1
|
Kancherla R, Lohith TN, Deshmukh S, Mulka SR, Kuruvalli G, Reddy MBM. Synthesis, spectroscopic characterization, DFT calculations, in silico-ADMET and molecular docking analysis of novel quinoline-substituted 5H-chromeno [2,3-b] pyridine derivatives as antibacterial agents. Mol Divers 2024:10.1007/s11030-024-10982-x. [PMID: 39313710 DOI: 10.1007/s11030-024-10982-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024]
Abstract
A convenient, straightforward, and effective one-step reaction for the synthesis of a three-component compound of biologically relevant novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno[2,3-b] pyridine-3-carbonitrile derivatives was designed and synthesized. The synthesis was developed by the reaction between salicylaldehyde 1, 8-hydroxyquinoline 2, 2-aminopropene-1,1,3-tricarbonitrile 3, and the catalytic amount of triethylamine in ethanol at 78 °C. This methodology has many beneficial features, including the use of inexpensive and non-hazardous starting materials, single-flask reactions, optimized reaction conditions, the termination of intermediate isolation, easy workup, reducing organic waste products, being chromatography-free, and decreasing the reaction time along with quantitative yields with high functional group tolerance. A proposed mechanism with supporting experimental data is presented, including 1H NMR, 13C NMR, 2D NMR (HMBC, COSY, HSQC), mass, and IR spectroscopy, which are used to characterize the complete derivatives. All synthesized compounds were evaluated in vitro for their antibacterial activities against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa bacterial strains via the agar-well diffusion method compared with the reference drug gentamicin. The data indicated that compounds 4A, 4F, 4G, 4 J, and 4K consistently demonstrated strong antimicrobial activity against Gram-positive and Gram-negative bacteria. Furthermore, a molecular docking investigation was carried out to gain insight into the binding mode of the most promising compounds via the crystal structure of the S. aureus DNA gyrase complex with ciprofloxacin (PDB ID: 2XCT). Density functional theory (DFT) calculations were performed to determine the various molecular properties of the synthesized novel 2,4-diamino-5-(8-hydroxyquinolin-7-yl)-5H-chromeno [2,3-b] pyridine-3-carbonitrile derivatives (4A-4 M). On the basis of the reactive sites explored by the molecular electrostatic potential maps, the antibacterial activities of the compounds were screened.
Collapse
Affiliation(s)
- Rajesh Kancherla
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - T N Lohith
- Department of Physics, The National Institute of Engineering (NIE), Mysore, Karnataka, 570008, India
| | - Sushma Deshmukh
- Department of Chemistry, Swami Ramanand Teerth Marathwada University, Nanded, Maharashtra, 431606, India
| | - Shekhar Reddy Mulka
- Department of Analytical Chemistry, Accu Analytical, Hyderabad, Telangana, 500076, India
| | - Gouthami Kuruvalli
- Department of Biotechnology, School of Applied Sciences, REVA University, Bangalore, 560064, India
| | - M B Madhusudana Reddy
- Department of Chemistry, School of Applied Sciences, REVA University, Bangalore, 560064, India.
| |
Collapse
|
2
|
Malathi V, Sharon N, Padmaja P, Lokwani D, Khadse S, Chaudhari P, Shirkhedkar AA, Reddy PN, Ugale VG. Design, synthesis, and pharmacological evaluation of [1, 3] dioxolo-chromeno[2,3-b]pyridines as anti-seizure agents. Mol Divers 2023; 27:1809-1827. [PMID: 36214960 DOI: 10.1007/s11030-022-10538-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/29/2022] [Indexed: 10/17/2022]
Abstract
An efficient one-pot three-component reaction for the synthesis of [1,3]dioxolo[4',5':6,7]chromeno[2,3-b]pyridines 4(a-i) has been developed. Synthesis was achieved by reacting sesamol (1), aromatic aldehydes 2(a-i), and 2-aminopropene-1,1,3-tricarbonitrile (3) in the presence of triethylamine at 100 °C under neat reaction condition. Simple operational procedure, broad substrate scope, column chromatography free separations, and high yield of products make it an efficient and largely acceptable synthetic strategy. Synthesized compounds 4(a-i) were further screened for preliminary anticonvulsant activity using MES and scPTZ tests. These analogs were also checked for neurotoxicity and hepatotoxicity. Selected active compounds have been then screened quantitatively to determine ED50 and TD50 values. Analog 4h was found effective in both preclinical seizure models with significant therapeutic/toxicity profile (4h: ED50 = 34.7 mg/kg, MES test; ED50 = 37.9 mg/kg, scPTZ test; TD50 = 308.7 mg/kg). Molecular dynamic simulation for 100 ns of compound 4h-complexed with GABAA receptor revealed good thermodynamic behavior and fairly stable interactions (4h, Docking score = - 10.94). In conclusion, effective synthetic strategy, significant anticonvulsant activity with good toxicity profile and detailed molecular modeling studies led us to anticipate the emergence of these analogs as valid leads for the development of future effective neurotherapeutic agents.
Collapse
Affiliation(s)
- Visarapu Malathi
- Department of Chemistry, School of Science, Gitam Deemed to be University, Hyderabad, TS, India
| | - Nissi Sharon
- Department of Chemistry, School of Science, Gitam Deemed to be University, Hyderabad, TS, India
| | - Pannala Padmaja
- Centre for Semio Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Deepak Lokwani
- Rajarshi Shahu College of Pharmacy, Buldana, Maharashtra, India
| | - Saurabh Khadse
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Prashant Chaudhari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | - Atul A Shirkhedkar
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India
| | | | - Vinod G Ugale
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, 425405, India.
