1
|
Aldridge JL, Alexander ED, Franklin AA, Frasier CR. Decreased ability to manage increases in reactive oxygen species may underlie susceptibility to arrhythmias in mice lacking Scn1b. Am J Physiol Heart Circ Physiol 2024; 327:H723-H732. [PMID: 39120465 PMCID: PMC11482272 DOI: 10.1152/ajpheart.00265.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Scn1b plays essential roles in the heart, where it encodes β1-subunits that serve as modifiers of gene expression, cell surface channel activity, and cardiac conductivity. Reduced β1 function is linked to electrical instability in various diseases with cardiac manifestations and increased susceptibility to arrhythmias. Recently, we demonstrated that loss of Scn1b in mice leads to compromised mitochondria energetics and reactive oxygen species (ROS) production. In this study, we examined the link between increased ROS and arrhythmia susceptibility in Scn1b-/- mice. In addition, ROS-scavenging capacity can be overwhelmed during prolonged oxidative stress, increasing arrhythmia susceptibility. Therefore, we isolated whole hearts and cardiomyocytes from Scn1b-/- and Scn1b+/+ mice and subjected them to an oxidative challenge with diamide, a glutathione oxidant. Next, we analyzed gene expression and activity of antioxidant enzymes in Scn1b-/- hearts. Cells isolated from Scn1b-/- hearts died faster and displayed higher rates of ROS accumulation preceding cell death compared with those from Scn1b+/+. Furthermore, Scn1b-/- hearts showed higher arrhythmia scores and spent less time free of arrhythmia. Lastly, we found that protein expression and enzymatic activity of glutathione peroxidase is increased in Scn1b-/- hearts compared with wild type. Our results indicate that Scn1b-/- mice have decreased capability to manage ROS during prolonged oxidative stress. ROS accumulation is elevated and appears to overwhelm ROS scavenging through the glutathione system. This imbalance creates the potential for altered cell energetics that may underlie increased susceptibility to arrhythmias or other adverse cardiac outcomes.NEW & NOTEWORTHY Using an oxidative challenge, we demonstrated that isolated cells from Scn1b-/- mice are more susceptible to cell death and surges in reactive oxygen species accumulation. At the whole organ level, they were also more susceptible to the formation of cardiac arrhythmias. This may in part be due to changes to the glutathione antioxidant system.
Collapse
Affiliation(s)
- Jessa L Aldridge
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Emily Davis Alexander
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Allison A Franklin
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| | - Chad R Frasier
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, United States
| |
Collapse
|
2
|
Motaln H, Rogelj B. The Role of c-Abl Tyrosine Kinase in Brain and Its Pathologies. Cells 2023; 12:2041. [PMID: 37626851 PMCID: PMC10453230 DOI: 10.3390/cells12162041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/04/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Differentiated status, low regenerative capacity and complex signaling make neuronal tissues highly susceptible to translating an imbalance in cell homeostasis into cell death. The high rate of neurodegenerative diseases in the elderly population confirms this. The multiple and divergent signaling cascades downstream of the various stress triggers challenge researchers to identify the central components of the stress-induced signaling pathways that cause neurodegeneration. Because of their critical role in cell homeostasis, kinases have emerged as one of the key regulators. Among kinases, non-receptor tyrosine kinase (Abelson kinase) c-Abl appears to be involved in both the normal development of neural tissue and the development of neurodegenerative pathologies when abnormally expressed or activated. However, exactly how c-Abl mediates the progression of neurodegeneration remains largely unexplored. Here, we summarize recent findings on the involvement of c-Abl in normal and abnormal processes in nervous tissue, focusing on neurons, astrocytes and microglial cells, with particular reference to molecular events at the interface between stress signaling, DNA damage, and metabolic regulation. Because inhibition of c-Abl has neuroprotective effects and can prevent neuronal death, we believe that an integrated view of c-Abl signaling in neurodegeneration could lead to significantly improved treatment of the disease.
Collapse
Affiliation(s)
- Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000 Ljubljana, Slovenia;
| |
Collapse
|
3
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
4
|
Lee CB, Lee KI, Kim YJ, Jang IT, Gurmessa SK, Choi EH, Kaushik NK, Kim HJ. Non-Thermal Plasma Jet-Treated Medium Induces Selective Cytotoxicity against Mycobacterium tuberculosis-Infected Macrophages. Biomedicines 2022; 10:biomedicines10061243. [PMID: 35740265 PMCID: PMC9219627 DOI: 10.3390/biomedicines10061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/14/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma-treated media (PTM) serve as an adjuvant therapy to postoperatively remove residual cancerous lesions. We speculated that PTM could selectively kill cells infected with Mycobacterium tuberculosis (Mtb) and remove postoperative residual tuberculous lesions. We therefore investigated the effects of a medium exposed to a non-thermal plasma jet on the suppression of intracellular Mtb replication, cell death, signaling, and selectivity. We propose that PTM elevates the levels of the detoxifying enzymes, glutathione peroxidase, catalase, and ataxia-telangiectasia mutated serine/threonine kinase and increases intracellular reactive oxygen species production in Mtb-infected cells. The bacterial load was significantly decreased in spleen and lung tissues and single-cell suspensions from mice intraperitoneally injected with PTM compared with saline and untreated medium. Therefore, PTM has the potential as a novel treatment that can eliminate residual Mtb-infected cells after infected tissues are surgically resected.
Collapse
Affiliation(s)
- Chae Bok Lee
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Kang In Lee
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Young Jae Kim
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - In Taek Jang
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Sintayehu Kebede Gurmessa
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (E.H.C.); (N.K.K.)
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (E.H.C.); (N.K.K.)
| | - Hwa-Jung Kim
- Department of Microbiology & Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, Korea; (C.B.L.); (K.I.L.); (Y.J.K.); (I.T.J.); (S.K.G.)
- Correspondence: ; Tel.: +82-42-580-8242
| |
Collapse
|
5
|
Anti-apoptotic HAX-1 suppresses cell apoptosis by promoting c-Abl kinase-involved ROS clearance. Cell Death Dis 2022; 13:298. [PMID: 35379774 PMCID: PMC8979985 DOI: 10.1038/s41419-022-04748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/05/2022] [Accepted: 03/18/2022] [Indexed: 11/08/2022]
Abstract
The anti-apoptotic protein HAX-1 has been proposed to modulate mitochondrial membrane potential, calcium signaling and actin remodeling. HAX-1 mutation or deficiency results in severe congenital neutropenia (SCN), loss of lymphocytes and neurological impairments by largely unknown mechanisms. Here, we demonstrate that the activation of c-Abl kinase in response to oxidative or genotoxic stress is dependent on HAX-1 association. Cellular reactive oxygen species (ROS) accumulation is inhibited by HAX-1-dependent c-Abl activation, which greatly contributes to the antiapoptotic role of HAX-1 in stress. HAX-1 (Q190X), a loss-of-function mutant responsible for SCN, fails to bind with and activate c-Abl, leading to dysregulated cellular ROS levels, damaged mitochondrial membrane potential and eventually apoptosis. The extensive apoptosis of lymphocytes and neurons in Hax-1-deficient mice could also be remarkably suppressed by c-Abl activation. These findings underline the important roles of ROS clearance in HAX-1-mediated anti-apoptosis by c-Abl kinase activation, providing new insight into the pathology and treatment of HAX-1-related hereditary disease or tumorigenesis.
Collapse
|
6
|
Hernández-Aguirre LE, Fuentes-Sidas YI, Rivera-Rangel LR, Gutiérrez-Méndez N, Yepiz-Plascencia G, Chávez-Flores D, Zavala-Díaz de la Serna FJ, Peralta-Pérez MDR, García-Triana A. cDNA Characterization and Expression of Selenium-Dependent CqGPx3 Isoforms in the Crayfish Cherax quadricarinatus under High Temperature and Hypoxia. Genes (Basel) 2022; 13:179. [PMID: 35205224 PMCID: PMC8872551 DOI: 10.3390/genes13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymatically reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature 184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia, antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condition specific, which could indicate an important role of CqGPx3a in the central nervous system and CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.
