1
|
Rühl R, Bánáti D. Analysis of the current vitamin A terminology and dietary regulations from vitamin A 1 to vitamin A 5. INT J VITAM NUTR RES 2024; 94:326-333. [PMID: 38506673 DOI: 10.1024/0300-9831/a000807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Dietary recommendations on vitamin intake for human food fortification concerning vitamin A in various countries, larger economic zones and international organizations are mainly based on the Food and Agriculture Organization of the United Nations (FAO)/World Health Organization (WHO) "Codex Alimentarius standards". The general vitamin A terminology is based on regulations of the International Union of Pure and Applied Chemistry (IUPAC) that are used to describe the involved derivatives. These regulations and terminology were set up in the middle of the last century. Starting with the decade of the 80ies in the 20th century a large improvement of molecular biological methodologies, background physiological mechanisms as well as analytical techniques contributed to a large diversification of this simply claimed vitamin A terminology. Unfortunately, the following terminology and governmental regulations for food fortification are imprecise and non-harmonized. In this article we tried to unravel this terminology for updating terminology, nutritional suggestions and governmental regulations for vitamin A, which are currently based on various uncertainties. According to the current regulations, the newly found vitamin A5/X can be included in the current vitamin A terminology as "vitamin A5" or alternatively or even in parallel as a new vitamin A-independent terminology as "vitamin X". Based on the detailed knowledge of research from the early beginning of general vitamin A pathway identification towards detailed research of the last decades the commonly used and simplified term vitamin A with relevance for governmental recommendations on vitamin intake and food fortification advice was now more correctly sub-categorized to further vitamin A1, and A5 sub-categories with vitamin A1-alcohol as retinol, vitamin A2-alcohol as 3,4-didehydroretinol and vitamin A5-alcohol as 9-cis-13,14-dihydroretinol as their mainly relevant vitamin forms present in the human organism. Here we suggest and advise how the vitamin A terminology and further governmental regulations should be organized depending on a successful unraveling of the organization of the current vitamin A terminology.
Collapse
Affiliation(s)
| | - Diána Bánáti
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Hungary
| |
Collapse
|
2
|
Parameswarappa DC, Bagga DK, Upadhyaya A, Balasubramanian J, Pochaboina V, Muthineni V, Jalali S, Kannabiran C. RPE65 mutations in Leber congenital amaurosis, early-onset severe retinal dystrophy, and retinitis pigmentosa from a tertiary eye care center in India. Ophthalmic Genet 2024; 45:303-312. [PMID: 38323530 DOI: 10.1080/13816810.2024.2309559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 02/08/2024]
Abstract
INTRODUCTION Mutations in the retinal pigment epithelial 65 kilodalton protein (RPE65) gene are associated with various inherited retinal diseases (IRDs), including Leber congenital amaurosis (LCA), early-onset severe retinal dystrophy (EOSRD), and retinitis pigmentosa (RP). We screened for mutations in RPE65 in a series of Indian patients with these IRDs to determine the frequency/types of mutations and to describe the associated phenotypes. MATERIALS AND METHODS Diagnosis of LCA, EOSRD, and RP was made by standard and pre-defined criteria. Patients were evaluated by clinical, retinal imaging, and electrophysiological parameters. Genomic DNA from patients and available family members were used for identifying mutations by direct Sanger sequencing of the RPE65 gene or targeted NGS gene panel for IRDs covering 260+ genes. Variations detected were tested in healthy control populations and for co-segregation with the disease in available family members. RESULTS Mutations were found in eight patients, out of 220 total cases screened, all homozygous for the respective mutant alleles. Seven patients had mutations leading to premature termination codons and one patient had a missense change. The onset of visual loss ranged from birth to <2 years of life. At presentation, RPE mottling in the background retina was present in all cases with macular involvement in five cases with or without vascular attenuation and optic disc pallor. CONCLUSION RPE65 mutations in this series were found in 3.6% of cases associated with severe, early-onset disease, with consistent RPE mottling and variable manifestations with regard to the extent of disc pallor, arteriolar attenuation, and appearance of the macula.
Collapse
Affiliation(s)
- Deepika C Parameswarappa
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Deepak Kumar Bagga
- Meera and L B Deshpande Centre for Sight Enhancement, Institute for Vision Rehabilitation, L V Prasad Eye Institute, Hyderabad, India
| | - Abhishek Upadhyaya
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | | | - Venkatesh Pochaboina
- Department of Clinical Genetics and Genetic Counseling, L V Prasad Eye Institute, Hyderabad, India
| | - Vani Muthineni
- Kallam Anji Reddy Molecular Genetics Laboratory, L V Prasad Eye Institute, Hyderabad, India
| | - Subhadra Jalali
- Srimati Kanuri Santhamma Center for Vitreoretinal Diseases, Anant Bajaj Retina Institute, Kallam Anji Reddy Campus, L V Prasad Eye Institute, Hyderabad, India
| | - Chitra Kannabiran
- Kallam Anji Reddy Molecular Genetics Laboratory, L V Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
3
|
Gene Therapy with Voretigene Neparvovec Improves Vision and Partially Restores Electrophysiological Function in Pre-School Children with Leber Congenital Amaurosis. Biomedicines 2022; 11:biomedicines11010103. [PMID: 36672611 PMCID: PMC9855623 DOI: 10.3390/biomedicines11010103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/20/2022] [Accepted: 12/24/2022] [Indexed: 01/03/2023] Open
Abstract
Leber congenital amaurosis caused by mutations in the RPE65 gene belongs to the most severe early-onset hereditary childhood retinopathies naturally progressing to legal blindness. The novel gene therapy voretigene neparvovec is the first approved causative treatment option for this devastating eye disease and is specifically designed to treat RPE65-mediated retinal dystrophies. Herein, we present a follow-up of the youngest treated patients in Germany so far, including four pre-school children who received treatment with voretigene neparvovec at a single treatment center between January 2020 and May 2022. All patients underwent pars plana vitrectomy with circumferential peeling of the internal limiting membrane at the injection site and subretinal injection of voretigene neparvovec. Pre- and postoperative diagnostics included imaging (spectral domain optical coherence tomography, fundus autofluorescence, fundus wide-angle imaging), electrophysiologic examination (ERG), retinal light sensitivity measurements (FST) and visual acuity testing. Behavioral changes were assessed using a questionnaire and by observing the children's vision-guided behavior in different levels of illumination. All children showed marked increase in vision-guided behavior shortly after therapy, as well as marked increase in visual acuity in the postoperative course up to full visual acuity in one child. Two eyes showed partial electrophysiological recovery of an ERG that was undetectable before treatment-a finding that has not been described in humans before.
Collapse
|
4
|
Ng ESY, Kady N, Hu J, Dave A, Jiang Z, Pei J, Gorin MB, Matynia A, Radu RA. Membrane Attack Complex Mediates Retinal Pigment Epithelium Cell Death in Stargardt Macular Degeneration. Cells 2022; 11:3462. [PMID: 36359858 PMCID: PMC9655712 DOI: 10.3390/cells11213462] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 08/22/2023] Open
Abstract
Recessive Stargardt disease (STGD1) is an inherited retinopathy caused by mutations in the ABCA4 gene. The ABCA4 protein is a phospholipid-retinoid flippase in the outer segments of photoreceptors and the internal membranes of retinal pigment epithelial (RPE) cells. Here, we show that RPE cells derived via induced pluripotent stem-cell from a molecularly and clinically diagnosed STGD1 patient exhibited reduced ABCA4 protein and diminished activity compared to a normal subject. Consequently, STGD1 RPE cells accumulated intracellular autofluorescence-lipofuscin and displayed increased complement C3 activity. The level of C3 inversely correlated with the level of CD46, an early negative regulator of the complement cascade. Persistent complement dysregulation led to deposition of the membrane attack complex on the surface of RPE cells, decrease in transepithelial resistance, and subsequent cell death. These findings are strong evidence of complement-mediated RPE cell damage in STGD1, in the absence of photoreceptors, caused by reduced CD46 regulatory protein.
Collapse
Affiliation(s)
- Eunice Sze Yin Ng
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Molecular Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, CA 90095, USA
| | - Nermin Kady
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
- Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI 48109, USA
- Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Jane Hu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Arpita Dave
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Zhichun Jiang
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Jacqueline Pei
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Michael B. Gorin
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Anna Matynia
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| | - Roxana A. Radu
- UCLA Stein Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, University of California at Los Angeles, CA 90095, USA
| |
Collapse
|
5
|
George SM, Lu F, Rao M, Leach LL, Gross JM. The retinal pigment epithelium: Development, injury responses, and regenerative potential in mammalian and non-mammalian systems. Prog Retin Eye Res 2021; 85:100969. [PMID: 33901682 DOI: 10.1016/j.preteyeres.2021.100969] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022]
Abstract
Diseases that result in retinal pigment epithelium (RPE) degeneration, such as age-related macular degeneration (AMD), are among the leading causes of blindness worldwide. Atrophic (dry) AMD is the most prevalent form of AMD and there are currently no effective therapies to prevent RPE cell death or restore RPE cells lost from AMD. An intriguing approach to treat AMD and other RPE degenerative diseases is to develop therapies focused on stimulating endogenous RPE regeneration. For this to become feasible, a deeper understanding of the mechanisms underlying RPE development, injury responses and regenerative potential is needed. In mammals, RPE regeneration is extremely limited; small lesions can be repaired by the expansion of adjacent RPE cells, but large lesions cannot be repaired as remaining RPE cells are unable to functionally replace lost RPE tissue. In some injury paradigms, RPE cells proliferate but do not regenerate a morphologically normal monolayer, while in others, proliferation is pathogenic and results in further disruption to the retina. This is in contrast to non-mammalian vertebrates, which possess tremendous RPE regenerative potential. Here, we discuss what is known about RPE formation during development in mammalian and non-mammalian vertebrates, we detail the processes by which RPE cells respond to injury, and we describe examples of RPE-to-retina and RPE-to-RPE regeneration in non-mammalian vertebrates. Finally, we outline barriers to RPE-dependent regeneration in mammals that could potentially be overcome to stimulate a regenerative response from the RPE.