- Bioprospecting Group, Agharkar Research Institute, Savitribai Phule Pune University, G. G. Agarkar Road, Pune, Maharashtra, 411004, India.
| |
Collapse
|
3
|
Taherkhani H, Ramazani A, Sajjadifar S, Aghahossieini H, Rezaei A. Design and Preparation of Copper(II)-Mesalamine Complex Functionalized on Silica-Coated Magnetite Nanoparticles and Study of Its Catalytic Properties for Green and Multicomponent Synthesis of Highly Substituted 4 H-Chromenes and Pyridines. ACS OMEGA 2022; 7:14972-14984. [PMID: 35557658 PMCID: PMC9089390 DOI: 10.1021/acsomega.2c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/07/2022] [Indexed: 05/13/2023]
Abstract
In the present study, a green and ecofriendly nanocatalyst was synthesized through functionalization of 2,4,6-trichloro-1,3,5-triazine (TCT) and mesalamine on silica-coated magnetic nanoparticles (MNPs), then coordination with Cu2+ without agglomeration, consecutively. The silica-coated MNPs functionalized with the Cu(*II)-mesalamine complex was (Fe3O4@SiO2@NH2-TCT-mesalamine-Cu(II) MNPs) completely characterized by FT-IR, XRD, EDX, FESEM, TEM, VSM, TGA, and BET analyses. Afterward, the activity of the novel catalyst was investigated in the synthesis of chromene heterocycles, which were an important group of organic compounds. The activity of Fe3O4@SiO2@NH2-TCT-mesalamine-Cu(II) MNPs as a high-performance heterogeneous nanocatalyst was evaluated for the synthesis of 2-amino-4-aryl-6-(phenylthio)pyridine-3,5-dicarbonitriles and 2-amino-4H-chromenes via aromatic aldehydes, malononitrile, and enolizable C-H acids (resorcinol, 2-hydroxynaphthalene-1,4-dione, and benzenethiol) in ethanol under reflux conditions. Fe3O4@SiO2-TCT-mesalamine-Cu(II) could be quickly separated using an external magnet and reused nine times without a remarkable reduction of its catalytic activity.
Collapse
Affiliation(s)
- Hooman Taherkhani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Ali Ramazani
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
- Department
of Biotechnology, Research Institute of Modern Biological Techniques
(RIMBT), University of Zanjan, Zanjan 45371-38791, Iran
- ,
| | - Sami Sajjadifar
- Department
of Chemistry, Payame Noor University, PO BOX Tehran 19395-4697, Iran
| | - Hamideh Aghahossieini
- Department
of Chemistry, Faculty of Science, University
of Zanjan, Zanjan 45371-38791, Iran
| | - Aram Rezaei
- Nano
Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 1673-67145, Iran
| |
Collapse
|
4
|
Yang H, Zhang L, Xu XY, Shao X, Li Z. Acid-mediated the synthesis of chromeno[2,3-b]pyridine derivatives via condensation of 2-amino-3-formylchromones and 1-(methylthio)-2-nitroenamine derivatives. Synlett 2022. [DOI: 10.1055/a-1790-2992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A convenient and effective protocol has been proposed for the synthesis of chromeno[2,3-b]pyridine derivatives via the CF3SO3H-catalyzed annulation of substituted 2-amino-3-formylchromones and various 1-(methylthio)-2-nitroenamine derivatives. This method is time-efficient, convenient, high-yielding, and exhibits a good functional group compatibility.
Collapse
Affiliation(s)
- Hongchen Yang
- School of Pharmacy, East China University of Science and Technology School of Pharmacy, Shanghai, China
| | - Lu Zhang
- School of Pharmacy, East China University of Science and Technology School of Pharmacy, Shanghai, China
| | - Xiao-Yong Xu
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xusheng Shao
- school of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhong Li
- school of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Alomari A, Gowland R, Southwood C, Barrow J, Bentley Z, Calvin-Nelson J, Kaminski A, LeFevre M, Callaghan AJ, Vincent HA, Gowers DM. Identification of Novel Inhibitors of Escherichia coli DNA Ligase (LigA). Molecules 2021; 26:molecules26092508. [PMID: 33923034 PMCID: PMC8123306 DOI: 10.3390/molecules26092508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Present in all organisms, DNA ligases catalyse the formation of a phosphodiester bond between a 3' hydroxyl and a 5' phosphate, a reaction that is essential for maintaining genome integrity during replication and repair. Eubacterial DNA ligases use NAD+ as a cofactor and possess low sequence and structural homology relative to eukaryotic DNA ligases which use ATP as a cofactor. These key differences enable specific targeting of bacterial DNA ligases as an antibacterial strategy. In this study, four small molecule accessible sites within functionally important regions of Escherichia coli ligase (EC-LigA) were identified using in silico methods. Molecular docking was then used to screen for small molecules predicted to bind to these sites. Eight candidate inhibitors were then screened for inhibitory activity in an in vitro ligase assay. Five of these (geneticin, chlorhexidine, glutathione (reduced), imidazolidinyl urea and 2-(aminomethyl)imidazole) showed dose-dependent inhibition of EC-LigA with half maximal inhibitory concentrations (IC50) in the micromolar to millimolar range (11-2600 µM). Two (geneticin and chlorhexidine) were predicted to bind to a region of EC-LigA that has not been directly investigated previously, raising the possibility that there may be amino acids within this region that are important for EC-LigA activity or that the function of essential residues proximal to this region are impacted by inhibitor interactions with this region. We anticipate that the identified small molecule binding sites and inhibitors could be pursued as part of an antibacterial strategy targeting bacterial DNA ligases.
Collapse
Affiliation(s)
- Arqam Alomari
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Department of Basic Sciences, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Robert Gowland
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Callum Southwood
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jak Barrow
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Zoe Bentley
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Jashel Calvin-Nelson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Alice Kaminski
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Matthew LeFevre
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
| | - Darren M. Gowers
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK or (A.A.); (R.G.); (C.S.); (J.B.); (Z.B.); (J.C.-N.); (A.K.); (M.L.); (A.J.C.); (H.A.V.)
- Correspondence:
| |
Collapse
|
6
|
Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD +-dependent DNA ligase A. J Struct Biol 2020; 213:107655. [PMID: 33197566 DOI: 10.1016/j.jsb.2020.107655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
NAD+-dependent DNA ligase (LigA) is the essential replicative ligase in bacteria and differs from ATP-dependent counterparts like the human DNA ligase I (HligI) in several aspects. LigA uses NAD+ as the co-factor while the latter uses ATP. Further, the LigA carries out enzymatic activity with a single divalent metal ion in the active site while ATP-dependent ligases use two metal ions. Instead of the second metal ion, LigA have a unique NMN binding subdomain that facilitates the orientation of the β-phosphate and NMN leaving group. LigA are therefore attractive targets for new anti-bacterial therapeutic development. Others and our group have earlier identified several LigA inhibitors that mainly bind to AMP binding site of LigA. However, no inhibitor is known to bind to the unique NMN binding subdomain. We initiated a fragment inhibitor discovery campaign against the M. tuberculosis LigA based on our co-crystal structure of adenylation domain with AMP and NMN. The study identified two fragments, 4-(4-fluorophenyl)-4,5,6,7-tetrahydro-3H imidazo[4,5-c] pyridine and N-(4-methylbenzyl)-1H-pyrrole-2-carboxamide, that bind to the NMN site. The fragments inhibit LigA with IC50 of 16.9 and 28.7 µM respectively and exhibit MIC of ~20 and 60 µg/ml against a temperature sensitive E. coli GR501 ligAts strain, rescued by MtbLigA. Co-crystal structures of the fragments with the adenylation domain of LigA show that they mimic the interactions of NMN. Overall, our results suggest that the NMN binding-site is a druggable target site for developing anti-LigA therapeutic strategies.