Collapse
Affiliation(s)
- Laura E. Hernández-Aguirre
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Yazmin I. Fuentes-Sidas
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Lizandro R. Rivera-Rangel
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Néstor Gutiérrez-Méndez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Gloria Yepiz-Plascencia
- Research Center in Food & Development (CIAD), Gustavo Enrique Astiazarán Rosas Road, No 46, La Victoria Suburb, Hermosillo 83304, Sonora, Mexico;
| | - David Chávez-Flores
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Francisco J. Zavala-Díaz de la Serna
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - María del R. Peralta-Pérez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Antonio García-Triana
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| |
Collapse
|
7
|
Singh S, Ghosh S, Pal VK, Munshi M, Shekar P, Narasimha Murthy DT, Mugesh G, Singh A. Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Mol Med 2021; 13:e13314. [PMID: 33793064 PMCID: PMC8103102 DOI: 10.15252/emmm.202013314] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 12/23/2022] Open
Abstract
Reactive oxygen species (ROS) regulates the replication of human immunodeficiency virus (HIV‐1) during infection. However, the application of this knowledge to develop therapeutic strategies remained unsuccessful due to the harmful consequences of manipulating cellular antioxidant systems. Here, we show that vanadium pentoxide (V2O5) nanosheets functionally mimic natural glutathione peroxidase activity to mitigate ROS associated with HIV‐1 infection without adversely affecting cellular physiology. Using genetic reporters of glutathione redox potential and hydrogen peroxide, we showed that V2O5 nanosheets catalyze ROS neutralization in HIV‐1‐infected cells and uniformly block viral reactivation and replication. Mechanistically, V2O5 nanosheets suppressed HIV‐1 by affecting the expression of pathways coordinating redox balance, virus transactivation (e.g., NF‐κB), inflammation, and apoptosis. Importantly, a combination of V2O5 nanosheets with a pharmacological inhibitor of NF‐κB (BAY11‐7082) abrogated reactivation of HIV‐1. Lastly, V2O5 nanosheets inhibit viral reactivation upon prostratin stimulation of latently infected CD4+ T cells from HIV‐infected patients receiving suppressive antiretroviral therapy. Our data successfully revealed the usefulness of V2O5 nanosheets against HIV and suggested nanozymes as future platforms to develop interventions against infectious diseases.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore, India
| | - Sourav Ghosh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Virender Kumar Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore, India
| | - MohamedHusen Munshi
- Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore, India
| | - Pooja Shekar
- Bangalore Medical College and Research Institute, Bangalore, India
| | | | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Centre for Infectious Disease Research (CIDR), Indian Institute of Science, Bangalore, India
| |
Collapse
|
8
|
Abdul-Maksoud RS, Fouad RA, Elsayed TG, Ibrahem RA, Badawi AE. The impact of catalase and glutathione peroxidase-1 genetic polymorphisms on their enzyme activities among Egyptian patients with keratoconus. J Gene Med 2020; 22:e3192. [PMID: 32203639 DOI: 10.1002/jgm.3192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 02/12/2020] [Accepted: 03/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Elevated oxidative stress plays a significant role in pathophysiology of keratoconus (KC). Polymorphisms of the antioxidant enzymes as CAT and GPX-1 might alter their antioxidant enzyme capacities leading to increase in the oxidative damage induced KC. AIM To analyze the impact of CAT rs7943316 A/T and GPX-1 rs1050450 C/T single nucleotide polymorphisms (SNPs) on the risk and severity of KC among a group of Egyptian population. SUBJECT & METHODS CAT rs7943316 and GPX-1 rs1050450 SNPs were examined using polymerase chain reaction-restriction fragment length polymorphism in 100 control subjects and 150 KC patients [50 patients (KC stages 1&2), 50 patients (KC stage 3) and 50 patients (KC stage 4)]. RESULTS Patients with TT genotype of CAT rs7943316 were at high risk of developing KC. T allele of GPX-1 rs1050450 was significantly associated with KC risk (P ˂0.001). The frequency of CAT TT genotype and T allele was significantly higher among severe stages of KC compared to mild and moderate stages. GPX-1 T allele frequency was significantly higher among severe stages of KC compared to mild and moderate stages. A very significant decrease in the antioxidant enzyme activities was observed in association with these SNPs. Age of the patients, CAT and GPX-1 SNPs as well as their enzyme activities were independent predictors of KC severity. CONCLUSION Our study suggests that CAT (rs7943316) and GPX-1 (rs1050450) SNPs act as independent predictors for different grades of KC and that these SNPs might have a role in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Rehab S Abdul-Maksoud
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rania A Fouad
- Medical Biochemistry Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Tamer G Elsayed
- Ophthalmology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Reda A Ibrahem
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Amani E Badawi
- Ophthalmology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
9
|
Dabo AJ, Ezegbunam W, Wyman AE, Moon J, Railwah C, Lora A, Majka SM, Geraghty P, Foronjy RF. Targeting c-Src Reverses Accelerated GPX-1 mRNA Decay in Chronic Obstructive Pulmonary Disease Airway Epithelial Cells. Am J Respir Cell Mol Biol 2020; 62:598-607. [PMID: 31801023 DOI: 10.1165/rcmb.2019-0177oc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Enhanced expression of the cellular antioxidant glutathione peroxidase (GPX)-1 prevents cigarette smoke-induced lung inflammation and tissue destruction. Subjects with chronic obstructive pulmonary disease (COPD), however, have decreased airway GPX-1 levels, rendering them more susceptible to disease onset and progression. The mechanisms that downregulate GPX-1 in the airway epithelium in COPD remain unknown. To ascertain these factors, analyses were conducted using human airway epithelial cells isolated from healthy subjects and human subjects with COPD and lung tissue from control and cigarette smoke-exposed A/J mice. Tyrosine phosphorylation modifies GPX-1 expression and cigarette smoke activates the tyrosine kinase c-Src. Therefore, studies were conducted to evaluate the role of c-Src on GPX-1 levels in COPD. These studies identified accelerated GPX-1 mRNA decay in COPD airway epithelial cells. Targeting the tyrosine kinase c-Src with siRNA inhibited GPX-1 mRNA degradation and restored GPX-1 protein levels in human airway epithelial cells. In contrast, silencing the tyrosine kinase c-Abl, or the transcriptional activator Nrf2, had no effect on GPX-1 mRNA stability. The chemical inhibitors for c-Src (saracatinib and dasanitib) restored GPX-1 mRNA levels and GPX-1 activity in COPD airway cells in vitro. Similarly, saracatinib prevented the loss of lung Gpx-1 expression in response to chronic smoke exposure in vivo. Thus, this study establishes that the decreased GPX-1 expression that occurs in COPD lungs is at least partially due to accelerated mRNA decay. Furthermore, these findings show that targeting c-Src represents a potential therapeutic approach to augment GPX-1 responses and counter smoke-induced lung disease.
Collapse
Affiliation(s)
- Abdoulaye J Dabo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Anne E Wyman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Jane Moon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Christopher Railwah
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Alnardo Lora
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Susan M Majka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Patrick Geraghty
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| | - Robert F Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; and
| |
Collapse
|
10
|
Ashry NA, Abdеlaziz RR, Suddеk GM. The potential effect of imatinib against hypercholesterolemia induced atherosclerosis, endothelial dysfunction and hepatic injury in rabbits. Life Sci 2020; 243:117275. [PMID: 31926242 DOI: 10.1016/j.lfs.2020.117275] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 02/05/2023]
Abstract
AIMS Imatinib is an effective tyrosine kinase inhibitor which has different therapeutic actions. The recent work demonstrated the possible beneficial effects of imatinib on the progression of atherosclerosis, endothelial dysfunction, and hypercholesterolemia-associated liver damage in rabbits. MAIN METHODS Animals had been distributed in 4 groups: group 1 (non-treated): animals fed regular diet; group 2 high cholesterol [HC]: animals fed 1% cholesterol supplemented diet for 30 days; group 3 (HC-Imatinib): animals fed 1% cholesterol supplemented diet+imatinib (0.01 g/kg daily, p.o) for 30 days; group 4 (Imatinib): animals fed regular diet with imatinib (0.01 g/kg daily, p.o). After thirty days, tissue samples and blood were isolated to be detected biochemically, histologically, and for in vitro analysis. KEY FINDINGS HC exhibited significant elevations in serum lipid parameters, CRP, ALT, AST and ALP. Additionally, HC induced significant increases for aortic and hepatic MDA, aortic NO and hepatic PDGFR-β, while significantly exhibited reductions in aortic and hepatic GSH, SOD and hepatic PPARγ1. Moreover, HC produced impairment in ACh-enhanced aortic relaxation and aortic pathological changes. Histopathological examination of HC-fed rabbits revealed hepatic steatosis compared with non-treated group. Imatinib administration exhibited significant decreases in serum lipid parameters, CRP, ALT, AST and ALP. Additionally, imatinib induced significant decreases for aortic and hepatic MDA, aortic NO and hepatic PDGFR-β, while significantly exhibited elevations in aortic and hepatic GSH, SOD and hepatic PPARγ1 compared with HC animals. Furthermore, imatinib significantly protected against HC produced attenuation in ACh-induced aortic relaxation and pathological changes in aortic and hepatic tissues. Interestingly, imatinib could return serum CRP, ALP, hepatic SOD and PDGFR-β to basal values. SIGNIFICANCE The recent observation reports that imatinib could have beneficial effect against atherosclerosis progression, vascular malfunction, and liver damage in high cholesterol diet (HCD)-fed rabbits.
Collapse
Affiliation(s)
- Nora A Ashry
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| | - Rania R Abdеlaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt.
| | - Ghada M Suddеk
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, 35516 Mansoura, Egypt
| |
Collapse
|
11
|
Leber A, Hontecillas R, Zoccoli-Rodriguez V, Bienert C, Chauhan J, Bassaganya-Riera J. Activation of NLRX1 by NX-13 Alleviates Inflammatory Bowel Disease through Immunometabolic Mechanisms in CD4 + T Cells. THE JOURNAL OF IMMUNOLOGY 2019; 203:3407-3415. [PMID: 31694910 DOI: 10.4049/jimmunol.1900364] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex autoimmune disease with dysfunction in pattern-recognition responses, including within the NLR family. Nucleotide-binding oligomerization domain, leucine rich repeat containing X1 (NLRX1) is a unique NLR with regulatory and anti-inflammatory functions resulting in protection from IBD in mouse models. NX-13 is an orally active, gut-restricted novel drug candidate that selectively targets and activates the NLRX1 pathway locally in the gut. In vitro and in vivo efficacy of NLRX1 activation by NX-13 was examined. Oral treatment with NX-13 alleviates disease severity, colonic leukocytic infiltration, and cytokine markers of inflammation in three mouse models of IBD (dextran sulfate sodium, Mdr1a-/-, and CD45RBhi adoptive transfer). Treatment of naive CD4+ T cells with NX-13 in vitro decreases differentiation into Th1 and Th17 subsets with increased oxidative phosphorylation and decreased NF-κB activation and reactive oxygen species. With stimulation by PMA/ionomycin, TNF-α, or H2O2, PBMCs from ulcerative colitis patients treated with NX-13 had decreased NF-κB activity, TNF-α+ and IFN-γ+ CD4+ T cells and overall production of IL-6, MCP1, and IL-8. NX-13 activates NLRX1 to mediate a resistance to both inflammatory signaling and oxidative stress in mouse models and human primary cells from ulcerative colitis patients with effects on NF-κB activity and oxidative phosphorylation. NX-13 is a promising oral, gut-restricted NLRX1 agonist for treating IBD.
