under diverse stress conditions and its relationship to important human diseases are summarized and commented.
Collapse
|
24
|
Niwa H, Miyauchi-Nanri Y, Okumoto K, Mukai S, Noi K, Ogura T, Fujiki Y. A newly isolated Pex7-binding, atypical PTS2 protein P7BP2 is a novel dynein-type AAA+ protein. J Biochem 2018; 164:437-447. [PMID: 30204880 DOI: 10.1093/jb/mvy073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/10/2018] [Indexed: 12/19/2022] Open
Abstract
A newly isolated binding protein of peroxisomal targeting signal type 2 (PTS2) receptor Pex7, termed P7BP2, is transported into peroxisomes by binding to the longer isoform of Pex5p, Pex5pL, via Pex7p. The binding to Pex7p and peroxisomal localization of P7BP2 depends on the cleavable PTS2 in the N-terminal region, suggesting that P7BP2 is a new PTS2 protein. By search on human database, three AAA+ domains are found in the N-terminal half of P7BP2. Protein sequence alignment and motif search reveal that in the C-terminal region P7BP2 contains additional structural domains featuring weak but sufficient homology to AAA+ domain. P7BP2 behaves as a monomer in gel-filtration chromatography and the single molecule observed under atomic force microscope shapes a disc-like ring. Collectively, these results suggest that P7BP2 is a novel dynein-type AAA+ family protein, of which domains are arranged into a pseudo-hexameric ring structure.
Collapse
Affiliation(s)
- Hajime Niwa
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| | - Yasuhiro Miyauchi-Nanri
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kanji Okumoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Satoru Mukai
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, Japan
| | - Kentaro Noi
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Japan
| |
Collapse
|
25
|
Barros-Barbosa A, Rodrigues TA, Ferreira MJ, Pedrosa AG, Teixeira NR, Francisco T, Azevedo JE. The intrinsically disordered nature of the peroxisomal protein translocation machinery. FEBS J 2018; 286:24-38. [PMID: 30443986 DOI: 10.1111/febs.14704] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Despite having a membrane that is impermeable to all but the smallest of metabolites, peroxisomes acquire their newly synthesized (cytosolic) matrix proteins in an already folded conformation. In some cases, even oligomeric proteins have been reported to translocate the organelle membrane. The protein sorting machinery that accomplishes this feat must be rather flexible and, unsurprisingly, several of its key components have large intrinsically disordered domains. Here, we provide an overview on these domains and their interactions trying to infer their functional roles in this protein sorting pathway.
Collapse
Affiliation(s)
- Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Maria J Ferreira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Nélson R Teixeira
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Portugal
| |
Collapse
|
26
|
Imanaka T. [Biogenesis, the Function of Peroxisomes, and Their Role in Genetic Disease: With a Focus on the ABC Transporter]. YAKUGAKU ZASSHI 2018; 138:1067-1083. [PMID: 30068848 DOI: 10.1248/yakushi.18-00023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisomes are organelles that are present in almost all eukaryotic cells. These organelles were first described in 1954, in the cytoplasm of the proximal tubule cells in the mouse kidney, using electron microscopy by Rhodin and referred to as "microbodies". Then, de Duve and Baudhuin isolated microbodies from rat liver using density gradient centrifugation, defined the microbodies as membrane-bound organelles containing several H2O2-producing oxidases and H2O2-degrading catalase, and named them peroxisomes. At present, the biogenesis of peroxisomes in mammals involves three different processes: the formation of pre-peroxisomes from the endoplasmic reticulum, the import of peroxisomal membrane and matrix proteins to the pre-peroxisomes, and the growth and division of the peroxisomes. These organelles are involved in a variety of metabolic processes, including the β-oxidation of very long chain fatty acids, and the synthesis of ether phospholipids and bile acids in mammals. These metabolic pathways require the transport of metabolites in and out of peroxisomes. The transport of such metabolites is facilitated in part by the ATP-binding cassette (ABC) transporter. Impairment of the biogenesis and function of peroxisomes causes severe peroxisomal disorders. Since I began peroxisome research at Professor de Duve's laboratory in 1985, I have studied the biogenesis and function of peroxisomes and peroxisome diseases for more than 30 years, with a focus on ABC transporters. Here, I review the biogenesis of peroxisomes, the targeting of ABC transporters to the peroxisome, and the function of ABC transporters in physiological and pathological processes, including X-linked adrenoleukodystrophy, a neurodegenerative disease.