Collapse
Affiliation(s)
- Stephanie M George
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Fangfang Lu
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Mishal Rao
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Lyndsay L Leach
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jeffrey M Gross
- Department of Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
6
|
Abbas F, Vinberg F. Transduction and Adaptation Mechanisms in the Cilium or Microvilli of Photoreceptors and Olfactory Receptors From Insects to Humans. Front Cell Neurosci 2021; 15:662453. [PMID: 33867944 PMCID: PMC8046925 DOI: 10.3389/fncel.2021.662453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Sensing changes in the environment is crucial for survival. Animals from invertebrates to vertebrates use both visual and olfactory stimuli to direct survival behaviors including identification of food sources, finding mates, and predator avoidance. In primary sensory neurons there are signal transduction mechanisms that convert chemical or light signals into an electrical response through ligand binding or photoactivation of a receptor, that can be propagated to the olfactory and visual centers of the brain to create a perception of the odor and visual landscapes surrounding us. The fundamental principles of olfactory and phototransduction pathways within vertebrates are somewhat analogous. Signal transduction in both systems takes place in the ciliary sub-compartments of the sensory cells and relies upon the activation of G protein-coupled receptors (GPCRs) to close cyclic nucleotide-gated (CNG) cation channels in photoreceptors to produce a hyperpolarization of the cell, or in olfactory sensory neurons open CNG channels to produce a depolarization. However, while invertebrate phototransduction also involves GPCRs, invertebrate photoreceptors can be either ciliary and/or microvillar with hyperpolarizing and depolarizing responses to light, respectively. Moreover, olfactory transduction in invertebrates may be a mixture of metabotropic G protein and ionotropic signaling pathways. This review will highlight differences of the visual and olfactory transduction mechanisms between vertebrates and invertebrates, focusing on the implications to the gain of the transduction processes, and how they are modulated to allow detection of small changes in odor concentration and light intensity over a wide range of background stimulus levels.
Collapse
Affiliation(s)
- Fatima Abbas
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| | - Frans Vinberg
- Vinberg Lab, Department of Ophthalmology and Visual Science, John A. Moran Center, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Mizuno H, Fukumoto M, Sato T, Horie T, Kida T, Oku H, Nakamura K, Jin D, Takai S, Ikeda T. Involvement of the Retinal Pigment Epithelium in the Development of Retinal Lattice Degeneration. Int J Mol Sci 2020; 21:ijms21197347. [PMID: 33027920 PMCID: PMC7583762 DOI: 10.3390/ijms21197347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/01/2020] [Accepted: 10/03/2020] [Indexed: 11/16/2022] Open
Abstract
Lattice degeneration involves thinning of the retina that occurs over time. Here we performed an immunohistological study of tissue sections of human peripheral retinal lattice degeneration to investigate if retinal pigment epithelium (RPE) cells are involved in the pathogenesis of this condition. In two cases of retinal detachment with a large tear that underwent vitreous surgery, retinal lattice degeneration tissue specimens were collected during surgery. In the obtained specimens, both whole mounts and horizontal section slices were prepared, and immunostaining was then performed with hematoxylin and antibodies against glial fibrillary acidic protein (GFAP), RPE-specific protein 65 kDa (RPE65), pan-cytokeratin (pan-CK), and CK18. Hematoxylin staining showed no nuclei in the center of the degenerative lesion, thus suggesting the possibility of the occurrence of apoptosis. In the degenerative lesion specimens, GFAP staining was observed in the center, RPE65 staining was observed in the slightly peripheral region, and pan-CK staining was observed in all areas. However, no obvious CK18 staining was observed. In a monkey retina used as the control specimen of a normal healthy retina, no RPE65 or pan-CK staining was observed in the neural retina. Our findings suggest that migration, proliferation, and differentiation of RPE cells might be involved in the repair of retinal lattice degeneration.
Collapse
Affiliation(s)
- Hiroshi Mizuno
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Masanori Fukumoto
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Takaki Sato
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Taeko Horie
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
| | | | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (D.J.); (S.T.)
| | - Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical College, Takatsuki-City, Osaka 569-8686, Japan; (H.M.); (M.F.); (T.S.); (T.H.); (T.K.); (H.O.)
- Correspondence: ; Tel.: +81-72-684-6434; Fax: +81-72-682-0995
| |
Collapse
|
8
|
Thomas LD, Bandara S, Parmar VM, Srinivasagan R, Khadka N, Golczak M, Kiser PD, von Lintig J. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. J Biol Chem 2020; 295:15553-15565. [PMID: 32873706 DOI: 10.1074/jbc.ra120.015515] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/28/2020] [Indexed: 12/14/2022] Open
Abstract
The enzyme β-carotene oxygenase 2 (BCO2) converts carotenoids into more polar metabolites. Studies in mammals, fish, and birds revealed that BCO2 controls carotenoid homeostasis and is involved in the pathway for vitamin A production. However, it is controversial whether BCO2 function is conserved in humans, because of a 4-amino acid long insertion caused by a splice acceptor site polymorphism. We here show that human BCO2 splice variants, BCO2a and BCO2b, are expressed as pre-proteins with mitochondrial targeting sequence (MTS). The MTS of BCO2a directed a green fluorescent reporter protein to the mitochondria when expressed in ARPE-19 cells. Removal of the MTS increased solubility of BCO2a when expressed in Escherichia coli and rendered the recombinant protein enzymatically active. The expression of the enzymatically active recombinant human BCO2a was further improved by codon optimization and its fusion with maltose-binding protein. Introduction of the 4-amino acid insertion into mouse Bco2 did not impede the chimeric enzyme's catalytic proficiency. We further showed that the chimeric BCO2 displayed broad substrate specificity and converted carotenoids into two ionones and a central C14-apocarotendial by oxidative cleavage reactions at C9,C10 and C9',C10'. Thus, our study demonstrates that human BCO2 is a catalytically competent enzyme. Consequently, information on BCO2 becomes broadly applicable in human biology with important implications for the physiology of the eyes and other tissues.
Collapse
Affiliation(s)
- Linda D Thomas
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sepalika Bandara
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vipulkumar M Parmar
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ramkumar Srinivasagan
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Nimesh Khadka
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marcin Golczak
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Philip D Kiser
- Department of Physiology and Biophysics, University of California, Irvine, California, USA; Research Service, Veterans Affairs Long Beach Healthcare System, Long Beach, California, USA
| | - Johannes von Lintig
- Department of Pharmacology, Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
9
|
von Lintig J, Moon J, Babino D. Molecular components affecting ocular carotenoid and retinoid homeostasis. Prog Retin Eye Res 2020; 80:100864. [PMID: 32339666 DOI: 10.1016/j.preteyeres.2020.100864] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
The photochemistry of vision employs opsins and geometric isomerization of their covalently bound retinylidine chromophores. In different animal classes, these light receptors associate with distinct G proteins that either hyperpolarize or depolarize photoreceptor membranes. Vertebrates also use the acidic form of chromophore, retinoic acid, as the ligand of nuclear hormone receptors that orchestrate eye development. To establish and sustain these processes, animals must acquire carotenoids from the diet, transport them, and metabolize them to chromophore and retinoic acid. The understanding of carotenoid metabolism, however, lagged behind our knowledge about the biology of their receptor molecules. In the past decades, much progress has been made in identifying the genes encoding proteins that mediate the transport and enzymatic transformations of carotenoids and their retinoid metabolites. Comparative analysis in different animal classes revealed how evolutionary tinkering with a limited number of genes evolved different biochemical strategies to supply photoreceptors with chromophore. Mutations in these genes impair carotenoid metabolism and induce various ocular pathologies. This review summarizes this advancement and introduces the involved proteins, including the homeostatic regulation of their activities.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| | - Jean Moon
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Darwin Babino
- Department of Ophthalmology, School of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
10
|
Ward R, Kaylor JJ, Cobice DF, Pepe DA, McGarrigle EM, Brockerhoff SE, Hurley JB, Travis GH, Kennedy BN. Non-photopic and photopic visual cycles differentially regulate immediate, early, and late phases of cone photoreceptor-mediated vision. J Biol Chem 2020; 295:6482-6497. [PMID: 32238432 DOI: 10.1074/jbc.ra119.011374] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/30/2020] [Indexed: 11/06/2022] Open
Abstract
Cone photoreceptors in the retina enable vision over a wide range of light intensities. However, the processes enabling cone vision in bright light (i.e. photopic vision) are not adequately understood. Chromophore regeneration of cone photopigments may require the retinal pigment epithelium (RPE) and/or retinal Müller glia. In the RPE, isomerization of all-trans-retinyl esters to 11-cis-retinol is mediated by the retinoid isomerohydrolase Rpe65. A putative alternative retinoid isomerase, dihydroceramide desaturase-1 (DES1), is expressed in RPE and Müller cells. The retinol-isomerase activities of Rpe65 and Des1 are inhibited by emixustat and fenretinide, respectively. Here, we tested the effects of these visual cycle inhibitors on immediate, early, and late phases of cone photopic vision. In zebrafish larvae raised under cyclic light conditions, fenretinide impaired late cone photopic vision, while the emixustat-treated zebrafish unexpectedly had normal vision. In contrast, emixustat-treated larvae raised under extensive dark-adaptation displayed significantly attenuated immediate photopic vision concomitant with significantly reduced 11-cis-retinaldehyde (11cRAL). Following 30 min of light, early photopic vision was recovered, despite 11cRAL levels remaining significantly reduced. Defects in immediate cone photopic vision were rescued in emixustat- or fenretinide-treated larvae following exogenous 9-cis-retinaldehyde supplementation. Genetic knockout of Des1 (degs1) or retinaldehyde-binding protein 1b (rlbp1b) did not eliminate photopic vision in zebrafish. Our findings define molecular and temporal requirements of the nonphotopic or photopic visual cycles for mediating vision in bright light.
