1
|
Jeckelmann JM, Erni B. The mannose phosphotransferase system (Man-PTS) - Mannose transporter and receptor for bacteriocins and bacteriophages. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183412. [PMID: 32710850 DOI: 10.1016/j.bbamem.2020.183412] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/08/2020] [Accepted: 07/14/2020] [Indexed: 02/06/2023]
Abstract
Mannose transporters constitute a superfamily (Man-PTS) of the Phosphoenolpyruvate Carbohydrate Phosphotransferase System (PTS). The membrane complexes are homotrimers of protomers consisting of two subunits, IIC and IID. The two subunits without recognizable sequence similarity assume the same fold, and in the protomer are structurally related by a two fold pseudosymmetry axis parallel to membrane-plane (Liu et al. (2019) Cell Research 29 680). Two reentrant loops and two transmembrane helices of each subunit together form the N-terminal transport domain. Two three-helix bundles, one of each subunit, form the scaffold domain. The protomer is stabilized by a helix swap between these bundles. The two C-terminal helices of IIC mediate the interprotomer contacts. PTS occur in bacteria and archaea but not in eukaryotes. Man-PTS are abundant in Gram-positive bacteria living on carbohydrate rich mucosal surfaces. A subgroup of IICIID complexes serve as receptors for class IIa bacteriocins and as channel for the penetration of bacteriophage lambda DNA across the inner membrane. Some Man-PTS are associated with host-pathogen and -symbiont processes.
Collapse
Affiliation(s)
- Jean-Marc Jeckelmann
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.
| | - Bernhard Erni
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Lin L, Xu J. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. Biotechnol Adv 2013; 31:827-37. [DOI: 10.1016/j.biotechadv.2013.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/06/2013] [Accepted: 03/10/2013] [Indexed: 01/08/2023]
|
3
|
An CL, Kim MK, Kang TH, Kim J, Kim H, Yun HD. Cloning and biochemical analysis of β-glucoside utilization (bgl) operon without phosphotransferase system in Pectobacterium carotovorum subsp. carotovorum LY34. Microbiol Res 2012; 167:461-9. [DOI: 10.1016/j.micres.2012.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 03/06/2012] [Accepted: 03/11/2012] [Indexed: 10/28/2022]
|
4
|
Hammerstrom TG, Roh JH, Nikonowicz EP, Koehler TM. Bacillus anthracis virulence regulator AtxA: oligomeric state, function and CO(2) -signalling. Mol Microbiol 2011; 82:634-47. [PMID: 21923765 DOI: 10.1111/j.1365-2958.2011.07843.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AtxA, a unique regulatory protein of unknown molecular function, positively controls expression of the major virulence genes of Bacillus anthracis. The 475 amino acid sequence of AtxA reveals DNA binding motifs and regions similar to proteins associated with the phosphoenolpyruvate: carbohydrate phosphotransferase system (PTS). We used strains producing native and functional epitope-tagged AtxA proteins to examine protein-protein interactions in cell lysates and in solutions of purified protein. Co-affinity purification, non-denaturing polyacrylamide gel electrophoresis and bis(maleimido)hexane (BMH) cross-linking experiments revealed AtxA homo-multimers. Dimers were the most abundant species. BMH cross-links available cysteines within 13 Å. To localize interaction sites, six AtxA mutants containing distinct Cys→Ser substitutions were tested for multimerization and cross-linking. All mutants multimerized, but one mutation, C402S, prevented cross-linking. Thus, BMH uses C402 to make the inter-molecular bond between AtxA proteins, but C402 is not required for protein-protein interaction. C402 is in a region bearing amino acid similarity to Enzyme IIB proteins of the PTS. The AtxA EIIB motif may function in protein oligomerization. Finally, cultures grown with elevated CO(2) /bicarbonate exhibited increased AtxA dimer/monomer ratios and increased AtxA activity, relative to cultures grown without added CO(2) /bicarbonate, suggesting that this host-associated signal enhances AtxA function by shifting the dimer/monomer equilibrium towards the dimeric state.
