1
|
Peipei L, Qinghong Z, Yin C, Pengfei H, Junjie Z. Structure and anticoagulant activity of a galactoarabinan sulfate polysaccharide and its oligosaccharide from the green algae, Codium fragile. Int J Biol Macromol 2024; 279:135255. [PMID: 39236965 DOI: 10.1016/j.ijbiomac.2024.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
A polysaccharide, CZS-0-1, was obtained from the marine green algae Codium fragile using ion-exchange and size-exclusion chromatography. Composition and characteristics analyses showed CZS-0-1 was a sulfated galactoarabinan consisting of arabinose, galactose and a small amount of glucose in a ratio of 9:2:1 with 21% sulfate content and a molecular weight of 810 kDa. Structural properties were determined using desulfation and methylation analyses combined with instrument analysis. The results showed that the backbone of CZS-0-1 was (1 → 3)-β-L-Arap. Its O-4 and/or O-2 positions showed sulfate modification; additionally, it had 10% of (1 → 3)-β-D-Galp branches at the O-4 position of the (1 → 3)-β-L-Arap. The galactose side chains also had sulfate modification at the O-4 or O-6 position. The structure of CZS-0-1 was further confirmed by Top-down analysis of the oligosaccharides after oxidated hydrolysis by mass spectrometry. CZS-0-1 exhibited significant heparin-like anticoagulant activity. It exerted anticoagulant effects by inhibiting FIIa and FXa activities with the presence of heparin cofactors. The anticoagulant activity of CSZ-0-1 was closely related to the molecular weight, and the reduction of molecular weight may lead to a significant decrease in the anticoagulant activity. This study demonstrated that the green algae, Codium fragile can be considered as a useful resource for bioactive polysaccharides.
Collapse
Affiliation(s)
- Li Peipei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China.
| | - Zhang Qinghong
- Zhejiang Marine Ecology and Environment Monitoring Center, Tiyu Road 20, Zhoushan 316021, Zhejiang, China
| | - Chen Yin
- College of Food and Pharmacy, Zhejiang Ocean University, 1 South Haida Road, 316000 Zhoushan, Zhejiang, China.
| | - He Pengfei
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| | - Zeng Junjie
- Zhejiang Marine Fisheries Research Institute, 28 Tiyu Road, Zhoushan 316021, Zhejiang, China
| |
Collapse
|
2
|
Bračič M, Nagy BM, Plohl O, Lackner F, Steindorfer T, Fischer RC, Heinze T, Olschewski A, Kleinschek KS, Nagaraj C, Mohan T. Antithrombogenic polysaccharide coatings to improve hemocompatibility, protein-repellence, and endothelial cell response. iScience 2024; 27:110692. [PMID: 39280603 PMCID: PMC11401161 DOI: 10.1016/j.isci.2024.110692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 08/05/2024] [Indexed: 09/18/2024] Open
Abstract
Polyester biomaterials play a crucial in vascular surgery, but suffer from unspecific protein adsorption, thrombogenicity, and inadequate endothelial cell response, which limit their success. To address these issues, we investigated the functionalization of polyester biomaterials with antithrombogenic polysaccharide coatings. A two-step and water-based method was used to coat cationized polycaprolactone with different sulfated polysaccharides (SPS), which resulted in long-term stability, tunable morphology, roughness, film thickness, chemical compositions, zeta potential, and water content. The coatings significantly increased the anticoagulant activity and reduced the thrombogenicity of polycaprolactone, particularly with highly sulfated heparin and cellulose sulfate. Less SPS, such as chondroitin sulfate, fucoidan, and carrageenan, despite showing reduced anticoagulant activity, also exhibited lower fibrinogen adsorption. The adhesion and viability of human primary endothelial cells cultured on modified polycaprolactone correlated with the type and sulfate content of the coatings.
Collapse
Affiliation(s)
- Matej Bračič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
| | - Bence M Nagy
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Olivija Plohl
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Tobias Steindorfer
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| | - Roland C Fischer
- Graz University of Technology, Institute of Chemistry and Technology of Biobased System, Stremayrgasse 9, 8010 Graz, Austria
| | - Thomas Heinze
- Center of Excellence for Polysaccharide Research, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University of Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
- Department of Anaesthesiology and Intensive Care Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
- University of Maribor, Institute of Automation, Faculty of Electrical Engineering and Computer Science, Koroška cesta 46, 2000 Maribor, Slovenia
| | - Chandran Nagaraj
- Ludwig Boltzmann Institute for Lung Vascular Research, Stiftingtalstrasse 24, 8010 Graz, Austria
| | - Tamilselvan Mohan
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterisation and Processing of Polymers, Smetanova ulica17, 2000 Maribor, Slovenia
- Graz University of Technology, Institute for Inorganic Chemistry, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
3
|
Haider S, Ullah S, Kazi M, Qamar F, Siddique T, Anwer R, Khan SA, Salman S. Ion-Exchange Resin/Carrageenan-Copper-Based Nanocomposite: Artificial Neural Network, Advanced Thermodynamic Profiling, and Anticoagulant Studies. ACS OMEGA 2024; 9:23873-23891. [PMID: 38854529 PMCID: PMC11154903 DOI: 10.1021/acsomega.4c01540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
Carrageenan (CG) and ion exchange resins (IERs) are better metal chelators. Kappa (κ) CG and IERs were synthesized and subjected to copper ion (Cu2+) adsorption to obtain DMSCH/κ-Cu, DC20H/κ-Cu, and IRP69H/κ-Cu nanocomposites (NCs). The NCs were studied using statistical physics formalism (SPF) at 315-375 K and a multilayer perceptron with five input nodes. The percentage of Cu2+ uptake efficiency was used as an outcome variable. Via the grand canonical ensemble, SPF gives models for both monolayer and multilayer sorption layers. For in vitro anticoagulant activity (ACA), the activated partial thromboplastin time were calculated using 100 μL of rabbit plasma incubated at 37 °C. After 2 min, 100 L of 0.025 M CaCl2 was added, and the clotting time was recorded for each group (n = 6). The results demonstrated that the key covariables for the adsorption process were pH and concentration. The results of artificial neural network models were comparable with the experimental findings. The error rates varied between 4.3 and 1.0%. The prediction analysis results ranged from 43.6 to 89.2. The ΔG and ΔS values for IRP69H/κ-Cu obtained were -18.91 and -16.32 and 26.21 and 22.74 kJ/mol for the temperatures 315 and 345 K, respectively. Adsorbate species were perpendicular to the adsorbent surfaces, notwithstanding the apparent importance of macro- and micropore volumes. These adsorbents typically fluctuate with temperature changes and contain one or more layers of sorption. Negative and positive sorption energies correspond to endothermic and exothermic processes. The biosorption energy (E1 and E2) values in this experiment have a value of less than 23 kJ mol-1. Complex SPF models' energy distributions validate surface properties and interactions with adsorbates. At a concentration of 100 μg/mL, DC20H/κ-Cu2+ exhibited an ACA of only 8 s. These NCs demonstrated better greater ACA with the order DC20H/κ < DMSCH/κ < IRP69H/κ. More research is needed to rule out the chemical processes behind the ACA of CG/IER-Cu NCs.
Collapse
Affiliation(s)
- Sana Haider
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Sami Ullah
- Department
of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan
| | - Mohsin Kazi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Fouzia Qamar
- Department
of Biology, Lahore Garrison University, Main Campus, Lahore 54000, Pakistan
| | - Tariq Siddique
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Rubia Anwer
- Faculty
of Pharmacy, Ibadat International University, Islamabad 44000, Pakistan
| | - Saeed Ahmad Khan
- Sharjah
Institute of Medical Research, Dubai 500001, United Arab Emirates
- Department
of Pharmacy, Kohat University of Science
and Technology, Kohat 26000, Pakistan
| | - Saad Salman
- Department
of Pharmacy, CECOS University of IT and
Emerging Sciences, Hayatabad,
Peshawar, Khyber Pakhtunkhwa 25000, Pakistan
| |
Collapse
|
4
|
Oliveira SNMCG, Bezerra FF, Piquet AA, Sales RA, Valle GCT, Capillé NV, Tovar AMF, Mourão PAS. A Unique Enoxaparin Derived from Bovine Intestinal Heparin: A Single Purification Step of the Starting Material Assures a Bovine Enoxaparin Like the Standard from Porcine Origin. ACS OMEGA 2024; 9:23111-23120. [PMID: 38826523 PMCID: PMC11137703 DOI: 10.1021/acsomega.4c02128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 06/04/2024]
Abstract
Low-molecular-weight heparin represent a significant advancement in anticoagulant therapy with enoxaparin being a prominent example obtained exclusively through the fragmentation of porcine intestinal heparin. However, escalating demand and limited resources have raised concerns about enoxaparin supplementation. The current challenge involves exploring alternative heparin sources for large-scale enoxaparin production with bovine intestinal heparin emerging as a promising option. Our study demonstrates that enoxaparin derived from the available bovine heparin preparation differs significantly from the reference compound. Yet, the implementation of a straightforward purification step yields a preparation termed "high-anticoagulant bovine heparin". Fragmentation of this purified product through β-elimination produces enoxaparin akin to the standard from a porcine origin. To ensure physicochemical similarity, we employed various spectroscopic, enzymatic, and chromatographic tests to compare the new bovine-derived enoxaparin with the original porcine compound. Biological activity was confirmed through in vitro coagulation assays and assessments using an animal model of venous thrombosis. Our study affirms that the β-elimination reaction cleaves the bovine heparin chain without preferential breaks in regions with different sulfation patterns. Additionally, we scrutinized decasaccharides purified from enoxaparin preparations, providing a comprehensive demonstration of the similarity between products obtained from porcine and bovine heparin. In summary, our findings indicate that an enoxaparin equivalent to the original porcine-derived product can be derived from bovine heparin, given that the starting material undergoes a simple purification step.