Collapse
Affiliation(s)
- Andrew Leber
- Landos Biopharma, Inc., Blacksburg, VA 24060; and.,BioTherapeutics, Inc., Blacksburg, VA 24060
| | - Raquel Hontecillas
- Landos Biopharma, Inc., Blacksburg, VA 24060; and.,BioTherapeutics, Inc., Blacksburg, VA 24060
| | | | | | | | - Josep Bassaganya-Riera
- Landos Biopharma, Inc., Blacksburg, VA 24060; and .,BioTherapeutics, Inc., Blacksburg, VA 24060
| |
Collapse
|
12
|
Ye Q, Wang W, Hao C, Mao X. Agaropentaose protects SH-SY5Y cells against 6-hydroxydopamine-induced neurotoxicity through modulating NF-κB and p38MAPK signaling pathways. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
13
|
Napolitano G, Venditti P, Fasciolo G, Esposito D, Uliano E, Agnisola C. Acute hypoxia/reoxygenation affects muscle mitochondrial respiration and redox state as well as swimming endurance in zebrafish. J Comp Physiol B 2018; 189:97-108. [DOI: 10.1007/s00360-018-1198-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
|
14
|
Dajani S, Saripalli A, Sharma-Walia N. Water transport proteins-aquaporins (AQPs) in cancer biology. Oncotarget 2018; 9:36392-36405. [PMID: 30555637 PMCID: PMC6284741 DOI: 10.18632/oncotarget.26351] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/22/2018] [Indexed: 02/06/2023] Open
Abstract
As highly conserved ubiquitous proteins, aquaporins (AQPs) play an imperative role in the development and progression of cancer. By trafficking water and other small molecules, AQPs play a vital role in preserving the cellular environment. Due to their critical role in cell stability and integrity, it would make sense that AQPs are involved in cancer progression. When AQPs alter the cellular environment, there may be several downstream effects such as alterations in cellular osmolality, volume, ionic composition, and signaling pathways. Changes in the intracellular levels of certain molecules serving as second messengers are synchronized by AQPs. Thus AQPs regulate numerous downstream effector signaling molecules that promote cancer development and progression. In numerous cancer types, AQP expression has shown a correlation with tumor stage and prognosis. Furthermore, AQPs assist in angiogenic and oxidative stress related damaging processes critical for cancer progression. This indicates that AQP proteins may be a viable therapeutic target or biomarker of cancer prognosis.
Collapse
Affiliation(s)
- Salah Dajani
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Anand Saripalli
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Neelam Sharma-Walia
- H.M. Bligh Cancer Research Laboratories, Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
15
|
Moreno-Sánchez R, Marín-Hernández Á, Gallardo-Pérez JC, Vázquez C, Rodríguez-Enríquez S, Saavedra E. Control of the NADPH supply and GSH recycling for oxidative stress management in hepatoma and liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:1138-1150. [PMID: 30053395 DOI: 10.1016/j.bbabio.2018.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 01/30/2023]
Abstract
To unveil what controls mitochondrial ROS detoxification, the NADPH supply and GSH/GSSG recycling for oxidative stress management were analyzed in cancer and non-cancer mitochondria. Therefore, proteomic and kinetomic analyses were carried out of the mitochondrial (i) NADPH producing and (ii) GSH/GSSG recycling enzymes associated to oxidative stress management. The protein contents of the eight enzymes analyzed were similar or even higher in AS-30D rat hepatoma mitochondria (HepM) than in rat liver (RLM) and rat heart (RHM) mitochondria, suggesting that the NADPH/GSH/ROS pathway was fully functional in cancer mitochondria. The Vmax values of IDH-2 were much greater than those of GDH, TH and ME, suggesting that IDH-2 is the predominant NADPH producer in the three mitochondrial types; in fact, the GDH reverse reaction was favored. The Vmax values of GR and GPx were lower in HepM than in RLM, suggesting that the oxidative stress management is compromised in cancer mitochondria. The Km values of IDH-2, GR and GPx were all similar among the different mitochondrial types. Kinetic modeling revealed that the oxidative stress management was mainly controlled by GR, GPx and IDH. Modeling and experimentation also revealed that, due to their higher IDH-2 activity and lower GPx activity presumably by acetylation, HepM (i) showed higher steady-state NADPH levels; (ii) required greater peroxide concentrations to achieve reliable steady-state fluxes and metabolite concentration; and (iii) endured higher peroxide concentrations without collapsing their GSH/GSSG ratios. Then, to specifically prompt lower GSH/GSSG ratios under oxidative stress thus compromising cancer mitochondria functioning, GPx should be re-activated.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México 14080, Tlalpan, Mexico.
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México 14080, Tlalpan, Mexico
| | | | - Citlali Vázquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México 14080, Tlalpan, Mexico
| | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México 14080, Tlalpan, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México 14080, Tlalpan, Mexico
| |
Collapse
|
16
|
Moreno-Sánchez R, Gallardo-Pérez JC, Rodríguez-Enríquez S, Saavedra E, Marín-Hernández Á. Control of the NADPH supply for oxidative stress handling in cancer cells. Free Radic Biol Med 2017; 112:149-161. [PMID: 28739529 DOI: 10.1016/j.freeradbiomed.2017.07.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 01/10/2023]
Abstract
It has not been systematically analyzed whether the NADPH supply is a limiting factor for oxidative stress management in cancer cells. In the present work, it was determined in non-cancer and cancer cells the protein contents and kinetomics of (i) the cytosolic enzymes responsible for the NADPH production (i.e., Glc6PDH, 6PGDH, ME, IDH-1); and (ii) the two main enzymes responsible for NADPH/NADP+ and GSH/GSSG recycling (GR, GPx-1) associated to oxidative stress management. With these data, kinetic models were built and further validated. Rat liver and hepatoma AS-30D cytosolic fractions exhibited greater Vmax for IDH-1 than for Glc6PDH and 6PGDH whereas human cancer cells and platelets showed greater Vmax for Glc6PDH than for 6PGDH and IDH-1. The ME activity was comparatively low in all cell types tested. The Km values for the respective specific substrates were all similar among the different cell types. Most activities were lower in AS-30D cells than in liver. In contrast, IDH-1, Glc6PDH and GR activities in human cancer cells were similar or greater to those of platelets, but GPx-1 activity was severely suppressed, despite showing similar GPx-1 protein content vs. platelets. Kinetic analysis and pathway modeling revealed a previously unveiled feedback IDH-1 regulation by GSH. The oxidative stress management in cancer cells (i) was mainly controlled by GPx-1 and the main NADPH provider was Glc6PDH; and (ii) modeling indicated that NADPH supply was not a controlling step. These data suggested that Glc6PDH and GPx-1 are adequate and promising targets for anti-cancer therapeutic intervention.
Collapse
Affiliation(s)
- Rafael Moreno-Sánchez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | | | - Sara Rodríguez-Enríquez
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Emma Saavedra
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico
| | - Álvaro Marín-Hernández
- Instituto Nacional de Cardiología, Departamento de Bioquímica, Ciudad de México, Tlalpan 14080, Mexico.
| |
Collapse
|
17
|
Moreira DC, Oliveira MF, Liz-Guimarães L, Diniz-Rojas N, Campos ÉG, Hermes-Lima M. Current Trends and Research Challenges Regarding "Preparation for Oxidative Stress". Front Physiol 2017; 8:702. [PMID: 28993737 PMCID: PMC5622305 DOI: 10.3389/fphys.2017.00702] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/31/2017] [Indexed: 12/26/2022] Open
Abstract
Survival under stress, such as exposure to hypoxia, anoxia, freezing, dehydration, air exposure of water breathing organisms, and estivation, is commonly associated to enhanced endogenous antioxidants, a phenomenon coined "preparation for oxidative stress" (POS). The regulation of free radical metabolism seems to be crucial under these selective pressures, since this response is widespread among animals. A hypothesis of how POS works at the molecular level was recently proposed and relies on two main processes: increased reactive species production under hypoxia, and activation of redox-sensitive transcription factors and signaling pathways, increasing the expression of antioxidants. The present paper brings together the current knowledge on POS and considers its future directions. Data indicate the presence of POS in 83 animal species (71.6% among investigated species), distributed in eight animal phyla. Three main research challenges on POS are presented: (i) to identify the molecular mechanism(s) that mediate/induce POS, (ii) to identify the evolutionary origins of POS in animals, and (iii) to determine the presence of POS in natural environments. We firstly discuss the need of evidence for increased RS production in hypoxic conditions that underlie the POS response. Secondly, we discuss the phylogenetic origins of POS back 700 million years, by identifying POS-positive responses in cnidarians. Finally, we present the first reports of the POS adaptation strategy in the wild. The investigation of these research trends and challenges may prove useful to understand the evolution of animal redox adaptations and how they adapt to increasing stressful environments on Earth.
Collapse
Affiliation(s)
- Daniel C. Moreira
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
- Área de Morfologia, Faculdade de Medicina, Universidade de BrasíliaBrasilia, Brazil
| | - Marcus F. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
| | - Lara Liz-Guimarães
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | - Nilda Diniz-Rojas
- Departamento de Genética e Morfologia, Universidade de BrasíliaBrasilia, Brazil
| | - Élida G. Campos
- Departamento de Biologia Celular, Universidade de BrasíliaBrasilia, Brazil
| | | |
Collapse
|
18
|
Guan T, Song J, Wang Y, Guo L, Yuan L, Zhao Y, Gao Y, Lin L, Wang Y, Wei J. Expression and characterization of recombinant bifunctional enzymes with glutathione peroxidase and superoxide dismutase activities. Free Radic Biol Med 2017; 110:188-195. [PMID: 28603086 DOI: 10.1016/j.freeradbiomed.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/26/2017] [Accepted: 06/06/2017] [Indexed: 01/29/2023]
Abstract
To balance the production and decomposition of reactive oxygen species, living organisms have generated antioxidant enzymes and non-enzymatic antioxidant defense systems. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) are two important antioxidant enzymes. Apart from their catalytic functions, they protect each other, resulting in more efficient removal of reactive oxygen species, protection of cells against injury, and maintenance of the normal metabolism of reactive oxygen species. SOD catalyzes the dismutation of the superoxide anion (O2•-) to oxygen (O2) and hydrogen peroxide (H2O2). H2O2 is then detoxified to water by GPx. In this study, human GPx1Ser and the Alvinella pompejana SOD (ApSOD) gene were used to design and generate several recombinant proteins with both GPx and SOD activities by combining traditional fusion protein technology, a cysteine auxotrophic expression system, and a single protein production (SPP) system. Among the fusion proteins, Se-hGPx1Ser-L-ApSOD exhibited the highest SOD and GPx activities. Additional research was conducted to better understand the properties of Se-hGPx1Ser-L-ApSOD. The synergism of Se-hGPx1Ser-L-ApSOD was evaluated by using an in vitro model. This research may facilitate future studies on the cooperation and catalytic mechanisms of GPx and SOD. We believe that the bifunctional enzyme has potential applications as a potent antioxidant.