Collapse
Affiliation(s)
- Rebecca Ward
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| | - Joanna J Kaylor
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095
| | - Diego F Cobice
- Mass Spectrometry Centre, School of Biomedical Sciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, Northern Ireland
| | - Dionissia A Pepe
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Dublin D04 V1W8, Ireland
| | - Eoghan M McGarrigle
- Centre for Synthesis and Chemical Biology, UCD School of Chemistry, University College Dublin, Dublin D04 V1W8, Ireland
| | - Susan E Brockerhoff
- Department of Biochemistry, University of Washington, Seattle, Washington 98109.,Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - James B Hurley
- Department of Biochemistry, University of Washington, Seattle, Washington 98109.,Department of Ophthalmology, University of Washington, Seattle, Washington 98109
| | - Gabriel H Travis
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095.,Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095
| | - Breandán N Kennedy
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
11
|
Marazzi M, Gattuso H, Giussani A, Zhang H, Navarrete-Miguel M, Chipot C, Cai W, Roca-Sanjuán D, Dehez F, Monari A. Induced Night Vision by Singlet-Oxygen-Mediated Activation of Rhodopsin. J Phys Chem Lett 2019; 10:7133-7140. [PMID: 31652065 DOI: 10.1021/acs.jpclett.9b02911] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In humans, vision is limited to a small fraction of the whole electromagnetic spectrum. One possible strategy for enhancing vision in deep-red or poor-light conditions consists of recruiting chlorophyll derivatives in the rod photoreceptor cells of the eye, as suggested in the case of some deep-sea fish. Here, we employ all-atom molecular simulations and high-level quantum chemistry calculations to rationalize how chlorin e6 (Ce6), widely used in photodynamic therapy although accompanied by enhanced visual sensitivity, mediates vision in the dark, shining light on a fascinating but largely unknown molecular mechanism. First, we identify persistent interaction sites between Ce6 and the extracellular loops of rhodopsin, the transmembrane photoreceptor protein responsible for the first steps in vision. Triggered by Ce6 deep-red light absorption, the retinal within rhodopsin can be isomerized thus starting the visual phototransduction cascade. Our data largely exclude previously hypothesized energy-transfer mechanisms while clearly lending credence to a retinal isomerization indirectly triggered by singlet oxygen, proposing an alternative mechanism to rationalize photosensitizer-mediated night vision.
Collapse
Affiliation(s)
- Marco Marazzi
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering , Universidad de Alcalá, Ctra , Madrid-Barcelona Km. 33,600 , E-28805 Alcalá de Henares ( Madrid ), Spain
- Chemical Research Institute "Andrés M. del Río" (IQAR) , Universidad de Alcalá , E-28871 Alcalá de Henares ( Madrid ), Spain
| | - Hugo Gattuso
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| | - Angelo Giussani
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - Hong Zhang
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | | | - Christophe Chipot
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Wensheng Cai
- Research Center for Analytical Sciences, College of Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Daniel Roca-Sanjuán
- Institut de Ciència Molecular , Universitat de València , P.O. Box 22085 València , Spain
| | - François Dehez
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
- Laboratoire International Associé CNRS and University of Illinois at Urbana-Champaign , F-54000 Vandoeuvre-lès-Nancy , France
| | - Antonio Monari
- LPCT , UMR 7019, Université de Lorraine and CNRS, F-54000 Vandoeuvre-lès-Nancy , France
| |
Collapse
|
12
|
Li S, Green JF, Jin M. Impacts of deletion and ichthyosis prematurity syndrome-associated mutations in fatty acid transport protein 4 on the function of RPE65. FEBS Lett 2019; 594:540-552. [PMID: 31595490 DOI: 10.1002/1873-3468.13633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/16/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022]
Abstract
The retinal pigment epithelium-specific 65 kDa (RPE65) isomerase plays a pivotal role in photoreceptor survival and function. RPE65-catalyzed synthesis of 11-cis-retinol from all-trans-retinyl esters in the visual cycle is negatively regulated, through a heretofore unknown mechanism, by the fatty acid transport protein FATP4, mutations in which are associated with ichthyosis prematurity syndrome (IPS). Here, we analyzed the interaction between deletion mutants of FATP4 and RPE65 and the impacts of IPS-associated FATP4 mutations on RPE65 expression, 11-cis-retinol synthesis, and all-trans-retinyl ester synthesis. Our results suggest that the interaction between FATP4 and RPE65 contributes to the inhibition of RPE65 function and that IPS-associated nonsense and missense mutations in FATP4 have different effects on the visual cycle.
Collapse
Affiliation(s)
- Songhua Li
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - John F Green
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Minghao Jin
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA.,Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
13
|
Srinivasan K, Buys EM. Insights into the role of bacteria in vitamin A biosynthesis: Future research opportunities. Crit Rev Food Sci Nutr 2019; 59:3211-3226. [PMID: 30638045 DOI: 10.1080/10408398.2018.1546670] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Significant efforts have been made to address the hidden hunger challenges due to iron, zinc, iodine, and vitamin A since the beginning of the 21st century. Prioritizing the vitamin A deficiency (VAD) disorders, many countries are looking for viable alternative strategies such as biofortification. One of the leading causes of VAD is the poor bioconversion of β-carotene into retinoids. This review is focused on the opportunities of bacterial biosynthesis of retinoids, in particular, through the gut microbiota. The proposed hypothesis starts with the premise that an animal can able to store and timely convert carotenoids into retinoids in the liver and intestinal tissues. This theory is experimental with many scientific insights. The syntrophic metabolism, potential crosstalk of bile acids, lipocalins and lipopolysaccharides of gut microbiota are reported to contribute significantly to the retinoid biosynthesis. The gut bacteria respond to these kinds of factors by genetic restructuring driven mainly by events like horizontal gene transfer. A phylogenetic analysis of β-carotene 15, 15'-mono (di) oxygenase enzymes among a selected group of prokaryotes and eukaryotes was carried out to validate the hypotheses. Shedding light on the probiotic strategies through non-genetically modified organism such as gut bacteria capable of synthesizing vitamin A would address the VAD disorders.
Collapse
Affiliation(s)
- K Srinivasan
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| | - Elna M Buys
- Department of Consumer and Food Sciences, University of Pretoria, Hatfield Campus, Pretoria, South Africa
| |
Collapse
|
14
|
Cook JD, Ng SY, Lloyd M, Eddington S, Sun H, Nathans J, Bok D, Radu RA, Travis GH. Peropsin modulates transit of vitamin A from retina to retinal pigment epithelium. J Biol Chem 2017; 292:21407-21416. [PMID: 29109151 DOI: 10.1074/jbc.m117.812701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Indexed: 11/06/2022] Open
Abstract
Peropsin is a non-visual opsin in both vertebrate and invertebrate species. In mammals, peropsin is present in the apical microvilli of retinal pigment epithelial (RPE) cells. These structures interdigitate with the outer segments of rod and cone photoreceptor cells. RPE cells play critical roles in the maintenance of photoreceptors, including the recycling of visual chromophore for the opsin visual pigments. Here, we sought to identify the function of peropsin in the mouse eye. To this end, we generated mice with a null mutation in the peropsin gene (Rrh). These mice exhibited normal retinal histology, normal morphology of outer segments and RPE cells, and no evidence of photoreceptor degeneration. Biochemically, Rrh-/- mice had ∼2-fold higher vitamin A (all-trans-retinol (all-trans-ROL)) in the neural retina following a photobleach and 5-fold lower retinyl esters in the RPE. This phenotype was similar to those reported in mice that lack interphotoreceptor retinoid-binding protein (IRBP) or cellular retinol-binding protein, suggesting that peropsin plays a role in the movement of all-trans-ROL from photoreceptors to the RPE. We compared the phenotypes in mice lacking both peropsin and IRBP with those of mice lacking peropsin or IRBP alone and found that the retinoid phenotype was similarly severe in each of these knock-out mice. We conclude that peropsin controls all-trans-ROL movement from the retina to the RPE or may regulate all-trans-ROL storage within the RPE. We propose that peropsin affects light-dependent regulation of all-trans-ROL uptake from photoreceptors into RPE cells through an as yet undefined mechanism.