Collapse
Affiliation(s)
| | | | - Adriana A. Piquet
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Rodrigo A. Sales
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Gabrielly C. T. Valle
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Nina V. Capillé
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Ana M. F. Tovar
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Paulo A. S. Mourão
- Laboratório de Tecido
Conjuntivo, Hospital Universitário Clementino Fraga Filho and
Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| |
Collapse
|
5
|
Li R, Li Y, Bai Y, Yi P, Sun C, Shi S, Gong YK. Achieving superior anticoagulation of endothelial membrane mimetic coating by heparin grafting at zwitterionic biocompatible interfaces. Int J Biol Macromol 2024; 257:128574. [PMID: 38052281 DOI: 10.1016/j.ijbiomac.2023.128574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/16/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023]
Abstract
Thrombosis and bleeding are common complications of blood-contacting medical device therapies. In this work, an endothelium membrane mimetic coating (PMPCC/Hep) has been created to address these challenges. The coating is fabricated by multi-point anchoring of a phosphorylcholine copolymer (poly-MPC-co-MSA, PMPCC) with carboxylic side chains and end-group grafting of unfractionated heparin (Hep) onto polydopamine precoated blood-contacting material surfaces. The PMPCC coating forms an ultrathin cell outer membrane mimetic layer to resist protein adsorption and platelet adhesion. The tiny defects/pores of the PMPCC layer provide entrances for heparin end-group to be inserted and grafted onto the sub-layer amino groups. The combination of the PMPCC cell membrane mimetic anti-fouling nature with the grafted heparin bioactivity further enhances the anticoagulation performance of the formed endothelium membrane mimetic PMPCC/Hep coating. Compared to conventional Hep coating, the PMPCC/Hep coating further decreases protein adsorption and platelet adhesion by 50 % and 90 %, respectively. More significantly, the PMPCC/Hep coating shows a superior anticoagulation activity, even significantly higher than that of an end-point-attached heparin coating. Furthermore, the blood coagulation function is well preserved in the PMPCC/Hep coating anticoagulation strategy. All the results support that the PMPCC/Hep coating strategy has great potential in developing more efficient and safer blood-contacting medical devices.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yin Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Yunjie Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Panpan Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Chenwei Sun
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China
| | - Suqing Shi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xian 710127, Shaanxi, PR China; Institute of Materials Science and New Technology, Northwest University, Xian 710127, Shaanxi, China.
| |
Collapse
|
6
|
Štěpánková K, Ozaltin K, Gorejová R, Doudová H, Bergerová ED, Maskalová I, Stupavská M, Sťahel P, Trunec D, Pelková J, Mozetič M, Lehocky M. Sulfation of furcellaran and its effect on hemocompatibility in vitro. Int J Biol Macromol 2024; 258:128840. [PMID: 38103479 DOI: 10.1016/j.ijbiomac.2023.128840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/02/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
In this study, furcellaran (FUR) obtained from Furcellaria lumbricalis was firstly employed for sulfation via various methods, including SO3-pyridine (SO3∙Py) complex in different aprotic solvents, chlorosulfonic acid and sulfuric acid with a "coupling" reagent N,N'-Dicyclohexylcarbodiimide. Structural characterization through FT-IR, GPC, XPS and elemental analyses confirmed the successful synthesis of 6-O-sulfated FUR derivates characterized by varying degrees of sulfation (DS) ranging from 0.15 to 0.91 and molecular weight (Mw) spanning from12.5 kDa to 2.7 kDa. In vitro clotting assays, partial thromboplastin time (aPTT), thrombin time (TT), and prothrombin time (PT) underscored the essential role of sulfate esters in conferring anticoagulant activity whereas FUR prepared via chlorosulfonic acid with DS of 0.91 reached 311.4 s in aPPT showing almost 4-fold higher anticoagulant activity than native FUR at the concentration 2 mg/mL. MTT test showed all tested samples decreased cell viability in a dose dependent manner while all of them are non-cytotoxic up to the concentration of 0.1 mg/mL. Furthermore, sulfated derivates deposited onto polyethylene terephthalate surface presented substantial decrease in platelet adhesion, as well as absence of the most activated platelet stages. These findings support the pivotal role of O-6 FUR sulfates in enhancing hemocompatibility and provide valuable insights for a comparative assessment of effective sulfating approaches.
Collapse
Affiliation(s)
- Kateřina Štěpánková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Kadir Ozaltin
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Radka Gorejová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic; Department of Physical Chemistry, Faculty of Science, Pavol Jozef Šafárik University in KoŠice, Moyzesova 11, 041 54 KoŠice, Slovakia.
| | - Hana Doudová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| | - Eva Domincová Bergerová
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic
| | - Iveta Maskalová
- Department of Animal Nutrition and Husbandry, University of Veterinary Medicine and Pharmacy in Košice, Slovakia.
| | - Monika Stupavská
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Pavel Sťahel
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - David Trunec
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Jana Pelková
- Department of Hematology, Tomas Bata Regional Hospital, Havlickovo Nabrezi 2916, 76001 Zlín, Czech Republic; Faculty of Humanities, Tomas Bata University in Zlín, Stefanikova 5670, 76001 Zlin, Czech Republic.
| | - Miran Mozetič
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
| | - Marian Lehocky
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlin, Czech Republic.
| |
Collapse
|
7
|
Yang Y, Qin L, Lu X, Lu L, Mao W. A pyruvylated and sulfated galactan from the green alga Dictyosphaeria cavernosa: Structure, anticoagulant property and inhibitory effect on zebrafish thrombosis. Carbohydr Polym 2024; 324:121492. [PMID: 37985046 DOI: 10.1016/j.carbpol.2023.121492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/22/2023]
Abstract
A pyruvylated and sulfated galactan from the green alga Dictyosphaeria cavernosa, designated PSG, was obtained by dilute alkali extraction, ion-exchange and gel filtration chromatography. The backbone of PSG was composed of 3-linked β-d-Galp units with partial sulfation on C-4 and C-6. Pyruvate ketals were linked to O-3 and O-4 of nonreducing terminal β-d-Galp, as well as O-4 and O-6 of 3-linked β-d-Galp. The branches consisting of 6-linked β-d-Galp(4SO4) and β-d-Galp(3,4-Pyr)-(1→ units were located at C-6 of 3-linked β-d-Galp unit. PSG possessed obvious anticoagulant effect in vitro as assessed by the tests of activated partial thromboplastin time and thrombin time. The assay of anticoagulant mechanism showed that PSG promoted thrombin inactivation mediated by heparin cofactor-II and antithrombin-III (ATIII), and could effectively potentiate factor Xa inactivation by ATIII. The antithrombotic activity of PSG in vivo was assessed by phenylhydrazine (PHZ)-induced zebrafish thrombotic model. The results indicated that PSG obviously reduced peripheral erythrocytes aggregation, enhanced cardiac blood flow and improved peripheral platelet circulation, and PSG possessed a marked inhibitory effect on the PHZ-induced zebrafish thrombosis. Thus, PSG is a hopeful anticoagulant and antithrombotic polysaccharide.
Collapse
Affiliation(s)
- Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xuxiu Lu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Ling Lu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
8
|
Fu Y, Jiao H, Sun J, Okoye CO, Zhang H, Li Y, Lu X, Wang Q, Liu J. Structure-activity relationships of bioactive polysaccharides extracted from macroalgae towards biomedical application: A review. Carbohydr Polym 2024; 324:121533. [PMID: 37985107 DOI: 10.1016/j.carbpol.2023.121533] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Macroalgae are valuable and structurally diverse sources of bioactive compounds among marine resources. The cell walls of macroalgae are rich in polysaccharides which exhibit a wide range of biological activities, such as anticoagulant, antioxidant, antiviral, anti-inflammatory, immunomodulatory, and antitumor activities. Macroalgae polysaccharides (MPs) have been recognized as one of the most promising candidates in the biomedical field. However, the structure-activity relationships of bioactive polysaccharides extracted from macroalgae are complex and influenced by various factors. A clear understanding of these relationships is indeed critical in developing effective biomedical applications with MPs. In line with these challenges and knowledge gaps, this paper summarized the structural characteristics of marine MPs from different sources and relevant functional and bioactive properties and particularly highlighted those essential effects of the structure-bioactivity relationships presented in biomedical applications. This review not only focused on elucidating a particular action mechanism of MPs, but also intended to identify a novel or potential application of these valued compounds in the biomedical field in terms of their structural characteristics. In the last, the challenges and prospects of MPs in structure-bioactivity elucidation were further discussed and predicted, where they were emphasized on exploring modern biotechnology approaches potentially applied to expand their promising biomedical applications.
Collapse
Affiliation(s)
- Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; School of Water, Energy, Environment and Agrifood, Cranfield University, Cranfield MK43 0AL, UK
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Charles Obinwanne Okoye
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xuechu Lu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
9
|
Zoepfl M, Dwivedi R, Kim SB, McVoy MA, Pomin VH. Antiviral activity of marine sulfated glycans against pathogenic human coronaviruses. Sci Rep 2023; 13:4804. [PMID: 36959228 PMCID: PMC10035982 DOI: 10.1038/s41598-023-31722-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Great interest exists towards the discovery and development of broad-spectrum antivirals. This occurs due to the frequent emergence of new viruses which can also eventually lead to pandemics. A reasonable and efficient strategy to develop new broad-spectrum antivirals relies on targeting a common molecular player of various viruses. Heparan sulfate is a sulfated glycosaminoglycan present on the surface of cells which plays a key role as co-receptor in many virus infections. In previous work, marine sulfated glycans (MSGs) were identified as having antiviral activities. Their mechanism of action relies primarily on competitive inhibition of virion binding to heparan sulfate, preventing virus attachment to the cell surface prior to entry. In the current work we used pseudotyped lentivirus particles to investigate in a comparative fashion the inhibitory properties of five structurally defined MSGs against SARS-CoV-1, SARS-CoV-2, MERS-CoV, and influenza A virus (IAV). MSGs include the disaccharide-repeating sulfated galactan from the red alga Botryocladia occidentalis, the tetrasaccharide-repeating sulfated fucans from the sea urchin Lytechinus variegatus and from the sea cucumber Isostichopus badionotus, and the two marine fucosylated chondroitin sulfates from the sea cucumbers I. badionotus and Pentacta pygmaea. Results indicate specificity of action against SARS-CoV-1 and SARS-CoV-2. Curiously, the MSGs showed decreased inhibitory potencies against MERS-CoV and negligible action against IAV. Among the five MSGs, the two sulfated fucans here studied deserve further attention since they have the lowest anticoagulant effects but still present potent and selective antiviral properties.