Collapse
Affiliation(s)
- Tuchen Guan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jian Song
- College of Electronic Science and Engineering, Jilin University, Changchun 130000, PR China
| | - Yanan Wang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liying Guo
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Lin Yuan
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Yingding Zhao
- Eighth High School of Changchun, Changchun 130021, PR China
| | - Yuan Gao
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Liangru Lin
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Yali Wang
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China; Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, Jilin University, Changchun 130000, PR China.
| |
Collapse
|
19
|
Abstract
Five out of eight human glutathione peroxidases (GPxes) are selenoproteins and thus their expression depends on the selenium (Se) supply. Most Se-dependent GPxes are downregulated in tumor cells, while only GPx2 is considerably upregulated. Whether expression profiles of GPxes predict tumor development and patient survival is controversially discussed. Also, results from in vitro and in vivo studies modulating the expression of GPx isoforms provide evidence for both anti- and procarcinogenic mechanisms. GPxes are able to reduce hydroperoxides, which otherwise would damage DNA, possibly resulting in DNA mutations, modulate redox-sensitive signaling pathways affecting proliferation, differentiation, and cellular metabolism or initiate cell death. Considering these different processes, the role and functions of individual Se-dependent GPx isoforms will be discussed herein in the context of tumorigenesis.
Collapse
Affiliation(s)
- Anna P Kipp
- Institute of Nutrition, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
20
|
Rhee SG, Kil IS. Mitochondrial H 2O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radic Biol Med 2016; 100:73-80. [PMID: 28236420 DOI: 10.1016/j.freeradbiomed.2016.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/02/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022]
Abstract
Mitochondria produce hydrogen peroxide (H2O2) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H2O2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H2O2-eliminating enzymes, however, it had not been clear how mitochondrial H2O2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H2O2-eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H2O2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO2H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO2H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H2O2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO2H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO2H suggests that mitochondrial release of H2O2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - In Sup Kil
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| |
Collapse
|
21
|
How widespread is preparation for oxidative stress in the animal kingdom? Comp Biochem Physiol A Mol Integr Physiol 2016; 200:64-78. [DOI: 10.1016/j.cbpa.2016.01.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 11/19/2022]
|
22
|
Rhee SG, Kil IS. Mitochondrial H 2O 2 signaling is controlled by the concerted action of peroxiredoxin III and sulfiredoxin: Linking mitochondrial function to circadian rhythm. Free Radic Biol Med 2016; 99:120-127. [PMID: 27497909 DOI: 10.1016/j.freeradbiomed.2016.07.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/02/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria produce hydrogen peroxide (H2O2) during energy metabolism in most mammalian cells as well as during the oxidation of cholesterol associated with the synthesis of steroid hormones in steroidogenic cells. Some of the H2O2 produced in mitochondria is released into the cytosol, where it serves as a key regulator of various signaling pathways. Given that mitochondria are equipped with several H2O2-eliminating enzymes, however, it had not been clear how mitochondrial H2O2 can escape destruction by these enzymes for such release. Peroxiredoxin III (PrxIII) is the most abundant and efficient H2O2-eliminating enzyme in mitochondria of most cell types. We found that PrxIII undergoes reversible inactivation through hyperoxidation of its catalytic cysteine residue to cysteine sulfinic acid, and that release of mitochondrial H2O2 likely occurs as a result of such PrxIII inactivation. The hyperoxidized form of PrxIII (PrxIII-SO2H) is reduced and reactivated by sulfiredoxin (Srx). We also found that the amounts of PrxIII-SO2H and Srx undergo antiphasic circadian oscillation in mitochondria of the adrenal gland, heart, and brown adipose tissue of mice maintained under normal conditions. Cytosolic Srx was found to be imported into mitochondria via a mechanism that requires formation of a disulfide-linked complex with heat shock protein 90, which is likely promoted by H2O2 released from mitochondria. The imported Srx was found to be degraded by Lon protease in a manner dependent on PrxIII hyperoxidation state. The coordinated import and degradation of Srx underlie Srx oscillation and consequent PrxIII-SO2H oscillation in mitochondria. The rhythmic change in the amount of PrxIII-SO2H suggests that mitochondrial release of H2O2 is also likely a circadian event that conveys temporal information on steroidogenesis in the adrenal gland and on energy metabolism in heart and brown adipose tissue to cytosolic signaling pathways.
Collapse
Affiliation(s)
- Sue Goo Rhee
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - In Sup Kil
- Yonsei Biomedical Research Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| |
Collapse
|
23
|
Roles of catalase and glutathione peroxidase in the tolerance of a pulmonate gastropod to anoxia and reoxygenation. J Comp Physiol B 2016; 186:553-68. [DOI: 10.1007/s00360-016-0982-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/10/2016] [Accepted: 03/19/2016] [Indexed: 01/05/2023]
|
24
|
Effect of 4-week feeding of deoxynivalenol- or T-2-toxin-contaminated diet on lipid peroxidation and glutathione redox system in the hepatopancreas of common carp (Cyprinus carpio L.). Mycotoxin Res 2016; 32:77-83. [PMID: 26920403 DOI: 10.1007/s12550-016-0242-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/15/2016] [Accepted: 02/18/2016] [Indexed: 01/29/2023]
Abstract
The purpose of study was to investigate the effects of T-2 toxin (4.11 mg T-2 toxin and 0.45 mg HT-2 toxin kg(-1) feed) and deoxynivalenol (5.96 and 0.33 mg 15-acetyl deoxynivalenol (DON) kg(-1) feed) in 1-year-old common carp juveniles in a 4-week feeding trial. The exposure of mycotoxins resulted in increased mortality in both groups consuming mycotoxin-contaminated diet. Parameters of lipid peroxidation were not affected during the trial, and antioxidant defence also did not show response to oxidative stress; however, glutatione peroxidase activity slightly, but significantly, decreased in the T-2 toxin group. Glutathione S-transferase activity showed moderate decrease as effect of T-2 toxin, which suggests its effect on xenobiotic transformation. Reduced glutathione concentration showed moderate changes as effect of DON exposure, but T-2 toxin has no effect. Expression of phospholipid hydroperoxide glutathione peroxidase (GPx4) genes showed different response to mycotoxin exposure. T-2 toxin caused dual response in the expression of gpx4a (early and late downregulation and mid-term upregulation), but continuous upregulation was found as effect of deoxynivalenol. Expression of the other gene, gpx4b, was upregulated by both trichothecenes during the whole period. The results suggested that trichothecenes have some effect on free radical formation and antioxidant defence, but the changes depend on the duration of exposure and the dose applied, and in case of glutathione peroxidase, there was no correlation between expression of genes and enzyme activity.
Collapse
|
25
|
Riyadh Thiab N, King N, McMillan M, Almashhadany A, L Jones G. Age-related protein and mRNA expression of glutathione peroxidases (GPx) and Hsp-70 in different regions of rat kidney with and without stressor. AIMS MOLECULAR SCIENCE 2016. [DOI: 10.3934/molsci.2016.2.125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
26
|
Prince PD, Lanzi CR, Toblli JE, Elesgaray R, Oteiza PI, Fraga CG, Galleano M. Dietary (-)-epicatechin mitigates oxidative stress, NO metabolism alterations, and inflammation in renal cortex from fructose-fed rats. Free Radic Biol Med 2016; 90:35-46. [PMID: 26569027 DOI: 10.1016/j.freeradbiomed.2015.11.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/03/2015] [Accepted: 11/08/2015] [Indexed: 12/18/2022]
Abstract
High fructose consumption has been associated to deleterious metabolic conditions. In the kidney, high fructose causes renal alterations that contribute to the development of chronic kidney disease. Evidence suggests that dietary flavonoids have the ability to prevent/attenuate risk factors of chronic diseases. This work investigated the capacity of (-)-epicatechin to prevent the renal damage induced by high fructose consumption in rats. Male Sprague Dawley rats received 10% (w/v) fructose in the drinking water for 8 weeks, with or without supplementation with (-)-epicatechin (20mg/kg body weight/d) in the rat chow diet. Results showed that, in the presence of mild proteinuria, the renal cortex from fructose-fed rats exhibited fibrosis and decreases in nephrin, synaptopodin, and WT1, all indicators of podocyte function in association with: (i) increased markers of oxidative stress; (ii) modifications in the determinants of NO bioavailability, i.e., NO synthase (NOS) activity and expression; and (iii) development of a pro-inflammatory condition, manifested as NF-κB activation, and associated with high expression of TNFα, iNOS, and IL-6. Dietary supplementation with (-)-epicatechin prevented or ameliorated the adverse effects of high fructose consumption. These results suggest that (-)-epicatechin ingestion would benefit when renal alterations occur associated with inflammation or metabolic diseases.
Collapse
Affiliation(s)
- Paula D Prince
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Cecilia Rodríguez Lanzi
- Department of Pathology, School of Medicine, National University of Cuyo, Mendoza, Argentina-Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Council of Scientific and Technological Research (CONICET), Mendoza, Argentina
| | - Jorge E Toblli
- Laboratory of Experimental Medicine, Hospital Alemán, Buenos Aires, Argentina
| | - Rosana Elesgaray
- Physiology-Institute of Drug Chemistry and Metabolism (IQUIMEFA), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA 95616, USA; Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
| | - César G Fraga
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina; Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Monica Galleano
- Physical Chemistry-Institute for Molecular Biochemistry and Molecular Medicine (IBIMOL), School of Pharmacy and Biochemistry, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
27
|
Akhmedov AT, Rybin V, Marín-García J. Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart. Heart Fail Rev 2015; 20:227-49. [PMID: 25192828 DOI: 10.1007/s10741-014-9457-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite significant progress in cardiovascular medicine, myocardial ischemia and infarction, progressing eventually to the final end point heart failure (HF), remain the leading cause of morbidity and mortality in the USA. HF is a complex syndrome that results from any structural or functional impairment in ventricular filling or blood ejection. Ultimately, the heart's inability to supply the body's tissues with enough blood may lead to death. Mechanistically, the hallmarks of the failing heart include abnormal energy metabolism, increased production of reactive oxygen species (ROS) and defects in excitation-contraction coupling. HF is a highly dynamic pathological process, and observed alterations in cardiac metabolism and function depend on the disease progression. In the early stages, cardiac remodeling characterized by normal or slightly increased fatty acid (FA) oxidation plays a compensatory, cardioprotective role. However, upon progression of HF, FA oxidation and mitochondrial oxidative activity are decreased, resulting in a significant drop in cardiac ATP levels. In HF, as a compensatory response to decreased oxidative metabolism, glucose uptake and glycolysis are upregulated, but this upregulation is not sufficient to compensate for a drop in ATP production. Elevated mitochondrial ROS generation and ROS-mediated damage, when they overwhelm the cellular antioxidant defense system, induce heart injury and contribute to the progression of HF. Mitochondrial uncoupling proteins (UCPs), which promote proton leak across the inner mitochondrial membrane, have emerged as essential regulators of mitochondrial membrane potential, respiratory activity and ROS generation. Although the physiological role of UCP2 and UCP3, expressed in the heart, has not been clearly established, increasing evidence suggests that these proteins by promoting mild uncoupling could reduce mitochondrial ROS generation and cardiomyocyte apoptosis and ameliorate thereby myocardial function. Further investigation on the alterations in cardiac UCP activity and regulation will advance our understanding of their physiological roles in the healthy and diseased heart and also may facilitate the development of novel and more efficient therapies.
