1
|
Laera N, Malerba P, Vacanti G, Nardin S, Pagnesi M, Nardin M. Impact of Immunity on Coronary Artery Disease: An Updated Pathogenic Interplay and Potential Therapeutic Strategies. Life (Basel) 2023; 13:2128. [PMID: 38004268 PMCID: PMC10672143 DOI: 10.3390/life13112128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death worldwide. It is a result of the buildup of atherosclerosis within the coronary arteries. The role of the immune system in CAD is complex and multifaceted. The immune system responds to damage or injury to the arterial walls by initiating an inflammatory response. However, this inflammatory response can become chronic and lead to plaque formation. Neutrophiles, macrophages, B lymphocytes, T lymphocytes, and NKT cells play a key role in immunity response, both with proatherogenic and antiatherogenic signaling pathways. Recent findings provide new roles and activities referring to endothelial cells and vascular smooth muscle cells, which help to clarify the intricate signaling crosstalk between the involved actors. Research is ongoing to explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis. This review aims to summarize the pathogenic interplay between immunity and CAD and the potential therapeutic strategies, and explore immunomodulatory therapies that target the immune system to reduce inflammation and its contribution to atherosclerosis.
Collapse
Affiliation(s)
- Nicola Laera
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Second Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Paolo Malerba
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
- Division of Medicine, Department of Medicine, ASST Spedali Civili di Montichiari, 25018 Montichiari, Italy
| | - Gaetano Vacanti
- Medical Clinic IV, Department of Cardiology, Municipal Hospital, 76133 Karlsruhe, Germany;
| | - Simone Nardin
- U.O. Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Department of Internal Medicine and Medical Sciences, School of Medicine, University of Genova, 16126 Genova, Italy
| | - Matteo Pagnesi
- Division of Cardiology, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Matteo Nardin
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20090 Milan, Italy;
- Third Medicine Division, Department of Medicine, ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| |
Collapse
|
2
|
Xu Y, Huang Y, Cheng X, Hu B, Jiang D, Wu L, Peng S, Hu J. Mechanotransductive receptor Piezo1 as a promising target in the treatment of fibrosis diseases. Front Mol Biosci 2023; 10:1270979. [PMID: 37900917 PMCID: PMC10602816 DOI: 10.3389/fmolb.2023.1270979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Fibrosis could happen in every organ, leading to organic malfunction and even organ failure, which poses a serious threat to global health. Early treatment of fibrosis has been reported to be the turning point, therefore, exploring potential correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns on in response to changes in the lipid bilayer of the plasma membrane. Piezo1 exerts multiple biological roles, including inhibition of inflammation, cytoskeletal stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune cell mechanotransduction, interestingly enough. These processes are closely associated with the development of fibrotic diseases. Recent studies have shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis. Therefore, in this paper we comprehensively describe the biology of this gene, focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists), increased intracellular calcium and mechanical stress using this gene in alleviating fibrosis.
Collapse
Affiliation(s)
- Yi Xu
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Yiqian Huang
- The Second Affiliated Hospital of Nanchang University, The Second Clinical Medical College of Nanchang University, Nanchang, China
| | - Xiaoqing Cheng
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Danling Jiang
- Department of Ultrasound Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lidong Wu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Sun Z, Zhan X. Myrrhone inhibits the progression of hepatic fibrosis by regulating the abnormal activation of hepatic stellate cells. J Biochem Mol Toxicol 2022; 36:e23177. [PMID: 35983967 DOI: 10.1002/jbt.23177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022]
Abstract
We focus on exploring the antihepatic fibrosis effect of Myrrhone (Myr), a compound extracted from myrrh, and its effective target. Mouse hepatic stellate cells (HSCs) were cultured in vitro and activated by transforming growth factor-β induction. After Myr intervention, cell viability was assessed by the Cell Counting Kit-8 assay. The α-smooth muscle actin(α-SMA) and Collagen I levels were measured by immunofluorescence, and the expressions of tumor necrosis factor-α, interleukin-6, and matrix metalloproteinase-9 were examined by enzyme-linked immunosorbent assay, and the p-Smad3 protein level in HSCs was determined by Western Blot. Small molecule-protein docking and pull-down experiments were conducted to validate the binding capacity between Nard and Smad3. In animal experiments, a mouse model of hepatic fibrosis was established with carbon tetrachloride. Myr was administered by gavage daily to determine the serum alanine aminotransferase and aspartate transaminase levels. The severity of hepatic fibrosis was evaluated by Masson staining, the α-SMA and Collagen I expressions were measured by immunohistochemistry, and the histopathological changes were examined by Sirius red and hematoxylin and eosin staining. Myr suppressed the abnormal activation of HSCs, inhibited the cell viability, downregulated the α-SMA and Collagen I, and inhibited the p-Smad3 expression. After silencing Smad3, the effect of Myr was inhibited. Molecular docking and pull-down experiments revealed the presence of a targeted binding relationship between Myr and Smad3. In mouse experiments, Myr could inhibit hepatic fibrosis. This study discovers that Myr can affect the phosphorylation of Smad3, and inhibit the activation of HSCs and the progression of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhangchi Sun
- Pharmacy Department, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Xiaolan Zhan
- Pharmacy Department, Zhejiang Rongjun Hospital, Jiaxing, China
| |
Collapse
|
4
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
5
|
Chen J, Chang R. Association of TGF-β Canonical Signaling-Related Core Genes With Aortic Aneurysms and Aortic Dissections. Front Pharmacol 2022; 13:888563. [PMID: 35517795 PMCID: PMC9065418 DOI: 10.3389/fphar.2022.888563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/04/2022] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling is essential for the maintenance of the normal structure and function of the aorta. It includes SMAD-dependent canonical pathways and noncanonical signaling pathways. Accumulated genetic evidence has shown that TGF-β canonical signaling-related genes have key roles in aortic aneurysms (AAs) and aortic dissections and many gene mutations have been identified in patients, such as those for transforming growth factor-beta receptor one TGFBR1, TGFBR2, SMAD2, SMAD3, SMAD4, and SMAD6. Aortic specimens from patients with these mutations often show paradoxically enhanced TGF-β signaling. Some hypotheses have been proposed and new AA models in mice have been constructed to reveal new mechanisms, but the role of TGF-β signaling in AAs is controversial. In this review, we focus mainly on the role of canonical signaling-related core genes in diseases of the aorta, as well as recent advances in gene-mutation detection, animal models, and in vitro studies.
Collapse
Affiliation(s)
- Jicheng Chen
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| | - Rong Chang
- Department of Vasculocardiology, Shenzhen Longhua District Central Hospital, Guangdong Medical University, Shenzhen, China
| |
Collapse
|
6
|
Yurdagul A. Crosstalk Between Macrophages and Vascular Smooth Muscle Cells in Atherosclerotic Plaque Stability. Arterioscler Thromb Vasc Biol 2022; 42:372-380. [PMID: 35172605 PMCID: PMC8957544 DOI: 10.1161/atvbaha.121.316233] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Most acute cardiovascular events are due to plaque rupture, with atheromas containing large necrotic cores and thin fibrous caps being more susceptible to rupture and lesions with small necrotic cores and thick fibrous caps being more protected from rupture. Atherosclerotic plaques are comprised various extracellular matrix proteins, modified lipoprotein particles, and cells of different origins, that is, vascular cells and leukocytes. Although much has been revealed about the mechanisms that lead to plaque instability, several key areas remain incompletely understood. This In-Focus Review highlights processes related to cellular crosstalk and the role of the tissue microenvironment in determining cell function and plaque stability. Recent advances highlight critical underpinnings of atherosclerotic plaque vulnerability, particularly impairments in the ability of macrophages to clear dead cells and phenotypic switching of vascular smooth muscle cells. However, these processes do not occur in isolation, as crosstalk between macrophages and vascular smooth muscle cells and interactions with their surrounding microenvironment play a significant role in determining plaque stability. Understanding these aspects of cellular crosstalk within an atherosclerotic plaque may shed light on how to modify cell behavior and identify novel approaches to transform rupture-prone atheromas into stable lesions.
Collapse
Affiliation(s)
- Arif Yurdagul
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences, Shreveport
| |
Collapse
|
7
|
Dhaouadi N, Nehme A, Faour WH, Feugier P, Cerutti C, Kacem K, Eid AH, Li JY, Zibara K. Transforming growth factor-β1 inhibits interleukin-1β-induced expression of inflammatory genes and Cathepsin S activity in human vascular smooth muscle cells. Fundam Clin Pharmacol 2021; 35:979-988. [PMID: 33683760 DOI: 10.1111/fcp.12666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/28/2021] [Accepted: 03/04/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE AND DESIGN This study investigated the opposite mechanisms by which IL-1β and TGF-β1 modulated the inflammatory and migratory phenotypes in cultured human intimal vascular smooth muscle cells vSMCs. MATERIALS AND TREATMENT Primary human vSMCs, obtained from twelve hypertensive patients who underwent carotid endarterectomy, were incubated for 24 hours with either 40 pM TGF-β1, or 1 nmol/L IL-1β, or their combination in presence or absence of anti-TGF-β neutralizing antibody. METHODS The expression levels of matrix metalloproteases and their inhibitors, and the elastolytic enzyme cathepsin S (CTSS) and its inhibitor cystatin C were evaluated with RT-PCR. CTSS activity was measured by fluorometry. RESULTS TGF-β1 reversed IL-1β-induced expression of iNOS, CXCL6, IL1R1, MMP12, and CTSS, while upregulated TIMP2 expression. Furthermore, anti-TGF-β neutralizing antibody abrogated TGF-β effects. Combination with IL-1β and TGF-β1 induced the expression of IL1α, IL1β, IL1R1, and CTSS, but suppressed CST3 expression. CTSS expression in the combination treatment was higher than that of cells treated with anti-TGF-β antibodies alone. Moreover, IL-1β-induced CTSS enzymatic activity was reduced when human vSMCs were co-treated with TGF-β, whereas this reduction was abrogated by anti-TGF-β neutralizing antibody. CONCLUSION TGF-β1 abrogated IL-1β-induced expression of inflammatory genes and elastolytic activity in cultured human vSMCs. Thus, TGF-β1 can play a crucial role in impairing IL-1β-induced vascular inflammation and damage involved in the etiology of cardiovascular diseases.