Collapse
Affiliation(s)
- Jeremy D Cook
- From the Department of Ophthalmology, Stein Eye Institute
| | - Sze Yin Ng
- From the Department of Ophthalmology, Stein Eye Institute
| | - Marcia Lloyd
- From the Department of Ophthalmology, Stein Eye Institute
| | | | - Hui Sun
- From the Department of Ophthalmology, Stein Eye Institute.,Department of Physiology, and
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Neuroscience, and Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and.,Howard Hughes Medical Institute, Baltimore, Maryland 21205
| | - Dean Bok
- From the Department of Ophthalmology, Stein Eye Institute
| | - Roxana A Radu
- From the Department of Ophthalmology, Stein Eye Institute
| | - Gabriel H Travis
- From the Department of Ophthalmology, Stein Eye Institute, .,Department of Biological Chemistry, School of Medicine, UCLA, Los Angeles, California 90095
| |
Collapse
|
15
|
Le Meur G, Lebranchu P, Billaud F, Adjali O, Schmitt S, Bézieau S, Péréon Y, Valabregue R, Ivan C, Darmon C, Moullier P, Rolling F, Weber M. Safety and Long-Term Efficacy of AAV4 Gene Therapy in Patients with RPE65 Leber Congenital Amaurosis. Mol Ther 2017; 26:256-268. [PMID: 29033008 DOI: 10.1016/j.ymthe.2017.09.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was the evaluation of the safety and efficacy of unilateral subretinal injection of the adeno-associated vector (AAV) serotypes 2 and 4 (AAV2/4) RPE65-RPE65 vector in patients with Leber congenital amaurosis (LCA) associated with RPE65 gene deficiency. We evaluated ocular and general tolerance and visual function up to 1 year after vector administration in the most severely affected eye in nine patients with retinal degeneration associated with mutations in the RPE65 gene. Patients received either low (1.22 × 1010 to 2 × 1010 vector genomes [vg]) or high (between 3.27 × 1010 and 4.8 × 1010 vg) vector doses. An ancillary study, in which six of the original nine patients participated, extended the follow-up period to 2-3.5 years. All patients showed good ophthalmological and general tolerance to the rAAV2/4-RPE65-RPE65 vector. We observed a trend toward improved visual acuity in patients with nystagmus, stabilization and improvement of the visual field, and cortical activation along visual pathways during fMRI analysis. OCT analysis after vector administration revealed no retinal thinning, except in cases of macular detachment. Our findings show that the rAAV2/4.RPE65.RPE65 vector was well tolerated in nine patients with RPE65-associated LCA. Efficacy parameters varied between patients during follow-up.
Collapse
Affiliation(s)
- Guylène Le Meur
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France.
| | - Pierre Lebranchu
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; UMR 6597 CNRS, Image and Video Communication Team, Institute for Research into Communications and Cybernetics of Nantes, Polytech Nantes, Nantes, France
| | - Fanny Billaud
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | | | | | - Yann Péréon
- Reference Centre for Neuromuscular Disorders, FILNEMUS, CHU de Nantes, Nantes, France
| | - Romain Valabregue
- Institut du Cerveau et de la Moelle épinière ICM, Centre for NeuroImaging Research (CENIR), Paris, France
| | - Catherine Ivan
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France
| | | | | | - Fabienne Rolling
- INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| | - Michel Weber
- Ophthalmology Department, University Hospital Centre (CHU) de Nantes, Nantes, France; INSERM UMR 1089, University of Nantes, CHU de Nantes, Nantes France
| |
Collapse
|
16
|
Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis. J Neurosci 2017; 36:5808-19. [PMID: 27225770 DOI: 10.1523/jneurosci.3857-15.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED RPE65, an abundant membrane-associate protein in the retinal pigment epithelium (RPE), is a key retinoid isomerase of the visual cycle necessary for generating 11-cis-retinal that functions not only as a molecular switch for activating cone and rod visual pigments in response to light stimulation, but also as a chaperone for normal trafficking of cone opsins to the outer segments. Many mutations in RPE65 are associated with Leber congenital amaurosis (LCA). A R91W substitution, the most frequent LCA-associated mutation, results in a severe decrease in protein level and enzymatic activity of RPE65, causing cone opsin mislocalization and early cone degeneration in the mutation knock-in mouse model of LCA. Here we show that R91W RPE65 undergoes ubiquitination-dependent proteasomal degradation in the knock-in mouse RPE due to misfolding. The 26S proteasome non-ATPase regulatory subunit 13 mediated degradation specifically of misfolded R91W RPE65. The mutation disrupted membrane-association and colocalization of RPE65 with lecithin:retinol acyltransferase (LRAT) that provides the hydrophobic substrate for RPE65. Systemic administration of sodium 4-phenylbutyrate (PBA), a chemical chaperone, increased protein stability, enzymatic activity, membrane-association, and colocalization of R91W RPE65 with LRAT. This rescue effect increased synthesis of 11-cis-retinal and 9-cis-retinal, a functional iso-chromophore of the visual pigments, led to alleviation of S-opsin mislocalization and cone degeneration in the knock-in mice. Importantly, PBA-treatment also improved cone-mediated vision in the mutant mice. These results indicate that PBA, a U.S. Food and Drug Administration-approved safe oral medication, may provide a noninvasive therapeutic intervention that delays daylight vision loss in patients with RPE65 mutations. SIGNIFICANCE STATEMENT LCA is a severe early onset retinal dystrophy. Recent clinical trials of gene therapy have implicated the need of an alternative or combination therapy to improve cone survival and function in patients with LCA caused by RPE65 mutations. Using a mouse model carrying the most frequent LCA-associated mutation (R91W), we found that the mutant RPE65 underwent ubiquitination-dependent proteasomal degradation due to misfolding. Treatment of the mice with a chemical chaperone partially corrected stability, enzymatic activity, and subcellular localization of R91W RPE65, which was also accompanied by improvement of cone survival and vision. These findings identify an in vivo molecular pathogenic mechanism for R91W mutation and provide a feasible pharmacological approach that can delay vision loss in patients with RPE65 mutations.
Collapse
|
17
|
Martí-Solans J, Belyaeva OV, Torres-Aguila NP, Kedishvili NY, Albalat R, Cañestro C. Coelimination and Survival in Gene Network Evolution: Dismantling the RA-Signaling in a Chordate. Mol Biol Evol 2016; 33:2401-16. [PMID: 27406791 DOI: 10.1093/molbev/msw118] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The bloom of genomics is revealing gene loss as a pervasive evolutionary force generating genetic diversity that shapes the evolution of species. Outside bacteria and yeast, however, the understanding of the process of gene loss remains elusive, especially in the evolution of animal species. Here, using the dismantling of the retinoic acid metabolic gene network (RA-MGN) in the chordate Oikopleura dioica as a case study, we combine approaches of comparative genomics, phylogenetics, biochemistry, and developmental biology to investigate the mutational robustness associated to biased patterns of gene loss. We demonstrate the absence of alternative pathways for RA-synthesis in O. dioica, which suggests that gene losses of RA-MGN were not compensated by mutational robustness, but occurred in a scenario of regressive evolution. In addition, the lack of drastic phenotypic changes associated to the loss of RA-signaling provides an example of the inverse paradox of Evo-Devo. This work illustrates how the identification of patterns of gene coelimination-in our case five losses (Rdh10, Rdh16, Bco1, Aldh1a, and Cyp26)-is a useful strategy to recognize gene network modules associated to distinct functions. Our work also illustrates how the identification of survival genes helps to recognize neofunctionalization events and ancestral functions. Thus, the survival and extensive duplication of Cco and RdhE2 in O. dioica correlated with the acquisition of complex compartmentalization of expression domains in the digestive system and a process of enzymatic neofunctionalization of the Cco, while the surviving Aldh8 could be related to its ancestral housekeeping role against toxic aldehydes.
Collapse
Affiliation(s)
- Josep Martí-Solans
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Nuria P Torres-Aguila
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, University of Alabama-Birmingham
| | - Ricard Albalat
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Cristian Cañestro
- Departament de Genètica, Microbiologia i Estadística and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
18
|
Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, Michaelides M, Tufail A, Moore AT. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res 2016; 53:70-106. [DOI: 10.1016/j.preteyeres.2016.04.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 12/11/2022]
|
19
|
Kaylor JJ, Radu RA, Bischoff N, Makshanoff J, Hu J, Lloyd M, Eddington S, Bianconi T, Bok D, Travis GH. Diacylglycerol O-acyltransferase type-1 synthesizes retinyl esters in the retina and retinal pigment epithelium. PLoS One 2015; 10:e0125921. [PMID: 25974161 PMCID: PMC4431840 DOI: 10.1371/journal.pone.0125921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/13/2015] [Indexed: 11/19/2022] Open
Abstract
Retinyl esters represent an insoluble storage form of vitamin A and are substrates for the retinoid isomerase (Rpe65) in cells of the retinal pigment epithelium (RPE). The major retinyl-ester synthase in RPE cells is lecithin:retinol acyl-transferase (LRAT). A second palmitoyl coenzyme A-dependent retinyl-ester synthase activity has been observed in RPE homogenates but the protein responsible has not been identified. Here we show that diacylglycerol O-acyltransferase-1 (DGAT1) is expressed in multiple cells of the retina including RPE and Müller glial cells. DGAT1 catalyzes the synthesis of retinyl esters from multiple retinol isomers with similar catalytic efficiencies. Loss of DGAT1 in dgat1 -/- mice has no effect on retinal anatomy or the ultrastructure of photoreceptor outer-segments (OS) and RPE cells. Levels of visual chromophore in dgat1 -/- mice were also normal. However, the normal build-up of all-trans-retinyl esters (all-trans-RE’s) in the RPE during the first hour after a deep photobleach of visual pigments in the retina was not seen in dgat1 -/- mice. Further, total retinyl-ester synthase activity was reduced in both dgat1 -/- retina and RPE.