Collapse
Affiliation(s)
- Tsuneo Imanaka
- Department of Biological Chemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
27
|
Pedrosa AG, Francisco T, Bicho D, Dias AF, Barros-Barbosa A, Hagmann V, Dodt G, Rodrigues TA, Azevedo JE. Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol. J Biol Chem 2018; 293:11553-11563. [PMID: 29884772 DOI: 10.1074/jbc.ra118.003669] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 05/28/2018] [Indexed: 11/06/2022] Open
Abstract
PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.
Collapse
Affiliation(s)
- Ana G Pedrosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Vera Hagmann
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe Seyler Strasse 4, 72076 Tübingen, Germany
| | - Gabriele Dodt
- Interfakultäres Institut für Biochemie, Universität Tübingen, Hoppe Seyler Strasse 4, 72076 Tübingen, Germany
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.
| |
Collapse
|
28
|
Wu W, Liu F, Wu K, Chen Y, Wu H, Dai G, Zhang W. Lon Peptidase 2, Peroxisomal (LONP2) Contributes to Cervical Carcinogenesis via Oxidative Stress. Med Sci Monit 2018; 24:1310-1320. [PMID: 29502128 PMCID: PMC5846714 DOI: 10.12659/msm.908966] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Lon protease is responsible for degrading proteins injured by oxidation, and has 2 isoforms, located in mitochondria and peroxisomes. Recent research showed that Lon protease was upregulated in different types of human cancer, but the role of Lon peptidase 2, peroxisomal (LONP2) in cancer is not well understood. It is known, however, that in cancer biology, reduction-oxidation is one of the molecular mechanisms involved in tumorigenesis. Material/Methods Oncomine databases and tissue microarrays, initially using immunohistochemistry, were used to analyze LONP2 expression in cervical cancer. In order to uncover the biologic functions and mechanism(s) underlying LONP2 in cervical tumorigenesis, we downregulated the expression of LONP2 using 2 siRNAs transduced in HeLa and SiHa cells. CCK8 assays were performed to evaluate cell viability. Cell cycle and apoptosis assays were used to determine cell growth. Cell migration and invasion assays were used to study changes in cell migration and invasion capacity. Immunofluorescence and flow cytometry were performed to analyze the changes in ROS production. Results We found that the expression of LONP2 was significantly upregulated in cervical cancer, and there was a significant association with pathology type, pathology grade, and clinical stage, but not with age or lymph node metastasis. Moreover, we demonstrated that knocking down LONP2 in HeLa and SiHa cells reduced cell proliferation, cell cycle, apoptosis, migration, invasion, and oxidative stress levels. Conclusions Our findings suggest that LONP2 promotes cervical tumorigenesis via oxidative stress and may be a potential biomarker and therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Wanrong Wu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland).,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Fulin Liu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Kejia Wu
- Department of Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Yurou Chen
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Hanshu Wu
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Guo Dai
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| | - Wei Zhang
- First Department of Gynaecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China (mainland)
| |
Collapse
|
29
|
Islinger M, Manner A, Völkl A. The Craft of Peroxisome Purification-A Technical Survey Through the Decades. Subcell Biochem 2018; 89:85-122. [PMID: 30378020 DOI: 10.1007/978-981-13-2233-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Purification technologies are one of the working horses in organelle proteomics studies as they guarantee the separation of organelle-specific proteins from the background contamination by other subcellular compartments. The development of methods for the separation of organelles was a major prerequisite for the initial detection and characterization of peroxisome as a discrete entity of the cell. Since then, isolated peroxisomes fractions have been used in numerous studies in order to characterize organelle-specific enzyme functions, to allocate the peroxisome-specific proteome or to unravel the organellar membrane composition. This review will give an overview of the fractionation methods used for the isolation of peroxisomes from animals, plants and fungi. In addition to "classic" centrifugation-based isolation methods, relying on the different densities of individual organelles, the review will also summarize work on alternative technologies like free-flow-electrophoresis or flow field fractionation which are based on distinct physicochemical parameters. A final chapter will further describe how different separation methods and quantitative mass spectrometry have been used in proteomics studies to assign the proteome of PO.
Collapse
Affiliation(s)
- Markus Islinger
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.