Collapse
Affiliation(s)
- Nedra Dhaouadi
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France.,Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Ali Nehme
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France.,PRASE, Lebanese University, Beirut, Lebanon
| | - Wissam H Faour
- Gilbert & Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Patrick Feugier
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Catherine Cerutti
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Kamel Kacem
- Unité de Physiologie Intégrée, Laboratoire de Pathologies Vasculaires, Faculté des Sciences de Bizerte, Université de Carthage, Bizerte, Tunisia
| | - Ali H Eid
- Biomedical and Pharmaceutical Research Unit and Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jacques-Yuan Li
- EA 4173 Génomique Fonctionnelle de l'Hypertension Artérielle, Université Lyon 1, Lyon, France
| | - Kazem Zibara
- PRASE, Lebanese University, Beirut, Lebanon.,Department of Biology, Faculty of sciences - I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
8
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States,Corresponding author. Rutgers Institute for Translational Medicine & Science, Rm# 4276, 89 French Street, New Brunswick, NJ08901, United States.
| |
Collapse
|
9
|
Cabrié A, Guittet O, Tomasini R, Vincendeau P, Lepoivre M. Crosstalk between TAp73 and TGF-β in fibroblast regulates iNOS expression and Nrf2-dependent gene transcription. Free Radic Biol Med 2019; 134:617-629. [PMID: 30753884 DOI: 10.1016/j.freeradbiomed.2019.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/30/2022]
Abstract
Inducible nitric oxide synthase (iNOS) activity produces anti-tumor and anti-microbial effects but also promotes carcinogenesis through mutagenic, immunosuppressive and pro-angiogenic mechanisms. The tumor suppressor p53 contributes to iNOS downregulation by repressing induction of the NOS2 gene encoding iNOS, thereby limiting NO-mediated DNA damages. This study focuses on the role of the p53 homologue TAp73 in the regulation of iNOS expression. Induction of iNOS by immunological stimuli was upregulated in immortalized MEFs from TAp73-/- mice, compared to TAp73+/+ fibroblasts. This overexpression resulted both from increased levels of NOS2 transcripts, and from an increased stability of the protein. Limitation of iNOS expression by TAp73 in wild-type cells is alleviated by TGF-β receptor I inhibitors, suggesting a cooperation between TAp73 and TGF-β in suppression of iNOS expression. Accordingly, downregulation of iNOS expression by exogenous TGF-β1 was impaired in TAp73-/- fibroblasts. Increased NO production in these cells resulted in a stronger, NO-dependent induction of Nrf2 target genes, indicating that the Nrf2-dependent adaptive response to nitrosative stress in fibroblasts is proportional to iNOS activity. NO-dependent induction of two HIF-1 target genes was also stronger in TAp73-deficient cells. Finally, the antimicrobial action of NO against Trypanosoma musculi parasites was enhanced in TAp73-/- fibroblasts. Our data indicate that tumor suppressive TAp73 isoforms cooperate with TGF-β to control iNOS expression, NO-dependent adaptive responses to stress, and pathogen proliferation.
Collapse
Affiliation(s)
- Aimeric Cabrié
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Olivier Guittet
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France
| | - Richard Tomasini
- CRCM, INSERM, U1068, F-13288, Marseille Cedex 9, France; Paoli-Calmettes Institute, F-13288, Marseille Cedex 9, France; Aix-Marseille University, UM 105, F-13288, Marseille Cedex 9, France; CNRS, UMR7258, F-13288, Marseille Cedex 9, France
| | - Philippe Vincendeau
- Laboratoire de Parasitologie, UMR177 IRD/CIRAD "INTERTRYP", Université Bordeaux, F-33000, Bordeaux, France
| | - Michel Lepoivre
- Institute for Integrative Biology of the Cell (I2BC) CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, UMR9198, F-91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
10
|
Transforming growth factor β (TGFβ) and related molecules in chronic kidney disease (CKD). Clin Sci (Lond) 2019; 133:287-313. [DOI: 10.1042/cs20180438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/04/2018] [Accepted: 01/07/2019] [Indexed: 02/07/2023]
|
11
|
Schütz E, Bochenek ML, Riehl DR, Bosmann M, Münzel T, Konstantinides S, Schäfer K. Absence of transforming growth factor beta 1 in murine platelets reduces neointima formation without affecting arterial thrombosis. Thromb Haemost 2018; 117:1782-1797. [PMID: 28726976 DOI: 10.1160/th17-02-0112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Platelet degranulation at the site of vascular injury prevents bleeding and may affect the chronic vascular wound healing response. Transforming Growth Factor (TGF)-β1 is a major component of platelet α-granules known to accumulating in thrombi. It was our aim to determine the role of TGFβ1 released from activated platelets for neointima formation following arterial injury and thrombosis. Mice with platelet-specific deletion of TGFβ1 (Plt.TGFβ-KO) underwent carotid artery injury. Immunoassays confirmed the absence of active TGFβ1 in platelet releasates and plasma of Plt.TGFβ-KO mice. Whole blood analyses revealed similar haematological parameters, and tail cut assays excluded major bleeding defects. Platelet aggregation and the acute thrombotic response to injury in vivo did not differ between Plt.TGFβ-KO and Plt.TGFβ-WT mice. Morphometric analysis revealed that absence of TGFβ1 in platelets resulted in a significant reduction of neointima formation with lower neointima area, intima-to-media ratio, and lumen stenosis. On the other hand, the media area was enlarged in mice lacking TGFβ1 in platelets and contained increased amounts of proteases involved in latent TGFβ activation, including MMP2, MMP9 and thrombin. Significantly increased numbers of proliferating cells and cells expressing the mesenchymal markers platelet-derived growth factor receptor-β or fibroblast-specific protein-1, and the macrophage antigen F4/80, were observed in the media of Plt.TGFβ-KO mice, whereas the medial smooth muscle-actin-immunopositive area and collagen content did not differ between genotypes. Our findings support an essential role for platelet-derived TGFβ1 for the vascular remodelling response to arterial injury, apparently independent from the role of platelets in thrombosis or haemostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katrin Schäfer
- Katrin Schäfer, MD, FESC, FAHA, Center for Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany, Tel.: +49 6131 17 4221, Fax: +49 6131 17 8047, E-mail:
| |
Collapse
|
12
|
Wu J, Jackson-Weaver O, Xu J. The TGFβ superfamily in cardiac dysfunction. Acta Biochim Biophys Sin (Shanghai) 2018; 50:323-335. [PMID: 29462261 DOI: 10.1093/abbs/gmy007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/23/2022] Open
Abstract
TGFβ superfamily includes the transforming growth factor βs (TGFβs), bone morphogenetic proteins (BMPs), growth and differentiation factors (GDFs) and Activin/Inhibin families of ligands. Among the 33 members of TGFβ superfamily ligands, many act on multiple types of cells within the heart, including cardiomyocytes, cardiac fibroblasts/myofibroblasts, coronary endothelial cells, smooth muscle cells, and immune cells (e.g. monocytes/macrophages and neutrophils). In this review, we highlight recent discoveries on TGFβs, BMPs, and GDFs in different cardiac residential cellular components, in association with functional impacts in heart development, injury repair, and dysfunction. Specifically, we will review the roles of TGFβs, BMPs, and GDFs in cardiac hypertrophy, fibrosis, contractility, metabolism, angiogenesis, and regeneration.
Collapse
Affiliation(s)
- Jian Wu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Olan Jackson-Weaver
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| | - Jian Xu
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
13
|
Cao J, Wang M, Wang T. CCAAT enhancer binding protein β has a crucial role in regulating breast cancer cell growth via activating the TGF-β-Smad3 signaling pathway. Exp Ther Med 2017; 14:1554-1560. [PMID: 28810620 PMCID: PMC5525940 DOI: 10.3892/etm.2017.4659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 03/17/2017] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to examine the effect of CCAAT enhancer binding protein β (C/EBPβ) on human breast cancer cells. The plasmids pCDH-C/EBPβ and pLKO.1-shC/EBPβ were constructed and were infected into MDA-MB-468 cells, to provide C/EBPβ overexpressing and C/EBPβ knockdown cells, respectively. Cell viability, cell cycle and apoptosis were observed by MTT assay and flow cytometry analysis. Protein expression levels of C/EBPβ, TGF-β1, P-Smad3 and Smad3 were detected by western blotting. MTT assay showed that the absorbance of MDA-MB-468 cells in the pCDH-C/EBPβ group was increased, whereas that in the pLKO.1-shC/EBPβ group was decreased, compared with the respective control at 48 and 72 h. Flow cytometric analysis indicated that the percentage of cells in the G2 phase was significantly increased in the pCDH-C/EBPβ group (P<0.05) and decreased in the pLKO.1-shC/EBPβ group compared with the respective control group. The proportion of apoptotic cells was decreased in the pCDH-C/EBPβ group and increased in the pLKO.1-shC/EBPβ group compared with the controls. The scratch-wound assay revealed that MDA-MB-468 cells depleted of C/EBPβ exhibited reduced motility compared with the control cells. Moreover, western blotting demonstrated that pCDH-C/EBPβ increased transforming growth factor (TGF)β1 and P-Smad3 protein expression and decreased Smad3 protein expression, whereas pLKO.1-shC/EBPβ decreased TGFβ1 and P-Smad3 protein expression and increased Smad3 protein expression levels. The present study demonstrated that C/EBPβ has a crucial role in regulating breast cancer cell growth through activating TGF-β-Smad3 signaling. These findings suggest that C/EBPβ may be a potential therapeutic target for breast cancer; however, in vivo studies are required to confirm this.