Collapse
Affiliation(s)
- Joanna J. Kaylor
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| | - Roxana A. Radu
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Nicholas Bischoff
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacob Makshanoff
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jane Hu
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Marcia Lloyd
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Shannan Eddington
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tran Bianconi
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dean Bok
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Neurobiology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Gabriel H. Travis
- Jules Stein Eye Institute, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
20
|
Li S, Hu J, Jin RJ, Aiyar A, Jacobson SG, Bok D, Jin M. Temperature-sensitive retinoid isomerase activity of RPE65 mutants associated with Leber Congenital Amaurosis. J Biochem 2015; 158:115-25. [PMID: 25752820 DOI: 10.1093/jb/mvv028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
RPE65 is a membrane-associated retinoid isomerase involved in the visual cycle responsible for sustaining vision. Many mutations in the human RPE65 gene are associated with distinct forms of retinal degenerative diseases. The pathogenic mechanisms for most of these mutations remain poorly understood. Here, we show that three Leber congenital amaurosis -associated RPE65 mutants (R91W, Y249C and R515W) undergo rapid proteasomal degradation mediated by the 26 S proteasome non-ATPase regulatory subunit 13 (PSMD13) in cultured human retinal pigment epithelium (RPE) cells. These mutant proteins formed cytosolic inclusion bodies or high molecular weight complexes via disulfide bonds. The mutations are mapped on non-active sites but severely reduced isomerase activity of RPE65. At 30°C, however, the enzymatic function and membrane-association of the mutant RPE65s are significantly rescued possibly due to proper folding. In addition, PSMD13 displayed a drastically decreased effect on degradation of the mutant proteins in the cells grown at 30°C. These results suggest that PSMD13 plays a critical role in regulating pathogenicity of the mutations and the molecular basis for the PSMD13-mediated rapid degradation and loss of function of the mutants is misfolding of RPE65.
Collapse
Affiliation(s)
- Songhua Li
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA
| | - Jane Hu
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Robin J Jin
- State University of New York at Buffalo, Buffalo, NY 14214 USA
| | - Ashok Aiyar
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA; and
| | - Samuel G Jacobson
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dean Bok
- Jules Stein Eye Institute and Department of Neurobiology, University of California, Los Angeles, CA 90095 USA
| | - Minghao Jin
- Department of Ophthalmology and Neuroscience Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112 USA;
| |
Collapse
|
21
|
Affiliation(s)
| | | | - Krzysztof Palczewski
- Department of Pharmacology, School of Medicine, Case
Western Reserve University, 2109 Adelbert Road, Cleveland, Ohio 44106-4965,
United States
| |
Collapse
|
22
|
Recent Progress in Small-Molecule Agents Against Age-Related Macular Degeneration. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
23
|
Abstract
Vitamin A deficiency is a major public health problem in developing countries. Some studies also implicate a suboptimal vitamin A intake in certain parts of the population of the industrialized world. Provitamin A carotenoids such as β-carotene are the major source for retinoids (vitamin A and its derivatives) in the human diet. However, it is still controversial how much β-carotene intake is required and safe. An important contributor to this uncertainty is the lack of knowledge about the biochemical and molecular basis of β-carotene metabolism. Recently, key players of provitamin A metabolism have been molecularly identified and biochemically characterized. Studies in knockout mouse models showed that intestinal β-carotene absorption and conversion to retinoids is under negative feedback regulation that adapts this process to the actual requirement of vitamin A of the body. These studies also showed that in peripheral tissues a conversion of β-carotene occurs and affects retinoid-dependent physiologic processes. Moreover, these analyses provided a possible explanation for the adverse health effects of carotenoids by showing that a pathologic accumulation of these compounds can induce oxidative stress in mitochondria and cell signaling pathways related to disease. Genetic polymorphisms in identified genes exist in humans and also alter carotenoid homeostasis. Here, the advanced knowledge of β-carotene metabolism is reviewed, which provides a molecular framework for understanding the role of this important micronutrient in health and disease.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
24
|
Potential implication of the chemical properties and bioactivity of nitrone spin traps for therapeutics. Future Med Chem 2012; 4:1171-207. [PMID: 22709256 DOI: 10.4155/fmc.12.74] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nitrone therapeutics has been employed in the treatment of oxidative stress-related diseases such as neurodegeneration, cardiovascular disease and cancer. The nitrone-based compound NXY-059, which is the first drug to reach clinical trials for the treatment of acute ischemic stroke, has provided promise for the development of more robust pharmacological agents. However, the specific mechanism of nitrone bioactivity remains unclear. In this review, we present a variety of nitrone chemistry and biological activity that could be implicated for the nitrone's pharmacological activity. The chemistries of spin trapping and spin adduct reveal insights on the possible roles of nitrones for altering cellular redox status through radical scavenging or nitric oxide donation, and their biological effects are presented. An interdisciplinary approach towards the development of novel synthetic antioxidants with improved pharmacological properties encompassing theoretical, synthetic, biochemical and in vitro/in vivo studies is covered.
Collapse
|
25
|
Cho MS, Kim SJ, Ku SY, Park JH, Lee H, Yoo DH, Park UC, Song SA, Choi YM, Yu HG. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res 2012; 9:101-9. [PMID: 22683799 DOI: 10.1016/j.scr.2012.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/06/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
|
26
|
Kam RKT, Deng Y, Chen Y, Zhao H. Retinoic acid synthesis and functions in early embryonic development. Cell Biosci 2012; 2:11. [PMID: 22439772 PMCID: PMC3325842 DOI: 10.1186/2045-3701-2-11] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/22/2012] [Indexed: 01/08/2023] Open
Abstract
Retinoic acid (RA) is a morphogen derived from retinol (vitamin A) that plays important roles in cell growth, differentiation, and organogenesis. The production of RA from retinol requires two consecutive enzymatic reactions catalyzed by different sets of dehydrogenases. The retinol is first oxidized into retinal, which is then oxidized into RA. The RA interacts with retinoic acid receptor (RAR) and retinoic acid X receptor (RXR) which then regulate the target gene expression. In this review, we have discussed the metabolism of RA and the important components of RA signaling pathway, and highlighted current understanding of the functions of RA during early embryonic development.
Collapse
Affiliation(s)
- Richard Kin Ting Kam
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, P, R, China.
| | | | | | | |
Collapse
|
27
|
Tafrova JI, Pinkas-Sarafova A, Stolarzewicz E, Parker KA, Simon M. UVA/B exposure promotes the biosynthesis of dehydroretinol in cultured human keratinocytes. Mol Cell Biochem 2012; 364:351-61. [PMID: 22307745 DOI: 10.1007/s11010-012-1237-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 01/13/2012] [Indexed: 01/28/2023]
Abstract
Retinol and its metabolites modulate epithelial differentiation and serve as cellular UV sensors through changes in retinoid status. Of note is the dehydroretinol family which may serve functions distinct from parental retinol. This study focuses on the metabolism of this family and its potential participation in the response of normal epidermal human keratinocytes to UV irradiation. There were three findings. First, keratinocytes contain two pools of dehydroretinyl esters, one of which is shielded from UVB-, but not from UVA-induced decomposition. Second, using a novel in vitro assay we demonstrated that both UVA and UVB promote dehydroretinol biosynthesis in keratinocytes, but only UVB exposure promotes retinoid ester accretion by enhancing the activity of at least one acyl transferase. Finally, dehydroretinol sufficiency reduces UVA/B driven apoptosis more effectively than retinol sufficiency. This may in part be due to differences in the expression of Fas ligand, which we found to be upregulated by retinoic acid, but not dehydroretinoic acid. These observations implicate a role of dehydroretinol and its metabolites in UVA/B adaptation. Thus, the keratinocyte response to UV is jointly shaped by both the retinoids and dehydroretinoids.
Collapse
Affiliation(s)
- Juliana I Tafrova
- Living Skin Bank, Department of Oral Biology and Pathology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8702, USA.
| | | | | | | | | |
Collapse
|
28
|
Abstract
All animals endowed with the ability to detect light through visual pigments must have evolved pathways in which dietary precursors for the involved chromophore are absorbed, transported, and metabolized. Knowledge about this metabolism has exponentially increased over the past decade. Genetic manipulation of animal models provided insights into the metabolic flow of these compounds through the body and in the eyes, unraveling their regulatory aspects and aberrant side reactions. The scheme that emerges reveals a common origin of key components for chromophore metabolism that have been adapted to the specific requirements of retinoid biology in different animal classes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.
| |
Collapse
|
29
|
Hu Y, Chen Y, Moiseyev G, Takahashi Y, Mott R, Ma JX. Comparison of ocular pathologies in vitamin A-deficient mice and RPE65 gene knockout mice. Invest Ophthalmol Vis Sci 2011; 52:5507-14. [PMID: 21551411 DOI: 10.1167/iovs.10-7118] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE RPE65 gene knockout (Rpe65⁻/⁻) mice showed abolished isomerohydrolase activity in the visual cycle and were considered a model for vitamin A deficiency in the retina. The purpose of this study was to compare the retinal phenotypes between vitamin A-deficient (VAD) mice and Rpe65⁻/⁻ mice under normal diet. METHODS The VAD mice were fed with a vitamin A-deprived diet after birth. The age-matched control mice and Rpe65⁻/⁻ mice were maintained under normal diet. The structure of photoreceptor outer segment was compared using electron microscopy. Photoreceptor-specific gene expression was determined using real-time RT-PCR. The isomerohydrolase and lecithin-retinol acyltransferase (LRAT) activities were measured using an in vitro enzymatic activity assay. Endogenous retinoid profiles were analyzed by HPLC in mouse eyecup homogenates. RESULTS Compared to wild-type mice under normal diet, scanning and transmission electron microscopy showed that the outer segments of photoreceptors were disorganized in VAD mice and were not disorganized in Rpe65⁻/⁻ mice, although they were shortened in the latter. VAD mice showed more prominent downregulation of middle wavelength cone opsin, whereas Rpe65⁻/⁻ mice displayed more suppressed expression of short wavelength cone opsin. In vitro enzymatic activity assay and Western blot analysis showed that vitamin A deprivation downregulated LRAT expression and activity in the eyecup, but Rpe65⁻/⁻ mice showed unchanged LRAT expression and activity. The depressed LRAT activity in VAD mice was partially rescued by the intraperitoneal injection of retinoic acid. CONCLUSIONS VAD and Rpe65⁻/⁻ mice are different in cone photoreceptor degeneration, photoreceptor-specific gene regulation, isomerohydrolase activity, endogenous retinoid profile, and LRAT activity.