| | - Andreas Manner
- Institute for Neuroanatomy, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Alfred Völkl
- Department of Medical Cell Biology, Institute of Anatomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Kunze M. Predicting Peroxisomal Targeting Signals to Elucidate the Peroxisomal Proteome of Mammals. Subcell Biochem 2018; 89:157-199. [PMID: 30378023 DOI: 10.1007/978-981-13-2233-4_7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peroxisomes harbor a plethora of proteins, but the peroxisomal proteome as the entirety of all peroxisomal proteins is still unknown for mammalian species. Computational algorithms can be used to predict the subcellular localization of proteins based on their amino acid sequence and this method has been amply used to forecast the intracellular fate of individual proteins. However, when applying such algorithms systematically to all proteins of an organism the prediction of its peroxisomal proteome in silico should be possible. Therefore, a reliable detection of peroxisomal targeting signals (PTS ) acting as postal codes for the intracellular distribution of the encoding protein is crucial. Peroxisomal proteins can utilize different routes to reach their destination depending on the type of PTS. Accordingly, independent prediction algorithms have been developed for each type of PTS, but only those for type-1 motifs (PTS1) have so far reached a satisfying predictive performance. This is partially due to the low number of peroxisomal proteins limiting the power of statistical analyses and partially due to specific properties of peroxisomal protein import, which render functional PTS motifs inactive in specific contexts. Moreover, the prediction of the peroxisomal proteome is limited by the high number of proteins encoded in mammalian genomes, which causes numerous false positive predictions even when using reliable algorithms and buries the few yet unidentified peroxisomal proteins. Thus, the application of prediction algorithms to identify all peroxisomal proteins is currently ineffective as stand-alone method, but can display its full potential when combined with other methods.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
31
|
Peroxisomes and Cellular Oxidant/Antioxidant Balance: Protein Redox Modifications and Impact on Inter-organelle Communication. Subcell Biochem 2018; 89:435-461. [PMID: 30378035 DOI: 10.1007/978-981-13-2233-4_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Disturbances in cellular redox balance have been associated with pro-aging mechanisms and increased risk for various chronic disease states. Multiple lines of evidence indicate that peroxisomes are central players in cellular redox metabolism. Nevertheless, the potential role of this organelle as intracellular redox signaling platform has been largely overlooked for a long time. Fortunately, this situation is now changing. This review provides a snapshot of the current progress in the field, with an emphasis on the situation in mammals. We first briefly introduce the basics of redox biology and how reactive oxygen and nitrogen species can drive cellular signaling events. Next, we discuss current evidence linking peroxisome (dys)function to redox signaling, both in health and disease. We also highlight what is currently known about the downstream targets of peroxisome-derived oxidants. In addition, we present an extensive list of proteins that are involved in peroxisome functioning and have been identified as being responsive to oxidative stress in large scale redox proteomics studies. Finally, we address how changes in peroxisomal redox state may impact on functional mechanisms underlying inter-organelle communication. Gaining more insight into these mechanisms is key to our understanding of how peroxisomes are embedded in cellular signaling networks implicated in aging and diseases such as cancer, diabetes, and neurodegenerative disorders.
Collapse
|
32
|
Walker CL, Pomatto LCD, Tripathi DN, Davies KJA. Redox Regulation of Homeostasis and Proteostasis in Peroxisomes. Physiol Rev 2018; 98:89-115. [PMID: 29167332 PMCID: PMC6335096 DOI: 10.1152/physrev.00033.2016] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 02/08/2023] Open
Abstract
Peroxisomes are highly dynamic intracellular organelles involved in a variety of metabolic functions essential for the metabolism of long-chain fatty acids, d-amino acids, and many polyamines. A byproduct of peroxisomal metabolism is the generation, and subsequent detoxification, of reactive oxygen and nitrogen species, particularly hydrogen peroxide (H2O2). Because of its relatively low reactivity (as a mild oxidant), H2O2 has a comparatively long intracellular half-life and a high diffusion rate, all of which makes H2O2 an efficient signaling molecule. Peroxisomes also have intricate connections to mitochondria, and both organelles appear to play important roles in regulating redox signaling pathways. Peroxisomal proteins are also subject to oxidative modification and inactivation by the reactive oxygen and nitrogen species they generate, but the peroxisomal LonP2 protease can selectively remove such oxidatively damaged proteins, thus prolonging the useful lifespan of the organelle. Peroxisomal homeostasis must adapt to the metabolic state of the cell, by a combination of peroxisome proliferation, the removal of excess or badly damaged organelles by autophagy (pexophagy), as well as by processes of peroxisome inheritance and motility. More recently the tumor suppressors ataxia telangiectasia mutate (ATM) and tuberous sclerosis complex (TSC), which regulate mTORC1 signaling, have been found to regulate pexophagy in response to variable levels of certain reactive oxygen and nitrogen species. It is now clear that any significant loss of peroxisome homeostasis can have devastating physiological consequences. Peroxisome dysregulation has been implicated in several metabolic diseases, and increasing evidence highlights the important role of diminished peroxisomal functions in aging processes.