Collapse
|
7
|
Unusual transformations of 3-thiocarbamoylchromones. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Strategy for the synthesis of 2,2-disubstituted 8-azachromanones via Horner–Wadsworth–Emmons olefination. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Matern WM, Jenquin RL, Bader JS, Karakousis PC. Identifying the essential genes of Mycobacterium avium subsp. hominissuis with Tn-Seq using a rank-based filter procedure. Sci Rep 2020; 10:1095. [PMID: 31974396 PMCID: PMC6978383 DOI: 10.1038/s41598-020-57845-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/08/2020] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) is increasingly recognized as a significant cause of morbidity, particularly in elderly patients or those with immune deficiency or underlying lung impairment. Disease due to MAH is particularly difficult to treat, often requiring years of antibiotic therapy. Identification of genes essential for MAH growth may lead to novel strategies for improving curative therapy. Here we have generated saturating genome-wide transposon mutant pools in a strain of MAH (MAC109) and developed a novel computational technique for classifying annotated genomic features based on the in vitro effect of transposon mutagenesis. Our findings may help guide future genetic and biochemical studies of MAH pathogenesis and aid in the identification of new drugs to improve the treatment of these serious infections.
Collapse
Affiliation(s)
- William M Matern
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert L Jenquin
- High-Throughput Biology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel S Bader
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- High-Throughput Biology Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Petros C Karakousis
- Center for Tuberculosis Research, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Tong P, Sun Z, Wang S, Zhang Y, Li Y. Zn(OTf) 2-Catalyzed Formal [3 + 3] Cascade Annulation of Propargylic Alcohols with 2-Aminochromones: Accessing the Chromeno[2,3- b]pyridines. J Org Chem 2019; 84:13967-13974. [PMID: 31552742 DOI: 10.1021/acs.joc.9b02120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A Zn(OTf)2-catalyzed formal [3 + 3] cascade annulation strategy for the synthesis of functionalized chromeno[2,3-b]pyridines has been developed using propargylic alcohols and 2-aminochromones as the substrates. The protocol provides a convenient and atom-economical method of accessing a broad range of chromeno[2,3-b]pyridine derivatives in excellent yields with good functional-group tolerance. The method is also effective on the gram scale, which highlights the inherent practicality of this synthetic transformation.
Collapse
Affiliation(s)
- Pei Tong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Zhou Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China.,Institute for Advanced Interdisciplinary Research , Qilu University of Technology , Daxue Road No. 3501 , Jinan , Shandong 250353 , People's Republic of China
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| | - Ying Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
11
|
Yi L, Lü X. New Strategy on Antimicrobial-resistance: Inhibitors of DNA Replication Enzymes. Curr Med Chem 2019; 26:1761-1787. [PMID: 29110590 DOI: 10.2174/0929867324666171106160326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/31/2017] [Accepted: 10/30/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance is found in all microorganisms and has become one of the biggest threats to global health. New antimicrobials with different action mechanisms are effective weapons to fight against antibiotic-resistance. OBJECTIVE This review aims to find potential drugs which can be further developed into clinic practice and provide clues for developing more effective antimicrobials. METHODS DNA replication universally exists in all living organisms and is a complicated process in which multiple enzymes are involved in. Enzymes in bacterial DNA replication of initiation and elongation phases bring abundant targets for antimicrobial development as they are conserved and indispensable. In this review, enzyme inhibitors of DNA helicase, DNA primase, topoisomerases, DNA polymerase and DNA ligase were discussed. Special attentions were paid to structures, activities and action modes of these enzyme inhibitors. RESULTS Among these enzymes, type II topoisomerase is the most validated target with abundant inhibitors. For type II topoisomerase inhibitors (excluding quinolones), NBTIs and benzimidazole urea derivatives are the most promising inhibitors because of their good antimicrobial activity and physicochemical properties. Simultaneously, DNA gyrase targeted drugs are particularly attractive in the treatment of tuberculosis as DNA gyrase is the sole type II topoisomerase in Mycobacterium tuberculosis. Relatively, exploitation of antimicrobial inhibitors of the other DNA replication enzymes are primeval, in which inhibitors of topo III are even blank so far. CONCLUSION This review demonstrates that inhibitors of DNA replication enzymes are abundant, diverse and promising, many of which can be developed into antimicrobials to deal with antibioticresistance.
Collapse
Affiliation(s)
- Lanhua Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| |
Collapse
|
12
|
Cyclic acyl amidines as unexpected C4-donors for fully substituted pyridine ring formation in the base mediated reaction with malononitrile. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Minias A, Brzostek A, Dziadek J. Targeting DNA Repair Systems in Antitubercular Drug Development. Curr Med Chem 2019; 26:1494-1505. [DOI: 10.2174/0929867325666180129093546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/01/2017] [Accepted: 11/01/2017] [Indexed: 11/22/2022]
Abstract
Infections with Mycobacterium tuberculosis, the causative agent of tuberculosis, are difficult to treat using currently available chemotherapeutics. Clinicians agree on the urgent need for novel drugs to treat tuberculosis. In this mini review, we summarize data that prompts the consideration of DNA repair-associated proteins as targets for the development of new antitubercular compounds. We discuss data, including gene expression data, that highlight the importance of DNA repair genes during the pathogenic cycle as well as after exposure to antimicrobials currently in use. Specifically, we report experiments on determining the essentiality of DNA repair-related genes. We report the availability of protein crystal structures and summarize discovered protein inhibitors. Further, we describe phenotypes of available gene mutants of M. tuberculosis and model organisms Mycobacterium bovis and Mycobacterium smegmatis. We summarize experiments regarding the role of DNA repair-related proteins in pathogenesis and virulence performed both in vitro and in vivo during the infection of macrophages and animals. We detail the role of DNA repair genes in acquiring mutations, which influence the rate of drug resistance acquisition.