Collapse
Affiliation(s)
- Yang Hu
- Department of Physiology, Department of Medicine and Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | |
Collapse
|
30
|
Binding to lipid membrane induces conformational changes in RPE65: implications for its isomerohydrolase activity. Biochem J 2011; 436:591-7. [DOI: 10.1042/bj20110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The visual cycle is a multi-step pathway to recycle 11-cis retinal, the chromophore for both rod and cone visual pigments. The isomerohydrolase RPE65, a membrane-associated enzyme, converts atRE (all-trans-retinyl ester) to 11-cis-retinol, a key step in the visual cycle. Previously, it has been shown that membrane association of RPE65 is essential for its catalytic activity. Using purified recombinant chicken RPE65 and an in vitro liposome-based floatation assay, we present evidence that the RPE65 membrane-binding affinity was significantly facilitated by incorporation of atRE, the substrate of RPE65, into liposomal membrane. Using tryptophan emission fluorescence quenching and CD spectroscopy, we showed that, upon membrane binding, RPE65 undergoes conformational changes at both the tertiary and secondary structural levels. Specifically, tryptophan fluorescence quenching showed that the tertiary RPE65 structure became more open towards the hydrophilic environment upon its association with the membrane. Simultaneously, a decrease in the α-helix content of RPE65 was revealed upon binding with the lipid membrane containing atRE. These results demonstrated that RPE65's functional activity depends on its conformational changes caused by its association with the membrane.
Collapse
|
31
|
Kiser PD, Golczak M, Maeda A, Palczewski K. Key enzymes of the retinoid (visual) cycle in vertebrate retina. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:137-51. [PMID: 21447403 DOI: 10.1016/j.bbalip.2011.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/08/2011] [Accepted: 03/22/2011] [Indexed: 12/11/2022]
Abstract
A major goal in vision research over the past few decades has been to understand the molecular details of retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically reactive aldehyde that can form toxic conjugates with proteins and lipids. Therefore, much experimental effort has been devoted to elucidate molecular mechanisms of the retinoid cycle and all-trans-retinal-mediated retinal degeneration, resulting in delineation of many key steps involved in regenerating 11-cis-retinal. Three particularly important reactions are catalyzed by enzymes broadly classified as acyltransferases, short-chain dehydrogenases/reductases and carotenoid/retinoid isomerases/oxygenases. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | |
Collapse
|
32
|
Orban T, Palczewska G, Palczewski K. Retinyl ester storage particles (retinosomes) from the retinal pigmented epithelium resemble lipid droplets in other tissues. J Biol Chem 2011; 286:17248-58. [PMID: 21454509 DOI: 10.1074/jbc.m110.195198] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Levels of many hydrophobic cellular substances are tightly regulated because of their potential cytotoxicity. These compounds tend to self-aggregate in cytoplasmic storage depots termed lipid droplets/bodies that have well defined structures that contain additional components, including cholesterol and various proteins. Hydrophobic substances in these structures become mobilized in a specific and regulated manner as dictated by cellular requirements. Retinal pigmented epithelial cells in the eye produce retinyl ester-containing lipid droplets named retinosomes. These esters are mobilized to replenish the visual chromophore, 11-cis-retinal, and their storage ensures proper visual function despite fluctuations in dietary vitamin A intake. But it remains unclear whether retinosomes are structures specific to the eye or similar to lipid droplets in other organs/tissues that contain substances other than retinyl esters. Thus, we initially investigated the production of these lipid droplets in experimental cell lines expressing lecithin:retinol acyltransferase, a key enzyme involved in formation of retinyl ester-containing retinosomes from all-trans-retinol. We found that retinosomes and oleate-derived lipid droplets form and co-localize concomitantly, indicating their intrinsic structural similarities. Next, we isolated native retinosomes from bovine retinal pigmented epithelium and found that their protein and hydrophobic small molecular constituents were similar to those of lipid droplets reported for other experimental cell lines and tissues. These unexpected findings suggest a common mechanism for lipid droplet formation that exhibits broad chemical specificity for the hydrophobic substances being stored.
Collapse
Affiliation(s)
- Tivadar Orban
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
33
|
Wang S, Liu P, Song L, Lu L, Zhang W, Wu Y. Adeno-associated virus (AAV) based gene therapy for eye diseases. Cell Tissue Bank 2011; 12:105-10. [DOI: 10.1007/s10561-011-9243-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Accepted: 02/04/2011] [Indexed: 12/27/2022]
|
34
|
Dzhemileva LU, Grinberg ER, Tazetdinov AM, Zaidullin IS, Bikbov MM, Musina VV, Khusnutdinova EK. Molecular genetic basis of tapetoretinal degeneration. Mol Biol 2011. [DOI: 10.1134/s0026893308010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
D'Ambrosio DN, Clugston RD, Blaner WS. Vitamin A metabolism: an update. Nutrients 2011; 3:63-103. [PMID: 21350678 PMCID: PMC3042718 DOI: 10.3390/nu3010063] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/24/2010] [Accepted: 01/11/2011] [Indexed: 12/18/2022] Open
Abstract
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
Collapse
Affiliation(s)
- Diana N D'Ambrosio
- Department of Medicine and Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | |
Collapse
|
36
|
von Lintig J. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. Annu Rev Nutr 2010; 30:35-56. [PMID: 20415581 DOI: 10.1146/annurev-nutr-080508-141027] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carotenoids affect a rich variety of physiological functions in nature and are beneficial for human health, serving as antioxidants in lipophilic environments and blue light filters in the macula of human retina. These dietary compounds also serve as precursors of a unique set of apo-carotenoid cleavage products, including retinoids. Although knowledge about retinoid biology has tremendously increased, the metabolism of retinoids' parent precursors remains poorly understood. Recently, molecular players in carotenoid metabolism have been identified and biochemically characterized. Moreover, mutations in their corresponding genes impair carotenoid metabolism and induce various pathologies in animal models. Polymorphisms in these genes alter carotenoid and retinoid homeostasis in humans as well. This review summarizes our current knowledge about the molecular/biochemical basis of carotenoid metabolism and particularly the physiological role of carotenoids in retinoid-dependent physiological processes.
Collapse
Affiliation(s)
- Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| |
Collapse
|
37
|
Golczak M, Kiser PD, Lodowski DT, Maeda A, Palczewski K. Importance of membrane structural integrity for RPE65 retinoid isomerization activity. J Biol Chem 2010; 285:9667-9682. [PMID: 20100834 PMCID: PMC2843217 DOI: 10.1074/jbc.m109.063941] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/21/2009] [Indexed: 01/17/2023] Open
Abstract
Regeneration of visual chromophore in the vertebrate visual cycle involves the retinal pigment epithelium-specific protein RPE65, the key enzyme catalyzing the cleavage and isomerization of all-trans-retinyl fatty acid esters to 11-cis-retinol. Although RPE65 has no predicted membrane spanning domains, this protein predominantly associates with microsomal fractions isolated from bovine retinal pigment epithelium (RPE). We have re-examined the nature of RPE65 interactions with native microsomal membranes by using extraction and phase separation experiments. We observe that hydrophobic interactions are the dominant forces that promote RPE65 association with these membranes. These results are consistent with the crystallographic model of RPE65, which features a large lipophilic surface that surrounds the entrance to the catalytic site of this enzyme and likely interacts with the hydrophobic core of the endoplasmic reticulum membrane. Moreover, we report a critical role for phospholipid membranes in preserving the retinoid isomerization activity and physical properties of RPE65. Isomerase activity measured in bovine RPE was highly sensitive to phospholipase A(2) treatment, but the observed decline in 11-cis-retinol production did not directly reflect inhibition by products of lipid hydrolysis. Instead, a direct correlation between the kinetics of phospholipid hydrolysis and retinoid isomerization suggests that the lipid membrane structure is critical for RPE65 enzymatic activity. We also provide evidence that RPE65 operates in a multiprotein complex with retinol dehydrogenase 5 and retinal G protein-coupled receptor in RPE microsomes. Modifications in the phospholipid environment affecting interactions with these protein components may be responsible for the alterations in retinoid metabolism observed in phospholipid-depleted RPE microsomes. Thus, our results indicate that the enzymatic activity of native RPE65 strongly depends on its membrane binding and phospholipid environment.
Collapse
Affiliation(s)
| | | | | | - Akiko Maeda
- Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | | |
Collapse
|
38
|
Abstract
Regeneration of visual pigments is essential for sustained visual function. Although the requirement for non-photochemical regeneration of the visual chromophore, 11-cis-retinal, was recognized early on, it was only recently that the trans to cis retinoid isomerase activity required for this process was assigned to a specific protein, a microsomal membrane enzyme called RPE65. In this review, we outline progress that has been made in the functional characterization of RPE65. We then discuss general concepts related to protein-membrane interactions and the mechanism of the retinoid isomerization reaction and describe some of the important biochemical and structural features of RPE65 with respect to its membrane-binding and enzymatic properties.