Collapse
Affiliation(s)
- Cheryl L Walker
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Laura C D Pomatto
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Durga Nand Tripathi
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| | - Kelvin J A Davies
- Center for Precision Environmental Health and Departments of Molecular & Cellular Biology and Medicine, Baylor College of Medicine, Houston, Texas; and Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center and Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, California
| |
Collapse
|
33
|
Abstract
The current view on peroxisomes has changed dramatically from being human cell oddities to vital organelles that host several key metabolic pathways. To fulfil over 50 different enzymatic functions, human peroxisomes host either unique peroxisomal proteins or dual-localized proteins. The identification and characterization of the complete peroxisomal proteome in humans is important for diagnosis and treatment of patients with peroxisomal disorders as well as for uncovering novel peroxisomal functions and regulatory modules. Hence, here we compiled a comprehensive list of mammalian peroxisomal and peroxisome-associated proteins by curating results of several quantitative and non-quantitative proteomic studies together with entries in the UniProtKB and Compartments knowledge channel databases. Our analysis gives a holistic view on the mammalian peroxisomal proteome and brings to light potential new peroxisomal and peroxisome-associated proteins. We believe that this dataset, represents a valuable surrogate map of the human peroxisomal proteome.
Collapse
|
34
|
Francisco T, Rodrigues TA, Dias AF, Barros-Barbosa A, Bicho D, Azevedo JE. Protein transport into peroxisomes: Knowns and unknowns. Bioessays 2017; 39. [PMID: 28787099 DOI: 10.1002/bies.201700047] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the "plunger" - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the "barrel" - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the "barrel" is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.
Collapse
Affiliation(s)
- Tânia Francisco
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Ana F Dias
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Aurora Barros-Barbosa
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Diana Bicho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Jorge E Azevedo
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
35
|
Honsho M, Fujiki Y. Plasmalogen homeostasis - regulation of plasmalogen biosynthesis and its physiological consequence in mammals. FEBS Lett 2017; 591:2720-2729. [PMID: 28686302 DOI: 10.1002/1873-3468.12743] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 06/28/2015] [Accepted: 06/29/2016] [Indexed: 11/06/2022]
Abstract
Plasmalogens, mostly ethanolamine-containing alkenyl ether phospholipids, are a major subclass of glycerophospholipids. Plasmalogen synthesis is initiated in peroxisomes and completed in the endoplasmic reticulum. The absence of plasmalogens in several organs of peroxisome biogenesis-defective patients suggests that the de novo synthesis of plasmalogens plays a pivotal role in its homeostasis in tissues. Plasmalogen synthesis is regulated by modulating the stability of fatty acyl-CoA reductase 1 on peroxisomal membranes, a rate-limiting enzyme in plasmalogen synthesis, by sensing plasmalogens in the inner leaflet of plasma membranes. Dysregulation of plasmalogen homeostasis impairs cholesterol biosynthesis by altering the stability of squalene monooxygenase, a key enzyme in cholesterol biosynthesis, implying physiological consequences of plasmalogen homeostasis with respect to cholesterol metabolism in cells, as well as in organs such as the liver.
Collapse
Affiliation(s)
- Masanori Honsho
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yukio Fujiki
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
36
|
Beghein E, Gettemans J. Nanobody Technology: A Versatile Toolkit for Microscopic Imaging, Protein-Protein Interaction Analysis, and Protein Function Exploration. Front Immunol 2017; 8:771. [PMID: 28725224 PMCID: PMC5495861 DOI: 10.3389/fimmu.2017.00771] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/16/2017] [Indexed: 01/05/2023] Open
Abstract
Over the last two decades, nanobodies or single-domain antibodies have found their way in research, diagnostics, and therapy. These antigen-binding fragments, derived from Camelid heavy chain only antibodies, possess remarkable characteristics that favor their use over conventional antibodies or fragments thereof, in selected areas of research. In this review, we assess the current status of nanobodies as research tools in diverse aspects of fundamental research. We discuss the use of nanobodies as detection reagents in fluorescence microscopy and focus on recent advances in super-resolution microscopy. Second, application of nanobody technology in investigating protein–protein interactions is reviewed, with emphasis on possible uses in mass spectrometry. Finally, we discuss the potential value of nanobodies in studying protein function, and we focus on their recently reported application in targeted protein degradation. Throughout the review, we highlight state-of-the-art engineering strategies that could expand nanobody versatility and we suggest future applications of the technology in the selected areas of fundamental research.
Collapse
Affiliation(s)
- Els Beghein
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Nanobody Laboratory, Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
37
|
Yofe I, Soliman K, Chuartzman SG, Morgan B, Weill U, Yifrach E, Dick TP, Cooper SJ, Ejsing CS, Schuldiner M, Zalckvar E, Thoms S. Pex35 is a regulator of peroxisome abundance. J Cell Sci 2017; 130:791-804. [PMID: 28049721 DOI: 10.1242/jcs.187914] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
Peroxisomes are cellular organelles with vital functions in lipid, amino acid and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes; however, the regulation of peroxisome abundance is still poorly understood. Here, we use a high-content microscopy screen in Saccharomyces cerevisiae to identify new regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term PEX35, which affects peroxisome abundance. PEX35 encodes a peroxisomal membrane protein, a remote homolog to several curvature-generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in PEX35, and we found that Pex35 functionally interacts with the vesicle-budding-inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.