Collapse
Affiliation(s)
- Alina Minias
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna Brzostek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jarosław Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
14
|
Vafaeezadeh M, Breuninger P, Lösch P, Wilhelm C, Ernst S, Antonyuk S, Thiel WR. Janus Interphase Organic‐Inorganic Hybrid Materials: Novel Water‐Friendly Heterogeneous Catalysts. ChemCatChem 2019. [DOI: 10.1002/cctc.201900147] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Majid Vafaeezadeh
- Fachbereich Chemie, Anorganische ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern (Germany
| | - Paul Breuninger
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische VerfahrenstechnikTechnische Universität Kaiserslautern Gottlieb-Daimler-Str. 44 67663 Kaiserslautern Germany
| | - Philipp Lösch
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische VerfahrenstechnikTechnische Universität Kaiserslautern Gottlieb-Daimler-Str. 44 67663 Kaiserslautern Germany
| | - Christian Wilhelm
- Fachbereich Chemie, Technische ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| | - Stefan Ernst
- Fachbereich Chemie, Technische ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern Germany
| | - Sergiy Antonyuk
- Fachbereich Maschinenbau und Verfahrenstechnik Mechanische VerfahrenstechnikTechnische Universität Kaiserslautern Gottlieb-Daimler-Str. 44 67663 Kaiserslautern Germany
| | - Werner R. Thiel
- Fachbereich Chemie, Anorganische ChemieTechnische Universität Kaiserslautern Erwin-Schrödinger-Str. 54 67663 Kaiserslautern (Germany
| |
Collapse
|
15
|
Bardasov IN, Alekseeva AU, Bezgin DA, Nasakin OE, Ershov OV. Ultrasound-Assisted Synthesis of 5H-Chromeno[2,3-b]pyridine Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1070428018080109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Mondal S, Hsiao K, Goueli SA. Utility of Adenosine Monophosphate Detection System for Monitoring the Activities of Diverse Enzyme Reactions. Assay Drug Dev Technol 2018; 15:330-341. [PMID: 29120675 DOI: 10.1089/adt.2017.815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Adenosine monophosphate (AMP) is a key cellular metabolite regulating energy homeostasis and signal transduction. AMP is also a product of various enzymatic reactions, many of which are dysregulated during disease conditions. Thus, monitoring the activities of these enzymes is a primary goal for developing modulators for these enzymes. In this study, we demonstrate the versatility of an enzyme-coupled assay that quantifies the amount of AMP produced by any enzymatic reaction regardless of its substrates. We successfully implemented it to enzyme reactions that use adenosine triphosphate (ATP) as a substrate (aminoacyl tRNA synthetase and DNA ligase) by an elaborate strategy of removing residual ATP and converting AMP produced into ATP; so it can be detected using luciferase/luciferin and generating light. We also tested this assay to measure the activities of AMP-generating enzymes that do not require ATP as substrate, including phosphodiesterases (cyclic adenosine monophosphate) and Escherichia coli DNA ligases (nicotinamide adenine dinucleotide [NAD+]). In a further elaboration of the AMP-Glo platform, we coupled it to E. coli DNA ligase, enabling measurement of NAD+ and enzymes that use NAD+ like monoadenosine and polyadenosine diphosphate-ribosyltransferases. Sulfotransferases use 3'-phosphoadenosine-5'-phosphosulfate as the universal sulfo-group donor and phosphoadenosine-5'-phosphate (PAP) is the universal product. PAP can be quantified by converting PAP to AMP by a Golgi-resident PAP-specific phosphatase, IMPAD1. By coupling IMPAD1 to the AMP-Glo system, we can measure the activities of sulfotransferases. Thus, by utilizing the combinations of biochemical enzymatic conversion of various cellular metabolites to AMP, we were able to demonstrate the versatility of the AMP-Glo assay.
Collapse
Affiliation(s)
- Subhanjan Mondal
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Kevin Hsiao
- 1 Research and Development , Promega Corporation, Madison, Wisconsin
| | - Said A Goueli
- 1 Research and Development , Promega Corporation, Madison, Wisconsin.,2 Department of Pathology and Lab Medicine, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| |
Collapse
|
17
|
Collet C, Thomassin JL, Francetic O, Genevaux P, Tran Van Nhieu G. Protein polarization driven by nucleoid exclusion of DnaK(HSP70)-substrate complexes. Nat Commun 2018; 9:2027. [PMID: 29795186 PMCID: PMC5966378 DOI: 10.1038/s41467-018-04414-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 04/23/2018] [Indexed: 11/18/2022] Open
Abstract
Many bacterial proteins require specific subcellular localization for function. How Escherichia coli proteins localize at one pole, however, is still not understood. Here, we show that the DnaK (HSP70) chaperone controls unipolar localization of the Shigella IpaC type III secretion substrate. While preventing the formation of lethal IpaC aggregates, DnaK promoted the incorporation of IpaC into large and dynamic complexes (LDCs) restricted at the bacterial pole through nucleoid occlusion. Unlike stable polymers and aggregates, LDCs show dynamic behavior indicating that nucleoid occlusion also applies to complexes formed through transient interactions. Fluorescence recovery after photobleaching analysis shows DnaK-IpaC exchanges between opposite poles and DnaKJE-mediated incorporation of immature substrates in LDCs. These findings reveal a key role for LDCs as reservoirs of functional DnaK-substrates that can be rapidly mobilized for secretion triggered upon bacterial contact with host cells. Many bacterial proteins exhibit spatially defined localization important for function. Here the authors show that the polar localization of Shigella IpaC type III secretion substrate is mediated by its interaction with the DnaK chaperone and occlusion by the bacterial nucleoid.