Collapse
Affiliation(s)
- Mary Zoepfl
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA
- Department of Food Science and Technology, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Republic of Korea
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
10
|
Anticoagulant Property of a Sulfated Polysaccharide with Unique Structural Characteristics from the Green Alga Chaetomorpha aerea. Mar Drugs 2023; 21:md21020088. [PMID: 36827129 PMCID: PMC9962809 DOI: 10.3390/md21020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Sulfated polysaccharides from marine algae have attracted a great amount of attentions for the development of marine drugs due to their unique structural features, and they are great potential sources of naturally occurring anticoagulant agents. The genus Chaetomorpha is one of the largest genera in green algae and has a worldwide distribution. In the present study, a homogeneous polysaccharide from Chaetomorpha aerea, designated as PCA, was obtained by alkali extraction, anion-exchange and size-exclusion chromatography. Based on the results of chemical and spectroscopic analyses, PCA was a sulfated galactoarabinan which was mainly constituted of a backbone of →4)-β-l-Arap-(1→ unit, partially sulfated at C-3 of →4)-β-l-Arap-(1→ and C-4 of →6)-α-d-Galp-(1→. The side chains consisting of →6)-α-d-Galp-(1→ and →5)-α-l-Araf-(1→ residues were in C-2 of →4)-β-l-Arap-(1→ unit. PCA had a strong anticoagulant activity in vitro as evaluated by the assays of activated partial thromboplastin time, thrombin time and fibrinogen level. The obvious anticoagulant activity in vivo of PCA was also found. PCA significantly inhibited the activities of the intrinsic coagulation factors XII, XI, IX and VIII, and exhibited weak inhibition effects on the common coagulation factors II and X. The anticoagulant mechanism of PCA was attributed to strong thrombin inhibition potentiated by heparin cofactor II or antithrombin III, and it also possessed an apparent inhibition effect on coagulation factor Xa mediated by antithrombin III. The investigation demonstrated that PCA could be a promising anticoagulant agent for health promotion and the treatment of thrombotic diseases.
Collapse
|
11
|
Farrag M, Dwivedi R, Sharma P, Kumar D, Tandon R, Pomin VH. Structural requirements of Holothuria floridana fucosylated chondroitin sulfate oligosaccharides in anti-SARS-CoV-2 and anticoagulant activities. PLoS One 2023; 18:e0285539. [PMID: 37167245 PMCID: PMC10174540 DOI: 10.1371/journal.pone.0285539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/13/2023] Open
Abstract
Fucosylated chondroitin sulfate (FucCS) is a unique glycosaminoglycan found primarily in sea cucumbers. This marine sulfated glycan is composed of a chondroitin sulfate backbone decorated with fucosyl branches attached to the glucuronic acid. FucCS exhibits potential biological actions including inhibition of blood clotting and severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection. These biological effects have been attributed to certain structural features, including molecular weight (MW), and/or those related to fucosylation, such as degrees of fucosyl branches, sulfation patterns and contents. In a previous work, we were able to generate oligosaccharides of the FucCS from Pentacta pygmaea (PpFucCS) with reduced anticoagulant effect but still retaining significant anti-SARS-CoV-2 activity against the delta strain. In this work, we extended our study to the FucCS extracted from the species Holothuria floridana (HfFucCS). The oligosaccharides were prepared by free-radical depolymerization of the HfFucCS via copper-based Fenton reaction. One-dimensional 1H nuclear magnetic resonance spectra were employed in structural analysis. Activated partial thromboplastin time and assays using protease (factors Xa and IIa) and serine protease inhibitors (antithrombin, and heparin cofactor II) in the presence of the sulfated carbohydrates were used to monitor anticoagulation. Anti-SARS-CoV-2 effects were measured using the concentration-response inhibitory curves of HEK-293T-human angiotensin-converting enzyme-2 cells infected with a baculovirus pseudotyped SARS-CoV-2 wild-type and delta variant spike (S)-proteins. Furthermore, the cytotoxicity of native HfFucCS and its oligosaccharides was also assessed. Like for PpFucCS, we were able to generate a HfFucCS oligosaccharide fraction devoid of high anticoagulant effect but still retaining considerable anti-SARS-CoV-2 actions against both variants. However, compared to the oligosaccharide fraction derived from PpFucCS, the average MW of the shortest active HfFucCS oligosaccharide fraction was significantly lower. This finding suggests that the specific structural feature in HfFucCS, the branching 3,4-di-sulfated fucoses together with the backbone 4,6-di-sulfated N-acetylgalactosamines, is relevant for the anti-SARS-CoV-2 activity of FucCS molecules.
Collapse
Affiliation(s)
- Marwa Farrag
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
| | - Poonam Sharma
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Deepak Kumar
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Ritesh Tandon
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
- Center for Immunology and Microbial Research, Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, United States of America
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, United States of America
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, MS, United States of America
| |
Collapse
|
12
|
Li F, Lin Z, Wu Y, Luo P, Wu J, Liu H. Antioxidant, anticoagulant and thrombolytic properties of SIP-IV, a sulfated polysaccharide from Sepia esculenta ink, and its derivatives. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Kim SB, Zoepfl M, Samanta P, Zhang F, Xia K, Thara R, Linhardt RJ, Doerksen RJ, McVoy MA, Pomin VH. Fractionation of sulfated galactan from the red alga Botryocladia occidentalis separates its anticoagulant and anti-SARS-CoV-2 properties. J Biol Chem 2022; 298:101856. [PMID: 35337800 PMCID: PMC8940257 DOI: 10.1016/j.jbc.2022.101856] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/18/2022] [Accepted: 03/19/2022] [Indexed: 01/28/2023] Open
Abstract
Sulfation pattern and molecular weight (MW) play a key role in the biological actions of sulfated glycans. Besides anticoagulant effects, certain sulfated glycans can also exhibit anti-SARS-CoV-2 properties. To develop a more selective antiviral carbohydrate, an efficient strategy to separate these two actions is required. In this work, low MW fractions derived from the red alga Botryocladia occidentalis sulfated galactan (BoSG) were generated, structurally characterized, and tested for activity against SARS-CoV-2 and blood coagulation. The lowest MW fraction was found to be primarily composed of octasaccharides of monosulfated monosaccharides. Unlike heparin or native BoSG, we found that hydrolyzed BoSG products had weak anticoagulant activities as seen by aPTT and inhibitory assays using purified cofactors. In contrast, lower MW BoSG-derivatives retained anti-SARS-CoV-2 activity using SARS-CoV-2 spike (S)-protein pseudotyped lentivirus vector in HEK-293T-hACE2 cells monitored by GFP. Surface plasmon resonance confirmed that longer chains are necessary for BoSG to interact with coagulation cofactors but is not required for interactions with certain S-protein variants. We observed distinct affinities of BoSG derivatives for the S-proteins of different SARS-CoV-2 strains, including WT, N501Y (Alpha), K417T/E484K/N501Y (Gamma), and L542R (Delta) mutants, and stronger affinity for the N501Y-containing variants. Docking of the four possible monosulfated BoSG disaccharides in interactions with the N501Y mutant S-protein predicted potential binding poses of the BoSG constructs and favorable binding in close proximity to the 501Y residue. Our results demonstrate that depolymerization and fractionation of BoSG are an effective strategy to segregate its anticoagulant property from its anti-SARS-CoV-2 action.
Collapse
Affiliation(s)
- Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Mary Zoepfl
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Priyanka Samanta
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Reena Thara
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, University, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA.
| |
Collapse
|
14
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
15
|
Levdansky AV, Vasilyeva NY, Kondrasenko AA, Levdansky VA, Malyar YN, Kazachenko AS, Kuznetsov BN. Sulfation of arabinogalactan with sulfamic acid under homogeneous conditions in dimethylsulfoxide medium. WOOD SCIENCE AND TECHNOLOGY 2021; 55:1725-1744. [PMID: 34690380 PMCID: PMC8527290 DOI: 10.1007/s00226-021-01341-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
UNLABELLED Sulfation of larch wood arabinogalactan (AG) with sulfamic acid in dimethylsulfoxide (DMSO) medium in the presence of urea was studied for the first time. The use of DMSO as a solvent instead of more toxic 1,4-dioxane allows to sulfate AG under homogeneous conditions. The sulfated AG with a high sulfur content (12.0-12.5 wt %) was produced by sulfation at a temperature of 85-90 °C, the molar ratio of AG / sulfating agent equal to 1:0.85 during 2-3 h. The introduction of sulfate groups into the structure of arabinogalactan was confirmed by the appearance of new absorption bands in FTIR and FT Raman spectra, characteristic for the vibrations of the sulfate groups. It was proved by 13C NMR spectroscopy that the predominant substitution of the primary hydroxyl groups at C6 carbon atoms of the terminal galactose units of main and side chains of arabinogalactan takes place. Simultaneously, the hydroxyl groups associated with C2 and C4 carbon atoms of galactose unit of the main chain are only partially sulfated. According to results of GPC study, the sulfated AG is characterized by a narrow molecular weight distribution with an average molecular weight of 18.8 kDa and a polydispersity of 1.3. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s00226-021-01341-2.