Collapse
Affiliation(s)
- Jing Cao
- Department of Pharmacy, Linyi People's Hospital of Shandong University, Linyi, Shandong 276000, P.R. China
| | - Meng Wang
- Department of Opthalmology, Linyi People's Hospital of Shandong University, Linyi, Shandong 276000, P.R. China
| | - Tao Wang
- Department of Opthalmology, Linyi People's Hospital of Shandong University, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
14
|
Sandner P, Stasch JP. Anti-fibrotic effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Respir Med 2016; 122 Suppl 1:S1-S9. [PMID: 28341058 DOI: 10.1016/j.rmed.2016.08.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/18/2016] [Accepted: 08/23/2016] [Indexed: 11/25/2022]
Abstract
It is now well established that the NO-sGC-cGMP signal transduction system mediates many different physiological functions in almost every conceivable organ system; this has been best characterized in the cardiovascular system where NO-driven cGMP production exerts a plethora of cytoprotective and anti-atherogenic effects, including dilatation, inhibition of vascular smooth muscle proliferation, blockade of leukocyte recruitment, and anti-platelet activity. Accordingly, dysfunctional NO-sGC-cGMP mediated signaling is perceived as the underlying pathophysiological cause of many cardiovascular and non-cardiovascular diseases. Due to the fundamental role of sGC in the signaling pathways triggered by NO, novel sGC 'modulators' have been identified that directly stimulate both heme-containing as well as heme-free sGC, the so-called 'sGC activators' and 'sGC stimulators', respectively. The beneficial effects of this new family of sGC 'modulators' extend beyond vasodilation, and their potential in other cardiovascular diseases aside from pulmonary arterial hypertension is promising. In animal models of hypertension and heart failure, reno-protective effects, attenuated cardiac fibrosis, and attenuated hypertrophy independent of hemodynamic effects have been shown. During recent years it has become obvious that cGMP increase by sGC modulators exerts direct antifibrotic efficacy in various organs as well as the skin. This review will provide an overview of the preclinical in vitro and in vivo studies for different fibrotic disorders including chronic renal, cardiac, liver, and lung fibrosis, as well as sclerosis and wound healing. Moreover, this review provides evidence for a new mode of action of sGC 'modulators' and its implication for clinical investigations in the treatment of fibrotic disorders such as pulmonary fibrosis and skin fibrosis.
Collapse
Affiliation(s)
- Peter Sandner
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacology, Hannover Medical School, Hannover, Germany.
| | - Johannes Peter Stasch
- Bayer HealthCare AG, Drug Discovery, Wuppertal, Germany; Institute of Pharmacy, University of Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
15
|
Wojcik M, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak LA. Increased expression of immune-related genes in leukocytes of patients with diagnosed gestational diabetes mellitus (GDM). Exp Biol Med (Maywood) 2015; 241:457-65. [PMID: 26568332 DOI: 10.1177/1535370215615699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Compelling evidence indicates that the immune system is linked to metabolism in gestational diabetes mellitus (GDM), but factors participating in these processes still are awaiting identification. Inducible nitric oxide synthase, encoded by the NOS2 gene, and surfactant protein D, encoded by the SFTPD gene, have been implicated in diabetes. We investigated NOS2 and SFTPD mRNA levels in leukocytes obtained from 125 pregnant women with (n = 87) or without (control group; n = 38) GDM, and, in turn, correlated their expression with clinical parameters of subjects. Leukocytes were isolated from the blood of pregnant women and NOS2 and SFTPD expression in these cells was determined by quantitative real time PCR (qRT-PCR). Univariate correlation analyses were performed to assess an association between leukocyte NOS2 and SFTPD expression and clinical characteristics of patients. qRT-PCR experiments disclosed significantly increased leukocyte NOS2 and SFTPD mRNA levels in hyperglycemic GDM patients (P < 0.05). In the entire study group, there were significant positive associations of leukocyte NOS2 and SFTPD mRNAs with C-reactive protein. Additionally, transcript level of SFTPD also correlated positively with fasting glycemia and insulin resistance. This study demonstrates that an impaired glucose metabolism in GDM may be predominant predictor of leukocyte NOS2 and SFTPD overexpression in diabetic patients. Furthermore, alterations in the expression of these genes are associated with glucose metabolism dysfunction and/or inflammation during pregnancy. In addition, these findings support the utilization of leukocytes as good experimental model to study a relationship between immune-related genes and metabolic changes in women with GDM, as well as to assess the potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz, Poland Diabetological Medical Center "OmniMed", 93-338 Lodz, Poland
| | - Katarzyna Cypryk
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz, Poland Diabetological Medical Center "OmniMed", 93-338 Lodz, Poland
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
16
|
Li Y, Song D, Song Y, Zhao L, Wolkow N, Tobias JW, Song W, Dunaief JL. Iron-induced Local Complement Component 3 (C3) Up-regulation via Non-canonical Transforming Growth Factor (TGF)-β Signaling in the Retinal Pigment Epithelium. J Biol Chem 2015; 290:11918-34. [PMID: 25802332 PMCID: PMC4424331 DOI: 10.1074/jbc.m115.645903] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 03/20/2015] [Indexed: 12/26/2022] Open
Abstract
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation.
Collapse
Affiliation(s)
- Yafeng Li
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Delu Song
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Ying Song
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Liangliang Zhao
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | - Natalie Wolkow
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute
| | | | - Wenchao Song
- Department of Pharmacology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Joshua L Dunaief
- From the F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute,
| |
Collapse
|
17
|
Ackers-Johnson M, Talasila A, Sage AP, Long X, Bot I, Morrell NW, Bennett MR, Miano JM, Sinha S. Myocardin regulates vascular smooth muscle cell inflammatory activation and disease. Arterioscler Thromb Vasc Biol 2015; 35:817-28. [PMID: 25614278 DOI: 10.1161/atvbaha.114.305218] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Atherosclerosis, the cause of 50% of deaths in westernized societies, is widely regarded as a chronic vascular inflammatory disease. Vascular smooth muscle cell (VSMC) inflammatory activation in response to local proinflammatory stimuli contributes to disease progression and is a pervasive feature in developing atherosclerotic plaques. Therefore, it is of considerable therapeutic importance to identify mechanisms that regulate the VSMC inflammatory response. APPROACH AND RESULTS We report that myocardin, a powerful myogenic transcriptional coactivator, negatively regulates VSMC inflammatory activation and vascular disease. Myocardin levels are reduced during atherosclerosis, in association with phenotypic switching of smooth muscle cells. Myocardin deficiency accelerates atherogenesis in hypercholesterolemic apolipoprotein E(-/-) mice. Conversely, increased myocardin expression potently abrogates the induction of an array of inflammatory cytokines, chemokines, and adhesion molecules in VSMCs. Expression of myocardin in VSMCs reduces lipid uptake, macrophage interaction, chemotaxis, and macrophage-endothelial tethering in vitro, and attenuates monocyte accumulation within developing lesions in vivo. These results demonstrate that endogenous levels of myocardin are a critical regulator of vessel inflammation. CONCLUSIONS We propose myocardin as a guardian of the contractile, noninflammatory VSMC phenotype, with loss of myocardin representing a critical permissive step in the process of phenotypic transition and inflammatory activation, at the onset of vascular disease.
Collapse
Affiliation(s)
- Matthew Ackers-Johnson
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Amarnath Talasila
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Andrew P Sage
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Xiaochun Long
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Ilze Bot
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Nicholas W Morrell
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Martin R Bennett
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Joseph M Miano
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.)
| | - Sanjay Sinha
- From the Department of Medicine, Addenbrooke's Centre for Clinical Investigation, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom (M.A.-J., A.T., A.P.S., N.W.M., M.R.B., S.S.); Department of Medicine, AAB Cardiovascular Research Institute, West Henrietta, NY (X.L., J.M.M.); and Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands (I.B.).
| |
Collapse
|
18
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
19
|
Balamurugan K, Sterneck E. The many faces of C/EBPδ and their relevance for inflammation and cancer. Int J Biol Sci 2013; 9:917-33. [PMID: 24155666 PMCID: PMC3805898 DOI: 10.7150/ijbs.7224] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022] Open
Abstract
The CCAAT/enhancer binding protein delta (CEBPD, C/EBPδ) is a transcription factor that modulates many biological processes including cell differentiation, motility, growth arrest, proliferation, and cell death. The diversity of C/EBPδ's functions depends in part on the cell type and cellular context and can have opposing outcomes. For example, C/EBPδ promotes inflammatory signaling, but it can also inhibit pro-inflammatory pathways, and in a mouse model of mammary tumorigenesis, C/EBPδ reduces tumor incidence but promotes tumor metastasis. This review highlights the multifaceted nature of C/EBPδ's functions, with an emphasis on pathways that are relevant for cancer and inflammation, and illustrates how C/EBPδ emerged from the shadow of its family members as a fascinating “jack of all trades.” Our current knowledge on C/EBPδ indicates that, rather than being essential for a specific cellular process, C/EBPδ helps to interpret a variety of cues in a cell-type and context-dependent manner, to adjust cellular functions to specific situations. Therefore, insights into the roles and mechanisms of C/EBPδ signaling can lead to a better understanding of how the integration of different signaling pathways dictates normal and pathological cell functions and physiology.