Collapse
Affiliation(s)
- Alexander T Akhmedov
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA
| | | | | |
Collapse
|
28
|
Hermes-Lima M, Moreira DC, Rivera-Ingraham GA, Giraud-Billoud M, Genaro-Mattos TC, Campos ÉG. Preparation for oxidative stress under hypoxia and metabolic depression: Revisiting the proposal two decades later. Free Radic Biol Med 2015; 89:1122-43. [PMID: 26408245 DOI: 10.1016/j.freeradbiomed.2015.07.156] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/11/2015] [Accepted: 07/25/2015] [Indexed: 12/22/2022]
Abstract
Organisms that tolerate wide variations in oxygen availability, especially to hypoxia, usually face harsh environmental conditions during their lives. Such conditions include, for example, lack of food and/or water, low or high temperatures, and reduced oxygen availability. In contrast to an expected strong suppression of protein synthesis, a great number of these animals present increased levels of antioxidant defenses during oxygen deprivation. These observations have puzzled researchers for more than 20 years. Initially, two predominant ideas seemed to be irreconcilable: on one hand, hypoxia would decrease reactive oxygen species (ROS) production, while on the other the induction of antioxidant enzymes would require the overproduction of ROS. This induction of antioxidant enzymes during hypoxia was viewed as a way to prepare animals for oxidative damage that may happen ultimately during reoxygenation. The term "preparation for oxidative stress" (POS) was coined in 1998 based on such premise. However, there are many cases of increased oxidative damage in several hypoxia-tolerant organisms under hypoxia. In addition, over the years, the idea of an assured decrease in ROS formation under hypoxia was challenged. Instead, several findings indicate that the production of ROS actually increases in response to hypoxia. Recently, it became possible to provide a comprehensive explanation for the induction of antioxidant enzymes under hypoxia. The supporting evidence and the limitations of the POS idea are extensively explored in this review as we discuss results from research on estivation and situations of low oxygen stress, such as hypoxia, freezing exposure, severe dehydration, and air exposure of water-breathing animals. We propose that, under some level of oxygen deprivation, ROS are overproduced and induce changes leading to hypoxic biochemical responses. These responses would occur mainly through the activation of specific transcription factors (FoxO, Nrf2, HIF-1, NF-κB, and p53) and post translational mechanisms, both mechanisms leading to enhanced antioxidant defenses. Moreover, reactive nitrogen species are candidate modulators of ROS generation in this scenario. We conclude by drawing out the future perspectives in this field of research, and how advances in the knowledge of the mechanisms involved in the POS strategy will offer new and innovative study scenarios of biological and physiological cellular responses to environmental stress.
Collapse
Affiliation(s)
- Marcelo Hermes-Lima
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil.
| | - Daniel C Moreira
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| | - Georgina A Rivera-Ingraham
- Groupe Fonctionnel AEO (Adaptation Ecophysiologique et Ontogenèse), UMR 9190 MARBEC, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| | - Maximiliano Giraud-Billoud
- Laboratorio de Fisiología (IHEM-CONICET), and Instituto de Fisiología (Facultad de Ciencias Médicas, Universidad Nacional de Cuyo), Casilla de Correo 33, 5500 Mendoza, Argentina
| | - Thiago C Genaro-Mattos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil; Laboratório de Espectrometria de Massa, Embrapa Recursos Genéticos e Biotecnologia, Brasí;lia, DF, Brazil
| | - Élida G Campos
- Laboratório de Radicais Livres, Departamento de Biologia Celular, Universidade de Brasília, Brasí;lia, DF, 70910-900, Brazil
| |
Collapse
|
29
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
30
|
Rizzo AN, Sammani S, Esquinca AE, Jacobson JR, Garcia JGN, Letsiou E, Dudek SM. Imatinib attenuates inflammation and vascular leak in a clinically relevant two-hit model of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1294-304. [PMID: 26432864 DOI: 10.1152/ajplung.00031.2015] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 09/27/2015] [Indexed: 12/29/2022] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), an illness characterized by life-threatening vascular leak, is a significant cause of morbidity and mortality in critically ill patients. Recent preclinical studies and clinical observations have suggested a potential role for the chemotherapeutic agent imatinib in restoring vascular integrity. Our prior work demonstrates differential effects of imatinib in mouse models of ALI, namely attenuation of LPS-induced lung injury but exacerbation of ventilator-induced lung injury (VILI). Because of the critical role of mechanical ventilation in the care of patients with ARDS, in the present study we pursued an assessment of the effectiveness of imatinib in a "two-hit" model of ALI caused by combined LPS and VILI. Imatinib significantly decreased bronchoalveolar lavage protein, total cells, neutrophils, and TNF-α levels in mice exposed to LPS plus VILI, indicating that it attenuates ALI in this clinically relevant model. In subsequent experiments focusing on its protective role in LPS-induced lung injury, imatinib attenuated ALI when given 4 h after LPS, suggesting potential therapeutic effectiveness when given after the onset of injury. Mechanistic studies in mouse lung tissue and human lung endothelial cells revealed that imatinib inhibits LPS-induced NF-κB expression and activation. Overall, these results further characterize the therapeutic potential of imatinib against inflammatory vascular leak.
Collapse
Affiliation(s)
- Alicia N Rizzo
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois; University of Illinois at Chicago, Department of Pharmacology, Chicago, Illinois
| | - Saad Sammani
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Adilene E Esquinca
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Jeffrey R Jacobson
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Joe G N Garcia
- Arizona Health Sciences Center, University of Arizona, Tucson, Arizona
| | - Eleftheria Letsiou
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois
| | - Steven M Dudek
- University of Illinois Hospital and Health Sciences System, Division of Pulmonary, Critical Care, Sleep and Allergy, Chicago, Illinois; University of Illinois at Chicago, Department of Pharmacology, Chicago, Illinois;
| |
Collapse
|
31
|
Belmonte F, Das S, Sysa-Shah P, Sivakumaran V, Stanley B, Guo X, Paolocci N, Aon MA, Nagane M, Kuppusamy P, Steenbergen C, Gabrielson K. ErbB2 overexpression upregulates antioxidant enzymes, reduces basal levels of reactive oxygen species, and protects against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 2015; 309:H1271-80. [PMID: 26254336 DOI: 10.1152/ajpheart.00517.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 07/31/2015] [Indexed: 11/22/2022]
Abstract
Levels of the HER2/ErbB2 protein in the heart are upregulated in some women during breast cancer therapy, and these women are at high risk for developing heart dysfunction after sequential treatment with anti-ErbB2/trastuzumab or doxorubicin. Doxorubicin is known to increase oxidative stress in the heart, and thus we considered the possibility that ErbB2 protein influences the status of cardiac antioxidant defenses in cardiomyocytes. In this study, we measured reactive oxygen species (ROS) in cardiac mitochondria and whole hearts from mice with cardiac-specific overexpression of ErbB2 (ErbB2(tg)) and found that, compared with control mice, high levels of ErbB2 in myocardium result in lower levels of ROS in mitochondria (P = 0.0075) and whole hearts (P = 0.0381). Neonatal cardiomyocytes isolated from ErbB2(tg) hearts have lower ROS levels and less cellular death (P < 0.0001) following doxorubicin treatment. Analyzing antioxidant enzyme levels and activities, we found that ErbB2(tg) hearts have increased levels of glutathione peroxidase 1 (GPx1) protein (P < 0.0001) and GPx activity (P = 0.0031) in addition to increased levels of two known GPx activators, c-Abl (P = 0.0284) and Arg (P < 0.0001). Interestingly, although mitochondrial ROS emission is reduced in the ErbB2(tg) hearts, oxygen consumption rates and complex I activity are similar to control littermates. Compared with these in vivo studies, H9c2 cells transfected with ErbB2 showed less cellular toxicity and produced less ROS (P < 0.0001) after doxorubicin treatment but upregulated GR activity (P = 0.0237) instead of GPx. Our study shows that ErbB2-dependent signaling contributes to antioxidant defenses and suggests a novel mechanism by which anticancer therapies involving ErbB2 antagonists can harm myocardial structure and function.
Collapse
Affiliation(s)
- Frances Belmonte
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Polina Sysa-Shah
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Vidhya Sivakumaran
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Brian Stanley
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Xin Guo
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Miguel A Aon
- Division of Cardiology, Johns Hopkins Medical Institutions, Baltimore, Maryland; and
| | - Masaki Nagane
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Periannan Kuppusamy
- Department of Radiology, EPR Center for the Study of Viable Systems, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kathleen Gabrielson
- Program in Molecular and Translational Toxicology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Molecular and Comparative Pathobiology, Johns Hopkins Medical Institutions, Baltimore, Maryland;
| |
Collapse
|
32
|
|
33
|
Zhang Y, Wang W, Hao C, Mao X, Zhang L. Astaxanthin protects PC12 cells from glutamate-induced neurotoxicity through multiple signaling pathways. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
34
|
The subcellular location of selenoproteins and the impact on their function. Nutrients 2015; 7:3938-48. [PMID: 26007340 PMCID: PMC4446787 DOI: 10.3390/nu7053938] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 01/31/2023] Open
Abstract
Most human selenium containing proteins contain selenium in the form of the amino acid selenocysteine, which is encoded in the corresponding mRNA as a UGA codon. Only a few non-selenocysteine containing selenoproteins are present and the nature of the association with selenium is not well understood. This review focuses on two selenocysteine-containing proteins that are members of the glutathione peroxidase family, GPx-1 and GPx-4, and the selenium-associated protein referred to as Selenium Binding Protein 1. Each of these proteins have been described to reside in two or more cellular compartments, and in the case of GPx-1 and SBP1, interact with each other. The enzymatic activity of GPx-1 and GPx-4 have been well described, but it is less clear how their cellular location impacts the health related phenotypes associated with activities, while no catalytic function is assigned to SBP1. The distribution of these proteins is presented as is the possible consequences of that compartmentalization.