Collapse
Affiliation(s)
- Ido Yofe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kareem Soliman
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| | - Silvia G Chuartzman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bruce Morgan
- Department of Cellular Biochemistry, University of Kaiserslautern, Kaiserslautern 67653, Germany.,Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eden Yifrach
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tobias P Dick
- Division of Redox Regulation, ZMBH-DKFZ Alliance, German Cancer Research Center (DKFZ), Heidelberg 69121, Germany
| | - Sara J Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense 5230, Denmark
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Einat Zalckvar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sven Thoms
- Department of Child and Adolescent Health, University Medical Center, Göttingen 37075, Germany
| |
Collapse
|
38
|
Isolation of Peroxisomes from Rat Liver and Cultured Hepatoma Cells by Density Gradient Centrifugation. Methods Mol Biol 2017; 1595:1-11. [PMID: 28409446 DOI: 10.1007/978-1-4939-6937-1_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subcellular fractionation is still a valuable technique to unravel organelle-specific proteomes, validate the location of uncharacterized proteins, or to functionally analyze import and metabolism in individual subcellular compartments. In this respect, density gradient centrifugation still represents a very classic, indispensable technique to isolate and analyze peroxisomes. Here, we present two independent protocols for the purification of peroxisomes from either liver tissue or the HepG2 hepatoma cell line. While the former permits the isolation of highly pure peroxisomes suitable for, e.g., subcellular proteomics experiments, the latter protocol yields peroxisomal fractions from considerably less purity but allows to easily modify metabolic conditions in the culture medium or to genetically manipulate the peroxisomal compartment. In this respect, both purification methods represent alternative tools to be applied in experiments investigating peroxisome physiology.
Collapse
|
39
|
Yarmishyn AA, Kremenskoy M, Batagov AO, Preuss A, Wong JH, Kurochkin IV. Genome-wide analysis of mRNAs associated with mouse peroxisomes. BMC Genomics 2016; 17:1028. [PMID: 28155669 PMCID: PMC5259856 DOI: 10.1186/s12864-016-3330-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background RNA is often targeted to be localized to the specific subcellular compartments. Specific localization of mRNA is believed to be an important mechanism for targeting their protein products to the locations, where their function is required. Results In this study we performed the genome wide transcriptome analysis of peroxisome preparations from the mouse liver using microarrays. We demonstrate that RNA is absent inside peroxisomes, however it is associated at their exterior via the noncovalent contacts with the membrane proteins. We detect enrichment of specific sets of transcripts in two preparations of peroxisomes, purified with different degrees of stringency. Importantly, among these were mRNAs encoding bona fide peroxisomal proteins, such as peroxins and peroxisomal matrix enzymes involved in beta-oxidation of fatty acids and bile acid biosynthesis. The top-most enriched mRNA, whose association with peroxisomes we confirm microscopically was Hmgcs1, encoding 3-hydroxy-3-methylglutaryl-CoA synthase, a crucial enzyme of cholesterol biosynthesis pathway. We observed significant representation of mRNAs encoding mitochondrial and secreted proteins in the peroxisomal fractions. Conclusions This is a pioneer genome-wide study of localization of mRNAs to peroxisomes that provides foundation for more detailed dissection of mechanisms of RNA targeting to subcellular compartments. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3330-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aliaksandr A Yarmishyn
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Maksym Kremenskoy
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Arsen O Batagov
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Axel Preuss
- Institute of Molecular and Cellular Biology, Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, 138673, Singapore
| | - Jin Huei Wong
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore
| | - Igor V Kurochkin
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore, 138671, Singapore. .,, Present address: Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan.
| |
Collapse
|
40
|
Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids. J Biol Chem 2016; 292:691-705. [PMID: 27899449 DOI: 10.1074/jbc.m116.760090] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder.