Collapse
Affiliation(s)
- Clémence Collet
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France.,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France.,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France
| | - Jenny-Lee Thomassin
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France.,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France.,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France.,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Institut Pasteur, Department of Structural Biology and Chemistry, CNRS UMR3528, 28 rue du Dr Roux, 75724, Paris, Cedex 15, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, 118 route de Narbonne, 31062, Toulouse, Cedex 9, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes. Centre de Recherche Interdisciplinaire en Biologie (CIRB). Collège de France, 11, Place Marcelin Berthelot, 75005, Paris, France. .,Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, Cedex 15, France. .,Centre National de la Recherche Scientifique (CNRS) UMR7241, 75016, Paris, France. .,MEMOLIFE Laboratory of excellence and Paris Science Lettre, Paris, Cedex 15, France.
| |
Collapse
|
18
|
Proton transfer process in synthesis of 3-acetyl-4-(substituted ethylenyl)coumarins and chromeno[3,4-c]pyridines. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
DNA Replication Fidelity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1019:247-262. [PMID: 29116639 DOI: 10.1007/978-3-319-64371-7_13] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mycobacterium tuberculosis is genetically isolated, with no evidence for horizontal gene transfer or the acquisition of episomal genetic information in the modern evolution of strains of the Mycobacterium tuberculosis complex. When considered in the context of the specific features of the disease M. tuberculosis causes (e.g., transmission via cough aerosol, replication within professional phagocytes, subclinical persistence, and stimulation of a destructive immune pathology), this implies that to understand the mechanisms ensuring preservation of genomic integrity in infecting mycobacterial populations is to understand the source of genetic variation, including the emergence of microdiverse sub-populations that may be linked to the acquisition of drug resistance. In this chapter, we focus on mechanisms involved in maintaining DNA replication fidelity in M. tuberculosis, and consider the potential to target components of the DNA replication machinery as part of novel therapeutic regimens designed to curb the emerging threat of drug-resistance.
Collapse
|
20
|
Kaguni JM. The Macromolecular Machines that Duplicate the Escherichia coli Chromosome as Targets for Drug Discovery. Antibiotics (Basel) 2018. [PMID: 29538288 PMCID: PMC5872134 DOI: 10.3390/antibiotics7010023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
DNA replication is an essential process. Although the fundamental strategies to duplicate chromosomes are similar in all free-living organisms, the enzymes of the three domains of life that perform similar functions in DNA replication differ in amino acid sequence and their three-dimensional structures. Moreover, the respective proteins generally utilize different enzymatic mechanisms. Hence, the replication proteins that are highly conserved among bacterial species are attractive targets to develop novel antibiotics as the compounds are unlikely to demonstrate off-target effects. For those proteins that differ among bacteria, compounds that are species-specific may be found. Escherichia coli has been developed as a model system to study DNA replication, serving as a benchmark for comparison. This review summarizes the functions of individual E. coli proteins, and the compounds that inhibit them.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA.
| |
Collapse
|
21
|
Alizadeh A, Bayat F, Zhu LG. A one-pot synthetic strategy for the construction of chromenoimidazopyridines and chromenopyridopyrimidines containing intramolecular hydrogen bonds. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-017-1234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Reiche MA, Warner DF, Mizrahi V. Targeting DNA Replication and Repair for the Development of Novel Therapeutics against Tuberculosis. Front Mol Biosci 2017; 4:75. [PMID: 29184888 PMCID: PMC5694481 DOI: 10.3389/fmolb.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis is the etiological agent of tuberculosis (TB), an infectious disease which results in approximately 10 million incident cases and 1.4 million deaths globally each year, making it the leading cause of mortality from infection. An effective frontline combination chemotherapy exists for TB; however, this regimen requires the administration of four drugs in a 2 month long intensive phase followed by a continuation phase of a further 4 months with two of the original drugs, and is only effective for the treatment of drug-sensitive TB. The emergence and global spread of multidrug-resistant (MDR) as well as extensively drug-resistant (XDR) strains of M. tuberculosis, and the complications posed by co-infection with the human immunodeficiency virus (HIV) and other co-morbidities such as diabetes, have prompted urgent efforts to develop shorter regimens comprising new compounds with novel mechanisms of action. This demands that researchers re-visit cellular pathways and functions that are essential to M. tuberculosis survival and replication in the host but which are inadequately represented amongst the targets of current anti-mycobacterial agents. Here, we consider the DNA replication and repair machinery as a source of new targets for anti-TB drug development. Like most bacteria, M. tuberculosis encodes a complex array of proteins which ensure faithful and accurate replication and repair of the chromosomal DNA. Many of these are essential; so, too, are enzymes in the ancillary pathways of nucleotide biosynthesis, salvage, and re-cycling, suggesting the potential to inhibit replication and repair functions at multiple stages. To this end, we provide an update on the state of chemotherapeutic inhibition of DNA synthesis and related pathways in M. tuberculosis. Given the established links between genotoxicity and mutagenesis, we also consider the potential implications of targeting DNA metabolic pathways implicated in the development of drug resistance in M. tuberculosis, an organism which is unusual in relying exclusively on de novo mutations and chromosomal rearrangements for evolution, including the acquisition of drug resistance. In that context, we conclude by discussing the feasibility of targeting mutagenic pathways in an ancillary, “anti-evolution” strategy aimed at protecting existing and future TB drugs.
Collapse
Affiliation(s)
- Michael A Reiche
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Digby F Warner
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Valerie Mizrahi
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Vereshchagin AN, Elinson MN, Anisina YE, Ryzhkov FV, Goloveshkin AS, Novikov RA, Egorov MP. Synthesis, structural, spectroscopic and docking studies of new 5C-substituted 2,4-diamino-5H-chromeno[2,3-b]pyridine-3-carbonitriles. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
24
|
Olyaei A, Shahsavari MS, Sadeghpour M. Organocatalytic approach toward the green one-pot synthesis of novel benzo[f]chromenes and 12H-benzo[5,6]chromeno[2,3-b]pyridines. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3145-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Elinson MN, Vereshchagin AN, Anisina YE, Egorov MP. Efficient Multicomponent Approach to the Medicinally Relevant 5-aryl-chromeno[2,3-b]pyridine Scaffold. Polycycl Aromat Compd 2017. [DOI: 10.1080/10406638.2017.1363062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Bodine TJ, Evangelista MA, Chang HT, Ayoub CA, Samuel BS, Sucgang R, Zechiedrich L. Escherichia coli DNA ligase B may mitigate damage from oxidative stress. PLoS One 2017; 12:e0180800. [PMID: 28700629 PMCID: PMC5507437 DOI: 10.1371/journal.pone.0180800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 06/21/2017] [Indexed: 01/02/2023] Open
Abstract
Escherichia coli encodes two DNA ligases, ligase A, which is essential under normal laboratory growth conditions, and ligase B, which is not. Here we report potential functions of ligase B. We found that across the entire Enterobacteriaceae family, ligase B is highly conserved in both amino acid identity and synteny with genes associated with oxidative stress. Deletion of ligB sensitized E. coli to specific DNA damaging agents and antibiotics resulted in a weak mutator phenotype, and decreased biofilm formation. Overexpression of ligB caused a dramatic extension of lag phase that eventually resumed normal growth. The ligase function of ligase B was not required to mediate the extended lag phase, as overexpression of a ligase-deficient ligB mutant also blocked growth. Overexpression of ligB during logarithmic growth caused an immediate block of cell growth and DNA replication, and death of about half of cells. These data support a potential role for ligase B in the base excision repair pathway or the mismatch repair pathway.