Collapse
|
35
|
Rizzo AN, Aman J, van Nieuw Amerongen GP, Dudek SM. Targeting Abl kinases to regulate vascular leak during sepsis and acute respiratory distress syndrome. Arterioscler Thromb Vasc Biol 2015; 35:1071-9. [PMID: 25814671 DOI: 10.1161/atvbaha.115.305085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/05/2015] [Indexed: 01/27/2023]
Abstract
The vascular endothelium separates circulating fluid and inflammatory cells from the surrounding tissues. Vascular leak occurs in response to wide-spread inflammatory processes, such as sepsis and acute respiratory distress syndrome, because of the formation of gaps between endothelial cells. Although these disorders are leading causes of mortality in the intensive care unit, no medical therapies exist to restore endothelial cell barrier function. Recent evidence highlights a key role for the Abl family of nonreceptor tyrosine kinases in regulating vascular barrier integrity. These kinases have well-described roles in cancer progression and neuronal morphogenesis, but their functions in the vasculature have remained enigmatic until recently. The Abl family kinases, c-Abl (Abl1) and Abl related gene (Arg, Abl2), phosphorylate several cytoskeletal effectors that mediate vascular permeability, including nonmuscle myosin light chain kinase, cortactin, vinculin, and β-catenin. They also regulate cell-cell and cell-matrix junction dynamics, and the formation of actin-based cellular protrusions in multiple cell types. In addition, both c-Abl and Arg are activated by hyperoxia and contribute to oxidant-induced endothelial cell injury. These numerous roles of Abl kinases in endothelial cells and the current clinical usage of imatinib and other Abl kinase inhibitors have spurred recent interest in repurposing these drugs for the treatment of vascular barrier dysfunction. This review will describe the structure and function of Abl kinases with an emphasis on their roles in mediating vascular barrier integrity. We will also provide a critical evaluation of the potential for exploiting Abl kinase inhibition as a novel therapy for inflammatory vascular leak syndromes.
Collapse
Affiliation(s)
- Alicia N Rizzo
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Jurjan Aman
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Geerten P van Nieuw Amerongen
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Steven M Dudek
- From the Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, College of Medicine (A.N.R., S.M.D.) and Department of Pharmacology (A.N.R., G.P.v.N.A., S.M.D.), University of Illinois at Chicago; Departments of Physiology (J.A., G.P.v.N.A.) and Pulmonary Diseases (J.A.), Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Metheni M, Lombès A, Bouillaud F, Batteux F, Langsley G. HIF-1α induction, proliferation and glycolysis of Theileria-infected leukocytes. Cell Microbiol 2015; 17:467-72. [PMID: 25620534 DOI: 10.1111/cmi.12421] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/30/2023]
Abstract
Within 2 h of infection by Theileria annulata sporozoites, bovine macrophages display a two- to fourfold increase in transcription of hypoxia inducible factor (HIF-1α). Twenty hours post-invasion sporozoites develop into multi-nucleated macroschizonts that transform the infected macrophage into an immortalized, permanently proliferating, hyper-invasive and disease-causing leukaemia-like cell. Once immortalized Theileria-infected leukocytes can be propagated as cell lines and even though cultivated under normoxic conditions, both infected B cells and macrophages display sustained activation of HIF-1α. Attenuated macrophages used as live vaccines against tropical theileriosis also display HIF-1α activation even though they have lost their tumorigenic phenotype. Here, we review data that ascribes HIF-1α activation to the proliferation status of the infected leukocyte and discuss the possibility that Theileria may have lost its ability to render its host macrophage virulent due to continuous parasite replication in a high Reactive Oxygen Species (ROS) environment. We propose a model where uninfected macrophages have low levels of H2 O2 output, whereas virulent-infected macrophages produce high amounts of H2 O2 . Further increase in H2 O2 output leads to dampening of infected macrophage virulence, a characteristic of disease-resistant macrophages. At the same time exposure to H2 O2 sustains HIF-1α that induces the switch from mitochondrial oxidative phosphorylation to Warburg glycolysis, a metabolic shift that underpins uncontrolled infected macrophage proliferation. We propose that as macroschizonts develop into merozoites and infected macrophage proliferation arrests, HIF-1α levels will decrease and glycolysis will switch back from Warburg to oxidative glycolysis. As Theileria infection transforms its host leukocyte into an aggressive leukaemic-like cell, we propose that manipulating ROS levels, HIF-1α induction and oxidative over Warburg glycolysis could contribute to improved disease control. Finally, as excess amounts of H2 O2 drive virulent Theileria-infected macrophages towards attenuation it highlights how infection-induced pathology and redox balance are intimately linked.
Collapse
Affiliation(s)
- Mehdi Metheni
- Inserm U1016, Cnrs UMR8104, Cochin Institute, Paris, France; Laboratoire de Biologie Cellulaire Comparative des Apicomplexes, Faculté de Médicine, Université Paris Descartes - Sorbonne Paris Cité, France
| | | | | | | | | |
Collapse
|
37
|
Sullivan LB, Chandel NS. Mitochondrial reactive oxygen species and cancer. Cancer Metab 2014; 2:17. [PMID: 25671107 PMCID: PMC4323058 DOI: 10.1186/2049-3002-2-17] [Citation(s) in RCA: 516] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
Mitochondria produce reactive oxygen species (mROS) as a natural by-product of electron transport chain activity. While initial studies focused on the damaging effects of reactive oxygen species, a recent paradigm shift has shown that mROS can act as signaling molecules to activate pro-growth responses. Cancer cells have long been observed to have increased production of ROS relative to normal cells, although the implications of this increase were not always clear. This is especially interesting considering cancer cells often also induce expression of antioxidant proteins. Here, we discuss how cancer-associated mutations and microenvironments can increase production of mROS, which can lead to activation of tumorigenic signaling and metabolic reprogramming. This tumorigenic signaling also increases expression of antioxidant proteins to balance the high production of ROS to maintain redox homeostasis. We also discuss how cancer-specific modifications to ROS and antioxidants may be targeted for therapy.
Collapse
Affiliation(s)
- Lucas B Sullivan
- The Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| |
Collapse
|
38
|
Gallego-Villar L, Pérez B, Ugarte M, Desviat LR, Richard E. Antioxidants successfully reduce ROS production in propionic acidemia fibroblasts. Biochem Biophys Res Commun 2014; 452:457-61. [PMID: 25159844 DOI: 10.1016/j.bbrc.2014.08.091] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 12/27/2022]
Abstract
Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. Most PA patients present in the neonatal period with metabolic acidosis and hyperammonemia, developing different neurological symptoms, movement disorders and cardiac complications. There is strong evidence indicating that oxidative damage could be a pathogenic factor in neurodegenerative, mitochondrial and metabolic diseases. Recently, we identified an increase in ROS levels in PA patients-derived fibroblasts. Here, we analyze the capability of seven antioxidants to scavenge ROS production in PA patients' cells. Tiron, trolox, resveratrol and MitoQ significantly reduced ROS content in patients and controls' fibroblasts. In addition, changes in the expression of two antioxidant enzymes, superoxide dismutase and glutathione peroxidase, were observed in PA patients-derived fibroblasts after tiron and resveratrol treatment. Our results in PA cellular models establish the proof of concept of the potential of antioxidants as an adjuvant therapy for PA and pave the way for future assessment of antioxidant strategies in the murine model of PA.
Collapse
Affiliation(s)
- Lorena Gallego-Villar
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - Belén Pérez
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - Lourdes R Desviat
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain
| | - Eva Richard
- Centro de Biología Molecular "Severo Ochoa", UAM-CSIC, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), IdiPAZ, Madrid, Spain.
| |
Collapse
|
39
|
Zhang M, Lv D, Ge P, Bian Y, Chen G, Zhu G, Li X, Yan Y. Phosphoproteome analysis reveals new drought response and defense mechanisms of seedling leaves in bread wheat (Triticum aestivum L.). J Proteomics 2014; 109:290-308. [PMID: 25065648 DOI: 10.1016/j.jprot.2014.07.010] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/19/2022]
Abstract
UNLABELLED Drought is a major form of abiotic stress that significantly affects plant growth and development. In this study, we performed the first phosphoproteome analysis of seedling leaves from two bread wheat cultivars (Hanxuan 10 and Ningchun 47) subjected to drought stress. As a result, a total of 191 and 251 unique phosphopeptides, representing 173 and 227 phosphoproteins in two cultivars, respectively, were identified as being significant changes in phosphorylation level (SCPL) under drought stress. Through the comparison of SCPL phosphoproteins between two cultivars, 31 common SCPL phosphoproteins were found in both cultivars. Function analysis showed that the SCPL phosphoproteins in the two cultivars are mainly involved in three biological processes: RNA transcription/processing, stress/detoxification/defense, and signal transduction. Further analyses revealed that some SCPL phosphoproteins may play key roles in signal transduction and the signaling cascade under drought stress. Furthermore, some phosphoproteins related to drought tolerance and osmotic regulation exhibited significant phosphorylation changes. This study used a series of bioinformatics tools to profile the phosphorylation status of wheat seedling leaves under drought stress with greater accuracy. BIOLOGICAL SIGNIFICANCE Drought is of the most studied abiotic stresses, because it severely restricts the development and yield of plants. In this study, large numbers of stress-related phosphoproteins are identified from the two bread wheat cultivars. These phosphoproteins contribute to signal transduction, osmotic regulation and ROS scavenging under water stress. This work provides a detailed insight into the mechanisms of drought response and defense in bread wheat from the perspective of phosphoproteomics, and identifies some important drought-tolerant candidates for further transgenosis study and incorporation into the breeding of resistant cultivars.