Collapse
Affiliation(s)
- Yuichi Yagita
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Shinohara
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuichi Abe
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Keiko Nakagawa
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohammed Al-Owain
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yukio Fujiki
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| |
Collapse
|
41
|
Ferdinandusse S, Falkenberg KD, Koster J, Mooyer PA, Jones R, van Roermund CWT, Pizzino A, Schrader M, Wanders RJA, Vanderver A, Waterham HR. ACBD5 deficiency causes a defect in peroxisomal very long-chain fatty acid metabolism. J Med Genet 2016; 54:330-337. [PMID: 27799409 DOI: 10.1136/jmedgenet-2016-104132] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/07/2016] [Indexed: 11/04/2022]
Abstract
BACKGROUND Acyl-CoA binding domain containing protein 5 (ACBD5) is a peroxisomal membrane protein with a cytosolic acyl-CoA binding domain. Because of its acyl-CoA binding domain, ACBD5 has been assumed to function as an intracellular carrier of acyl-CoA esters. In addition, a role for ACBD5 in pexophagy has been suggested. However, the precise role of ACBD5 in peroxisomal metabolism and/or functioning has not yet been established. Previously, a genetic ACBD5 deficiency was identified in three siblings with retinal dystrophy and white matter disease. We identified a pathogenic mutation in ACBD5 in another patient and studied the consequences of the ACBD5 defect in patient material and in ACBD5-deficient HeLa cells to uncover this role. METHODS We studied a girl who presented with progressive leukodystrophy, syndromic cleft palate, ataxia and retinal dystrophy. We performed biochemical, cell biological and molecular studies in patient material and in ACBD5-deficient HeLa cells generated by CRISPR-Cas9 genome editing. RESULTS We identified a homozygous deleterious indel mutation in ACBD5, leading to complete loss of ACBD5 protein in the patient. Our studies showed that ACBD5 deficiency leads to accumulation of very long-chain fatty acids (VLCFAs) due to impaired peroxisomal β-oxidation. No effect on pexophagy was found. CONCLUSIONS Our investigations strongly suggest that ACBD5 plays an important role in sequestering C26-CoA in the cytosol and thereby facilitates transport into the peroxisome and subsequent β-oxidation. Accordingly, ACBD5 deficiency is a novel single peroxisomal enzyme deficiency caused by impaired VLCFA metabolism, leading to retinal dystrophy and white matter disease.
Collapse
Affiliation(s)
- Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Kim D Falkenberg
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Janet Koster
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Petra A Mooyer
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Carlo W T van Roermund
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Amy Pizzino
- Department of Neurology, Children's National Health System, Washington DC, USA
| | - Michael Schrader
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Exeter, Devon, UK
| | - Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Adeline Vanderver
- Department of Neurology, Children's National Health System, Washington DC, USA
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
42
|
Sato N, Taniguchi T, Goda Y, Kosaka H, Higashino K, Sakai T, Katoh S, Yasui N, Sairyo K, Taniguchi H. Proteomic Analysis of Human Tendon and Ligament: Solubilization and Analysis of Insoluble Extracellular Matrix in Connective Tissues. J Proteome Res 2016; 15:4709-4721. [DOI: 10.1021/acs.jproteome.6b00806] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nori Sato
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Takako Taniguchi
- Division
of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yuichiro Goda
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hirofumi Kosaka
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Kosaku Higashino
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Toshinori Sakai
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shinsuke Katoh
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Natsuo Yasui
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Koichi Sairyo
- Department
of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Hisaaki Taniguchi
- Division
of Disease Proteomics, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
43
|
Beghein E, Van Audenhove I, Zwaenepoel O, Verhelle A, De Ganck A, Gettemans J. A new survivin tracer tracks, delocalizes and captures endogenous survivin at different subcellular locations and in distinct organelles. Sci Rep 2016; 6:31177. [PMID: 27514728 PMCID: PMC4981888 DOI: 10.1038/srep31177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/13/2016] [Indexed: 01/18/2023] Open
Abstract
Survivin, the smallest member of the inhibitor of apoptosis protein family, plays a central role during mitosis and exerts a cytoprotective function. Survivin is highly expressed in most cancer types and contributes to multiple facets of carcinogenesis. The molecular mechanisms underlying its highly diverse functions need to be extensively explored, which is crucial for rational design of future personalized therapeutics. In this study, we have generated an alpaca survivin nanobody (SVVNb8) that binds with low nanomolar affinity to its target. When expressed as an intrabody in HeLa cells, SVVNb8 faithfully tracks survivin during different phases of mitosis without interfering with survivin function. Furthermore, coupling SVVNb8 with a subcellular delocalization tag efficiently redirects endogenous survivin towards the nucleus, the cytoplasm, peroxisomes and even to the intermembrane space of mitochondria where it presumably interacts with resident mitochondrial survivin. Based on our findings, we believe that SVVNb8 is an excellent instrument to further elucidate survivin biology and topography, and can serve as a model system to investigate mitochondrial and peroxisomal (survivin) protein import.