Collapse
Affiliation(s)
- Truston J. Bodine
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States of America
| | - Michael A. Evangelista
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Huan Ting Chang
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Department of BioSciences, Rice University, Houston, TX, United States of America
| | - Christopher A. Ayoub
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Buck S. Samuel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, United States of America
| | - Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lynn Zechiedrich
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, United States of America
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
27
|
Vereshchagin AN, Elinson MN, Anisina YE, Ryzhkov FV, Novikov RA, Egorov MP. PASE Pseudo-Four-Component Synthesis and Docking Studies of New 5-C-Substituted 2,4-Diamino-5H-Chromeno[2,3-b]pyridine-3-Carbonitriles. ChemistrySelect 2017. [DOI: 10.1002/slct.201700606] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anatoly N. Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| | - Michail N. Elinson
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| | - Yuliya E. Anisina
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| | - Fedor V. Ryzhkov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| | - Roman A. Novikov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry; Leninsky pr. 47, Moscow 119991 Russian Federation
| |
Collapse
|
28
|
Patil R, Ghosh A, Sun Cao P, Sommer RD, Grice KA, Waris G, Patil S. Novel 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Bioorg Med Chem Lett 2017; 27:1129-1135. [PMID: 28190633 DOI: 10.1016/j.bmcl.2017.01.089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a critical wound healing response to chronic liver injury such as hepatitis C virus (HCV) infection. If persistent, liver fibrosis can lead to cirrhosis and hepatocellular carcinoma (HCC). The development of new therapies for preventing liver fibrosis and its progression to cancer associated with HCV infection remains a critical challenge. Identification of novel anti-fibrotic compounds will provide opportunities for innovative therapeutic intervention of HCV-mediated liver fibrosis. We designed and synthesized a focused set of 5-arylthio-5H-chromenopyridines as a new class of anti-fibrotic agents. Liver fibrosis assays demonstrated that the compounds 3a and 3c show inhibitory activity towards human hepatic stellate cells (LX2) activation at 10μM. The HCV NS3 and NS5A proteins in HCV subgenome-expressing cells were also significantly reduced in cells treated with 3a and 3c, suggesting the possible inhibitory role of the compounds in HCV translation/replication activities. We have also examined the reactivity of these compounds with medicinally-relevant metal compounds such as platinum and gold. The reactivity of these complexes with metals and during Mass Spectrometry suggests that CS bond cleavage is relatively facile.
Collapse
Affiliation(s)
- Renukadevi Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Anandita Ghosh
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States
| | - Phoebus Sun Cao
- Department of Chemistry, College of Science and Health, DePaul University, Chicago, IL 60614, United States
| | - Roger D Sommer
- X-ray Crystallography Facility, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, United States
| | - Kyle A Grice
- Department of Chemistry, College of Science and Health, DePaul University, Chicago, IL 60614, United States.
| | - Gulam Waris
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States.
| | - Shivaputra Patil
- Pharmaceutical Sciences Department, College of Pharmacy, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, United States.
| |
Collapse
|
29
|
Korycka-Machala M, Nowosielski M, Kuron A, Rykowski S, Olejniczak A, Hoffmann M, Dziadek J. Naphthalimides Selectively Inhibit the Activity of Bacterial, Replicative DNA Ligases and Display Bactericidal Effects against Tubercle Bacilli. Molecules 2017; 22:E154. [PMID: 28106753 PMCID: PMC6155577 DOI: 10.3390/molecules22010154] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 12/03/2022] Open
Abstract
The DNA ligases, enzymes that seal breaks in the backbones of DNA, are essential for all organisms, however bacterial ligases essential for DNA replication use β-nicotinamide adenine dinucleotide as their co-factor, whereas those that are essential in eukaryotes and viruses use adenosine-5'-triphosphate. This fact leads to the conclusion that NAD⁺-dependent DNA ligases in bacteria could be targeted by their co-factor specific inhibitors. The development of novel alternative medical strategies, including new drugs, are a top priority focus areas for tuberculosis research due to an increase in the number of multi-drug resistant as well as totally drug resistant tubercle bacilli strains. Here, through the use of a virtual high-throughput screen and manual inspection of the top 200 records, 23 compounds were selected for in vitro studies. The selected compounds were evaluated in respect to their Mycobacterium tuberculosis NAD⁺ DNA ligase inhibitory effect by a newly developed assay based on Genetic Analyzer 3500 Sequencer. The most effective agents (e.g., pinafide, mitonafide) inhibited the activity of M. tuberculosis NAD⁺-dependent DNA ligase A at concentrations of 50 µM. At the same time, the ATP-dependent (phage) DNA LigT₄ was unaffected by the agents at concentrations up to 2 mM. The selected compounds appeared to also be active against actively growing tubercle bacilli in concentrations as low as 15 µM.
Collapse
Affiliation(s)
| | - Marcin Nowosielski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Aneta Kuron
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | - Sebastian Rykowski
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| | | | - Marcin Hoffmann
- Quantum Chemistry Group, A. Mickiewicz University, Poznan 60-780, Poland.