Collapse
Affiliation(s)
- Ming Zhang
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Dongwen Lv
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Pei Ge
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yanwei Bian
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Guanxing Chen
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Gengrui Zhu
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Xiaohui Li
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, 100048 Beijing, PR China.
| |
Collapse
|
40
|
Bera S, Weinberg F, Ekoue DN, Ansenberger-Fricano K, Mao M, Bonini MG, Diamond AM. Natural allelic variations in glutathione peroxidase-1 affect its subcellular localization and function. Cancer Res 2014; 74:5118-26. [PMID: 25047527 DOI: 10.1158/0008-5472.can-14-0660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Glutathione peroxidase 1 (GPx-1) has been implicated in the etiology of several common diseases due to the association between specific allelic variations and cancer risk. The most common among these variations are the codon 198 polymorphism that results in either a leucine or proline and the number of alanine repeat codons in the coding sequence. The molecular and biologic consequences of these variations remain to be characterized. Toward achieving this goal, we have examined the cellular location of GPx-1 encoded by allelic variants by ectopically expressing these genes in MCF-7 human breast carcinoma cells that produce undetectable levels of GPx-1, thus achieving exclusive expression in the same cellular environment. A differential distribution between the cytoplasm and mitochondria was observed, with the allele expressing the leucine-198 polymorphism and 7 alanine repeats being more cytoplasmically located than the other alleles examined. To assess whether the distribution of GPx-1 between the cytoplasm and mitochondria had a biologic consequence, we engineered derivative GPx-1 proteins that were targeted to the mitochondria by the addition of a mitochondria targeting sequence and expressed these proteins in MCF-7 cells. These cells were examined for their response to oxidative stress, energy metabolism, and impact on cancer-associated signaling molecules. The results obtained indicated that both primary GPx-1 sequence and cellular location have a profound impact on cellular biology and offer feasible hypotheses about how expression of distinct GPx-1 alleles can affect cancer risk. Cancer Res; 74(18); 5118-26. ©2014 AACR.
Collapse
Affiliation(s)
- Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Frank Weinberg
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Dede N Ekoue
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Mao Mao
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois. Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Marcelo G Bonini
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois. Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alan M Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
41
|
Frijhoff J, Dagnell M, Godfrey R, Ostman A. Regulation of protein tyrosine phosphatase oxidation in cell adhesion and migration. Antioxid Redox Signal 2014; 20:1994-2010. [PMID: 24111825 DOI: 10.1089/ars.2013.5643] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SIGNIFICANCE Redox-regulated control of protein tyrosine phosphatases (PTPs) through inhibitory reversible oxidation of their active site is emerging as a novel and general mechanism for control of cell surface receptor-activated signaling. This mechanism allows for a previously unrecognized crosstalk between redox regulators and signaling pathways, governed by, for example, receptor tyrosine kinases and integrins, which control cell proliferation and migration. RECENT ADVANCES A large number of different molecules, in addition to hydrogen peroxide, have been found to induce PTP inactivation, including lipid peroxides, reactive nitrogen species, and hydrogen sulfide. Characterization of oxidized PTPs has identified different types of oxidative modifications that are likely to display differential sensitivity to various reducing systems. Accumulating evidence demonstrates that PTP oxidation occurs in a temporally and spatially restricted manner. Studies in cell and animal models indicate altered PTP oxidation in models of common diseases, such as cancer and metabolic/cardiovascular disease. Novel methods have appeared that allow characterization of global PTP oxidation. CRITICAL ISSUES As the understanding of the molecular and cellular biology of PTP oxidation is developing, it will be important to establish experimental procedures that allow analyses of PTP oxidation, and its regulation, in physiological and pathophysiological settings. Future studies should also aim to establish specific connections between various oxidants, specific PTPs, and defined signaling contexts. FUTURE DIRECTIONS Modulation of PTP activity still appears as a valid strategy for correction or inhibition of dys-regulated cell signaling. Continued studies on PTP oxidation might present yet unrecognized means to exploit this regulatory mechanism for pharmacological purposes.
Collapse
Affiliation(s)
- Jeroen Frijhoff
- 1 Department of Oncology-Pathology, Karolinska Institutet , Stockholm, Sweden
| | | | | | | |
Collapse
|
42
|
Sadi G, Bozan D, Yildiz HB. Redox regulation of antioxidant enzymes: post-translational modulation of catalase and glutathione peroxidase activity by resveratrol in diabetic rat liver. Mol Cell Biochem 2014; 393:111-22. [PMID: 24740756 DOI: 10.1007/s11010-014-2051-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 04/02/2014] [Indexed: 02/06/2023]
Abstract
Resveratrol is a strong antioxidant that exhibits blood glucose-lowering effects, which might contribute to its usefulness in preventing complications associated with diabetes. The present study aimed to investigate resveratrol effects on catalase (CAT) and glutathione peroxidase (GPx) gene and protein expression, their phosphorylation states and activities in rat liver of STZ-induced diabetes. Diabetes increased the levels of total protein phosphorylation and p-CAT, while mRNA expression, protein levels, and activity were reduced. Although diabetes induced transcriptional repression over GPx, it did not affect the protein levels and activity. When resveratrol was administered to diabetic rats, an increase in activity was associated with an increase in p-GPx levels. Decrease in Sirtuin1 (SIRT1) and nuclear factor erythroid 2-related factor (Nrf2) and increase in nuclear factor kappa B (NFκB) gene expression in diabetes were associated with a decrease in CAT and GPx mRNA expression. A possible compensatory mechanism for reduced gene expression of antioxidant enzymes is proved to be nuclear translocation of redox-sensitive Nrf2 and NFκB in diabetes which is confirmed by the increase in nuclear and decrease in cytoplasmic protein levels of Nrf2 and NFκB. Taken together, these findings revealed that an increase in the oxidized state in diabetes intricately modified the cellular phosphorylation status and regulation of antioxidant enzymes. Gene regulation of antioxidant enzymes was accompanied by nuclear translocation of Nrf2 and NFκB. Resveratrol administration also activated a coordinated cytoprotective response against diabetes-induced changes in liver tissues.
Collapse
Affiliation(s)
- Gökhan Sadi
- Department of Biology, Karamanoglu Mehmetbey University, 70100, Karaman, Turkey,
| | | | | |
Collapse
|
43
|
Reinke EN, Ekoue DN, Bera S, Mahmud N, Diamond AM. Translational regulation of GPx-1 and GPx-4 by the mTOR pathway. PLoS One 2014; 9:e93472. [PMID: 24691473 PMCID: PMC3972146 DOI: 10.1371/journal.pone.0093472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/05/2014] [Indexed: 02/02/2023] Open
Abstract
Glutathione peroxidase activity was previously determined to be elevated in lymphocytes obtained from patients treated with the Bcr-Abl kinase inhibitor imatinib mesylate. In order to expand upon this observation, the established chronic myelogenous leukemia cell lines KU812 and MEG-01 were treated with imatinib and the effect on several anti-oxidant proteins was determined. The levels of GPx-1 were significantly increased following treatment with imatinib. This increase was not due to altered steady-state mRNA levels, and appeared to be dependent on the expression of Bcr-Abl, as no increases were observed following imatinib treatment of cells that did not express the fusion protein. The nutrient-sensing signaling protein, mammalian target of rapamycin (mTOR), can be activated by Bcr-Abl and its activity regulates the translation of many different proteins. Treatment of those same cells used in the imatinib studies with rapamycin, an inhibitor of mTOR, resulted in elevated GPx-1 and GPx-4 protein levels independent of Bcr-Abl expression. These proteins all belong to the selenoprotein family of peptides that contain the UGA-encoded amino acid selenocysteine. Collectively, these data provide evidence of a novel means of regulating anti-oxidants of the selenoprotein family via the mTOR pathway.
Collapse
Affiliation(s)
- Emily N. Reinke
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Dede N. Ekoue
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Soumen Bera
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Nadim Mahmud
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Alan M. Diamond
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
44
|
Guo X, Yu Y, Liu X, Zhang Y, Guan T, Xie G, Wei J. Heterologous expression and characterization of human cellular glutathione peroxidase mutants. IUBMB Life 2014; 66:212-219. [PMID: 24659529 DOI: 10.1002/iub.1255] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 01/27/2023]
Abstract
Cellular glutathione peroxidase (GPx1; EC1.11.1.9) is a major intracellular antioxidant selenoenzyme in mammals. However, the complicated expression mechanism of selenocysteine (Sec)-containing protein increases the difficulty of expressing human GPx1 (hGPx1) in Escherichia coli (E. coli). In this study, hGPx1 gene was cloned from a cDNA library of the human hepatoma cell line HepG2. The codon UGA encoding Sec49 of hGPx1 was first mutated to UGC encoding cysteine (Cys) and then biosynthetically converted to Sec during expression in an E. coli BL21(DE3)cys auxotrophic system. Seleno-GPx1Sec displayed a low GPx activity of 522 U/μmol. To improve the activity, the other five Cys residues (C2, C78, C115, C156, C202) were mutated to serine (Ser) in one hGPx1 molecule. The mutant seleno-hGPx1Ser showed a high activity of 5278 U/μmol, which was more than 10-fold enhanced as compared with seleno-GPx1Sec . The activity was the highest among all of those seleno-proteins obtained by this method so far. Kinetic analysis of seleno-hGPx1Ser showed a typical ping-pong mechanism, which was similar to those of natural GPxs. This research will be of value in overcoming the problem of limited sources of natural GPx and substantially promotes the research of the characterization of GPx. © 2014 IUBMB Life, 66(3):212-219, 2014.
Collapse
Affiliation(s)
- Xiao Guo
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yang Yu
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Xixi Liu
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yinlong Zhang
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Tuchen Guan
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Guiqiu Xie
- College of Pharmaceutical Science, Jilin University, Changchun, China
| | - Jingyan Wei
- College of Pharmaceutical Science, Jilin University, Changchun, China
| |
Collapse
|
45
|
Regoli F, Giuliani ME. Oxidative pathways of chemical toxicity and oxidative stress biomarkers in marine organisms. MARINE ENVIRONMENTAL RESEARCH 2014; 93:106-17. [PMID: 23942183 DOI: 10.1016/j.marenvres.2013.07.006] [Citation(s) in RCA: 555] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 05/04/2023]
Abstract
The antioxidant system of marine organisms consists of low molecular weight scavengers and antioxidant enzymes which interact in a sophisticated network. Environmental pollutants can unbalance this system through closely related mechanisms, indirect relationships and cascade effects acting from pre-transcriptional to catalytic levels. Chemically-mediated pathways have the potential to greatly enhance intracellular formation of reactive oxygen species (ROS); at the same time, excessive levels of oxyradicals down-regulate xenobiotics metabolism, with important environmental implications for organisms exposed to chemical mixtures. Interactions between different classes of chemicals, generation of ROS and onset of oxidative stress conditions are partly modulated by changes in levels and functions of redox-sensitive signaling proteins and transcription factors. The Nrf2-Keap1 pathway still remains largely unexplored in marine organisms, despite the elevated degree of identity and similarity with homolog transcripts and proteins from different species. Recent evidences on transcriptional up-regulation of this system are consistent with the capability to provide a prolonged expression of ARE-regulated cytoprotective genes, and to efficiently switch off this mechanism when oxidative pressure decreases. Although gene expression and catalytic activities of antioxidants are often measured as alternative biomarkers in monitoring biological effects of contaminants, conflicting results between molecular and biochemical responses are quite frequent. The links between effects occurring at various intracellular levels can be masked by non-genomic processes affecting mRNA stability and protein turnover, different timing for transcriptional and translational mechanisms, metabolic capability of tissues, post-transcriptional modifications of proteins, bi-phasic responses of antioxidant enzymes and interactions occurring in chemical mixtures. In this respect, caution should be taken in monitoring studies where mRNA levels of antioxidants could represent a snapshot of cell activity at a given time, not an effective endpoint of environmental pollutants.