Collapse
Affiliation(s)
- Troy G Hammerstrom
- Department of Microbiology and Molecular Genetics, The University of Texas - Houston Health Science Center, Medical School, Houston, TX, USA
| | | | | | | |
Collapse
|
5
|
Spatial and temporal organization of the E. coli PTS components. EMBO J 2010; 29:3630-45. [PMID: 20924357 DOI: 10.1038/emboj.2010.240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023] Open
Abstract
The phosphotransferase system (PTS) controls preferential use of sugars in bacteria. It comprises of two general proteins, enzyme I (EI) and HPr, and various sugar-specific permeases. Using fluorescence microscopy, we show here that EI and HPr localize near the Escherichia coli cell poles. Polar localization of each protein occurs independently, but HPr is released from the poles in an EI- and sugar-dependent manner. Conversely, the β-glucoside-specific permease, BglF, localizes to the cell membrane. EI, HPr and BglF control the β-glucoside utilization (bgl) operon by modulating the activity of the BglG transcription factor; BglF inactivates BglG by membrane sequestration and phosphorylation, whereas EI and HPr activate it by an unknown mechanism in response to β-glucosides availability. Using biochemical, genetic and imaging methodologies, we show that EI and HPr interact with BglG and affect its subcellular localization in a phosphorylation-independent manner. Upon sugar stimulation, BglG migrates from the cell periphery to the cytoplasm through the poles. Hence, the PTS components appear to control bgl operon expression by ushering BglG between the cellular compartments. Our results reinforce the notion that signal transduction in bacteria involves dynamic localization of proteins.
Collapse
|
6
|
|
7
|
Monderer-Rothkoff G, Amster-Choder O. Genetic dissection of the divergent activities of the multifunctional membrane sensor BglF. J Bacteriol 2007; 189:8601-15. [PMID: 17905978 PMCID: PMC2168942 DOI: 10.1128/jb.01220-07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
BglF catalyzes beta-glucoside phosphotransfer across the cytoplasmic membrane in Escherichia coli. In addition, BglF acts as a sugar sensor that controls expression of beta-glucoside utilization genes by reversibly phosphorylating the transcriptional antiterminator BglG. Thus, BglF can exist in two opposed states: a nonstimulated state that inactivates BglG by phosphorylation and a sugar-stimulated state that activates BglG by dephosphorylation and phosphorylates the incoming sugar. Sugar phosphorylation and BglG (de)phosphorylation are both catalyzed by the same residue, Cys24. To investigate the coordination and the structural requirements of the opposing activities of BglF, we conducted a genetic screen that led to the isolation of mutations that shift the balance toward BglG phosphorylation. We show that some of the mutants that are impaired in dephosphorylation of BglG retained the ability to catalyze the concurrent activity of sugar phosphotransfer. These mutations map to two regions in the BglF membrane domain that, based on their predicted topology, were suggested to be implicated in activity. Using in vivo cross-linking, we show that a glycine in the membrane domain, whose substitution impaired the ability of BglF to dephosphorylate BglG, is spatially close to the active-site cysteine located in a hydrophilic domain. This residue is part of a newly identified motif conserved among beta-glucoside permeases associated with RNA-binding transcriptional antiterminators. The phenotype of the BglF mutants could be suppressed by BglG mutants that were isolated by a second genetic screen. In summary, we identified distinct sites in BglF that are involved in regulating phosphate flow via the common active-site residue in response to environmental cues.
Collapse
Affiliation(s)
- Galya Monderer-Rothkoff
- Department of Molecular Biology, The Hebrew University Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
8
|
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium exhibit a remarkable versatility in the usage of different sugars as the sole source of carbon and energy, reflecting their ability to make use of the digested meals of mammalia and of the ample offerings in the wild. Degradation of sugars starts with their energy-dependent uptake through the cytoplasmic membrane and is carried on further by specific enzymes in the cytoplasm, destined finally for degradation in central metabolic pathways. As variant as the different sugars are, the biochemical strategies to act on them are few. They include phosphorylation, keto-enol isomerization, oxido/reductions, and aldol cleavage. The catabolic repertoire for using carbohydrate sources is largely the same in E. coli and in serovar Typhimurium. Nonetheless, significant differences are found, even among the strains and substrains of each species. We have grouped the sugars to be discussed according to their first step in metabolism, which is their active transport, and follow their path to glycolysis, catalyzed by the sugar-specific enzymes. We will first discuss the phosphotransferase system (PTS) sugars, then the sugars transported by ATP-binding cassette (ABC) transporters, followed by those that are taken up via proton motive force (PMF)-dependent transporters. We have focused on the catabolism and pathway regulation of hexose and pentose monosaccharides as well as the corresponding sugar alcohols but have also included disaccharides and simple glycosides while excluding polysaccharide catabolism, except for maltodextrins.