Collapse
Affiliation(s)
- Philip D Kiser
- Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland OH 44106-4965, USA
| | | |
Collapse
|
39
|
Vossmerbaeumer U, Ohnesorge S, Kuehl S, Haapalahti M, Kluter H, Jonas JB, Thierse HJ, Bieback K. Retinal pigment epithelial phenotype induced in human adipose tissue-derived mesenchymal stromal cells. Cytotherapy 2009; 11:177-88. [PMID: 19241195 DOI: 10.1080/14653240802714819] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AIMS The non-exudative form of age-related macular degeneration (ARMD) is characterized by a progressive decay of retinal pigment epithelium cells at the posterior pole of the eye. As mesenchymal stromal cells (MSC) have been shown to differentiate into various cell types from the mesodermal and ectodermal lineages, we investigated whether we can induce a phenotype displaying retinal pigment epithelium (RPE) characteristics. METHODS The differentiation of human lipo-aspirate-derived MSC toward the RPE lineage was triggered by exposure to conditioned medium from either human or porcine RPE cells. In a second approach we tested whether adding vasoactive intestinal peptide (VIP) is capable of further modifying differentiation processes. Resulting cell populations were assessed for expression of RPE-specific markers by immunofluorescence, quantitative real time (RT)-polymerase chain reaction (PCR) and Western blotting. The potential for pigment synthesis was assessed by the response to melanocyte-stimulating hormone (MSH). RESULTS Following culture of undifferentiated MSC with RPE-conditioned medium and/or VIP, expression of typical RPE markers bestrophin, cytokeratins 8 and 18 and RPE 65 was induced. MSH induced the formation of pigmented granula in differentiated MSC. CONCLUSIONS MSC are shown to express RPE markers upon induction with either RPE-conditioned medium and/or VIP. The gain of basic functional features of RPE cells was indicated by melanin synthesis. This alludes to a differentiation potential of MSC into the neuroectodermal lineage, yielding cells with phenotypic characteristics of RPE cells.
Collapse
Affiliation(s)
- Urs Vossmerbaeumer
- Department of Ophthalmology, University Eye Hospital, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yuan Q, Kaylor JJ, Miu A, Bassilian S, Whitelegge JP, Travis GH. Rpe65 isomerase associates with membranes through an electrostatic interaction with acidic phospholipid headgroups. J Biol Chem 2009; 285:988-99. [PMID: 19892706 DOI: 10.1074/jbc.m109.025643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Opsins are light-sensitive pigments in the vertebrate retina, comprising a G protein-coupled receptor and an 11-cis-retinaldehyde chromophore. Absorption of a photon by an opsin pigment induces isomerization of its chromophore to all-trans-retinaldehyde. After a brief period of activation, opsin releases all-trans-retinaldehyde and becomes insensitive to light. Restoration of light sensitivity to the apo-opsin involves the conversion of all-trans-retinaldehyde back to 11-cis-retinaldehyde via an enzyme pathway called the visual cycle. The critical isomerization step in this pathway is catalyzed by Rpe65. Rpe65 is strongly associated with membranes but contains no membrane-spanning segments. It was previously suggested that the affinity of Rpe65 for membranes is due to palmitoylation of one or more Cys residues. In this study, we re-examined this hypothesis. By two independent strategies involving mass spectrometry, we show that Rpe65 is not palmitoylated nor does it appear to undergo other post-translational modifications at significant stoichiometry. Instead, we show that Rpe65 binds the acidic phospholipids, phosphatidylserine, phosphatidylglycerol, and cardiolipin, but not phosphatidic acid. No binding of Rpe65 to basic phospholipids or neutral lipids was observed. The affinity of Rpe65 to acidic phospholipids was strongly pH-dependent, suggesting an electrostatic interaction of basic residues in Rpe65 with negatively charged phospholipid headgroups. Binding of Rpe65 to liposomes containing phosphatidylserine or phosphatidylglycerol, but not the basic or neutral phospholipids, allowed the enzyme to extract its insoluble substrate, all-trans-retinyl palmitate, from the lipid bilayer for synthesis of 11-cis-retinol. The interaction of Rpe65 with acidic phospholipids is therefore biologically relevant.
Collapse
Affiliation(s)
- Quan Yuan
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
41
|
Philp AR, Jin M, Li S, Schindler EI, Iannaccone A, Lam BL, Weleber RG, Fishman GA, Jacobson SG, Mullins RF, Travis GH, Stone EM. Predicting the pathogenicity of RPE65 mutations. Hum Mutat 2009; 30:1183-8. [PMID: 19431183 DOI: 10.1002/humu.21033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
To assist in distinguishing disease-causing mutations from nonpathogenic polymorphisms, we developed an objective algorithm to calculate an "estimate of pathogenic probability" (EPP) based on the prevalence of a specific variation, its segregation within families, and its predicted effects on protein structure. Eleven missense variations in the RPE65 gene were evaluated in patients with Leber congenital amaurosis (LCA) using the EPP algorithm. The accuracy of the EPP algorithm was evaluated using a cell-culture assay of RPE65-isomerase activity The variations were engineered into plasmids containing a human RPE65 cDNA and the retinoid isomerase activity of each variant was determined in cultured cells. The EPP algorithm predicted eight substitution mutations to be disease-causing variants. The isomerase catalytic activities of these RPE65 variants were all less than 6% of wild-type. In contrast, the EPP algorithm predicted the other three substitutions to be non-disease-causing, with isomerase activities of 68%, 127%, and 110% of wild-type, respectively. We observed complete concordance between the predicted pathogenicities of missense variations in the RPE65 gene and retinoid isomerase activities measured in a functional assay. These results suggest that the EPP algorithm may be useful to evaluate the pathogenicity of missense variations in other disease genes where functional assays are not available.
Collapse
Affiliation(s)
- A R Philp
- Department of Ophthalmology and Visual Sciences, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kusakabe TG, Takimoto N, Jin M, Tsuda M. Evolution and the origin of the visual retinoid cycle in vertebrates. Philos Trans R Soc Lond B Biol Sci 2009; 364:2897-910. [PMID: 19720652 PMCID: PMC2781855 DOI: 10.1098/rstb.2009.0043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.
Collapse
Affiliation(s)
- Takehiro G. Kusakabe
- Department of Biology, Faculty of Science and Engineering, Konan University, Kobe 658-8501, Japan
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Noriko Takimoto
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori, Ako-gun, Hyogo 678-1297, Japan
| | - Minghao Jin
- Department of Ophthalmology and Neuroscience Center, LSU School of Medicine, 2020 Gravier Street, Suite D, New Orleans, LA 70112, USA
| | - Motoyuki Tsuda
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| |
Collapse
|
43
|
Bax-induced apoptosis in Leber's congenital amaurosis: a dual role in rod and cone degeneration. PLoS One 2009; 4:e6616. [PMID: 19672311 PMCID: PMC2720534 DOI: 10.1371/journal.pone.0006616] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/07/2009] [Indexed: 01/13/2023] Open
Abstract
Pathogenesis in the Rpe65(-/-) mouse model of Leber's congenital amaurosis (LCA) is characterized by a slow and progressive degeneration of the rod photoreceptors. On the opposite, cones degenerate rapidly at early ages. Retinal degeneration in Rpe65(-/-) mice, showing a null mutation in the gene encoding the retinal pigment epithelium 65-kDa protein (Rpe65), was previously reported to depend on continuous activation of a residual transduction cascade by unliganded opsin. However, the mechanisms of apoptotic signals triggered by abnormal phototransduction remain elusive. We previously reported that activation of a Bcl-2-dependent pathway was associated with apoptosis of rod photoreceptors in Rpe65(-/-) mice during the course of the disease. In this study we first assessed whether activation of Bcl-2-mediated apoptotic pathway was dependent on constitutive activation of the visual cascade through opsin apoprotein. We then challenged the direct role of pro-apoptotic Bax protein in triggering apoptosis of rod and cone photoreceptors.Quantitative PCR analysis showed that increased expression of pro-apoptotic Bax and decreased level of anti-apoptotic Bcl-2 were restored in Rpe65(-/-)/Gnat1(-/-) mice lacking the Gnat1 gene encoding rod transducin. Moreover, photoreceptor apoptosis was prevented as assessed by TUNEL assay. These data indicate that abnormal activity of opsin apoprotein induces retinal cell apoptosis through the Bcl-2-mediated pathway. Following immunohistological and real-time PCR analyses, we further observed that decreased expression of rod genes in Rpe65-deficient mice was rescued in Rpe65(-/-)/Bax(-/-) mice. Histological and TUNEL studies confirmed that rod cell demise and apoptosis in diseased Rpe65(-/-) mice were dependent on Bax-induced pathway. Surprisingly, early loss of cones was not prevented in Rpe65(-/-)/Bax(-/-) mice, indicating that pro-apoptotic Bax was not involved in the pathogenesis of cone cell death in Rpe65-deficient mice.This is the first report, to our knowledge, that a single genetic mutation can trigger two independent apoptotic pathways in rod and cone photoreceptors in Rpe65-dependent LCA disease. These results highlight the necessity to investigate and understand the specific death signaling pathways committed in rods and cones to develop effective therapeutic approaches to treat RP diseases.
Collapse
|
44
|
Cai X, Conley SM, Naash MI. RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet 2009; 30:57-62. [PMID: 19373675 DOI: 10.1080/13816810802626399] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RPE65 is an isomerohydrolase expressed in retinal pigment epithelium. It is critical for the regeneration of the visual pigment necessary for both rod and cone-mediated vision. Mutations in human RPE65 cause Leber's congenital amaurosis and other forms of autosomal recessive retinitis pigmentosa which are associated with early-onset blindness. Several RPE65 animal models including two different mouse models and a naturally occurring canine model have been thoroughly characterized to determine the mechanisms that underlie RPE65 associated retinal dystrophies. More recently, substantial effort has gone into designing gene therapies for these diseases. Based on several encouraging reports from animal models, at least three clinical trials are currently underway for the treatment of LCA using modified AAV vectors carrying the RPE65 cDNA and have reported positive preliminary results.