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz 93-232, Poland.
| |
Collapse
|
30
|
Efficient synthesis of chromenopyridines containing intramolecular hydrogen bonds through a sequential three-component reaction. RESEARCH ON CHEMICAL INTERMEDIATES 2016. [DOI: 10.1007/s11164-015-2414-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
31
|
Murphy-Benenato KE, Gingipalli L, Boriack-Sjodin PA, Martinez-Botella G, Carcanague D, Eyermann CJ, Gowravaram M, Harang J, Hale MR, Ioannidis G, Jahic H, Johnstone M, Kutschke A, Laganas VA, Loch JT, Miller MD, Oguto H, Patel SJ. Negishi cross-coupling enabled synthesis of novel NAD(+)-dependent DNA ligase inhibitors and SAR development. Bioorg Med Chem Lett 2015; 25:5172-7. [PMID: 26463129 DOI: 10.1016/j.bmcl.2015.09.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 09/28/2015] [Accepted: 09/30/2015] [Indexed: 01/17/2023]
Abstract
Two novel compounds, pyridopyrimidines (1) and naphthyridines (2) were identified as potent inhibitors of bacterial NAD(+)-dependent DNA ligase (Lig) A in a fragment screening. SAR was guided by molecular modeling and X-ray crystallography. It was observed that the diaminonitrile pharmacophore made a key interaction with the ligase enzyme, specifically residues Glu114, Lys291, and Leu117. Synthetic challenges limited opportunities for diversification of the naphthyridine core, therefore most of the SAR was focused on a pyridopyrimidine scaffold. The initial diversification at R(1) improved both enzyme and cell potency. Further SAR developed at the R(2) position using the Negishi cross-coupling reaction provided several compounds, among these compounds 22g showed good enzyme potency and cellular potency.
Collapse
Affiliation(s)
- Kerry E Murphy-Benenato
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Lakshmaiah Gingipalli
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - P Ann Boriack-Sjodin
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Gabriel Martinez-Botella
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Dan Carcanague
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Charles J Eyermann
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Madhu Gowravaram
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Jenna Harang
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Michael R Hale
- Oncology Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Georgine Ioannidis
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Harris Jahic
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Michele Johnstone
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Amy Kutschke
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Valerie A Laganas
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - James T Loch
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Matthew D Miller
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Herbert Oguto
- Infection Innovative Medicines Unit, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Sahil Joe Patel
- Discovery Sciences, AstraZeneca R&D Boston, 35 Gatehouse Drive, Waltham, MA 02451, USA
| |
Collapse
|
32
|
Painter RE, Adam GC, Arocho M, DiNunzio E, Donald RGK, Dorso K, Genilloud O, Gill C, Goetz M, Hairston NN, Murgolo N, Nare B, Olsen DB, Powles M, Racine F, Su J, Vicente F, Wisniewski D, Xiao L, Hammond M, Young K. Elucidation of DnaE as the Antibacterial Target of the Natural Product, Nargenicin. ACTA ACUST UNITED AC 2015; 22:1362-73. [PMID: 26456734 DOI: 10.1016/j.chembiol.2015.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/10/2015] [Accepted: 08/25/2015] [Indexed: 01/14/2023]
Abstract
Resistance to existing classes of antibiotics drives the need for discovery of novel compounds with unique mechanisms of action. Nargenicin A1, a natural product with limited antibacterial spectrum, was rediscovered in a whole-cell antisense assay. Macromolecular labeling in both Staphylococcus aureus and an Escherichia coli tolC efflux mutant revealed selective inhibition of DNA replication not due to gyrase or topoisomerase IV inhibition. S. aureus nargenicin-resistant mutants were selected at a frequency of ∼1 × 10(-9), and whole-genome resequencing found a single base-pair change in the dnaE gene, a homolog of the E. coli holoenzyme α subunit. A DnaE single-enzyme assay was exquisitely sensitive to inhibition by nargenicin, and other in vitro characterization studies corroborated DnaE as the target. Medicinal chemistry efforts may expand the spectrum of this novel mechanism antibiotic.
Collapse
Affiliation(s)
- Ronald E Painter
- In vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Gregory C Adam
- Screening and Protein Sciences, Merck Research Laboratories, North Wales, PA 19454, USA
| | - Marta Arocho
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Edward DiNunzio
- In vitro Pharmacology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Robert G K Donald
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Karen Dorso
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Olga Genilloud
- Centro de Investigación Básica (CIBE), Merck Sharp & Dhome de España, S.A., 28027 Madrid, Spain
| | - Charles Gill
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Michael Goetz
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Nichelle N Hairston
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Nicholas Murgolo
- Discovery Pharmacogenomics, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Bakela Nare
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - David B Olsen
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Maryann Powles
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Fred Racine
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Jing Su
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Francisca Vicente
- Centro de Investigación Básica (CIBE), Merck Sharp & Dhome de España, S.A., 28027 Madrid, Spain
| | - Douglas Wisniewski
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Li Xiao
- Medicinal Chemistry, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Milton Hammond
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA
| | - Katherine Young
- Infectious Disease Biology, Merck Research Laboratories, Kenilworth, NJ 07033, USA.
| |
Collapse
|
33
|
|
34
|
Homology modeling of NAD+-dependent DNA ligase of the Wolbachia endosymbiont of Brugia malayi and its drug target potential using dispiro-cycloalkanones. Antimicrob Agents Chemother 2015; 59:3736-47. [PMID: 25845868 DOI: 10.1128/aac.03449-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 03/15/2015] [Indexed: 11/20/2022] Open
Abstract
Lymphatic filarial nematodes maintain a mutualistic relationship with the endosymbiont Wolbachia. Depletion of Wolbachia produces profound defects in nematode development, fertility, and viability and thus has great promise as a novel approach for treating filarial diseases. NAD(+)-dependent DNA ligase is an essential enzyme of DNA replication, repair, and recombination. Therefore, in the present study, the antifilarial drug target potential of the NAD(+)-dependent DNA ligase of the Wolbachia symbiont of Brugia malayi (wBm-LigA) was investigated using dispiro-cycloalkanone compounds. Dispiro-cycloalkanone specifically inhibited the nick-closing and cohesive-end ligation activities of the enzyme without inhibiting human or T4 DNA ligase. The mode of inhibition was competitive with the NAD(+) cofactor. Docking studies also revealed the interaction of these compounds with the active site of the target enzyme. The adverse effects of these inhibitors were observed on adult and microfilarial stages of B. malayi in vitro, and the most active compounds were further monitored in vivo in jirds and mastomys rodent models. Compounds 1, 2, and 5 had severe adverse effects in vitro on the motility of both adult worms and microfilariae at low concentrations. Compound 2 was the best inhibitor, with the lowest 50% inhibitory concentration (IC50) (1.02 μM), followed by compound 5 (IC50, 2.3 μM) and compound 1 (IC50, 2.9 μM). These compounds also exhibited the same adverse effect on adult worms and microfilariae in vivo (P < 0.05). These compounds also tremendously reduced the wolbachial load, as evident by quantitative real-time PCR (P < 0.05). wBm-LigA thus shows great promise as an antifilarial drug target, and dispiro-cycloalkanone compounds show great promise as antifilarial lead candidates.
