1
|
Hashiyama K, Takeuchi A, Makino O. A Variant Protein from φ29 Replication Gene, Gene 1, Did Not Form Homo-Polymer Due to a Single Amino Acid Substitution Near the Carboxyl Terminus. Biosci Biotechnol Biochem 2014; 69:1045-8. [PMID: 15914932 DOI: 10.1271/bbb.69.1045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
For study of the self-association of the product of psi29 gene 1, one variant which has a substitution at the 71(st) amino acid was used. By glycerol gradient sedimentation, the product of wild-type gene 1 existed both as large aggregate and oligomer, whereas the variant was detected as a single peak of monomer size. According to experiments using His-tagged proteins and Ni-NTA magnetic beads, the variant made only a little self-associated complex. From these results, a site essential for self-association was suggested to exist close to the carboxyl terminus of the product of psi29 gene 1.
Collapse
Affiliation(s)
- Kazuya Hashiyama
- Department of Genetics, Life Science Institute, Sophia University, Tokyo, Japan
| | | | | |
Collapse
|
2
|
Tone T, Takeuchi A, Makino O. Functional linkages between replication proteins of genes 1, 3 and 5 of Bacillus subtilis phage φ29. Genes Genet Syst 2013; 87:347-56. [PMID: 23558641 DOI: 10.1266/ggs.87.347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene 1 product (gp1) of Bacillus subtilis phage φ29 has been shown to be involved in viral DNA replication in vivo, but the essential role is still unknown. As part of an ongoing effort to understand the role of gp1 in viral DNA replication, we investigated genetic interaction between gene 1 and other viral genes. Because φ29 mutants which do not produce functional gp1 show temperature-sensitive growth, we isolated temperature-resistant phages from the φ29 gene 1 mutants, and eventually, obtained nine extragenic suppressors. These suppressor mutations were located in two essential genes for φ29 DNA replication in vivo: gene 3 encoding terminal/primer protein (gp3) or gene 5 encoding viral single-stranded DNA binding protein (gp5). Most of these mutations resulted in single amino acid substitutions in the products. By trans-complementation assay, we confirmed that the absence of gp1 at non-permissive temperature can be compensated by the suppressors which have the single amino acid substitution in either gp5 or gp3. These results indicate that gp1 has functional relationship to gp5 and gp3. From the positions of amino acid substitutions in gp3, we propose its new regulatory subdomain at which other molecules including gp1 would interact with and regulate functions of gp3.
Collapse
Affiliation(s)
- Takahiro Tone
- Laboratory of genetics, Department of Material and Life Science, Faculty of Science and Technology, Sophia University, Tokyo, Japan
| | | | | |
Collapse
|
3
|
Phage 29 phi protein p1 promotes replication by associating with the FtsZ ring of the divisome in Bacillus subtilis. Proc Natl Acad Sci U S A 2013; 110:12313-8. [PMID: 23836667 DOI: 10.1073/pnas.1311524110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During evolution, viruses have optimized the interaction with host factors to increase the efficiency of fundamental processes such as DNA replication. Bacteriophage 29 protein p1 is a membrane-associated protein that forms large protofilament sheets that resemble eukaryotic tubulin and bacterial filamenting temperature-sensitive mutant Z protein (FtsZ) polymers. In the absence of protein p1, phage 29 DNA replication is impaired. Here we show that a functional fusion of protein p1 to YFP localizes at the medial region of Bacillus subtilis cells independently of other phage-encoded proteins. We also show that 29 protein p1 colocalizes with the B. subtilis cell division protein FtsZ and provide evidence that FtsZ and protein p1 are associated. Importantly, the midcell localization of YFP-p1 was disrupted in a strain that does not express FtsZ, and the fluorescent signal was distributed all over the cell. Depletion of penicillin-binding protein 2B (PBP2B) in B. subtilis cells did not affect the subcellular localization of YFP-p1, indicating that its distribution does not depend on septal wall synthesis. Interestingly, when 29 protein p1 was expressed, B. subtilis cells were about 1.5-fold longer than control cells, and the accumulation of 29 DNA was higher in mutant B. subtilis cells with increased length. We discuss the biological role of p1 and FtsZ in the 29 growth cycle.