Collapse
Affiliation(s)
- Christoph Mayer
- Fachbereich Biologie, Universität Konstanz, 78457 Konstanz, Germany
| | | |
Collapse
|
9
|
Amster-Choder O. The bgl sensory system: a transmembrane signaling pathway controlling transcriptional antitermination. Curr Opin Microbiol 2005; 8:127-34. [PMID: 15802242 DOI: 10.1016/j.mib.2005.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bgl system represents a family of sensory systems composed of membrane-bound sugar-sensors and transcriptional antiterminators, which regulate expression of genes involved in sugar utilization in response to the presence of the corresponding sugar in the growth medium. The BglF sensor catalyzes different activities depending on its stimulation state: in its non-stimulated state, it phosphorylates the BglG transcriptional regulator, thus inactivating it; in the presence of the stimulating sugar, it transports the sugar and phosphorylates it and also activates BglG by dephosphorylation, leading to bgl operon expression. The sugar stimulates BglF by inducing a change in its membrane topology. BglG exists in several conformations: a dimer, which is active, and compact and non-compact monomers, which are inactive. BglF modulates the transition of BglG from one conformation to another, depending on sugar availability. The two Bgl proteins form a pre-complex at the membrane that dissociates upon stimulation, enabling BglG to exert its effect on transcription.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P.O.Box 12272, Jerusalem 91120, Israel.
| |
Collapse
|
10
|
Ben-Zeev E, Fux L, Amster-Choder O, Eisenstein M. Experimental and Computational Characterization of the Dimerization of the PTS-regulation Domains of BglG from Escherichia coli. J Mol Biol 2005; 347:693-706. [PMID: 15769463 DOI: 10.1016/j.jmb.2005.01.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Revised: 01/24/2005] [Accepted: 01/27/2005] [Indexed: 11/18/2022]
Abstract
BglG and LicT are transcriptional antiterminators from Escherichia coli and Bacillus subtilis, respectively, that control the expression of genes and operons involved in transport and catabolism of carbohydrates. Both proteins contain a duplicate conserved domain, the PTS-regulation domain (PRD), and they are regulated by phosphorylation on specific, highly conserved histidine residues located in the PRDs. However, despite their similar function and the high sequence identity, experimental evidence implies different modes of regulation. Thus, BglG must be de-phosphorylated on PRD2 in order to form active dimers, whereas activation of LicT requires de-phosphorylation on PRD1 and phosphorylation on PRD2. Here we address two goals. First, we test in vivo and in silico the effect of point mutations in the PRDs of BglG on the PRD-PRD dimerization. Second, we explore computationally the effect of histidine phosphorylation on PRD dimerization in BglG and LicT. We find excellent correspondence between the experimental and computational measures of the influence of mutations on PRD dimerization in BglG. This establishes that the geometric-electrostatic complementarity scores computed with the program MolFit provide a good measure of the effects of mutations in this system. In addition, it indicates that the dimerization mode of the separately expressed PRDs of BglG is similar to the dimers formed by activated LicT. The computations also show that phosphorylation of the histidine residues in PRD1 of either BglG or LicT leads to a strong electrostatic repulsion. Conversely, the phosphorylation of one histidine residue in PRD2 of LicT leads to improved electrostatic complementarity at the PRD2-PRD2 interface, whereas the corresponding phosphorylation in BglG has negligible contribution. This different conduct may be attributed to a single replacement in the sequence of PRD2 in BglG compared to LicT, Ala262 versus Asp261, respectively.