Collapse
Affiliation(s)
- Kuppusamy Balamurugan
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD-21702-1201, U.S.A
| | | |
Collapse
|
20
|
Tan CK, Tan EH, Luo B, Huang CL, Loo JS, Choong C, Tan NS. SMAD3 deficiency promotes inflammatory aortic aneurysms in angiotensin II-infused mice via activation of iNOS. J Am Heart Assoc 2013; 2:e000269. [PMID: 23782924 PMCID: PMC3698794 DOI: 10.1161/jaha.113.000269] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Ninety percent of the patients carrying distinct SMAD3 mutations develop aortic aneurysms and dissections, called aneurysms‐osteoarthritis syndrome (AOS). However, the etiology and molecular events downstream of SMAD3 leading to the pathogenesis of aortic aneurysms in these patients still remain elusive. Therefore, we aimed to investigate the vascular phenotypes of SMAD3‐knockout mice. Methods and Results We have shown that angiotensin II–induced vascular inflammation, but not hypertension, leads to aortic aneurysms and dissections, ultimately causing aortic rupture and death in mice. Lipopolysaccharide‐triggered inflammation confirmed that enhanced aortic macrophage recruitment was essential for aneurysm formation in angiotensin II–infused SMAD3‐knockout mice. In contrast, phenylephrine‐triggered hypertension alone was insufficient to induce aortic aneurysms in mice. Using uniaxial tensile and contractility tests, we showed that SMAD3 deficiency resulted in defective aortic biomechanics and physiological functions, which caused weakening of the aortic wall and predisposed the mice to aortic aneurysms. Chromatin immunoprecipitation (ChIP) and re‐ChIP assays revealed that the underlying mechanism involved aberrant upregulation of inducible nitric oxide synthase (iNOS)–derived nitric oxide production and activation of elastolytic matrix metalloproteinases 2 and 9. Administration of clodronate‐liposomes and iNOS inhibitor completely abrogated these aortic conditions, thereby identifying iNOS‐mediated nitric oxide secretion from macrophages as the downstream event of SMAD3 that drives this severe pathology. Conclusions Macrophage depletion and iNOS antagonism represent 2 promising approaches for preventing aortic aneurysms related to SMAD3 mutations and merit further investigation as adjunctive strategies for the life‐threatening manifestations of AOS.
Collapse
Affiliation(s)
- Chek K Tan
- School of Biological Sciences, Nanyang Technological University, Nanyang, Singapore
| | | | | | | | | | | | | |
Collapse
|
21
|
Redondo S, Navarro-Dorado J, Ramajo M, Medina Ú, Tejerina T. The complex regulation of TGF-β in cardiovascular disease. Vasc Health Risk Manag 2012; 8:533-9. [PMID: 23028232 PMCID: PMC3446857 DOI: 10.2147/vhrm.s28041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transforming growth factor β (TGF-β1) is a pleiotropic cytokine with many and complex effects in cell and tissue physiology. This is made possible by a very complex and interwoven signaling system, whose regulation continues to be the focus of a growing line of research. This complex regulation translates to a key role in cardiovascular physiology, hemostasis, and the blood–vessel interface. In accordance with this, the TGF-β1 pathway appears to be deregulated in related disorders, such as atherosclerotic vascular disease and myeloproliferative syndromes. It is expected that the growing amount of experimental and clinical research will yield medical advances in the applications of knowledge of the TGF-β1 pathway to diagnosis and therapeutics.
Collapse
Affiliation(s)
- Santiago Redondo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
22
|
Davies RJ, Holmes AM, Deighton J, Long L, Yang X, Barker L, Walker C, Budd DC, Upton PD, Morrell NW. BMP type II receptor deficiency confers resistance to growth inhibition by TGF-β in pulmonary artery smooth muscle cells: role of proinflammatory cytokines. Am J Physiol Lung Cell Mol Physiol 2012; 302:L604-15. [PMID: 22227206 DOI: 10.1152/ajplung.00309.2011] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the bone morphogenetic protein (BMP) type II receptor (BMPR-II) underlie most cases of heritable pulmonary arterial hypertension (HPAH) and a significant proportion of sporadic cases. Pulmonary artery smooth muscle cells (PASMCs) from patients with pulmonary arterial hypertension (PAH) not only exhibit attenuated growth suppression by BMPs, but an abnormal mitogenic response to transforming growth factor (TGF)-β1. We sought to define the mechanism underlying this loss of the antiproliferative effects of TGF-β1 in BMPR-II-deficient PASMCs. The effect of TGF-β1 on PASMC proliferation was characterized in three different models of BMPR-II dysfunction: 1) HPAH PASMCs, 2) Bmpr2(+/-) mouse PASMCs, and 3) control human PASMCs transfected with BMPR-II small interfering RNA. BMPR-II reduction consistently conferred insensitivity to growth inhibition by TGF-β1. This was not associated with altered canonical TGF-β1/Smad signaling but was associated with a secreted factor. Microarray analysis revealed that the transcriptional responses to TGF-β1 differed between control and HPAH PASMCs, particularly regarding genes associated with interleukins and inflammation. HPAH PASMCs exhibited enhanced IL-6 and IL-8 induction by TGF-β1, an effect reversed by NF-κB inhibition. Moreover, neutralizing antibodies to IL-6 or IL-8 restored the antiproliferative effect of TGF-β1 in HPAH PASMCs. This study establishes that BMPR-II deficiency leads to failed growth suppression by TGF-β1 in PASMCs. This effect is Smad-independent but is associated with inappropriately altered NF-κB signaling and enhanced induction of IL-6 and IL-8 expression. Our study provides a rationale to test anti-interleukin therapies as an intervention to neutralize this inappropriate response and restore the antiproliferative response to TGF-β1.
Collapse
Affiliation(s)
- Rachel J Davies
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Toma I, McCaffrey TA. Transforming growth factor-β and atherosclerosis: interwoven atherogenic and atheroprotective aspects. Cell Tissue Res 2012; 347:155-75. [PMID: 21626289 PMCID: PMC4915479 DOI: 10.1007/s00441-011-1189-3] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 05/06/2011] [Indexed: 12/15/2022]
Abstract
Age-related progression of cardiovascular disease is by far the largest health problem in the US and involves vascular damage, progressive vascular fibrosis and the accumulation of lipid-rich atherosclerotic lesions. Advanced lesions can restrict flow to key organs and can trigger occlusive thrombosis resulting in a stroke or myocardial infarction. Transforming growth factor-beta (TGF-β) is a major orchestrator of the fibroproliferative response to tissue damage. In the early stages of repair, TGF-β is released from platelets and activated from matrix reservoirs; it then stimulates the chemotaxis of repair cells, modulates immunity and inflammation and induces matrix production. At later stages, it negatively regulates fibrosis through its strong antiproliferative and apoptotic effects on fibrotic cells. In advanced lesions, TGF-β might be important in arterial calcification, commonly referred to as "hardening of the arteries". Because TGF-β can signal through multiple pathways, namely the SMADs, a MAPK pathway and the Rho/ROCK pathways, selective defects in TGF-β signaling can disrupt otherwise coordinated pathways of tissue regeneration. TGF-β is known to control cell proliferation, cell migration, matrix synthesis, wound contraction, calcification and the immune response, all being major components of the atherosclerotic process. However, many of the effects of TGF-β are essential to normal tissue repair and thus, TGF-β is often thought to be "atheroprotective". The present review attempts to parse systematically the known effects of TGF-β on both the major risk factors for atherosclerosis and to isolate the role of TGF-β in the many component pathways involved in atherogenesis.
Collapse
Affiliation(s)
- Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, 2300 I Street NW. Ross Hall 443, Washington DC 20037, USA
| |
Collapse
|
24
|
Rivera LB, Brekken RA. SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-β1 activity. ACTA ACUST UNITED AC 2011; 193:1305-19. [PMID: 21708981 PMCID: PMC3216331 DOI: 10.1083/jcb.201011143] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SPARC prevents endoglin association with αV integrin, which blocks the activation of TGF-β signaling and promotes pericyte migration to nascent blood vessels. Pericytes migrate to nascent vessels and promote vessel stability. Recently, we reported that secreted protein acidic and rich in cysteine (SPARC)–deficient mice exhibited decreased pericyte-associated vessels in an orthotopic model of pancreatic cancer, suggesting that SPARC influences pericyte behavior. In this paper, we report that SPARC promotes pericyte migration by regulating the function of endoglin, a TGF-β1 accessory receptor. Primary SPARC-deficient pericytes exhibited increased basal TGF-β1 activity and decreased cell migration, an effect blocked by inhibiting TGF-β1. Furthermore, TGF-β–mediated inhibition of pericyte migration was dependent on endoglin and αV integrin. SPARC interacted directly with endoglin and reduced endoglin interaction with αV integrin. SPARC deficiency resulted in endoglin-mediated blockade of pericyte migration, aberrant association of endoglin in focal complexes, an increase in αV integrins present in endoglin immunoprecipitates, and enhanced αV integrin–mediated activation of TGF-β. These results demonstrate that SPARC promotes pericyte migration by diminishing TGF-β activity and identify a novel function for endoglin in controlling pericyte behavior.
Collapse
Affiliation(s)
- Lee B Rivera
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
25
|
Huang WY, Xie W, Guo X, Li F, Jose PA, Chen SY. Smad2 and PEA3 cooperatively regulate transcription of response gene to complement 32 in TGF-β-induced smooth muscle cell differentiation of neural crest cells. Am J Physiol Cell Physiol 2011; 301:C499-506. [PMID: 21613609 PMCID: PMC3154553 DOI: 10.1152/ajpcell.00480.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 05/20/2011] [Indexed: 11/22/2022]
Abstract
Response gene to complement 32 (RGC-32) is activated by transforming growth factor- β (TGF-β) and plays an important role in smooth muscle cell (SMC) differentiation from neural crest Monc-1 cells. The molecular mechanism governing TGF-β activation of RGC-32, however, remains to be determined. The present studies indicate that TGF-β regulates RGC-32 gene transcription. Sequence analysis revealed a Smad binding element (SBE) located in the region from -1344 to -1337 bp upstream of the transcription start site of RGC-32 gene. A polyomavirus enhancer activator (PEA3) binding site is adjacent to the SBE. Mutation at either SBE or PEA3 site significantly inhibited RGC-32 promoter activity. Mutations at both sites completely abolished TGF-β-induced promoter activity. Biochemically, TGF-β stimulated recruitment of Smad2, Smad4, and PEA3 to the RGC-32 promoter, as revealed by gel shift and chromatin immunoprecipitation analyses. Functionally, Smad2, but not Smad3, activated RGC-32 promoter. PEA3 appeared to enhance Smad2 activity. In agreement with their function, Smad2, but not Smad3, physically interacted with PEA3. In TGF-β-induced SMC differentiation of Monc-1 cells, knockdown of Smad2 by short hairpin RNA resulted in downregulation of RGC-32 and SMC marker genes. The downregulation of SMC markers, however, was rescued by exogenously introduced RGC-32. These results demonstrate that Smad2 regulation of RGC-32 transcription is essential for SMC differentiation from neural crest cells.