Collapse
|
4
|
Abstract
During the course of evolution, viruses have learned to take advantage of the natural resources of their hosts for their own benefit. Due to their small dimension and limited size of genomes, bacteriophages have optimized the exploitation of bacterial host factors to increase the efficiency of DNA replication and hence to produce vast progeny. The Bacillus subtilis phage φ29 genome consists of a linear double-stranded DNA molecule that is duplicated by means of a protein-primed mode of DNA replication. Its genome has been shown to be topologically constrained at the size of the bacterial nucleoid and, as to avoid generation of positive supercoiling ahead of the replication forks, the bacterial DNA gyrase is used by the phage. In addition, the B. subtilis actin-like MreB cytoskeleton plays a crucial role in the organization of φ29 DNA replication machinery in peripheral helix-like structures. Thus, in the absence of an intact MreB cytoskeleton, φ29 DNA replication is severely impaired. Importantly, MreB interacts directly with the phage membrane protein p16.7, responsible for attaching φ29 DNA at the cell membrane. Moreover, the φ29-encoded protein p56 inhibits host uracil-DNA glycosylase activity and has been proposed to be a defense mechanism developed by the phage to prevent the action of the base excision repair pathway if uracil residues arise in replicative intermediates. All of them constitute incoming examples on how viruses have profited from the cellular machinery of their hosts.
Collapse
|
5
|
Camacho A, Salas M. DNA bending and looping in the transcriptional control of bacteriophage phi29. FEMS Microbiol Rev 2010; 34:828-41. [PMID: 20412311 DOI: 10.1111/j.1574-6976.2010.00219.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Recent studies on the regulation of phage phi29 gene expression reveal new ways to accomplish the processes required for the orderly gene expression in prokaryotic systems. These studies revealed a novel DNA-binding domain in the phage main transcriptional regulator and the nature and dynamics of the multimeric DNA-protein complex responsible for the switch from early to late gene expression. This review describes the features of the regulatory mechanism that leads to the simultaneous activation and repression of transcription, and discusses it in the context of the role of the topological modification of the DNA carried out by two phage-encoded proteins working synergistically with the DNA.
Collapse
Affiliation(s)
- Ana Camacho
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | |
Collapse
|
6
|
Pérez-Arnaiz P, Longás E, Villar L, Lázaro JM, Salas M, de Vega M. Involvement of phage phi29 DNA polymerase and terminal protein subdomains in conferring specificity during initiation of protein-primed DNA replication. Nucleic Acids Res 2007; 35:7061-73. [PMID: 17913744 PMCID: PMC2175359 DOI: 10.1093/nar/gkm749] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To initiate ϕ29 DNA replication, the DNA polymerase has to form a complex with the homologous primer terminal protein (TP) that further recognizes the replication origins of the homologous TP-DNA placed at both ends of the linear genome. By means of chimerical proteins, constructed by swapping the priming domain of the related ϕ29 and GA-1 TPs, we show that DNA polymerase can form catalytically active heterodimers exclusively with that chimerical TP containing the N-terminal part of the homologous TP, suggesting that the interaction between the polymerase TPR-1 subdomain and the TP N-terminal part is the one mainly responsible for the specificity between both proteins. We also show that the TP N-terminal part assists the proper binding of the priming domain at the polymerase active site. Additionally, a chimerical ϕ29 DNA polymerase containing the GA-1 TPR-1 subdomain could use GA-1 TP, but only in the presence of ϕ29 TP-DNA as template, indicating that parental TP recognition is mainly accomplished by the DNA polymerase. The sequential events occurring during initiation of bacteriophage protein-primed DNA replication are proposed.
Collapse
Affiliation(s)
| | | | | | | | - Margarita Salas
- *To whom correspondence should be addressed. +34 914978435+34 914978490
| | | |
Collapse
|
7
|
Serrano-Heras G, Salas M, Bravo A. A uracil-DNA glycosylase inhibitor encoded by a non-uracil containing viral DNA. J Biol Chem 2006; 281:7068-74. [PMID: 16421108 DOI: 10.1074/jbc.m511152200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Uracil-DNA glycosylase (UDG) is an enzyme involved in the base excision repair pathway. It specifically removes uracil from both single-stranded and double-stranded DNA. The genome of the Bacillus subtilis phage 29 is a linear double-stranded DNA with a terminal protein covalently linked at each 5'-end. Replication of 29 DNA starts by a protein-priming mechanism and generates intermediates that have long stretches of single-stranded DNA. By using in vivo chemical cross-linking and affinity chromatography techniques, we found that UDG is a cellular target for the early viral protein p56. Addition of purified protein p56 to B. subtilis extracts inhibited the endogenous UDG activity. Moreover, extracts from 29-infected cells were deficient in UDG activity. We suggested that inhibition of the cellular UDG is a defense mechanism developed by 29 to prevent the action of the base excision repair pathway if uracil residues arise in their replicative intermediates. Protein p56 is the first example of a UDG inhibitor encoded by a non-uracil-containing viral DNA.