Collapse
Affiliation(s)
- Efrat Ben-Zeev
- Department of Chemical Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
11
|
Abstract
In the year 2003 there was a 17% increase in the number of publications citing work performed using optical biosensor technology compared with the previous year. We collated the 962 total papers for 2003, identified the geographical regions where the work was performed, highlighted the instrument types on which it was carried out, and segregated the papers by biological system. In this overview, we spotlight 13 papers that should be on everyone's 'must read' list for 2003 and provide examples of how to identify and interpret high-quality biosensor data. Although we still find that the literature is replete with poorly performed experiments, over-interpreted results and a general lack of understanding of data analysis, we are optimistic that these shortcomings will be addressed as biosensor technology continues to mature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
12
|
Fux L, Nussbaum-Shochat A, Lopian L, Amster-Choder O. Modulation of monomer conformation of the BglG transcriptional antiterminator from Escherichia coli. J Bacteriol 2004; 186:6775-81. [PMID: 15466029 PMCID: PMC522206 DOI: 10.1128/jb.186.20.6775-6781.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Accepted: 07/17/2004] [Indexed: 11/20/2022] Open
Abstract
The BglG protein positively regulates expression of the bgl operon in Escherichia coli by binding as a dimer to the bgl transcript and preventing premature termination of transcription in the presence of beta-glucosides. BglG activity is negatively controlled by BglF, the beta-glucoside phosphotransferase, which reversibly phosphorylates BglG according to beta-glucoside availability, thus modulating its dimeric state. BglG consists of an RNA-binding domain and two homologous domains, PRD1 and PRD2. Based on structural studies of a BglG homologue, the two PRDs fold similarly, and the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have recently shown that the affinity between PRD1 and PRD2 of BglG is high, and a fraction of the BglG monomers folds in the cell into a compact conformation, in which PRD1 and PRD2 are in close proximity. We show here that both BglG forms, the compact and noncompact, bind to the active site-containing domain of BglF, IIB(bgl), in vitro. The interaction of BglG with IIB(bgl) or BglF is mediated by PRD2. Both BglG forms are detected as phosphorylated proteins after in vitro phosphorylation with IIB(bgl) and are dephosphorylated by BglF in vitro in the presence of beta-glucosides. Nevertheless, genetic evidence indicates that the interaction of IIB(bgl) and BglF with the compact form is seemingly less favorable. Using in vivo cross-linking, we show that BglF enhances folding of BglG into a compact conformation, whereas the addition of beta-glucosides reduces the amount of this form. Based on these results we suggest a model for the modulation of BglG conformation and activity by BglF.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University-Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | | | |
Collapse
|
13
|
Schilling O, Langbein I, Müller M, Schmalisch MH, Stülke J. A protein-dependent riboswitch controlling ptsGHI operon expression in Bacillus subtilis: RNA structure rather than sequence provides interaction specificity. Nucleic Acids Res 2004; 32:2853-64. [PMID: 15155854 PMCID: PMC419612 DOI: 10.1093/nar/gkh611] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Gram-positive soil bacterium Bacillus subtilis transports glucose by the phosphotransferase system. The genes for this system are encoded in the ptsGHI operon. The expression of this operon is controlled at the level of transcript elongation by a protein-dependent riboswitch. In the absence of glucose a transcriptional terminator prevents elongation into the structural genes. In the presence of glucose, the GlcT protein is activated and binds and stabilizes an alternative RNA structure that overlaps the terminator and prevents termination. In this work, we have studied the structural and sequence requirements for the two mutually exclusive RNA structures, the terminator and the RNA antiterminator (the RAT sequence). In both cases, the structure seems to be more important than the actual sequence. The number of paired and unpaired bases in the RAT sequence is essential for recognition by the antiterminator protein GlcT. In contrast, mutations of individual bases are well tolerated as long as the general structure of the RAT is not impaired. The introduction of one additional base in the RAT changed its structure and resulted in complete loss of interaction with GlcT. In contrast, this mutant RAT was efficiently recognized by a different B.subtilis antitermination protein, LicT.
Collapse
Affiliation(s)
- Oliver Schilling
- Abteilung für Allgemeine Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
14
|
Fux L, Nussbaum-Shochat A, Amster-Choder O. A fraction of the BglG transcriptional antiterminator from Escherichia coli exists as a compact monomer. J Biol Chem 2003; 278:50978-84. [PMID: 14514681 DOI: 10.1074/jbc.m308085200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the bgl operon in Escherichia coli, induced by beta-glucosides, is positively regulated by BglG, a transcriptional antiterminator. In the presence of inducer, BglG dimerizes and binds to the bgl transcript to prevent premature termination of transcription. The dimeric state of BglG is determined by BglF, a membrane-bound enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system (PTS), which reversibly phosphorylates BglG according to beta-glucoside availability. BglG is composed of an RNA-binding domain followed by two homologous PTS regulation domains (PRD1 and PRD2). The predicted structure of dimeric LicT, a BglG homologue from Bacillus subtilis, suggests that the two PRDs adopt a similar structure and that the interactions within the dimer are PRD1-PRD1 and PRD2-PRD2. We have shown recently that the PRD1 and PRD2 domains of BglG can form a stable heterodimer. We report here, based on in vitro and in vivo cross-linking experiments, that a fraction of BglG is present in the cell in a compact form in which PRD1 and PRD2 are in close proximity. The compact form is present mainly in the BglG monomers. Our results imply that the monomer-dimer transition involves a conformational change. The possible role of the compact form in preventing untimely induction of the bgl operon is discussed.
Collapse
Affiliation(s)
- Liat Fux
- Department of Molecular Biology, The Hebrew University, Hadassah Medical School, P. O. Box 12272, Jerusalem 91120, Israel
| | | | | |
Collapse
|