Collapse
Affiliation(s)
- A. V. Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - N. Yu. Vasilyeva
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - A. A. Kondrasenko
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - V. A. Levdansky
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
| | - Yu. N. Malyar
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - A. S. Kazachenko
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| | - B. N. Kuznetsov
- Institute of Chemistry and Chemical Technology SB RAS, FRC KSC SB RAS, Akademgorodok, 50-24, Krasnoyarsk, Russia 660036
- Siberian Federal University, Svobodny prospect, 79, Krasnoyarsk, Russia 660041
| |
Collapse
|
16
|
Dwivedi R, Samanta P, Sharma P, Zhang F, Mishra SK, Kucheryavy P, Kim SB, Aderibigbe AO, Linhardt RJ, Tandon R, Doerksen RJ, Pomin VH. Structural and kinetic analyses of holothurian sulfated glycans suggest potential treatment for SARS-CoV-2 infection. J Biol Chem 2021; 297:101207. [PMID: 34537241 PMCID: PMC8445769 DOI: 10.1016/j.jbc.2021.101207] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/11/2023] Open
Abstract
Certain sulfated glycans, including those from marine sources, can show potential effects against SARS-CoV-2. Here, a new fucosylated chondroitin sulfate (FucCS) from the sea cucumber Pentacta pygmaea (PpFucCS) (MW ∼10-60 kDa) was isolated and structurally characterized by NMR. PpFucCS is composed of {→3)-β-GalNAcX-(1→4)-β-GlcA-[(3→1)Y]-(1→}, where X = 4S (80%), 6S (10%) or nonsulfated (10%), Y = α-Fuc2,4S (40%), α-Fuc2,4S-(1→4)-α-Fuc (30%), or α-Fuc4S (30%), and S = SO3-. The anti-SARS-CoV-2 activity of PpFucCS and those of the FucCS and sulfated fucan isolated from Isostichopus badionotus (IbFucCS and IbSF) were compared with that of heparin. IC50 values demonstrated the activity of the three holothurian sulfated glycans to be ∼12 times more efficient than heparin, with no cytotoxic effects. The dissociation constant (KD) values obtained by surface plasmon resonance of the wildtype SARS-CoV-2 spike (S)-protein receptor-binding domain (RBD) and N501Y mutant RBD in interactions with the heparin-immobilized sensor chip were 94 and 1.8 × 103 nM, respectively. Competitive surface plasmon resonance inhibition analysis of PpFucCS, IbFucCS, and IbSF against heparin binding to wildtype S-protein showed IC50 values (in the nanomolar range) 6, 25, and 6 times more efficient than heparin, respectively. Data from computational simulations suggest an influence of the sulfation patterns of the Fuc units on hydrogen bonding with GlcA and that conformational change of some of the oligosaccharide structures occurs upon S-protein RBD binding. Compared with heparin, negligible anticoagulant action was observed for IbSF. Our results suggest that IbSF may represent a promising molecule for future investigations against SARS-CoV-2.
Collapse
Affiliation(s)
- Rohini Dwivedi
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Priyanka Samanta
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Sushil K Mishra
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Pavel Kucheryavy
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Seon Beom Kim
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - AyoOluwa O Aderibigbe
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Robert J Doerksen
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA
| | - Vitor H Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, Mississippi, USA; Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, Oxford, Mississippi, USA.
| |
Collapse
|
17
|
He M, Yang Y, Shao Z, Zhang J, Feng C, Wang L, Mao W. Chemical Structure and Anticoagulant Property of a Novel Sulfated Polysaccharide from the Green Alga Cladophora oligoclada. Mar Drugs 2021; 19:md19100554. [PMID: 34677453 PMCID: PMC8540071 DOI: 10.3390/md19100554] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 11/24/2022] Open
Abstract
Marine macroalgae are efficient producers of sulfated polysaccharides. The algal sulfated polysaccharides possess diverse bioactivities and peculiar chemical structures, and represent a great potential source to be explored. In the present study, a heparinoid-active sulfated polysaccharide was isolated from the green alga Cladophora oligoclada. Results of chemical and spectroscopic analyses indicated that the sulfated polysaccharide was composed of →6)-β-d-Galp-(1→, β-d-Galp-(1→, →6)-α-d-Glcp-(1→ and →3)-β-d-Galp-(1→ units with sulfate esters at C-2/C-4 of →6)-β-d-Galp-(1→, C-6 of →3)-β-d-Galp-(1→ and C-3 of →6)-α-d-Glcp-(1→ units. The branches consisting of β-d-Galp-(1→ and →6)-β-d-Galp-(1→ units were located in C-3 of →6)-β-d-Galp-(1→ units. The sulfated polysaccharide exhibited potent anticoagulant activity in vitro and in vivo as evaluated by activated partial thromboplastin time (APTT), thrombin time, and the fibrinogen level. For the APTT, the signal for clotting time was more than 200 s at 100 μg/mL in vitro and at 15 mg/kg in vivo. The obvious thrombolytic activity of the sulfated polysaccharide in vitro was also found. The mechanism analysis of anticoagulant action demonstrated that the sulfated polysaccharide significantly inhibited the activities of all intrinsic coagulation factors, which were less than 1.0% at 50 μg/mL, but selectively inhibited common coagulation factors. Furthermore, the sulfated polysaccharide strongly stimulated the inhibition of thrombin by potentiating antithrombin-III (AT-III) or heparin cofactor-II, and it also largely promoted the inhibition of factor Xa mediated by AT-III. These results revealed that the sulfated polysaccharide from C. oligoclada had potential to become an anticoagulant agent for prevention and therapy of thrombotic diseases.
Collapse
Affiliation(s)
- Meijia He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Junyan Zhang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Changning Feng
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Lei Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (M.H.); (Y.Y.); (Z.S.); (J.Z.); (C.F.); (L.W.)
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
18
|
Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals (Basel) 2021; 14:ph14080714. [PMID: 34451811 PMCID: PMC8398392 DOI: 10.3390/ph14080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023] Open
Abstract
The potential neuroprotective capacity of four different sulfated glycans: Botryocladia occidentalis-derived sulfated galactan (BoSG) (MW > 100 kDa), Lytechinus variegatus-derived sulfated fucan (LvSF) (MW~90 kDa), high-molecular weight dextran sulfate (DxS) (MW 100 kDa), and unfractionated heparin (UFH) (MW~15 kDa), was assessed in response to the HIV-1 proteins, R5-tropic glycoprotein 120 (gp120) and/or trans-activator of transcription (Tat), using primary murine neurons co-cultured with mixed glia. Compared to control-treated cells in which HIV-1 proteins alone or combined were neurotoxic, BoSG was, among the four tested sulfated glycans, the only one capable of showing significant concentration-dependent neuroprotection against Tat and/or gp120, alone or combined. Surface plasmon resonance-based data indicate that BoSG can bind both HIV-1 proteins at nM concentrations with preference for Tat (7.5 × 10−8 M) over gp120 (3.2 × 10−7 M) as compared to UFH, which bound gp120 (8.7 × 10−7 M) over Tat (5.7 × 10−6 M). Overall, these data support the notion that sulfated glycan extracted from the red alga B. occidentalis, BoSG, can exert neuroprotection against HIV-1 Tat and gp120, potentially via direct molecular interactions.
Collapse
|
19
|
Kuznetsova TA, Andryukov BG, Makarenkova ID, Zaporozhets TS, Besednova NN, Fedyanina LN, Kryzhanovsky SP, Shchelkanov MY. The Potency of Seaweed Sulfated Polysaccharides for the Correction of Hemostasis Disorders in COVID-19. Molecules 2021; 26:2618. [PMID: 33947107 PMCID: PMC8124591 DOI: 10.3390/molecules26092618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hemostasis disorders play an important role in the pathogenesis, clinical manifestations, and outcome of COVID-19. First of all, the hemostasis system suffers due to a complicated and severe course of COVID-19. A significant number of COVID-19 patients develop signs of hypercoagulability, thrombocytopenia, and hyperfibrinolysis. Patients with severe COVID-19 have a tendency toward thrombotic complications in the venous and arterial systems, which is the leading cause of death in this disease. Despite the success achieved in the treatment of SARS-CoV-2, the search for new effective anticoagulants, thrombolytics, and fibrinolytics, as well as their optimal dose strategies, continues to be relevant. The wide therapeutic potential of seaweed sulfated polysaccharides (PSs), including anticoagulant, thrombolytic, and fibrinolytic activities, opens up new possibilities for their study in experimental and clinical trials. These natural compounds can be important complementary drugs for the recovery from hemostasis disorders due to their natural origin, safety, and low cost compared to synthetic drugs. In this review, the authors analyze possible pathophysiological mechanisms involved in the hemostasis disorders observed in the pathological progression of COVID-19, and also focus the attention of researchers on seaweed PSs as potential drugs aimed to correction these disorders in COVID-19 patients. Modern literature data on the anticoagulant, antithrombotic, and fibrinolytic activities of seaweed PSs are presented, depending on their structural features (content and position of sulfate groups on the main chain of PSs, molecular weight, monosaccharide composition and type of glycosidic bonds, the degree of PS chain branching, etc.). The mechanisms of PS action on the hemostasis system and the issues of oral bioavailability of PSs, important for their clinical use as oral anticoagulant and antithrombotic agents, are considered. The combination of the anticoagulant, thrombolytic, and fibrinolytic properties, along with low toxicity and relative cheapness of production, open up prospects for the clinical use of PSs as alternative sources of new anticoagulant and antithrombotic compounds. However, further investigation and clinical trials are needed to confirm their efficacy.