Collapse
Affiliation(s)
- Gemma Serrano-Heras
- Instituto de Biología Molecular "Eladio Viñuela" (Consejo Superior de Investigaciones Científicas), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | |
Collapse
|
8
|
Hashiyama K, Takeuchi A, Makino O. Effects of single amino acid substitutions at the predicted coiled-coil or hydrophobic region on the self-assembly of phi29 replication protein, gp1. Biochem Biophys Res Commun 2005; 331:1310-6. [PMID: 15883018 DOI: 10.1016/j.bbrc.2005.04.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Indexed: 10/25/2022]
Abstract
Gp1, the product of one of the essential genes of phi29 replication, is an RNA binding protein and self-associates to form large complexes. Furthermore, gp1 suppresses the synthesis of phi29 DNA polymerase and primer protein in the post-transcriptional process. In this report, we have employed seven variants with single amino acid substitutions to analyze the self-assembly of gp1. Using chemical cross-linking and sedimentation assays, amino acid substitutions within the predicted coiled-coil or hydrophobic region were shown to strongly affect the formation of large complexes, suggesting that these two regions were required for the self-assembly of gp1. The self-association of gp1 was suggested to be necessary for the efficient binding to RNA and the translational repression.
Collapse
Affiliation(s)
- Kazuya Hashiyama
- Department of Genetics, Life Science Institute, Sophia University, 7-1 Kioi-cho Chiyoda-Ku, Tokyo 102-8554, Japan
| | | | | |
Collapse
|
9
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
10
|
Takeuchi A, Hashiyama K, Arai R, Makino O. Isolation of a series of single missense mutants of a dna gene of phage .PHI.29, gene 1, utilizing their inhibitory effect on E. coli growth. Genes Genet Syst 2005; 80:377-83. [PMID: 16394589 DOI: 10.1266/ggs.80.377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Gene 1 product (gp1) of Bacillus subtilis phage psi29 is known to promote DNA replication of the phage. Although its role in the DNA replication is not clear, gp1 is reported to exhibit multiple characteristics, including RNA binding, cell membrane localization, and self-association. To investigate these characteristics, we undertook the isolation of a series of missense mutants of gene 1 bearing substitutions at various regions. During cloning of gene 1, we found that its expression severely inhibited the growth of its host Escherichia coli cells. In this study, we utilized this growth-inhibition phenomenon to screen a random library muta-genized by error-prone PCR, expecting that mutants which could not inhibit cell growth would be affected in the authentic functions of gp1. Using this approach, we obtained 31 different mutants bearing single amino acid substitutions at 26 positions along the entire length of gp1. As a preliminary analysis of these mutants, we compared the deduced amino acid sequences of gp1s from psi29 and its related phages PZA, B103 and M2. Alignment of these sequences revealed three conserved regions, i.e. a hydrophobic region near the carboxyl terminus (assumed to be involved in the membrane localization and self-association of gp1), coiled-coil motif (essential for self-association), and a region of unknown function near the amino terminus. Interestingly, many of the substitutions in the isolated mutants occurred at strongly conserved residues in these regions and affected characteristic features of the regions (e.g. hydrophobicity of the hydrophobic region). These substitutions are expected to affect authentic functions of gp1, and the mutants will be useful for studies of the structure and functions of gp1.
Collapse
Affiliation(s)
- Ari Takeuchi
- Department of Genetics, Life Science Institute, Sophia University, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Kirkegaard K, Taylor MP, Jackson WT. Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2004; 2:301-14. [PMID: 15031729 PMCID: PMC7097095 DOI: 10.1038/nrmicro865] [Citation(s) in RCA: 343] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karla Kirkegaard
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | |
Collapse
|