Collapse
Affiliation(s)
- Els Beghein
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Isabel Van Audenhove
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Olivier Zwaenepoel
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Adriaan Verhelle
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Ariane De Ganck
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| | - Jan Gettemans
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Campus Rommelaere, A. Baertsoenkaai 3, Ghent University, Ghent, Belgium
| |
Collapse
|
44
|
Peroxisomal protein import pores. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:821-7. [DOI: 10.1016/j.bbamcr.2015.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
|
45
|
Characterization of the ATP-Dependent Lon-Like Protease in Methanobrevibacter smithii. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2016; 2016:5759765. [PMID: 27239160 PMCID: PMC4864567 DOI: 10.1155/2016/5759765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/22/2016] [Accepted: 03/28/2016] [Indexed: 11/17/2022]
Abstract
The Lon protease is highly evolutionarily conserved. However, little is known about Lon in the context of gut microbial communities. A gene encoding a Lon-like protease (Lon-like-Ms) was identified and characterized from Methanobrevibacter smithii, the predominant archaeon in the human gut ecosystem. Phylogenetic and sequence analyses showed that Lon-like-Ms and its homologs are newly identified members of the Lon family. A recombinant form of the enzyme was purified by affinity chromatography, and its catalytic properties were examined. Recombinant Lon-like-Ms exhibited ATPase activity and cleavage activity toward fluorogenic peptides and casein. The peptidase activity of Lon-like-Ms relied strictly on Mg(2+) (or other divalent cations) and ATP. These results highlight a new type of Lon-like protease that differs from its bacterial counterpart.
Collapse
|
46
|
Zientara-Rytter K, Subramani S. Autophagic degradation of peroxisomes in mammals. Biochem Soc Trans 2016; 44:431-40. [PMID: 27068951 PMCID: PMC4958620 DOI: 10.1042/bst20150268] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide (H2O2). Therefore, peroxisome homoeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homoeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy-the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signalling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions.
Collapse
Affiliation(s)
- Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A.
| |
Collapse
|
47
|
Pomatto LCD, Raynes R, Davies KJA. The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev Camb Philos Soc 2016; 92:739-753. [PMID: 26852705 DOI: 10.1111/brv.12253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 12/02/2015] [Accepted: 12/23/2015] [Indexed: 01/24/2023]
Abstract
Peroxisomes are ubiquitous eukaryotic organelles with the primary role of breaking down very long- and branched-chain fatty acids for subsequent β-oxidation in the mitochondrion. Like mitochondria, peroxisomes are major sites for oxygen utilization and potential contributors to cellular oxidative stress. The accumulation of oxidatively damaged proteins, which often develop into inclusion bodies (of oxidized, aggregated, and cross-linked proteins) within both mitochondria and peroxisomes, results in loss of organelle function that may contribute to the aging process. Both organelles possess an isoform of the Lon protease that is responsible for degrading proteins damaged by oxidation. While the importance of mitochondrial Lon (LonP1) in relation to oxidative stress and aging has been established, little is known regarding the role of LonP2 and aging-related changes in the peroxisome. Recently, peroxisome dysfunction has been associated with aging-related diseases indicating that peroxisome maintenance is a critical component of 'healthy aging'. Although mitochondria and peroxisomes are both needed for fatty acid metabolism, little work has focused on understanding the relationship between these two organelles including how age-dependent changes in one organelle may be detrimental for the other. Herein, we summarize findings that establish proteolytic degradation of damaged proteins by the Lon protease as a vital mechanism to maintain protein homeostasis within the peroxisome. Due to the metabolic coordination between peroxisomes and mitochondria, understanding the role of Lon in the aging peroxisome may help to elucidate cellular causes for both peroxisome and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Laura C D Pomatto
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Rachel Raynes
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| | - Kelvin J A Davies
- Ethel Percy Andrus Gerontology Center of the Davis School of Gerontology and Division of Molecular & Computational Biology, Department of Biological Sciences of the College of Letters, Arts & Sciences, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA, 90089-0191, U.S.A
| |
Collapse
|
48
|
Chromatin remodeller SMARCA4 recruits topoisomerase 1 and suppresses transcription-associated genomic instability. Nat Commun 2016; 7:10549. [PMID: 26842758 PMCID: PMC4742980 DOI: 10.1038/ncomms10549] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/25/2015] [Indexed: 02/07/2023] Open
Abstract
Topoisomerase 1, an enzyme that relieves superhelical tension, is implicated in transcription-associated mutagenesis and genome instability-associated with neurodegenerative diseases as well as activation-induced cytidine deaminase. From proteomic analysis of TOP1-associated proteins, we identify SMARCA4, an ATP-dependent chromatin remodeller; FACT, a histone chaperone; and H3K4me3, a transcriptionally active chromatin marker. Here we show that SMARCA4 knockdown in a B-cell line decreases TOP1 recruitment to chromatin, and leads to increases in Igh/c-Myc chromosomal translocations, variable and switch region mutations and negative superhelicity, all of which are also observed in response to TOP1 knockdown. In contrast, FACT knockdown inhibits association of TOP1 with H3K4me3, and severely reduces DNA cleavage and Igh/c-Myc translocations, without significant effect on TOP1 recruitment to chromatin. We thus propose that SMARCA4 is involved in the TOP1 recruitment to general chromatin, whereas FACT is required for TOP1 binding to H3K4me3 at non-B DNA containing chromatin for the site-specific cleavage. Topoisomerase 1 (TOP1) relieves superhelical tension when DNA strands are unwound during transcription. Here, Husain et al. report that SMARCA4, an ATP-dependent chromatin remodeller, is associated with TOP1 and suppresses transcription-associated genomic instability.