Collapse
Affiliation(s)
- Tatyana A. Kuznetsova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Ilona D. Makarenkova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Natalya N. Besednova
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
| | - Ludmila N. Fedyanina
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Mikhail Yu. Shchelkanov
- G.P. Somov Institute of Epidemiology and Microbiology, Russian Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (B.G.A.); (I.D.M.); (T.S.Z.); (N.N.B.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia;
- Federal Scientific Center of the Eastern Asia Terrestrial Biodiversity, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, 690091 Vladivostok, Russia
| |
Collapse
|
20
|
Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202003978] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ajahar Khan
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Khalid A. Alamry
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Abdullah M. Asiri
- Faculty of Science Department of Chemistry King Abdulaziz University Jeddah 21589 Saudi Arabia
- Centre of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
21
|
Júnior EH, Gonçalves AG, Noseda MD, Duarte MER, Murakami FS, Ducatti DRB. Semi-synthesis of N-alkyl-kappa-carrageenan derivatives and evaluation of their antibacterial activity. Carbohydr Res 2021; 499:108234. [PMID: 33450478 DOI: 10.1016/j.carres.2021.108234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/07/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
In this article, we describe the semi-synthesis of N-alkyl-kappa-carrageenan derivatives and their antibacterial activity against Staphylococcus aureus (ATCC 6538), Escherichia coli (ATCC 8739), and Pseudomonas aeruginosa (ATCC 9027). Kappa-carrageenan was submitted to partial acid hydrolysis promoting the selective cleavage of α-glycosidic bonds involving 3,6-anhydro-α-D-Galp units, giving rise to reducing low-molecular weight polysaccharide fragments, which were reacted with alkylamines of varying chain lengths by reductive amination. The carrageenan derivatives were characterized by HPSEC-MALLS-RID and 1D and 2D 1H and 13C NMR spectroscopy. The antibacterial activity of N-alkyl-kappa-carrageenan derivatives was compared with N-alkyl-(1-deoxylactitol-1-yl)-amines using a microdilution test, which indicated that inhibitory activity was dependent on the degree of substitution by hydrophobic groups at the polysaccharide structure. Comparing the effect of different N-alkyl chains, those with longer chains showed higher activity.
Collapse
Affiliation(s)
- Edson Hipólito Júnior
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil
| | - Alan G Gonçalves
- Departamento de Farmácia, Universidade Federal Do Paraná, Av. Lothário Meissner, 3400, Jardim Botânico, Curitiba, Brazil
| | - Miguel D Noseda
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil
| | - Maria Eugênia R Duarte
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil
| | - Fábio S Murakami
- Departamento de Farmácia, Universidade Federal Do Paraná, Av. Lothário Meissner, 3400, Jardim Botânico, Curitiba, Brazil
| | - Diogo R B Ducatti
- Programa de Pós-Graduação Em Ciências-Bioquímica, Universidade Federal Do Paraná, Centro Politécnico, Curitiba, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal Do Paraná, Centro Politécnico, CEP 81-531-990, PO Box 19046, Curitiba, Brazil.
| |
Collapse
|
22
|
Mingxue B, Chaolumen B, Asai D, Takemura H, Miyazaki K, Yoshida T. Role of a long-chain alkyl group in sulfated alkyl oligosaccharides with high anti-HIV activity revealed by SPR and DLS. Carbohydr Polym 2020; 245:116518. [PMID: 32718624 DOI: 10.1016/j.carbpol.2020.116518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 10/24/2022]
Abstract
Although a long-chain alkyl group in sulfated oligosaccharides can enhance the anti-HIV activity, the exact mechanism is unclear. To elucidate the role of the long-chain alkyl group, its interaction with a liposome (100 nm) as a HIV model was investigated by surface plasmon resonance and dynamic light scattering. The newly synthesized sulfated 1-(decadecyl-1, 2, 3-triazole)-1-deoxy- maltoheptaoside bearing the long-chain alkyl group was found to interact with the liposome. The particle size increased and the ζ potential was negative, indicating that the sulfated alkyl maltoheptaoside was attached to the liposome by the long-chain alkyl group and the fixed sulfated maltoheptaoside moiety was covered on the liposome. Thus, the long-chain alkyl group penetrates and is fixed into the lipid bilayer of HIV and the sulfated maltoheptaose moiety with negatively charged sulfate groups was electrostatically interacted with HIV gp120 molecule with positively charged amino acids to achieve the inhibition of HIV infection.
Collapse
Affiliation(s)
- Bai Mingxue
- College of Pharmacy, Inner Mongolia Medical University, Hohhot 010110, China
| | - Bai Chaolumen
- College of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot 010022, China
| | - Daisuke Asai
- Department of Microbiology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Hiromu Takemura
- Department of Microbiology, St Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki 216-8511, Japan
| | - Kensuke Miyazaki
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan
| | - Takashi Yoshida
- Department of Bio and Environmental Chemistry, Kitami Institute of Technology, 165 Koen-cho, Kitami 090-8507, Japan.
| |
Collapse
|
23
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
24
|
Anticoagulant dialyzer with enhanced Ca2+ chelation and hydrophilicity for heparin free hemodialysis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
25
|
Hossain A, Dave D, Shahidi F. Northern Sea Cucumber ( Cucumaria frondosa): A Potential Candidate for Functional Food, Nutraceutical, and Pharmaceutical Sector. Mar Drugs 2020; 18:md18050274. [PMID: 32455954 PMCID: PMC7281287 DOI: 10.3390/md18050274] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/30/2022] Open
Abstract
Sea cucumber (Cucumaria frondosa) is the most abundant and widely distributed species in the cold waters of North Atlantic Ocean. C. frondosa contains a wide range of bioactive compounds, mainly collagen, cerebrosides, glycosaminoglycan, chondroitin sulfate, saponins, phenols, and mucopolysaccharides, which demonstrate unique biological and pharmacological properties. In particular, the body wall of this marine invertebrate is the major edible part and contains most of the active constituents, mainly polysaccharides and collagen, which exhibit numerous biological activities, including anticancer, anti-hypertensive, anti-angiogenic, anti-inflammatory, antidiabetic, anti-coagulation, antimicrobial, antioxidation, and anti- osteoclastogenic properties. In particular, triterpene glycosides (frondoside A and other) are the most researched group of compounds due to their potential anticancer activity. This review summarizes the latest information on C. frondosa, mainly geographical distribution, landings specific to Canadian coastlines, processing, commercial products, trade market, bioactive compounds, and potential health benefits in the context of functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
| | - Deepika Dave
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Marine Bioprocessing Facility, Centre of Aquaculture and Seafood Development, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John’s, NL A1C 5R3, Canada
- Correspondence: (D.D.); (F.S.)
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada;
- Correspondence: (D.D.); (F.S.)
| |
Collapse
|
26
|
Sampaio TBP, Costa BB, Moreira TA, Cabral LM, Silva LCRP, Mourão PAS, Vilanova E, Cinelli LP. Insights on chemical-biological correlations learned from investigations on the sulfated galactan from the marine alga Bothryocladia occidentalis. Int J Biol Macromol 2020; 158:471-476. [PMID: 32376249 DOI: 10.1016/j.ijbiomac.2020.04.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 11/25/2022]
Abstract
Marine organisms have been proven to be a valuable source of bioactive compounds. Among them, we highlight the sulfated galactans (SGs) from seaweeds, which besides being massively exploited as industrial thickening and gelling agents (agarans and carrageenans), have also shown promising pharmacological properties. Investigations on the non-agaran/-carrageenan SG from the red algae Bothryocladia occidentalis (SGBo) have demonstrated clear correlations between physical-chemical features and biological activities. SGBo is composed of 2,3-disulfated (~33%) or 2-sulfated (33%) α-D-galactose linked to non- or 2-sulfated β-D-galactose repetitive disaccharide units. The notable serpin-dependent/-independent anticoagulant activity of SGBo (~130 international units [IU]/mg) is higher than those of other SGs containing less 2,3-disulfated α-D-galactose units and their low-molecular-weight derivatives, and thus is directly correlated to its high molecular mass (>200 kDa) and sulfation pattern. Although SGBo has antithrombotic efficacy equivalent to heparin and decreased bleeding potential at low-doses, high-doses substantially increase thrombus formation in animal models. Such an odd dose-dependent dual antithrombotic/prothrombotic activity has been attributed to the ability of SGBo to activate factor XII. In addition to anticoagulant properties, SGBo also exerts antimalarial, antileishmanial and antiophidic activities, and, therefore, has a remarkable potential for the research and development of novel drugs.
Collapse
Affiliation(s)
- Thamiris B P Sampaio
- Laboratório Integrado de Prospecção em Produtos Bioativos, Campus Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil
| | - Bianca B Costa
- Laboratório Integrado de Prospecção em Produtos Bioativos, Campus Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil
| | - Thamyris A Moreira
- Laboratório Integrado de Prospecção em Produtos Bioativos, Campus Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil
| | - Lucio M Cabral
- Laboratório de Tecnologia Industrial Farmacêutica, Departamento de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Luiz C R P Silva
- Laboratório de Tecnologia Industrial Farmacêutica, Departamento de Medicamentos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-599, Brazil
| | - Paulo A S Mourão
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil
| | - Eduardo Vilanova
- Laboratório de Tecido Conjuntivo, Instituto de Bioquímica Médica Leopoldo de Meis and Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-913, Brazil.
| | - Leonardo P Cinelli
- Laboratório Integrado de Prospecção em Produtos Bioativos, Campus Professor Aloisio Teixeira, Universidade Federal do Rio de Janeiro, Macaé 27930-560, Brazil.