Collapse
Affiliation(s)
- Wen-Yan Huang
- Department of Physiology and Pharmacology, The University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
26
|
Li X, Johnson KR, Bryant M, Elkahloun AG, Amar M, Remaley AT, De Silva R, Hallenbeck JM, Quandt JA. Intranasal delivery of E-selectin reduces atherosclerosis in ApoE-/- mice. PLoS One 2011; 6:e20620. [PMID: 21701687 PMCID: PMC3119064 DOI: 10.1371/journal.pone.0020620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/09/2011] [Indexed: 11/20/2022] Open
Abstract
Mucosal tolerance to E-selectin prevents stroke and protects against ischemic brain damage in experimental models of stroke studying healthy animals or spontaneously hypertensive stroke-prone rats. A reduction in inflammation and neural damage was associated with immunomodulatory or “tolerogenic” responses to E-selectin. The purpose of the current study on ApoE deficient mice is to assess the capacity of this stroke prevention innovation to influence atherosclerosis, a major underlying cause for ischemic strokes; human E-selectin is being translated as a potential clinical prevention strategy for secondary stroke. Female ApoE−/− mice received intranasal delivery of E-selectin prior to (pre-tolerization) or simultaneously with initiation of a high-fat diet. After 7 weeks on the high-fat diet, lipid lesions in the aorta, serum triglycerides, and total cholesterol were assessed as markers of atherosclerosis development. We also assessed E-selectin-specific antibodies and cytokine responses, in addition to inflammatory responses that included macrophage infiltration of the aorta and altered gene expression profiles of aortic mRNA. Intranasal delivery of E-selectin prior to initiation of high-fat chow decreased atherosclerosis, serum total cholesterol, and expression of the leucocyte chemoattractant CCL21 that is typically upregulated in atherosclerotic lesions of ApoE−/− mice. This response was associated with the induction of E-selectin specific cells producing the immunomodulatory cytokine IL-10 and immunosuppressive antibody isotypes. Intranasal administration of E-selectin generates E-selectin specific immune responses that are immunosuppressive in nature and can ameliorate atherosclerosis, a major risk factor for ischemic stroke. These results provide additional preclinical support for the potential of induction of mucosal tolerance to E-selectin to prevent stroke.
Collapse
Affiliation(s)
- Xinhui Li
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kory R. Johnson
- Bioinformatics Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark Bryant
- Division of Veterinary Resources, Office of Research Support, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Abdel G. Elkahloun
- Division of Intramural Research Programs Microarray Core Facility, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Marcelo Amar
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Alan T. Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ranil De Silva
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John M. Hallenbeck
- Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAQ); (JMH)
| | - Jacqueline A. Quandt
- Neuroimmunology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAQ); (JMH)
| |
Collapse
|
27
|
Tamai R, Sugiyama A, Kiyoura Y. Alendronate regulates cytokine production induced by lipid A through nuclear factor-κB and Smad3 activation in human gingival fibroblasts. J Periodontal Res 2011; 46:13-20. [DOI: 10.1111/j.1600-0765.2010.01302.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Zakharova MY, Meyer RM, Brandy KR, Datta YH, Joseph MS, Schreiner PJ, Rao GH, Divani AA. Risk Factors for Heart Attack, Stroke, and Venous Thrombosis Associated With Hormonal Contraceptive Use. Clin Appl Thromb Hemost 2010; 17:323-31. [DOI: 10.1177/1076029610368670] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The search for a safe and effective method of contraception has been ongoing for centuries. During the last century, a variety of hormonal contraceptives, including combined hormonal oral contraceptives (COCs), have been introduced into the market. COCs have evolved through modifications of different hormonal components to minimize the risk of thrombotic events including stroke, myocardial infarction, and venous thrombosis. The evolution of COC development led to the reduction in the estrogen dose, in an attempt to lower the risk of vascular diseases. Although the risk of thrombotic events due to COC use has been substantially reduced since their inception, the quest for developing safer methods of birth control continues. It is of great interest to study coagulation effects of newer COCs, as well as progestin only, as rigorously as older COCs.
Collapse
Affiliation(s)
- Marina Y. Zakharova
- Minnesota Stroke Initiative, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Rachel M. Meyer
- Minnesota Stroke Initiative, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Kyle R. Brandy
- Minnesota Stroke Initiative, Department of Neurology, University of Minnesota, Minneapolis, MN, USA
| | - Yvonne H. Datta
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Marilyn S. Joseph
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN, USA
| | - Pamela J. Schreiner
- Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA
| | - Gundu H. Rao
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Afshin A. Divani
- Minnesota Stroke Initiative, Department of Neurology, University of Minnesota, Minneapolis, MN, USA,
| |
Collapse
|
29
|
Li HX, Han M, Bernier M, Zheng B, Sun SG, Su M, Zhang R, Fu JR, Wen JK. Krüppel-like factor 4 promotes differentiation by transforming growth factor-beta receptor-mediated Smad and p38 MAPK signaling in vascular smooth muscle cells. J Biol Chem 2010; 285:17846-56. [PMID: 20375011 DOI: 10.1074/jbc.m109.076992] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
KLF4 (Krüppel-like factor 4) has been implicated in vascular smooth muscle cell (VSMC) differentiation induced by transforming growth factor beta (TGF-beta). However, the role of KLF4 and mechanism of KLF4 actions in regulating TGF-beta signaling in VSMCs remain unclear. In this study, we showed that TGF-beta1 inhibited cell cycle progression and induced differentiation in cultured rat VSMCs. This activity of TGF-beta1 was accompanied by up-regulation of KLF4, with concomitant increase in TbetaRI (TGF-beta type I receptor) expression. KLF4 was found to transduce TGF-beta1 signals via phosphorylation-mediated activation of Smad2, Smad3, and p38 MAPK. The activation of both pathways, in turn, increased the phosphorylation of KLF4, which enabled the formation of KLF4-Smad2 complex in response to TGF-beta1. Chromatin immunoprecipitation studies and oligonucleotide pull-down assays showed the direct binding of KLF4 to the KLF4-binding sites 2 and 3 of the TbetaRI promoter and the recruitment of Smad2 to the Smad-responsive region. Formation of a stable KLF4-Smad2 complex in the promoter's Smad-responsive region mediated cooperative TbetaRI promoter transcription in response to TGF-beta1. These results suggest that KLF4-dependent regulation of Smad and p38 MAPK signaling via TbetaRI requires prior phosphorylation of KLF4 through Smad and p38 MAPK pathways. This study demonstrates a novel mechanism by which TGF-beta1 regulates VSMC differentiation.
Collapse
Affiliation(s)
- Hui-xuan Li
- Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, China Ministry of Education, Hebei Medical University, No 361, Zhongshan East Road, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tamai R, Sugiyama A, Kiyoura Y. Effects of Nitrogen-containing Bisphosphonates on the Response of Human Peripheral Blood Mononuclear Cells and Gingival Fibroblasts to Bacterial Components. J Oral Biosci 2010. [DOI: 10.1016/s1349-0079(10)80031-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Bachiller PR, Nakanishi H, Roberts JD. Transforming growth factor-beta modulates the expression of nitric oxide signaling enzymes in the injured developing lung and in vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2009; 298:L324-34. [PMID: 20023176 DOI: 10.1152/ajplung.00181.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nitric oxide signaling has an important role in regulating pulmonary development and function. Expression of soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase I (PKGI), both critical mediators of nitric oxide (NO) signaling, is diminished in the injured newborn lung through unknown mechanisms. Recent studies suggest that excessive transforming growth factor-beta (TGF-beta) activity inhibits injured newborn lung development. To explore mechanisms that regulate pulmonary NO signaling, we tested whether TGF-beta decreases sGC and PKGI expression in the injured developing lung and pulmonary vascular smooth muscle cells (SMC). We found that chronic oxygen-induced lung injury decreased pulmonary sGCalpha(1) and PKGI immunoreactivity in mouse pups and that exposure to a TGF-beta-neutralizing antibody prevented this reduction of sGC and PKGI protein expression. In addition, TGF-beta(1) decreased expression of NO signaling enzymes in freshly isolated pulmonary microvascular SMC/myofibroblasts, suggesting that TGF-beta has a direct role in modulating NO signaling in the pup lung. Moreover, TGF-beta(1) decreased sGC and PKGI expression in pulmonary artery and aortic SMC from adult rats and mice, suggesting a general role for TGF-beta in modulating NO signaling in vascular SMC. Although other cytokines decrease sGC mRNA stability, TGF-beta did not modulate sGCalpha(1) or PKGIbeta mRNA turnover in vascular SMC. These studies indicate for the first time that TGF-beta decreases NO signaling enzyme expression in the injured developing lung and pulmonary vascular SMC. Moreover, they suggest that TGF-beta-neutralizing molecules might counteract the effects of injury on NO signaling in the newborn lung.
Collapse
Affiliation(s)
- Patricia R Bachiller
- Cardiovascular Research Center, Massachusetts General Hospital-East, 149 13th St., Charlestown, MA 02129, USA
| | | | | |
Collapse
|
32
|
Xu S, Liu AC, Gotlieb AI. Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 2009; 19:236-47. [PMID: 19942455 DOI: 10.1016/j.carpath.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic stenosis and atherosclerosis have been investigated separately in experimental in vitro and in vivo studies and in clinical studies. The similarities identified in both diseases suggest that similar pathogenic pathways are involved in both conditions. Most current therapeutic studies are focused on statins. The evidence suggests that statin effects on valves may, in large part, be independent of the lipid lowering effects of the drug. There are several molecules that play significant regulatory roles on the development and progression of valve sclerosis and calcification and on growth and complications of atherosclerotic plaques. The purpose of this review is to discuss the pathogenic features of the two conditions, highlight the important similarities, and then review the data that suggest that transforming growth factor-beta may play a key regulatory role in both diseases and that this is worthy of study as a potential therapeutic target for both conditions.