Collapse
|
35
|
A facile tandem Michael addition/O-cyclization/elimination route to novel chromeno[3,2-c]pyridines. Mol Divers 2015; 19:233-49. [DOI: 10.1007/s11030-015-9576-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/22/2015] [Indexed: 01/28/2023]
|
36
|
Yadav N, Khanam T, Shukla A, Rai N, Hajela K, Ramachandran R. Tricyclic dihydrobenzoxazepine and tetracyclic indole derivatives can specifically target bacterial DNA ligases and can distinguish them from human DNA ligase I. Org Biomol Chem 2015; 13:5475-87. [DOI: 10.1039/c5ob00439j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA ligases are critical components for DNA metabolism in all organisms.
Collapse
Affiliation(s)
- Nisha Yadav
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | - Taran Khanam
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Ankita Shukla
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Niyati Rai
- From the Molecular and Structural Biology Division
- CSIR-Central Drug Research Institute
- India
| | - Kanchan Hajela
- From Medicinal and Process Chemistry
- CSIR-Central Drug Research Institute
- India
| | | |
Collapse
|
37
|
Gan HF, Cao WW, Fang Z, Li X, Tang SG, Guo K. Efficient synthesis of chromenopyridine and chromene via MCRs. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Safari J, Zarnegar Z. Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.04.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Molla A, Hussain S. Borax catalyzed domino reactions: synthesis of highly functionalised pyridines, dienes, anilines and dihydropyrano[3,2-c]chromenes. RSC Adv 2014. [DOI: 10.1039/c4ra03627a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
40
|
Safaei-Ghomi J, Kiani M, Ziarati A, Shahbazi-Alavi H. Highly efficient synthesis of benzopyranopyridines via ZrP2O7nanoparticles catalyzed multicomponent reactions of salicylaldehydes with malononitrile and thiols. J Sulphur Chem 2014. [DOI: 10.1080/17415993.2014.913291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Enantioselective synthesis of functionalized fluorinated dihydropyrano [2,3-c]pyrazoles catalyzed by a simple bifunctional diaminocyclohexane-thiourea. CHINESE CHEM LETT 2014. [DOI: 10.1016/j.cclet.2014.01.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Identification through structure-based methods of a bacterial NAD+-dependent DNA ligase inhibitor that avoids known resistance mutations. Bioorg Med Chem Lett 2014; 24:360-6. [DOI: 10.1016/j.bmcl.2013.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/04/2013] [Indexed: 12/14/2022]
|
43
|
Silver LL. Antibacterial Discovery: Problems and Possibilities. Antibiotics (Basel) 2013. [DOI: 10.1002/9783527659685.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Silica gel supported polyamine: A versatile catalyst for one pot synthesis of 2-amino-4H-chromene derivatives. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.molcata.2013.03.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Determination of copy number of short tandem repeat using NAD-dependent ligase and pyrosequencing-compatible method. J Biosci Bioeng 2013; 116:546-50. [PMID: 23777714 DOI: 10.1016/j.jbiosc.2013.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/24/2022]
Abstract
A sensitive and pyrosequencing-compatible method for determining the copy number of the short tandem repeat (STR) is presented in this study. When Escherichia coli ligase catalyzes the ligation of primer and probes complementary to the proper sites of the target DNA template, it converts nicotinamide adenine dinucleotide to adenosine monophosphate (AMP) and nicotinamide. The AMP release level is proportional to the copy number of the STR and can be measured using adenylate kinase, pyruvate kinase, and luciferase. Unlike current standard methods based on electrophoresis, the present assay is sensitive to the point mutation. Furthermore, after determination of the copy number of the tandem repeat using the proposed method, the DNA templates, primer and probes immobilized onto super paramagnetic beads can be washed and pyrosequencing can be applied for the remaining DNA sequencing. This assay is specially efficient to handle a large number of samples because massively parallel tests could be executed in a microplate photometer. Furthermore, it can work with the pyrosequencing for further sequencing like genome sequencing.
Collapse
|
46
|
Bigdeli MA, Marjani K, Farokhi E, Sheikhhosseini E, Ghazanfari D. Synthesis of Novel Pyrano[2,3-b]pyridines from α,α′-Bis(substituted-benzylidene)cycloalkanones. J Heterocycl Chem 2013. [DOI: 10.1002/jhet.1612] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammad Ali Bigdeli
- Faculty of Chemistry; Tarbiat Moallem University; 49 Mofateh Street; Tehran; Iran
| | - Katayon Marjani
- Faculty of Chemistry; Tarbiat Moallem University; 49 Mofateh Street; Tehran; Iran
| | - Elinaz Farokhi
- Faculty of Chemistry; Tarbiat Moallem University; 49 Mofateh Street; Tehran; Iran
| | | | - Dadkhoda Ghazanfari
- Faculty of Science, Department of Chemistry; Kerman Branch, Islamic Azad University; Kerman; Iran
| |
Collapse
|
47
|
Haveliwala DD, Kamdar NR, Mistry PT, Patel SK. Synthesis of FunctionalizedH-[1]Benzopyrano[2,3-b]pyridines by theFriedländerApproach: Antimycobacterial and Antimicrobial Profile. Helv Chim Acta 2013. [DOI: 10.1002/hlca.201200121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
A one-pot, pseudo four-component synthesis of novel benzopyrano[2,3-b]pyridines under solvent-free conditions. Tetrahedron Lett 2013. [DOI: 10.1016/j.tetlet.2013.01.124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Banerjee A, Singh J, Dasgupta D. Fluorescence Spectroscopic and Calorimetry Based Approaches to Characterize the Mode of Interaction of Small Molecules with DNA. J Fluoresc 2013; 23:745-52. [DOI: 10.1007/s10895-013-1211-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/25/2013] [Indexed: 10/27/2022]
|
50
|
Siddiqui ZN, Khan K. Friedlander synthesis of novel benzopyranopyridines in the presence of chitosan as heterogeneous, efficient and biodegradable catalyst under solvent-free conditions. NEW J CHEM 2013. [DOI: 10.1039/c3nj00069a] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|