| |
Collapse
|
27
|
|
28
|
Liu Y, Han Q, Li T, Hua J, Liu F, Li Q, Deng G. Heparin reduced dialysis through a facile anti-coagulant coating on flat and hollow fiber membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
29
|
Ganapathy S, Lingappa S, Naidu K, Selvaraj U, Ramachandiran S, Ponnusamy S, Somasundaram ST. Isolation and Bioactive Potential of Fucoidan from Marine Macroalgae
Turbinaria conoides. ChemistrySelect 2019. [DOI: 10.1002/slct.201903548] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sivaranjani Ganapathy
- Centre of Advanced Study in Marine BiologyFaculty of Marine SciencesAnnamalai University Parangipettai - 608502, Tamil Nadu India
| | - Sivakumar Lingappa
- Centre of Advanced Study in Marine BiologyFaculty of Marine SciencesAnnamalai University Parangipettai - 608502, Tamil Nadu India
| | - Kavitha Naidu
- Centre of Advanced Study in Marine BiologyFaculty of Marine SciencesAnnamalai University Parangipettai - 608502, Tamil Nadu India
| | - Uthra Selvaraj
- Centre of Advanced Study in Marine BiologyFaculty of Marine SciencesAnnamalai University Parangipettai - 608502, Tamil Nadu India
| | - Sivaramakrishnan Ramachandiran
- Centre of Advanced Study in Marine BiologyFaculty of Marine SciencesAnnamalai University Parangipettai - 608502, Tamil Nadu India
| | - Shanmugam Ponnusamy
- Organic and Bioorganic Chemistry DivisionCSIR - Central Leather Research Institute Chennai- 600020, Tamil Nadu India
| | | |
Collapse
|
30
|
dos Santos-Fidencio GC, Gonçalves AG, Noseda MD, Duarte MER, Ducatti DR. Effects of carboxyl group on the anticoagulant activity of oxidized carrageenans. Carbohydr Polym 2019; 214:286-293. [DOI: 10.1016/j.carbpol.2019.03.057] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/18/2023]
|
31
|
Adrien A, Bonnet A, Dufour D, Baudouin S, Maugard T, Bridiau N. Anticoagulant Activity of Sulfated Ulvan Isolated from the Green Macroalga Ulva rigida. Mar Drugs 2019; 17:E291. [PMID: 31091758 PMCID: PMC6562387 DOI: 10.3390/md17050291] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
(1) Background: Brown and red algal sulfated polysaccharides have been widely described as anticoagulant agents. However, data on green algae, especially on the Ulva genus, are limited. This study aimed at isolating ulvan from the green macroalga Ulva rigida using an acid- and solvent-free procedure, and investigating the effect of sulfate content on the anticoagulant activity of this polysaccharide. (2) Methods: The obtained ulvan fraction was chemically sulfated, leading to a doubling of the polysaccharide sulfate content in a second ulvan fraction. The potential anticoagulant activity of both ulvan fractions was then assessed using different assays, targeting the intrinsic and/or common (activated partial thromboplastin time), extrinsic (prothrombin time), and common (thrombin time) pathways, and the specific antithrombin-dependent pathway (anti-Xa and anti-IIa), of the coagulation cascade. Furthermore, their anticoagulant properties were compared to those of commercial anticoagulants: heparin and Lovenox®. (3) Results: The anticoagulant activity of the chemically-sulfated ulvan fraction was stronger than that of Lovenox® against both the intrinsic and extrinsic coagulation pathways. (4) Conclusion: The chemically-sulfated ulvan fraction could be a very interesting alternative to heparins, with different targets and a high anticoagulant activity.
Collapse
Affiliation(s)
- Amandine Adrien
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), La Rochelle Université, UMR CNRS 7266 LIENSs, Avenue Michel Crépeau, 17042 La Rochelle, France.
- SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 La Rochelle, France.
| | - Antoine Bonnet
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), La Rochelle Université, UMR CNRS 7266 LIENSs, Avenue Michel Crépeau, 17042 La Rochelle, France.
| | - Delphine Dufour
- SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 La Rochelle, France.
| | - Stanislas Baudouin
- SEPROSYS, Séparations, Procédés, Systèmes, 12 Rue Marie-Aline Dusseau, 17000 La Rochelle, France.
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), La Rochelle Université, UMR CNRS 7266 LIENSs, Avenue Michel Crépeau, 17042 La Rochelle, France.
| | - Nicolas Bridiau
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), La Rochelle Université, UMR CNRS 7266 LIENSs, Avenue Michel Crépeau, 17042 La Rochelle, France.
| |
Collapse
|
32
|
Antithrombotics from the Sea: Polysaccharides and Beyond. Mar Drugs 2019; 17:md17030170. [PMID: 30884850 PMCID: PMC6471875 DOI: 10.3390/md17030170] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/13/2019] [Indexed: 12/21/2022] Open
Abstract
Marine organisms exhibit some advantages as a renewable source of potential drugs, far beyond chemotherapics. Particularly, the number of marine natural products with antithrombotic activity has increased in the last few years, and reports show a wide diversity in scaffolds, beyond the polysaccharide framework. While there are several reviews highlighting the anticoagulant and antithrombotic activities of marine-derived sulfated polysaccharides, reports including other molecules are sparse. Therefore, the present paper provides an update of the recent progress in marine-derived sulfated polysaccharides and quotes other scaffolds that are being considered for investigation due to their antithrombotic effect.
Collapse
|
33
|
Groult H, Cousin R, Chot-Plassot C, Maura M, Bridiau N, Piot JM, Maugard T, Fruitier-Arnaudin I. λ-Carrageenan Oligosaccharides of Distinct Anti-Heparanase and Anticoagulant Activities Inhibit MDA-MB-231 Breast Cancer Cell Migration. Mar Drugs 2019; 17:md17030140. [PMID: 30818840 PMCID: PMC6471403 DOI: 10.3390/md17030140] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 01/19/2023] Open
Abstract
In tumor development, the degradation of heparan sulfate (HS) by heparanase (HPSE) is associated with cell-surface and extracellular matrix remodeling as well as the release of HS-bound signaling molecules, allowing cancer cell migration, invasion and angiogenesis. Because of their structural similarity with HS, sulfated polysaccharides are considered a promising source of molecules to control these activities. In this study, we used a depolymerisation method for producing λ-carrageenan oligosaccharides (λ-CO), with progressive desulfation over time. These were then used to investigate the influence of polymeric chain length and degree of sulfation (DS) on their anti-HPSE activity. The effects of these two features on λ-CO anticoagulant properties were also investigated to eliminate a potential limitation on the use of a candidate λ-CO as a chemotherapeutic agent. HPSE inhibition was mainly related to the DS of λ-CO, however this correlation was not complete. On the other hand, both chain length and DS modulated λ-CO activity for factor Xa and thrombin IIa inhibition, two enzymes that are involved in the coagulation cascade, and different mechanisms of inhibition were observed. A λ-carrageenan oligosaccharide of 5.9 KDa was identified as a suitable anticancer candidate because it displayed one of the lowest anticoagulant properties among the λ-CO produced, while showing a remarkable inhibitory effect on MDA-MB-231 breast cancer cell migration.
Collapse
Affiliation(s)
- Hugo Groult
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Rémi Cousin
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Caroline Chot-Plassot
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Maheva Maura
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Nicolas Bridiau
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Jean-Marie Piot
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Thierry Maugard
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| | - Ingrid Fruitier-Arnaudin
- Equipe BCBS (Biotechnologies et Chimie des Bioressources pour la Santé), Université de La Rochelle, UMR CNRS 7266 LIENSs, 17000 La Rochelle, France.
| |
Collapse
|
34
|
Marine Polysaccharides: Biomedical and Tissue Engineering Applications. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2019. [DOI: 10.1007/978-981-13-8855-2_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
35
|
Souissi N, Boughriba S, Abdelhedi O, Hamdi M, Jridi M, Li S, Nasri M. Extraction, structural characterization, and thermal and biomedical properties of sulfated polysaccharides from razor clam Solen marginatus. RSC Adv 2019; 9:11538-11551. [PMID: 35520239 PMCID: PMC9063433 DOI: 10.1039/c9ra00959k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/24/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, the antioxidant, antibacterial and anticoagulant activities of sulfated polysaccharides extracted from Solen marginatus flesh were investigated via physicochemical characterization of the crude polysaccharide SM-CP and its deproteinized fraction (SM-DP); their total sugar contents were 47.15% and 66.01%. The results obtained via molecular weight evaluation showed that SM-CP mainly had a high molecular weight (1075 kDa), whereas SM-DP had a lower molecular weight (almost 237.9 kDa); in addition, thermal analysis (differential scanning calorimetry and thermogravimetry) was conducted; the results indicated that SM-CP was thermally more stable as its degradation temperature was 307 °C, whereas SM-DP was thermally less stable, with the degradation temperature of 288 °C. Moreover, the results obtained via the investigation of biological properties revealed that the extracted polysaccharides exhibited strong antioxidant and anticoagulant activities. Subsequently, SM-CP was fractionated using the DEAE-cellulose column. The peak (FII) eluted at high NaCl concentrations indicated highest anticoagulant activity as designated by the prolongation of the activated partial thromboplastin time (over 120 s), prothrombin time (28 s) and low level of fibrinogen (0.7 g l−1). The overall data demonstrated the significant therapeutic potential of the polysaccharides extracted from razor clam flesh. In this study, some biological activities of sulfated polysaccharides extracted from Solen marginatus flesh were investigated via physicochemical characterization of the crude polysaccharide SM-CP and its deproteinized fraction SM-DP.![]()
Collapse
Affiliation(s)
- Nabil Souissi
- Laboratoire de Biodiversité Marine
- Institut National des Sciences et Technologies de la Mer
- Centre de Sfax
- Sfax
- Tunisia
| | - Soumaya Boughriba
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Ola Abdelhedi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Marwa Hamdi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Mourad Jridi
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| | - Suming Li
- Institut Européen des Membranes
- UMR CNRS 5635
- Université de Montpellier
- 34095 Montpellier Cedex 5
- France
| | - Moncef Nasri
- Laboratoire de Génie Enzymatique et de Microbiologie
- Université de Sfax
- Ecole Nationale d’Ingénieurs de Sfax
- B. P. 1173-3038 Sfax
- Tunisia
| |
Collapse
|
36
|
Anticoagulant Properties of a Green Algal Rhamnan-type Sulfated Polysaccharide and Its Low-molecular-weight Fragments Prepared by Mild Acid Degradation. Mar Drugs 2018; 16:md16110445. [PMID: 30424528 PMCID: PMC6266706 DOI: 10.3390/md16110445] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022] Open
Abstract
The active sulfated polysaccharide from seaweed possesses important pharmaceutical and biomedical potential. In the study, Monostroma sulfated polysaccharide (MSP) was obtained from Monostroma angicava, and the low-molecular-weight fragments of MSP (MSP-Fs: MSP-F1–MSP-F6) were prepared by controlled acid degradation. The molecular weights of MSP and MSP-F1–MSP-F6 were 335 kDa, 240 kDa, 90 kDa, 40 kDa, 24 kDa, 12 kDa, and 6.8 kDa, respectively. The polysaccharides were sulfated rhamnans that consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ units with partial sulfation at C-2 of →3)-α-l-Rhap-(1→ and C-3 of →2)-α-l-Rhap-(1→. Anticoagulant properties in vitro of MSP and MSP-F1–MSP-F6 were evaluated by studying the activated partial thromboplastin time, thrombin time, and prothrombin time. Anticoagulant activities in vivo of MSP and MSP-F4 were further evaluated; their fibrin(ogen)olytic activities in vivo and thrombolytic properties in vitro were also assessed by D-dimer, fibrin degradation products, plasminogen activator inhibitior-1, and clot lytic rate assays. The results showed that MSP and MSP-F1–MSP-F4 with molecular weights of 24–240 kDa had strong anticoagulant activities. A decrease in the molecular weight of MSP-Fs was accompanied by a decrease in the anticoagulant activity, and higher anticoagulant activity requires a molecular weight of over 12 kDa. MSP and MSP-F4 possessed strong anticoagulant activities in vivo, as well as high fibrin(ogen)olytic and thrombolytic activities. MSP and MSP-F4 have potential as drug or helpful food supplements for human health.