Collapse
Affiliation(s)
- Songyi Xu
- Toronto General Research Institute and Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|
33
|
Chou PC, Chuang TF, Jan TR, Gion HC, Huang YC, Lei HJ, Chen WY, Chu RM. Effects of immunotherapy of IL-6 and IL-15 plasmids on transmissible venereal tumor in beagles. Vet Immunol Immunopathol 2009; 130:25-34. [DOI: 10.1016/j.vetimm.2009.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 01/06/2009] [Accepted: 01/07/2009] [Indexed: 11/15/2022]
|
34
|
Abraham S, Sweet T, Khalili K, Sawaya BE, Amini S. Evidence for activation of the TGF-beta1 promoter by C/EBPbeta and its modulation by Smads. J Interferon Cytokine Res 2009; 29:1-7. [PMID: 19014341 DOI: 10.1089/jir.2008.0036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-beta1 (TGF-beta1) is a cytokine involved in many biological events inlcuding immunosuppression, angiogenesis, cell growth, and apoptosis. Expression of TGF-beta1 at the transcriptional level is controlled by a series of ubiquitous and specialized factors whose activities can be modulated by a variety of signaling events. Here we demonstrate that activity of the TGF-beta1 promoter is increased by C/EBPbeta, a DNA-binding transcription factor whose activity can be influenced by several immunomodulators, in astrocytes and microglial cells. Interestingly, expression of Smad3 and Smad4, the downstream regulators of the TGF-beta1-signaling pathway, impairs the activity of C/EBPbeta on the TGF-beta1 promoter. Further, we demonstrate that MH2, a common domain among Smads that has protein-binding activities, interacts with C/EBPbeta and decreases its association with a region of the TGF-beta1 promoter that is responsive to C/EBPbeta activation. Interestingly, the p65 subunit of nuclear factor-kappaB (NF-kappaB), which also interacts with C/EBPbeta, cooperates with MH2 and decreased DNA-binding and transcriptional activities of C/EBPbeta on the TGF-beta1 promoter. These observations indicate that an autoregulatory mechanism, involving the MH2 domain of Smads, modulates activation of the TGF-beta1 promoter by C/EBPbeta. Further, our results show that the interplay between NF-kappaB and C/EBPbeta has an impact on the ability of C/EBPbeta to stimulate TGF-beta1 transcription, hence, suggesting that the cross-communication of signaling pathways that modulate NF-kappaB and C/EBPbeta may dictate the level of TGF-beta1 promoter activity.
Collapse
Affiliation(s)
- Selvajothi Abraham
- Department of Neuroscience, Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania 19122, USA
| | | | | | | | | |
Collapse
|
35
|
Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res 2009; 19:116-27. [PMID: 19114994 DOI: 10.1038/cr.2008.326] [Citation(s) in RCA: 432] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Transforming growth factor (TGF)-beta family members are multifunctional cytokines that elicit their effects on cells, including endothelial and mural cells, via specific type I and type II serine/threonine kinase receptors and intracellular Smad transcription factors. Knock-out mouse models for TGF-beta family signaling pathway components have revealed their critical importance in proper yolk sac angiogenesis. Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular syndromes such as hereditary hemorrhagic telangiectasia, primary pulmonary hypertension and Marfan syndrome. In this review, we present recent advances in our understanding of the role of TGF-beta receptor signaling in vascular biology and disease, and discuss how this may be applied for therapy.
Collapse
Affiliation(s)
- Marie-José Goumans
- Department of Molecular Cell Biology and Centre for Biomedical Genetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | |
Collapse
|
36
|
Bot PT, Hoefer IE, Sluijter JP, van Vliet P, Smits AM, Lebrin F, Moll F, de Vries JP, Doevendans P, Piek JJ, Pasterkamp G, Goumans MJ. Increased Expression of the Transforming Growth Factor-β Signaling Pathway, Endoglin, and Early Growth Response-1 in Stable Plaques. Stroke 2009; 40:439-47. [DOI: 10.1161/strokeaha.108.522284] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pieter T.G. Bot
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Imo E. Hoefer
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Joost P.G. Sluijter
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Patrick van Vliet
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Anke M. Smits
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Franck Lebrin
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Frans Moll
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Jean-Paul de Vries
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Pieter Doevendans
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Jan J. Piek
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Gerard Pasterkamp
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| | - Marie-José Goumans
- From the Department of Cardiology (P.T.G.B., J.J.P.), AMC Amsterdam, The Netherlands; the Laboratory of Experimental Cardiology (P.T.G.B., I.E.H., G.P.), the Department of Cardiology (J.P.G.S., P.v.V., A.M.S., P.D., M.-J.G.), and the Department of Vascular Surgery (F.M.), UMC Utrecht, Utrecht, The Netherlands; the Department of Vascular Surgery (J.-P.d.V.), St. Antonius Hospital, Nieuwegein, The Netherlands; the Interuniversity Cardiology Institute of the Netherlands (ICIN) (J.P.G.S., P.v.V.),
| |
Collapse
|
37
|
Wu WJ, Lee CF, Hsin CH, Du JY, Hsu TC, Lin TH, Yao TY, Huang CH, Lee YJ. TGF-beta inhibits prolactin-induced expression of beta-casein by a Smad3-dependent mechanism. J Cell Biochem 2008; 104:1647-59. [PMID: 18335503 DOI: 10.1002/jcb.21734] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor, affecting cell proliferation, apoptosis, and extracellular matrix homeostasis. It also plays critical roles in mammary gland development, one of which involves inhibition of the expression of milk proteins, such as beta-casein, during pregnancy. Here we further explore the underlying signaling mechanism for it. Our results show that TGF-beta suppresses prolactin-induced expression of beta-casein mRNA and protein in primary mouse mammary epithelial cells, but its effect on protein expression is more evident. We also find out that this inhibition is not due to the effect of TGF-beta on cell apoptosis. Furthermore, inhibition of TGF-beta type I receptor kinase activity by a pharmacological inhibitor SB431542 or overexpression of dominant negative Smad3 substantially restores beta-casein expression. By contrast, inhibition of p38 and Erk that are known to be activated by TGF-beta does not alleviate the inhibitory effect of TGF-beta. These results are consistent with our other observation that Smad but not MAPK pathway is activated by TGF-beta in mammary epithelial cells. Lastly, we show that prolactin-induced tyrosine phosphorylation of Jak2 and Stat5 as well as serine/threonine phosphorylation of p70S6K and S6 ribosomal protein are downregulated by TGF-beta, although the former event requires considerably long exposure to TGF-beta. We speculate that these events might be involved in repressing transcription and translation of beta-casein gene, respectively. Taken together, our results demonstrate that TGF-beta abrogates prolactin-stimulated beta-casein gene expression in mammary epithelial cells through, at least in part, a Smad3-dependent mechanism.
Collapse
Affiliation(s)
- Wen-Jun Wu
- Institute of Medical and Molecular Toxicology, Chung Shan Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsugita M, Iwasaki Y, Nishiyama M, Taguchi T, Shinahara M, Taniguchi Y, Kambayashi M, Terada Y, Hashimoto K. Differential regulation of 11β-hydroxysteroid dehydrogenase type-1 and -2 gene transcription by proinflammatory cytokines in vascular smooth muscle cells. Life Sci 2008; 83:426-32. [DOI: 10.1016/j.lfs.2008.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/21/2008] [Accepted: 07/12/2008] [Indexed: 11/26/2022]
|
39
|
Merki-Feld GS, Imthurn B, Seifert B. Effects of the progestagen-only contraceptive implant Implanon on cardiovascular risk factors. Clin Endocrinol (Oxf) 2008; 68:355-60. [PMID: 17854390 DOI: 10.1111/j.1365-2265.2007.03046.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Epidemiological studies on the cardiovascular risk of progestagen-only contraceptives are rare. With the present study we aimed to investigate the effect of the low-dose etonogestrel-releasing contraceptive implant Implanon on cardiovascular risk factors, including markers of inflammation. DESIGN Longitudinal study. SETTING Family planning centre of a University Hospital. SUBJECTS Thirty-six healthy, nonsmoking women with regular cycles (n = 18 controls without hormonal contraception; n = 18 cases requesting the insertion of Implanon. MEASUREMENTS Blood samples for the determination of C-reactive protein (CRP), nitric oxide (NO), sex hormones and plasma lipids were taken in the early follicular phase of the cycle in both groups. A second sample was taken 12 weeks after Implanon insertion or in the controls during the early follicular phase of cycle 4. RESULTS Implanon treatment caused a 36% decrease in CRP (P < 0.06) and a significant decrease in high density lipoprotein (HDL) (P < 0.007), low density lipoprotein (LDL) (P < 0.001), cholesterol (P < 0.001), testosterone (P < 0.05) and SHBG (P < 0.002). Levels of NO, oestradiol and progesterone were not affected in either group. The cholesterol/HDL ratio did not change in Implanon carriers. There was a significant correlation between the cardiovascular risk factors CRP, cholesterol/HDL ratio and NO. CONCLUSION The progestagen-only implant Implanon does not exert a negative effect on the cardiovascular risk factors CRP, cholesterol/HDL ratio and NO. These results suggest that the use of a progestagen-only contraception does not increase cardiovascular risk factors in healthy young women.