Collapse
|
49
|
Freitas MO, Francisco T, Rodrigues TA, Lismont C, Domingues P, Pinto MP, Grou CP, Fransen M, Azevedo JE. The peroxisomal protein import machinery displays a preference for monomeric substrates. Open Biol 2016; 5:140236. [PMID: 25854684 PMCID: PMC4422123 DOI: 10.1098/rsob.140236] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and transported by the shuttling receptor PEX5 to the peroxisomal membrane docking/translocation machinery, where they are translocated into the organelle matrix. Under certain experimental conditions this protein import machinery has the remarkable capacity to accept already oligomerized proteins, a property that has heavily influenced current models on the mechanism of peroxisomal protein import. However, whether or not oligomeric proteins are really the best and most frequent clients of this machinery remain unclear. In this work, we present three lines of evidence suggesting that the peroxisomal import machinery displays a preference for monomeric proteins. First, in agreement with previous findings on catalase, we show that PEX5 binds newly synthesized (monomeric) acyl-CoA oxidase 1 (ACOX1) and urate oxidase (UOX), potently inhibiting their oligomerization. Second, in vitro import experiments suggest that monomeric ACOX1 and UOX are better peroxisomal import substrates than the corresponding oligomeric forms. Finally, we provide data strongly suggesting that although ACOX1 lacking a peroxisomal targeting signal can be imported into peroxisomes when co-expressed with ACOX1 containing its targeting signal, this import pathway is inefficient.
Collapse
Affiliation(s)
- Marta O Freitas
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tânia Francisco
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Tony A Rodrigues
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Celien Lismont
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven-Universiteit Leuven, Leuven, Belgium
| | - Pedro Domingues
- Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Manuel P Pinto
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Cláudia P Grou
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal
| | - Marc Fransen
- Departement Cellulaire en Moleculaire Geneeskunde, KU Leuven-Universiteit Leuven, Leuven, Belgium
| | - Jorge E Azevedo
- Organelle Biogenesis and Function Group, Instituto de Biologia Celular e Molecular (IBMC), Universidade do Porto, Porto, Portugal Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Oeljeklaus S, Schummer A, Mastalski T, Platta HW, Warscheid B. Regulation of peroxisome dynamics by phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1027-37. [PMID: 26775584 DOI: 10.1016/j.bbamcr.2015.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 12/31/2022]
Abstract
Peroxisomes are highly dynamic organelles that can rapidly change in size, abundance, and protein content in response to alterations in nutritional and other environmental conditions. These dynamic changes in peroxisome features, referred to as peroxisome dynamics, rely on the coordinated action of several processes of peroxisome biogenesis. Revealing the regulatory mechanisms of peroxisome dynamics is an emerging theme in cell biology. These mechanisms are inevitably linked to and synchronized with the biogenesis and degradation of peroxisomes. To date, the key players and basic principles of virtually all steps in the peroxisomal life cycle are known, but regulatory mechanisms remained largely elusive. A number of recent studies put the spotlight on reversible protein phosphorylation for the control of peroxisome dynamics and highlighted peroxisomes as hubs for cellular signal integration and regulation. Here, we will present and discuss the results of several studies performed using yeast and mammalian cells that convey a sense of the impact protein phosphorylation may have on the modulation of peroxisome dynamics by regulating peroxisomal matrix and membrane protein import, proliferation, inheritance, and degradation. We further put forward the idea to make use of current data on phosphorylation sites of peroxisomal and peroxisome-associated proteins reported in advanced large-scale phosphoproteomic studies.
Collapse
Affiliation(s)
- Silke Oeljeklaus
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Andreas Schummer
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Mastalski
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Harald W Platta
- Biochemie Intrazellulärer Transportprozesse, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Bettina Warscheid
- Faculty of Biology, Department of Biochemistry and Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|