Collapse
|
37
|
Liu X, Wang S, Cao S, He X, Qin L, He M, Yang Y, Hao J, Mao W. Structural Characteristics and Anticoagulant Property In Vitro and In Vivo of a Seaweed Sulfated Rhamnan. Mar Drugs 2018; 16:md16070243. [PMID: 30037033 PMCID: PMC6070894 DOI: 10.3390/md16070243] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/02/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Great diversity and metabolite complexity of seaweeds offer a unique and exclusive source of renewable drug molecules. Polysaccharide from seaweed has potential as a promising candidate for marine drug development. In the present study, seaweed polysaccharide (SPm) was isolated from Monostroma angicava, the polymeric repeat units and anticoagulant property in vitro and in vivo of SPm were investigated. SPm was a sulfated polysaccharide which was mainly constituted by 3-linked, 2-linked-α-l-rhamnose residues with partially sulfate groups at C-2 of 3-linked α-l-rhamnose residues and C-3 of 2-linked α-l-rhamnose residues. Small amounts of xylose and glucuronic acid exist in the forms of β-d-Xylp(4SO4)-(1→ and β-d-GlcA-(1→. SPm effectively prolonged clotting time as evaluated by the activated partial thromboplastin time and thrombin time assays, and exhibited strong anticoagulant activity in vitro and in vivo. The fibrin(ogen)olytic and thrombolytic properties of SPm were evaluated by plasminogen activator inhibitior-1, fibrin degradation products, D-dimer and clot lytic rate assays using rats plasma, and the results showed that SPm possessed high fibrin(ogen)olytic and thrombolytic properties. These results suggested that SPm has potential as a novel anticoagulant agent.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China.
| | - Shuyao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Sujian Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Meijia He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
38
|
Khotimchenko Y. Pharmacological Potential of Sea Cucumbers. Int J Mol Sci 2018; 19:E1342. [PMID: 29724051 PMCID: PMC5983632 DOI: 10.3390/ijms19051342] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/22/2018] [Accepted: 04/24/2018] [Indexed: 12/15/2022] Open
Abstract
This review presents a detailed analysis of published research data focused on the pharmacological activity exerted by biologically active compounds isolated from sea cucumbers belonging to the class of Holothuroidea, phylum Echinodermata. The review contains descriptions of the structure, physico-chemical properties and pharmacological effects of these active substances. Particular attention is given to compounds with anticoagulant, antithrombotic, antioxidant, anticancer, anti-infectious, immune-stimulating and anti-ACE (angiotensin converting enzyme) activities as well as to the substances exerting a regulating influence on lipid and carbohydrate metabolism. All these compounds may be considered as prototypes for development of new pharmaceutical substances and medicines.
Collapse
Affiliation(s)
- Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, 8 ul. Sukhanova, Vladivostok 690950, Russia.
- National Scientific Center for Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russia.
| |
Collapse
|
39
|
The mechanisms of sulfated polysaccharide drug of propylene glycol alginate sodium sulfate (PSS) on bleeding side effect. Carbohydr Polym 2018; 194:365-374. [PMID: 29801851 DOI: 10.1016/j.carbpol.2018.04.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/06/2023]
Abstract
Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide derivative, has been used as a heparinoid drug to prevent and treat hyperlipidemia and ischemic cardio-cerebrovascular diseases in China for 30 years. But its bleeding risk should not be overlooked. Here we clarified the reasons and mechanism leading to bleeding side effect of PSS. It was found that PSS fractions with low mannuronic acid (M)/guluronic acid (G) ratio and high molecular weight (Mw) can excessively extend activated partial thromboplastin time (APTT) and thrombin time (TT), over-inhibit the thrombin (FIIa) activity mediated by anti-thrombin III (ATIII) to induce bleeding risk. In addition, the fraction of low M/G ratio can suppress platelet aggregation mediated by adenosine diphosphate (ADP) and induce platelet reduction by improving platelet antibody (PA)-IgA/G in serum and by inhibiting or damaging the bone marrow hematopoietic function. And the fraction of high Mw can restrain the reticulated platelet (RP) production, then reduce mean platelet volume (MPV) and platelet-large cell counts or ratio, and finally decrease platelet amount by inhibiting or damaging the bone marrow hematopoietic function. In brief, PSS fractions with low M/G ratio and high Mw were the main reasons to bring about bleeding by excessively suppressing coagulant factors activities and weakening platelet function. Our results suggested that it is very necessary to control the M/G ratio and the range of Mw of PSS to guarantee its safety and effectiveness in clinical.
Collapse
|
40
|
Size exclusion chromatography (SEC-HPLC) as an alternative to study thrombin inhibition. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1074-1075:34-38. [PMID: 29329093 DOI: 10.1016/j.jchromb.2017.12.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/27/2017] [Accepted: 12/29/2017] [Indexed: 11/20/2022]
Abstract
In vitro analysis of anticoagulant compounds with a potential use as antithrombotic drugs, has been traditionally performed using techniques like spectrophotometry, turbidimetry, as well as electrochemical and clinical assays. Although, these techniques have some disadvantages such as: the inability to measure the total biological activity of thrombin, interferences and, sometimes, the quantitative determination of the inhibition ratio is not accurate. In the present work, the conversion of fibrinogen to fibrin was monitored by molecular exclusion chromatography (SEC-HPLC) in three different reaction systems. An inhibition percentage of 43.19±2.02% was obtained using heparin as an anticoagulant, in addition to the determination of the percentage of heparin bonded to thrombin. This methodology has not been previously described and has high potential for the determination of anticoagulant capacity with higher precision, the determination of thrombin's total biological activity and the quantitative determination of the inhibition ratio.
Collapse
|
41
|
Sudharsan S, Giji S, Seedevi P, Vairamani S, Shanmugam A. Isolation, characterization and bioactive potential of sulfated galactans from Spyridia hypnoides (Bory) Papenfuss. Int J Biol Macromol 2017; 109:589-597. [PMID: 29273523 DOI: 10.1016/j.ijbiomac.2017.12.097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 12/16/2017] [Accepted: 12/18/2017] [Indexed: 11/26/2022]
Abstract
The sulfated galactans (SG) of mass 16 kDa was purified from S.hypnoides through anion exchange and gel permeation chromatography. The biochemical properties of SG including carbohydrate, 3,6 anhydrogalactose, sulfate, uronic acid, moisture, ash, carbon, hydrogen, nitrogen contents were estimated. In the purified SG, the presence of major sugars such as galactose and glucose were identified through HPLC and it was further structurally characterised through FT-IR and NMR spectroscopy. Anticoagulant activity of SG was estimated as 25.36 & 2.46 IU at 25 μg/ml (aPTT & PT). SG also showed potential dose dependent antioxidant activity against free radicals such as DPPH (56.41% at 2 mg/ml), hydroxyl radicals (65.58% at 3 mg/ml) and superoxide radicals (73.12% at 0.6 mg/ml). The maximum metal chelating and total antioxidant property (76.42%, 66.81%) was exhibited at 1 mg/ml. The results indicate that the SG from red seaweed represents a good source of polysaccharide with significant anticoagulant and antioxidant properties.
Collapse
Affiliation(s)
- Sadhasivam Sudharsan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India.
| | - Sadhasivam Giji
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Palaniappan Seedevi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Shanmugam Vairamani
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| | - Annaian Shanmugam
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu, India
| |
Collapse
|
42
|
Adrien A, Dufour D, Baudouin S, Maugard T, Bridiau N. Evaluation of the anticoagulant potential of polysaccharide-rich fractions extracted from macroalgae. Nat Prod Res 2017; 31:2126-2136. [PMID: 28147712 DOI: 10.1080/14786419.2017.1278595] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022]
Abstract
The aim of this study was to evaluate the potential anticoagulant activity of sulphated polysaccharide-containing extracts of six french edible marine macroalgae. Aqueous extracts of brown (Himanthalia elongata, Laminaria digitata, Ascophyllum nodosum, Fucus vesiculosus), green (Ulva lactuca) and red (Chondrus crispus) macroalgae were prepared and their biochemical properties were determined, including major biomolecules, sulphate and ash contents. The anticoagulant activity of each extract was investigated using different scales from the specific antithrombin-dependent pathway (anti-Xa and anti-IIa) to the intrinsic and/or common (Activated Partial Thromboplastin Time, APTT), extrinsic (Prothrombin Time, PT) or common (Thrombin Time, TT) anticoagulant pathways, and compared with those of commercial anticoagulants, heparin and Lovenox®. Laminaria digitata, Fucus vesiculosus and Chondrus crispus extracts showed a significant APTT anticoagulant capacity, only 5-fold lower than that of Lovenox®, which is a pure low molecular weight heparin used as an anticoagulant agent to prevent pulmonary embolism in patients undergoing surgery.
Collapse
Affiliation(s)
- Amandine Adrien
- a Département de Biotechnologies , UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Université de La Rochelle , La Rochelle , France
- b SEPROSYS, Séparations, Procédés, Systèmes , La Rochelle , France
| | - Delphine Dufour
- b SEPROSYS, Séparations, Procédés, Systèmes , La Rochelle , France
| | | | - Thierry Maugard
- a Département de Biotechnologies , UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Université de La Rochelle , La Rochelle , France
| | - Nicolas Bridiau
- a Département de Biotechnologies , UMR CNRS 7266, LIENSS, Equipe Approches Moléculaires Environnement-Santé, Université de La Rochelle , La Rochelle , France
| |
Collapse
|
43
|
Li J, Li S, Yan L, Ding T, Linhardt RJ, Yu Y, Liu X, Liu D, Ye X, Chen S. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size. Eur J Med Chem 2017; 139:191-200. [PMID: 28800457 DOI: 10.1016/j.ejmech.2017.07.065] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 01/22/2023]
Abstract
Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs.