Collapse
Affiliation(s)
- Gabriele S Merki-Feld
- Clinic of Reproductive Endocrinology, Department of Gynaecology and Obstetrics, University Hospital, Zurich, Switzerland.
| | | | | |
Collapse
|
40
|
Kim HJ, Ham SA, Kim SU, Hwang JY, Kim JH, Chang KC, Yabe-Nishimura C, Kim JH, Seo HG. Transforming growth factor-beta1 is a molecular target for the peroxisome proliferator-activated receptor delta. Circ Res 2007; 102:193-200. [PMID: 18007025 DOI: 10.1161/circresaha.107.158477] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The peroxisome proliferator-activated receptor (PPAR)delta has been implicated in the pathogenesis of atherogenic disorders. However, its physiological roles and functions in vascular smooth muscle cells (VSMCs) remain relatively unclear. In the present study, we show that the gene encoding transforming growth factor (TGF)-beta1 is a PPARdelta target in VSMCs. The PPARdelta activator GW501516 upregulates TGF-beta1 expression in a dose- and time-dependent manner. This induction is attenuated significantly by the presence of small interfering RNA against PPARdelta or GW9662, an inhibitor of PPARdelta. Furthermore, activated PPARdelta induces TGF-beta1 promoter activity by binding to the direct repeat-1 response element TGF-beta1-direct repeat-1. Mutations in the 5' or 3' half-sites of the response element totally abrogate transcriptional activation and PPARdelta binding, which suggests that this site is a novel type of PPARdelta response element. In addition, ligand-activated PPARdelta attenuated the promoter activity and expression of monocyte chemoattractant protein-1 induced by interleukin-1beta. These effects were significantly reduced in the presence of small interfering RNA against PPARdelta, anti-TGF-beta1 antibody, or a TGF-beta type I receptor inhibitor. Decreased monocyte chemoattractant protein-1 expression induced by PPARdelta was mediated by the effector of TGF-beta1, Smad3. Finally, administration of GW501516 to mice upregulated TGF-beta1, whereas the expression of proinflammatory genes including monocyte chemoattractant protein-1 was significantly attenuated in the thoracic aorta. Taken together, these results demonstrate the presence of a novel TGF-beta1-mediated pathway in the antiinflammatory activities of PPARdelta.
Collapse
Affiliation(s)
- Hyo Jung Kim
- Department of Pharmacology, Gyeongsang Institute of Health Science, Gyeongsang National University School of Medicine, Jinju, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Berg DT, Gupta A, Richardson MA, O'Brien LA, Calnek D, Grinnell BW. Negative regulation of inducible nitric-oxide synthase expression mediated through transforming growth factor-beta-dependent modulation of transcription factor TCF11. J Biol Chem 2007; 282:36837-44. [PMID: 17928287 DOI: 10.1074/jbc.m706909200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inducible nitric-oxide synthase (iNOS) plays a central role in the regulation of vascular function and response to injury. A central mediator controlling iNOS expression is transforming growth factor-beta (TGF-beta), which represses its expression through a mechanism that is poorly understood. We have identified a binding site in the iNOS promoter that interacts with the nuclear heterodimer TCF11/MafG using chromatin immunoprecipitation and mutation analyses. We demonstrate that binding at this site acts to repress the induction of iNOS gene expression by cytokines. We show that this repressor is induced by TGF-beta1 and by Smad6-short, which enhances TGF-beta signaling. In contrast, the up-regulation of TCF11/MafG binding could be suppressed by overexpression of the TGF-beta inhibitor Smad7, and a small interfering RNA to TCF11 blocked the suppression of iNOS by TGF-beta. The binding of TCF11/MafG to the iNOS promoter could be enhanced by phorbol 12-myristate 13-acetate and suppressed by the protein kinase C inhibitor staurosporine. Moreover, the induction of TCF11/MafG binding by TGF-beta and Smad6-short could be blocked by staurosporine, and the effect of TGF-beta was blocked by the selective protein kinase C inhibitor calphostin C. Consistent with the in vitro data, we found suppression of TCF11 coincident with iNOS up-regulation in a rat model of endotoxemia, and we observed a highly significant negative correlation between TCF11 and nitric oxide production. Furthermore, treatment with activated protein C, a serine protease effective in septic shock, blocked the down-regulation of TCF11 and suppressed endotoxin-induced iNOS. Overall, our results demonstrate a novel mechanism by which iNOS expression is regulated in the context of inflammatory activation.
Collapse
Affiliation(s)
- David T Berg
- Division of Biotechnology Discovery Research, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, Indiana 46285-0444, USA
| | | | | | | | | | | |
Collapse
|
42
|
Vyas-Read S, Shaul PW, Yuhanna IS, Willis BC. Nitric oxide attenuates epithelial-mesenchymal transition in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L212-21. [PMID: 17496059 DOI: 10.1152/ajplung.00475.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.
Collapse
Affiliation(s)
- Shilpa Vyas-Read
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA
| | | | | | | |
Collapse
|
43
|
Yokote K, Kobayashi K, Saito Y. The role of Smad3-dependent TGF-beta signal in vascular response to injury. Trends Cardiovasc Med 2007; 16:240-5. [PMID: 16980181 DOI: 10.1016/j.tcm.2006.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/29/2022]
Abstract
Transforming growth factor (TGF)-beta is a multifunctional cytokine involved in the regulation of proliferation, differentiation, migration, and survival of many different cell types. The role of TGF-beta in atherosclerosis has been intensively studied, but the precise function of the downstream signals in this disease entity remains unclear. We recently discovered that mice lacking Smad3, a major downstream mediator of TGF-beta, show enhanced neointimal hyperplasia with decreased matrix deposition in response to vascular injury. This review summarizes the current view on involvement of TGF-beta in atherosclerotic vascular disease and discusses the role of Smad3-dependent TGF-beta signal in vascular response to injury.
Collapse
Affiliation(s)
- Koutaro Yokote
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Chiba University Hospital, Chiba, Japan.
| | | | | |
Collapse
|
44
|
Cohen TV, Kosti O, Stewart CL. The nuclear envelope protein MAN1 regulates TGFβ signaling and vasculogenesis in the embryonic yolk sac. Development 2007; 134:1385-95. [PMID: 17329363 DOI: 10.1242/dev.02816] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
MAN1 is an integral protein of the inner nuclear membrane of the nuclear envelope (NE). MAN1 interacts with SMAD transcription factors, which in turn are regulated by the Transforming growth factor beta (TGFβ) superfamily of signaling molecules. To determine the role of MAN1 in mouse development, we used a gene-trap embryonic stem cell clone to derive mice with a functional mutation in MAN1 (Man1GT/GT). Expression of Man1during early development is initially low but increases at embryonic day 9.5(E9.5). Coincident with this increase, homozygous gene-trapped Man1(Man1GT/GT) embryos die by E10.5. Examination of mutant embryos and tetraploid rescue experiments reveals that abnormal yolk-sac vascularization is the probable cause of lethality. We also established embryonic stem cell lines and their differentiated derivatives that are homozygous for the Man1GT allele. Using these lines, we show that the Man1GT allele results in increased phosphorylation, nuclear localization and elevated levels of SMAD transcriptional activity, predominantly of SMAD2/3, which are regulated by the ALK5 signaling pathway. Our studies identify a previously uncharacterized role for an integral nuclear envelope protein in the regulation of yolk-sac angiogenesis by TGFβ signaling and reveal that the NE has an essential role in regulating transcription factor activity during mouse development.
Collapse
Affiliation(s)
- Tatiana V Cohen
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick MD 21702, USA
| | | | | |
Collapse
|
45
|
LeClair RJ, Durmus T, Wang Q, Pyagay P, Terzic A, Lindner V. Cthrc1 is a novel inhibitor of transforming growth factor-beta signaling and neointimal lesion formation. Circ Res 2007; 100:826-33. [PMID: 17322174 DOI: 10.1161/01.res.0000260806.99307.72] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We identified collagen triple helix repeat containing-1 (Cthrc1) as a novel gene expressed in the adventitia and neointima on arterial injury and found that it functionally increases cell migration while reducing collagen deposition. To address the in vivo role of Cthrc1, we generated transgenic mouse lines that constitutively overexpress Cthrc1. An intercross of 2 transgenic lines produced offspring with brittle bones caused by a reduction in collagenous bone matrix. Hemizygous Cthrc1 transgenic mice developed normally but neointimal lesion formation and adventitial collagen deposition in response to carotid artery ligation were significantly reduced compared with wild-type littermates. In 75% of Cthrc1 transgenic mice, cartilaginous metaplasia of medial smooth muscle cells was observed as assessed by Alcian blue staining and expression of the chondrocyte marker collagen type II. Transforming growth factor-beta signaling was reduced in smooth muscle cells of Cthrc1 transgenic arteries, as demonstrated by reduced phospho-Smad2/3 immunoreactivity, whereas Smad signaling related to bone morphogenetic proteins was unaffected. Similarly, primary smooth muscle cells and PAC1 smooth muscle cells overexpressing Cthrc1 had reduced levels of phospho-Smad2/3 as well as procollagen. Furthermore, Cthrc1 inhibited transforming growth factor-beta-sensitive reporter constructs in smooth muscle but not endothelial cells. These data indicate that Cthrc1 is a cell-type-specific inhibitor of transforming growth factor-beta, which in turn impacts collagen type I and III deposition, neointimal formation, and dedifferentiation of smooth muscle cells.