Collapse
Affiliation(s)
- Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy.
| | - Maria Elisa Giuliani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Via Ranieri Monte d'Ago, Ancona 60100, Italy
| |
Collapse
|
46
|
Stephens RS, Servinsky LE, Rentsendorj O, Kolb TM, Pfeifer A, Pearse DB. Protein kinase G increases antioxidant function in lung microvascular endothelial cells by inhibiting the c-Abl tyrosine kinase. Am J Physiol Cell Physiol 2014; 306:C559-69. [PMID: 24401847 DOI: 10.1152/ajpcell.00375.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oxidant injury contributes to acute lung injury (ALI). We previously reported that activation of protein kinase GI (PKGI) posttranscriptionally increased the key antioxidant enzymes catalase and glutathione peroxidase 1 (Gpx-1) and attenuated oxidant-induced cytotoxicity in mouse lung microvascular endothelial cells (MLMVEC). The present studies tested the hypothesis that the antioxidant effect of PKGI is mediated via inhibition of the c-Abl tyrosine kinase. We found that activation of PKGI with the cGMP analog 8pCPT-cGMP inhibited c-Abl activity and decreased c-Abl expression in wild-type but not PKGI(-/-) MLMVEC. Treatment of wild-type MLMVEC with atrial natriuretic peptide also inhibited c-Abl activation. Moreover, treatment of MLMVEC with the c-Abl inhibitor imatinib increased catalase and GPx-1 protein in a posttranscriptional fashion. In imatinib-treated MLMVEC, there was no additional effect of 8pCPT-cGMP on catalase or GPx-1. The imatinib-induced increase in antioxidant proteins was associated with an increase in extracellular H2O2 scavenging by MLMVEC, attenuation of oxidant-induced endothelial barrier dysfunction, and prevention of oxidant-induced endothelial cell death. Finally, in the isolated perfused lung, imatinib prevented oxidant-induced endothelial toxicity. We conclude that cGMP, through activation of PKGI, inhibits c-Abl, leading to increased key antioxidant enzymes and resistance to lung endothelial oxidant injury. Inhibition of c-Abl by active PKGI may be the downstream mechanism underlying PKGI-mediated antioxidant signaling. Tyrosine kinase inhibitors may represent a novel therapeutic approach in oxidant-induced ALI.
Collapse
Affiliation(s)
- R Scott Stephens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, and
| | | | | | | | | | | |
Collapse
|
47
|
Klein LE, Cui L, Gong Z, Su K, Muzumdar R. A humanin analog decreases oxidative stress and preserves mitochondrial integrity in cardiac myoblasts. Biochem Biophys Res Commun 2013; 440:197-203. [PMID: 23985350 DOI: 10.1016/j.bbrc.2013.08.055] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 02/07/2023]
Abstract
A potent analog (HNG) of the endogenous peptide humanin protects against myocardial ischemia-reperfusion (MI-R) injury in vivo, decreasing infarct size and improving cardiac function. Since oxidative stress contributes to the damage from MI-R we tested the hypotheses that: (1) HNG offers cardioprotection through activation of antioxidant defense mechanisms leading to preservation of mitochondrial structure and that, (2) the activity of either of a pair of non-receptor tyrosine kinases, c-Abl and Arg is required for this protection. Rat cardiac myoblasts (H9C2 cells) were exposed to nanomolar concentrations of HNG and to hydrogen peroxide (H2O2). Cells treated with HNG in the presence of H2O2 demonstrated reduced intracellular reactive oxygen species (ROS), preserved mitochondrial membrane potential, ATP levels and mitochondrial structure. HNG induced activation of catalase and glutathione peroxidase (GPx) within 5 min and decreased the ratio of oxidized to reduced glutathione within 30 min. siRNA knockdown of both Abl and Arg, but neither alone, abolished the HNG-mediated reduction of ROS in myoblasts exposed to H2O2. These findings demonstrate an HNG-mediated, Abl- and Arg-dependent, rapid and sustained activation of critical cellular defense systems and attenuation of oxidative stress, providing mechanistic insights into the observed HNG-mediated cardioprotection in vivo.
Collapse
Affiliation(s)
- Laura E Klein
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | | | | | | | | |
Collapse
|
48
|
Irwin ME, Rivera-Del Valle N, Chandra J. Redox control of leukemia: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2013; 18:1349-83. [PMID: 22900756 PMCID: PMC3584825 DOI: 10.1089/ars.2011.4258] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Reactive oxygen species (ROS) play both positive and negative roles in the proliferation and survival of a cell. This dual nature has been exploited by leukemia cells to promote growth, survival, and genomic instability-some of the hallmarks of the cancer phenotype. In addition to altered ROS levels, many antioxidants are dysregulated in leukemia cells. Together, the production of ROS and the expression and activity of antioxidant enzymes make up the primary redox control of leukemia cells. By manipulating this system, leukemia cells gain proliferative and survival advantages, even in the face of therapeutic insults. Standard treatment options have improved leukemia patient survival rates in recent years, although relapse and the development of resistance are persistent challenges. Therapies targeting the redox environment show promise for these cases. This review highlights the molecular mechanisms that control the redox milieu of leukemia cells. In particular, ROS production by the mitochondrial electron transport chain, NADPH oxidase, xanthine oxidoreductase, and cytochrome P450 will be addressed. Expression and activation of antioxidant enzymes such as superoxide dismutase, catalase, heme oxygenase, glutathione, thioredoxin, and peroxiredoxin are perturbed in leukemia cells, and the functional consequences of these molecular alterations will be described. Lastly, we delve into how these pathways can be potentially exploited therapeutically to improve treatment regimens and promote better outcomes for leukemia patients.
Collapse
Affiliation(s)
- Mary E Irwin
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
49
|
Suryo Rahmanto A, Pattison DI, Davies MJ. Photo-oxidation-induced inactivation of the selenium-containing protective enzymes thioredoxin reductase and glutathione peroxidase. Free Radic Biol Med 2012; 53:1308-16. [PMID: 22884457 DOI: 10.1016/j.freeradbiomed.2012.07.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
Abstract
Singlet oxygen ((1)O(2)) is a reactive oxygen species generated during photo-oxidation, inflammation, and via peroxidase-catalyzed reactions (e.g., myeloperoxidase and eosinophil peroxidase). (1)O(2) oxidizes the free amino acids Trp, Tyr, His, Cys, and Met, and those species present on peptides/proteins, with this resulting in modulation of protein structure and function. Impairment of the activity of antioxidant enzymes may be of relevance to the oxidative stress observed in a number of pathologies involving either light exposure or inflammation. In this study, the effects of (1)O(2) on glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) activity, including the mechanisms of their inactivation, were investigated. Exposure of GPx or TrxR, either as purified proteins or in cell lysates, to Rose Bengal and visible light (an established source of (1)O(2)) resulted in significant, photolysis time-dependent reductions in enzyme activity (10-40%, P<0.05). More extensive inhibition (ca. 2-fold) was detected when the reactions were carried out in D(2)O, consistent with the intermediacy of (1)O(2). No additional inhibition was detected after the cessation of photolysis, eliminating a role for photo-products. Methionine, which reacts rapidly with (1)O(2) (k~10(7)M(-1) s(-1))(,) significantly reduced photo-inactivation at large molar excesses, presumably by acting as an alternative target. Reductants (NaBH(4), DTT, GSH, or NADPH) added after the cessation of (1)O(2) formation were unable to reverse enzyme inactivation, consistent with irreversible enzyme oxidation. Formation of nonreducible protein aggregates and/or fragments was detected for both photo-oxidized GPx and TrxR by SDS-PAGE. An oxidant concentration-dependent increase in protein carbonyls was detected with TrxR but not GPx. These studies thus demonstrate that the antioxidant enzymes GPx and TrxR can be irreversibly inactivated by (1)O(2).
Collapse
|
50
|
Lönn ME, Dennis JM, Stocker R. Actions of "antioxidants" in the protection against atherosclerosis. Free Radic Biol Med 2012; 53:863-84. [PMID: 22664312 DOI: 10.1016/j.freeradbiomed.2012.05.027] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 05/05/2012] [Accepted: 05/16/2012] [Indexed: 02/07/2023]
Abstract
This review addresses the role of oxidative processes in atherosclerosis and its resulting cardiovascular disease by focusing on the outcome of antioxidant interventions. Although there is unambiguous evidence for the presence of heightened oxidative stress and resulting damage in atherosclerosis, it remains to be established whether this represents a cause or a consequence of the disease. This critical question is complicated further by the increasing realization that oxidative processes, including those related to signaling, are part of normal cell function. Overall, the results from animal interventions suggest that antioxidants provide benefit neither generally nor consistently. Where benefit is observed, it appears to be achieved at least in part via modulation of biological processes such as increase in nitric oxide bioavailability and induction of protective enzymes such as heme oxygenase-1, rather than via inhibition of oxidative processes and lipid oxidation in the arterial wall. Exceptions to this may be situations of multiple/excessive stress, the relevance of which for humans is not clear. This interpretation is consistent with the overall disappointing outcome of antioxidant interventions in humans and can be rationalized by the spatial compartmentalization of cellular oxidative signaling and/or damage, complex roles of oxidant-producing enzymes, and the multifactorial nature of atherosclerosis.
Collapse
Affiliation(s)
- Maria E Lönn
- Centre for Vascular Research, School of Medical Sciences (Pathology), and Bosch Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | | | | |
Collapse
|