Collapse
Affiliation(s)
- Junhui Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shan Li
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Lufeng Yan
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Tian Ding
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Robert J Linhardt
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Yanlei Yu
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Xinyue Liu
- Center for Biotechnology & Interdisciplinary Studies, Department of Chemistry & Chemical Biology, Rensselaer Polytechnic Institute, Biotechnology Center 4005, Troy, NY 12180, USA.
| | - Donghong Liu
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Xingqian Ye
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| | - Shiguo Chen
- Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Liu X, Hao J, He X, Wang S, Cao S, Qin L, Mao W. A rhamnan-type sulfated polysaccharide with novel structure from Monostroma angicava Kjellm (Chlorophyta) and its bioactivity. Carbohydr Polym 2017; 173:732-748. [PMID: 28732920 DOI: 10.1016/j.carbpol.2017.06.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/17/2017] [Accepted: 06/07/2017] [Indexed: 02/04/2023]
Abstract
A homogeneous polysaccharide was obtained from Monostroma angicava Kjellm by water extraction, preparative anion-exchange and size-exclusion chromatography. Results of chemical and spectroscopic analyses showed that the polysaccharide was a glucuronic acid-containing rhamnan-type sulfated polysaccharide. The backbone mainly consisted of →3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→ residues, partially sulfated at C-2 of →3)-α-l-Rhap-(1→ and C-3/C-4 of →2)-α-l-Rhap-(1→. The branching contained unsulfated or monosulfated 3-linked, 2-linked, 4-linked α-l-rhamnose and terminal β-d-glucuronic acid residues. The polysaccharide had strong antidiabetic activity assessed by glucose consumption, total cholesterol and triglyceride levels using human hepatocellular carcinoma (HepG2) and insulin-resistant HepG2 cells. The polysaccharide exhibited high anticoagulant property by activated partial thromboplastin time and thrombin time assays, and possessed high fibrin(ogen)olytic activity evaluated by plasminogen activator inhibitior-1, fibrin(ogen) degradation products and D-dimer levels using rats plasma. The investigation demonstrated that the polysaccharide from Monostroma angicava Kjellm was a novel sulfated rhamnan and could be a potential antidiabetic and anticoagulant polysaccharide.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jiejie Hao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sujian Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
45
|
Surayot U, You S. Structural effects of sulfated polysaccharides from Codium fragile on NK cell activation and cytotoxicity. Int J Biol Macromol 2017; 98:117-124. [PMID: 28130139 DOI: 10.1016/j.ijbiomac.2017.01.108] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
The effects of sulfates and proteins of the sulfated polysaccharide-F2 (SP-F2) from Codium fragile on the NK cell activation and cytotoxicity were systematically investigated. The SP-F2 treatment significantly increased both NK cell proliferation (129%/100μg/mL) and their potent cytotoxic effects against HeLa cells (46%). The SP-F2 treatment appeared to enhance NK cell activation through the expression of the activating receptor, NKp30; the secretion of the cytokine, IFN-γ and the release of the lysing proteins, perforin and granzyme-B. However, the treatment of the SP-F2 derivatives, deproteinated and desulfated-F2 (DP-F2 and DS-F2), markedly lowered the mRNA expression levels of IFN-γ, granzyme-B, NKp30 and FasL, suggesting that the proteins and sulfates were essential for the interaction between the SP-F2 and NK cells. The antibody neutralization test revealed that CR3 might be a critical receptor involved in SP-F2 NK cell activation.
Collapse
Affiliation(s)
- Utoomporn Surayot
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneungdaehangno, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
46
|
Li N, Liu X, He X, Wang S, Cao S, Xia Z, Xian H, Qin L, Mao W. Structure and anticoagulant property of a sulfated polysaccharide isolated from the green seaweed Monostroma angicava. Carbohydr Polym 2016; 159:195-206. [PMID: 28038749 DOI: 10.1016/j.carbpol.2016.12.013] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/01/2016] [Accepted: 12/03/2016] [Indexed: 11/20/2022]
Abstract
An anticoagulant-active polysaccharide PF2 was extracted with boiling water from the green seaweed Monostroma angicava, further purified by anion-exchange and size-exclusion chromatography. PF2 was a rhamnan-type sulfated polysaccharide with molecular weight of about 88.1kDa. Results of chemical and spectroscopic analyses demonstrated that PF2 consisted of→3)-α-l-Rhap-(1→ and →2)-α-l-Rhap-(1→residues, with partially branches at C-2 of→3)-α-l-Rhap-(1→residues. Sulfate groups were substituted at C-3 of →2)-α-l-Rhap-(1→ residues. The sulfated polysaccharide PF2 had a high anticoagulant action, and the mechanism of anticoagulant activity mediated by PF2 was mainly attributed to strong potentiation thrombin by heparin cofactor II. PF2 also exhibited weak effect on antithrombin-dependent thrombin or factor Xa inhibition. The fibrin(ogen)olytic activity and thrombolytic activity of PF2 were also evaluated. The investigation revealed that PF2 was a novel sulfated rhamnan differing from previously described sulfated polysaccharides from green seaweed and could be a potential anticoagulant polysaccharide.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Department of Food and Biochemical Engineering, Yantai Vocational College, Yantai 264670, China
| | - Xue Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaoxi He
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Shuyao Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Sujian Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zheng Xia
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Huali Xian
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ling Qin
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
47
|
Cui C, Lu J, Sun-Waterhouse D, Mu L, Sun W, Zhao M, Zhao H. Polysaccharides from Laminaria japonica: Structural characteristics and antioxidant activity. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
48
|
Kolsi RBA, Fakhfakh J, Krichen F, Jribi I, Chiarore A, Patti FP, Blecker C, Allouche N, Belghith H, Belghith K. Structural characterization and functional properties of antihypertensive Cymodocea nodosa sulfated polysaccharide. Carbohydr Polym 2016; 151:511-522. [DOI: 10.1016/j.carbpol.2016.05.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/19/2016] [Accepted: 05/27/2016] [Indexed: 01/25/2023]
|
49
|
Queiroz INL, Vilela-Silva ACES, Pomin VH. Oligosaccharides from the 3-linked 2-sulfated alpha-L-fucan and alpha-L-galactan show similar conformations but different dynamics. Glycobiology 2016; 26:1257-1264. [PMID: 27496761 DOI: 10.1093/glycob/cww080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/14/2022] Open
Abstract
Here we have performed an nuclear magnetic resonance-based study on the ring and chain conformations as well as dynamics of oligosaccharides generated by acid hydrolysis on two structurally related glycans, a 3-linked 2-sulfated alpha-L-galactan and a 3-linked 2-sulfated alpha-L-fucan. Results derived from scalar couplings have confirmed the 1C4 chair configuration to both alpha-L-fucose and alpha-L-galactose, and a similar solution 3D structure for the oligosaccharide chains of both sulfated glycans as seen on the basis of NOE patterns. Measurements of spin-relaxation rates have suggested, however, a slight difference dynamical property to these glycans. The fucose-based oligosaccharides showed an enhanced dynamical property if compared to the galactose-based oligosaccharides of same anomericity, sugar configuration, glycosidic bond and sulfation type. This distinction solely on the dynamical aspect has been driven therefore by the different sugar composition of the two studied sulfated glycans.
Collapse
Affiliation(s)
- Ismael N L Queiroz
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil.,University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| | - Ana-Cristina E S Vilela-Silva
- University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil.,Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Vitor H Pomin
- Program of Glycobiology, Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-590, Brazil .,University Hospital Clementino Fraga Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-913, Brazil
| |
Collapse
|
50
|
Zhao J, Yang J, Song S, Zhou D, Qiao W, Zhu C, Liu S, Zhu B. Anticoagulant Activity and Structural Characterization of Polysaccharide from Abalone (Haliotis discus hannai Ino) Gonad. Molecules 2016; 21:molecules21060697. [PMID: 27338320 PMCID: PMC6273724 DOI: 10.3390/molecules21060697] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 11/16/2022] Open
Abstract
In this study, we aimed at characterizing the structure and the anticoagulant activity of a polysaccharide fraction (AGP33) isolated from the gonads of Haliotis discus hannai Ino. AGP33 was extracted by enzymatic hydrolysis and purified by ion-exchange and gel-filtration chromatography. The backbone fraction of AGP33 (BAGP33), which appeared to contain of mannose, glucose and galactose, was prepared by partial acid hydrolysis. According to methylation and nuclear magnetic resonance (NMR) spectroscopy, the backbone of AGP33 was identified as mainly consisting of 1→3-linked, 1→4-linked, and 1→6-linked monosaccharides. AGP33 is a sulfated polysaccharide with sulfates occur at 3-O- and 4-O-positions. It prolonged thromboplastin time (APTT), thrombin time (TT) and prothrombin time (PT) compared to a saline control solution in a dosage-dependent manner. AGP33 exhibited an extension (p < 0.01) of APTT compared to the saline group at concentrations higher than 5 μg/mL. AGP33 exhibited higher anticoagulant activity than its desulfated product (AGP33-des) and BAGP33. The results showed that polysaccharide with higher molecular weight and sulfate content demonstrated greater anticoagulant activity.
Collapse
Affiliation(s)
- Jun Zhao
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jingfeng Yang
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| | - Shuang Song
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| | - Dayong Zhou
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| | - Weizhou Qiao
- Clinical Laboratory, Dalian Municipal Central Hospital Affiliated of Dalian Medical University, Dalian 116033, China.
| | - Ce Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| | - Shuyin Liu
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| | - Beiwei Zhu
- School of Food Science and Technology, National Engineering Research Center of Seafood, National and Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|