Collapse
Affiliation(s)
- Xue Cai
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
45
|
Nikolaeva O, Takahashi Y, Moiseyev G, Ma JX. Purified RPE65 shows isomerohydrolase activity after reassociation with a phospholipid membrane. FEBS J 2009; 276:3020-30. [PMID: 19490105 DOI: 10.1111/j.1742-4658.2009.07021.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Generation of 11-cis-retinol from all-trans-retinyl ester in the retinal pigment epithelium is a critical step in the visual cycle and is essential for perception of light. Recent findings from cell culture models suggest that protein RPE65 is the retinoid isomerohydrolase that catalyzes the reaction. However, previous attempts to detect the enzymatic activity of purified RPE65 were unsuccessful, and thus its enzymatic function remains controversial. Here, we developed a novel liposome-based assay for isomerohydrolase activity. The results showed that purified recombinant chicken RPE65 had a high affinity for all-trans-retinyl palmitate-containing liposomes and demonstrated a robust isomerohydrolase activity. Furthermore, we found that all-trans-retinyl ester must be incorporated into the phospholipid membrane to serve as a substrate for isomerohydrolase. This assay system using purified RPE65 enabled us to measure kinetic parameters for the enzymatic reaction catalyzed by RPE65. These results provide conclusive evidence that RPE65 is the isomerohydrolase of the visual cycle.
Collapse
Affiliation(s)
- Olga Nikolaeva
- Department of Cell Biology, Harold Hamm Oklahoma Diabetes Center, University of Oklahoma Health Sciences Center, OK 73104, USA
| | | | | | | |
Collapse
|
46
|
The role of interphotoreceptor retinoid-binding protein on the translocation of visual retinoids and function of cone photoreceptors. J Neurosci 2009; 29:1486-95. [PMID: 19193895 DOI: 10.1523/jneurosci.3882-08.2009] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The first event in light perception is absorption of a photon by the retinaldehyde chromophore of an opsin pigment in a rod or cone photoreceptor cell. This induces isomerization of the chromophore, rendering the bleached pigment insensitive to light. Restoration of light sensitivity requires chemical reisomerization of retinaldehyde via a multistep enzyme pathway, called the visual cycle, in cells of the retinal pigment epithelium (RPE). Interphotoreceptor retinoid-binding protein (IRBP) is present in the extracellular space between photoreceptors and the RPE. IRBP is known to bind visual retinoids. Previous studies on irbp(-/-) mice suggested that IRBP plays an insignificant role in opsin-pigment regeneration. However, the mice in these studies were uncontrolled for a severe mutation in the rpe65 gene. Rpe65 catalyzes the rate-limiting step in the visual cycle. Here, we examined the phenotype in irbp(-/-) mice homozygous for the wild-type (Leu450) rpe65 gene. We show that lack of IRBP causes delayed transfer of newly synthesized chromophore from RPE to photoreceptors. Removal of bleached chromophore from photoreceptors is also delayed in irbp(-/-) retinas after light exposure. It was previously shown that rods degenerate in irbp(-/-) mice. Here, we show that cones and rods degenerate at similar rates. However, cones are more affected functionally and show greater reductions in outer segment length than rods in irbp(-/-) mice. The disproportionate reductions in cone function and outer-segment length appear to result from mistrafficking of cone opsins due to impaired delivery of retinaldehyde chromophore, which functions as a chaperone for cone opsins but not rhodopsin.
Collapse
|
47
|
Vossmerbaeumer U, Kuehl S, Kern S, Kluter H, Jonas JB, Bieback K. Induction of retinal pigment epithelium properties in ciliary margin progenitor cells. Clin Exp Ophthalmol 2008; 36:358-66. [PMID: 18700924 DOI: 10.1111/j.1442-9071.2008.01770.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE Degenerative processes in the retinal pigment epithelium (RPE) are known to play a pivotal role in the development of age-related maculopathy. Substitute RPE analogue cells could be used to preserve visual function. In this paper we investigate methods for the isolation, cultivation and RPE differentiation of undifferentiated cells from the ciliary marginal zone (CMZ) of rat eyes. METHODS The CMZ was isolated from enucleated rat eyes, cell spheres formed in serum-free suspension culture, Bromodeoxyuridine (BrdU) incorporation indicated mitotic activity. Following baseline differentiation status assessment, directional differentiation was induced by cultivating cells in RPE-conditioned medium and vasoactive intestinal peptide (VIP). The differentiation status was analysed by immunocytochemistry. Fluorescein isothiocyanate (FITC)-labelled latex beads were used for functional evaluation. RESULTS CMZ-derived cells were expanded for 6-12 months. Formation of spherical cellular conglomerates, subsphere formation and expression of nestin indicated progenitor cells. Baseline levels of markers MAP-2 for neuronal and GFAP for glial properties and baseline levels of bestrophin, cytokeratins 8 and 18 and RPE 65 for RPE properties were induced by serum culture, respectively. Culture in conditioned medium with addition of VIP significantly increased RPE marker expression and reduced neuronal features, uptake of latex beads indicated phagocytosis. CONCLUSIONS We succeeded in isolating and cultivating cells from rodent CMZ with progenitor cell characteristics. Subsequently, these cells tested positive for neuronal, glial and RPE markers. Appropriate conditions significantly increased RPE marker expression. Unidirectional induction of differentiation makes the CMZ eligible as a source of regenerative ocular tissue for RPE-reconditioning therapy.
Collapse
Affiliation(s)
- Urs Vossmerbaeumer
- Department of Ophthalmology, University Eye Hospital, Universitaets-Augenklinik, German Red Cross Blood Service of Baden-Wuerttemberg-Hessen, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | | | |
Collapse
|
48
|
Elucidating the phenomenon of HESC-derived RPE: anatomy of cell genesis, expansion and retinal transplantation. Exp Neurol 2008; 214:347-61. [PMID: 18926821 DOI: 10.1016/j.expneurol.2008.09.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 08/12/2008] [Accepted: 09/05/2008] [Indexed: 01/12/2023]
Abstract
Healthy Retinal Pigment Epithelium (RPE) cells are required for proper visual function and the phenomenon of RPE derivation from Human Embryonic Stem Cells (HESC) holds great potential for the treatment of retinal diseases. However, little is known about formation, expansion and expression profile of RPE-like cells derived from HESC (HESC-RPE). By studying the genesis of pigmented foci we identified OTX1/2-positive cell types as potential HESC-RPE precursors. When pigmented foci were excised from culture, HESC-RPE expanded to form extensive monolayers, with pigmented cells at the leading edge assuming a precursor role: de-pigmenting, proliferating, expressing keratin 8 and subsequently re-differentiating. As they expanded and differentiated in vitro, HESC-RPE expressed markers of both developing and mature RPE cells which included OTX1/2, Pax6, PMEL17 and at low levels, RPE65. In vitro, without signals from a developing retinal environment, HESC-RPE could produce regular, polarised monolayers with developmentally important apical and basal features. Following transplantation of HESC-RPE into the degenerating retinal environment of Royal College of Surgeons (RCS) dystrophic rats, the cells survived in the subretinal space, where they maintained low levels of RPE65 expression and remained out of the cell cycle. The HESC-RPE cells responded to the in vivo environment by downregulating Pax6, while maintaining expression of other markers. The presence of rhodopsin-positive material within grafted HESC-RPE indicates that in the future, homogenous transplants of this cell type may be capable of supporting visual function following retinal dystrophy.
Collapse
|
49
|
Wong A, Merritt S, Butt AN, Williams A, Swaminathan R. Effect of Hypoxia on Circulating Levels of Retina-Specific Messenger RNA in Type 2 Diabetes Mellitus. Ann N Y Acad Sci 2008; 1137:243-52. [DOI: 10.1196/annals.1448.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
50
|
Cottet S, Schorderet DF. Triggering of Bcl-2-related pathway is associated with apoptosis of photoreceptors in Rpe65-/- mouse model of Leber's congenital amaurosis. Apoptosis 2008; 13:329-42. [PMID: 18274907 DOI: 10.1007/s10495-008-0180-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mutations in RPE65 protein is characterized by the loss of photoreceptors, although the molecular pathways triggering retinal cell death remain largely unresolved. The role of the Bcl-2 family of proteins in retinal degeneration is still controversial. However, alteration in Bcl-2-related proteins has been observed in several models of retinal injury. In particular, Bax has been suggested to play a crucial role in apoptotic pathways in murine glaucoma model as well as in retinal detachment-associated cell death. We demonstrated that Bcl-2-related signaling pathway is involved in Rpe65-dependent apoptosis of photoreceptors during development of the disease. Pro-apoptotic Bax alpha and beta isoforms were upregulated in diseased retina. This was associated with a progressive reduction of anti-apoptotic Bcl-2, reflecting imbalanced Bcl-2/Bax ratio as the disease progresses. Moreover, specific translocation of Bax beta from cytosol to mitochondria was observed in Rpe65-deficient retina. This correlated with the initiation of photoreceptor cell loss at 4 months of age, and further increased during disease development. Altogether, these data suggest that Bcl-2-apoptotic pathway plays a crucial role in Leber's congenital amaurosis disease. They further highlight a new regulatory mechanism of Bax-dependent apoptosis based on regulated expression and activation of specific isoforms of this protein.
Collapse
Affiliation(s)
- Sandra Cottet
- Institute for Research in Ophthalmology (IRO), Avenue Grand-Champsec 64, 1950, Sion 4, Switzerland.
| | | |
Collapse
|