Collapse
Affiliation(s)
- Renée J LeClair
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME 04074, USA
| | | | | | | | | | | |
Collapse
|
46
|
Borrelli V, di Marzo L, Sapienza P, Colasanti M, Moroni E, Cavallaro A. Role of platelet-derived growth factor and transforming growth factor beta1 the in the regulation of metalloproteinase expressions. Surgery 2006; 140:454-63. [PMID: 16934609 DOI: 10.1016/j.surg.2006.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 02/09/2006] [Accepted: 02/20/2006] [Indexed: 11/21/2022]
Abstract
BACKGROUND We investigated the role and influence of platelet derived growth factor (PDGF) and transforming growth factor beta1 (TGF) in the pathologic mechanism at the basis of plaque instability regulating the expression of matrix metalloproteinases (MMPs). METHODS Plaques obtained from 70 patients who underwent carotid endarterectomy were classified histologically as stable or unstable. Serum levels of PDGF and TGF were measured pre- and postoperatively. The serum activities of MMP-2 and MMP-9 were also analyzed. Human umbilical artery smooth muscle cells (HUASMCs) were stimulated in vitro with PDGF at various concentrations (20 and 50 ng/mL) and TGF (2 and 5 ng/mL) in a serum-free medium. The release of MMPs in the conditioned medium was assessed by enzyme-linked immunosorbent assay. Release of the MMPs was confirmed by Western blot analysis; their activity and expression were determined by zymography and reverse transcription-polymerase chain reaction. Specific inhibition tests were performed on HUASMCs to evaluate the role of these growth factors. RESULTS Forty-two (60%) patients had an unstable carotid plaque and 28 (40%) a stable plaque. Preoperatively, patients affected with unstable carotid plaques had higher PDGF and lower TGF plasma levels than patients with stable carotid plaques (P < .001); the levels returned to normal at 1 and 30 days postoperatively, compared with 20 non-operated healthy volunteers. Release, activity, protein level, and expression of MMPs in PDGF-stimulated HUASMCs were greater than in the controls (P < .001), whereas these values in the TGF-stimulated HUASMCs were lower (P < .001). The addition of monoclonal anti-PDGF antibodies decreased the release, activity, protein level, and expression of MMPs, whereas the addition of monoclonal anti-TGF antibodies increased the release, activity, protein level and expression of MMPs (P < .001). CONCLUSIONS TGF seems to be an important stabilizing factor and prevents plaque rupture through the decrease of MMPs.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/prevention & control
- Carotid Stenosis/metabolism
- Carotid Stenosis/pathology
- Carotid Stenosis/prevention & control
- Cells, Cultured
- Endarterectomy, Carotid
- Female
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Male
- Matrix Metalloproteinase 2/genetics
- Matrix Metalloproteinase 2/metabolism
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Middle Aged
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/analysis
- Platelet-Derived Growth Factor/physiology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Transforming Growth Factor beta/blood
- Transforming Growth Factor beta/physiology
- Transforming Growth Factor beta1
Collapse
Affiliation(s)
- Valeria Borrelli
- Department of Surgery "Pietro Valdoni", University of Rome "La Sapienza", Rome, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
Transforming growth factor-beta (TGF-beta) superfamily members, TGF-beta and bone morphogenetic proteins (BMPs), are potent regulatory cytokines with diverse functions on vascular cells. They signal through heteromeric type I and II receptor complexes activating Smad-dependent and Smad-independent signals, which regulate proliferation, differentiation, and survival. They are potent regulators of vascular development and vessel remodeling and play key roles in atherosclerosis and restenosis, regulating endothelial, smooth muscle cell, macrophage, T cell, and probably vascular calcifying cell responses. In atherosclerosis, TGF-beta regulates lesion phenotype by controlling T-cell responses and stimulating smooth muscle cells to produce collagen. It contributes to restenosis by augmenting neointimal cell proliferation and collagen accumulation. Defective TGF-beta signaling in endothelial cells attributable to mutations in endoglin or the type I receptor ALK-1 leads to hereditary hemorrhagic telangiectasia, whereas defective BMP signaling attributable to mutations in the BMP receptor II has been associated with development of primary pulmonary hypertension. The development of mouse models with either cell type-specific or general inactivation of TGF-beta/BMP signaling has started to reveal the importance of the regulatory network of TGF-beta/BMP pathways in vivo and their significance for atherosclerosis, hereditary hemorrhagic telangiectasia, and primary pulmonary hypertension. This review highlights recent findings that have advanced our understanding of the roles of TGF-beta superfamily members in regulating vascular cell responses and provides likely avenues for future research that may lead to novel pharmacological therapies for the treatment or prevention of vascular disorders.
Collapse
Affiliation(s)
- Alex Bobik
- Cell Biology Laboratory, Baker Heart Research Institute, PO Box 6492, St Kilda Rd Central, Melbourne, Victoria 8008, Australia.
| |
Collapse
|
48
|
Abstract
Atherosclerosis is a chronic disease of the arterial wall where both innate and adaptive immunoinflammatory mechanisms are involved. Inflammation is central at all stages of atherosclerosis. It is implicated in the formation of early fatty streaks, when the endothelium is activated and expresses chemokines and adhesion molecules leading to monocyte/lymphocyte recruitment and infiltration into the subendothelium. It also acts at the onset of adverse clinical vascular events, when activated cells within the plaque secrete matrix proteases that degrade extracellular matrix proteins and weaken the fibrous cap, leading to rupture and thrombus formation. Cells involved in the atherosclerotic process secrete and are activated by soluble factors, known as cytokines. Important recent advances in the comprehension of the mechanisms of atherosclerosis provided evidence that the immunoinflammatory response in atherosclerosis is modulated by regulatory pathways, in which the two anti-inflammatory cytokines interleukin-10 and transforming growth factor-β play a critical role. The purpose of this review is to bring together the current information concerning the role of cytokines in the development, progression, and complications of atherosclerosis. Specific emphasis is placed on the contribution of pro- and anti-inflammatory cytokines to pathogenic (innate and adaptive) and regulatory immunity in the context of atherosclerosis. Based on our current knowledge of the role of cytokines in atherosclerosis, we propose some novel therapeutic strategies to combat this disease. In addition, we discuss the potential of circulating cytokine levels as biomarkers of coronary artery disease.
Collapse
Affiliation(s)
- Alain Tedgui
- Institut National de la Santé et de la Recherche Médicale U. 689, Cardiovascular Research Center Lariboisiere, and University Paris 7, Paris, France.
| | | |
Collapse
|
49
|
Qiu P, Ritchie RP, Fu Z, Cao D, Cumming J, Miano JM, Wang DZ, Li HJ, Li L. Myocardin enhances Smad3-mediated transforming growth factor-beta1 signaling in a CArG box-independent manner: Smad-binding element is an important cis element for SM22alpha transcription in vivo. Circ Res 2005; 97:983-91. [PMID: 16224064 DOI: 10.1161/01.res.0000190604.90049.71] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transforming growth factor (TGF)-beta1 is an important cytokine involved in various diseases. However, the molecular mechanism whereby TGF-beta1 signaling modulates the regulatory network for smooth muscle gene transcription remains largely unknown. To address this question, we previously identified a Smad-binding element (SBE) in the SM22alpha promoter as one of the TGF-beta1 response elements. Here, we show that mutation of the SBE reduces the activation potential of a SM22alpha promoter in transgenic mice during embryogenesis. Chromatin immunoprecipitation assays reveal that TGF-beta1 induces Smad3 binding to the SM22alpha promoter in vivo. A multimerized SBE promoter responsive to TGF-beta1 signaling is highly activated by Smad3 but not by the closely related Smad2. Intriguingly, myocardin (Myocd), a known CArG box-dependent serum response factor coactivator, participates in Smad3-mediated TGF-beta1 signaling and synergistically stimulates Smad3-induced SBE promoter activity independent of the CArG box; no such synergy is seen with Smad2. Importantly, Myocd cooperates with Smad3 to activate the wild-type SM22alpha, SM myosin heavy chain, and SMalpha-actin promoters; they also activate the CArG box-mutated SM22alpha promoter as well as the CArG box-independent aortic carboxypeptidase-like protein promoter. Immunopreciptiation assays reveal that Myocd and Smad3 directly interact both in vitro and in vivo. Mutagenesis studies indicate that the C-terminal transactivation domains of Myocd and Smad3 are required for their functional synergy. These results reveal a novel regulatory mechanism whereby Myocd participates in TGF-beta1 signal pathway through direct interaction with Smad3, which binds to the SBEs. This is the first demonstration that Myocd can act as a transcriptional coactivator of the smooth muscle regulatory network in a CArG box-independent manner.
Collapse
Affiliation(s)
- Ping Qiu
- Department of Internal Medicine, Wayne State University, Detroit, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Fleming JB, Shen GL, Holloway SE, Davis M, Brekken RA. Molecular consequences of silencing mutant K-ras in pancreatic cancer cells: justification for K-ras-directed therapy. Mol Cancer Res 2005; 3:413-23. [PMID: 16046552 DOI: 10.1158/1541-7786.mcr-04-0206] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutation of the K-ras gene is an early event in the development of pancreatic adenocarcinoma and, therefore, RNA interference (RNAi) directed toward mutant K-ras could represent a novel therapy. In this study, we examine the phenotypic and molecular consequences of exposure of pancreatic tumor cells to mutant-specific K-ras small interfering RNA. Specific reduction of activated K-ras via RNAi in Panc-1 and MiaPaca-2 cells resulted in cellular changes consistent with a reduced capacity to form malignant tumors. These changes occur through distinct mechanisms but likely reflect an addiction of each cell line to oncogene stimulation. Both cell lines show reduced proliferation after K-ras RNAi, but only MiaPaca-2 cells showed increased apoptosis. Both cell lines showed reduced migration after K-ras knockdown, but changes in integrin levels were not consistent between the cell lines. Both cell lines showed alteration of the level of GLUT-1, a metabolism-associated gene that is downstream of c-myc, with Panc-1 cells demonstrating decreased GLUT-1 levels, whereas MiaPaca-2 cells showed increased levels of expression after K-ras knockdown. Furthermore, after K-ras RNAi, there was a reduction in angiogenic potential of both Panc-1 and MiaPaca-2 cells. Panc-1 cells increased the level of expression of thrombospondin-1, an endogenous inhibitor of angiogenesis, whereas MiaPaca-2 cells decreased the production of vascular endothelial growth factor, a primary stimulant of angiogenesis in pancreatic tumors. We have found that silencing mutant K-ras through RNAi results in alteration of tumor cell behavior in vitro and suggests that targeting mutant K-ras specifically might be effective against pancreatic cancer in vivo.
Collapse
Affiliation(s)
- Jason B Fleming
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-8593, USA
| | | | | | | | | |
Collapse
|