1
|
Structural basis for the assembly and quinone transport mechanisms of the dimeric photosynthetic RC-LH1 supercomplex. Nat Commun 2022; 13:1977. [PMID: 35418573 PMCID: PMC9007983 DOI: 10.1038/s41467-022-29563-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
The reaction center (RC) and light-harvesting complex 1 (LH1) form a RC-LH1 core supercomplex that is vital for the primary reactions of photosynthesis in purple phototrophic bacteria. Some species possess the dimeric RC-LH1 complex with a transmembrane polypeptide PufX, representing the largest photosynthetic complex in anoxygenic phototrophs. However, the details of the architecture and assembly mechanism of the RC-LH1 dimer are unclear. Here we report seven cryo-electron microscopy (cryo-EM) structures of RC-LH1 supercomplexes from Rhodobacter sphaeroides. Our structures reveal that two PufX polypeptides are positioned in the center of the S-shaped RC-LH1 dimer, interlocking association between the components and mediating RC-LH1 dimerization. Moreover, we identify another transmembrane peptide, designated PufY, which is located between the RC and LH1 subunits near the LH1 opening. PufY binds a quinone molecule and prevents LH1 subunits from completely encircling the RC, creating a channel for quinone/quinol exchange. Genetic mutagenesis, cryo-EM structures, and computational simulations provide a mechanistic understanding of the assembly and electron transport pathways of the RC-LH1 dimer and elucidate the roles of individual components in ensuring the structural and functional integrity of the photosynthetic supercomplex.
Collapse
|
2
|
Tani K, Kanno R, Kikuchi R, Kawamura S, Nagashima KVP, Hall M, Takahashi A, Yu LJ, Kimura Y, Madigan MT, Mizoguchi A, Humbel BM, Wang-Otomo ZY. Asymmetric structure of the native Rhodobacter sphaeroides dimeric LH1-RC complex. Nat Commun 2022; 13:1904. [PMID: 35393413 PMCID: PMC8991256 DOI: 10.1038/s41467-022-29453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/08/2022] [Indexed: 11/18/2022] Open
Abstract
Rhodobacter sphaeroides is a model organism in bacterial photosynthesis, and its light-harvesting-reaction center (LH1-RC) complex contains both dimeric and monomeric forms. Here we present cryo-EM structures of the native LH1-RC dimer and an LH1-RC monomer lacking protein-U (ΔU). The native dimer reveals several asymmetric features including the arrangement of its two monomeric components, the structural integrity of protein-U, the overall organization of LH1, and rigidities of the proteins and pigments. PufX plays a critical role in connecting the two monomers in a dimer, with one PufX interacting at its N-terminus with another PufX and an LH1 β-polypeptide in the other monomer. One protein-U was only partially resolved in the dimeric structure, signaling different degrees of disorder in the two monomers. The ΔU LH1-RC monomer was half-moon-shaped and contained 11 α- and 10 β-polypeptides, indicating a critical role for protein-U in controlling the number of αβ-subunits required for dimer assembly and stabilization. These features are discussed in relation to membrane topology and an assembly model proposed for the native dimeric complex.
Collapse
Affiliation(s)
- Kazutoshi Tani
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan.
| | - Ryo Kanno
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Riku Kikuchi
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Saki Kawamura
- Faculty of Science, Ibaraki University, Mito, 310-8512, Japan
| | - Kenji V P Nagashima
- Research Institute for Integrated Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa, 259-1293, Japan
| | - Malgorzata Hall
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Ai Takahashi
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe, 657-8501, Japan
| | - Michael T Madigan
- School of Biological Sciences, Department of Microbiology, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Akira Mizoguchi
- Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Bruno M Humbel
- Imaging Section, Research Support Division, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1, Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | | |
Collapse
|
3
|
A previously unrecognized membrane protein in the Rhodobacter sphaeroides LH1-RC photocomplex. Nat Commun 2021; 12:6300. [PMID: 34728609 PMCID: PMC8564508 DOI: 10.1038/s41467-021-26561-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022] Open
Abstract
Rhodobacter (Rba.) sphaeroides is the most widely used model organism in bacterial photosynthesis. The light-harvesting-reaction center (LH1-RC) core complex of this purple phototroph is characterized by the co-existence of monomeric and dimeric forms, the presence of the protein PufX, and approximately two carotenoids per LH1 αβ-polypeptides. Despite many efforts, structures of the Rba. sphaeroides LH1-RC have not been obtained at high resolutions. Here we report a cryo-EM structure of the monomeric LH1-RC from Rba. sphaeroides strain IL106 at 2.9 Å resolution. The LH1 complex forms a C-shaped structure composed of 14 αβ-polypeptides around the RC with a large ring opening. From the cryo-EM density map, a previously unrecognized integral membrane protein, referred to as protein-U, was identified. Protein-U has a U-shaped conformation near the LH1-ring opening and was annotated as a hypothetical protein in the Rba. sphaeroides genome. Deletion of protein-U resulted in a mutant strain that expressed a much-reduced amount of the dimeric LH1-RC, indicating an important role for protein-U in dimerization of the LH1-RC complex. PufX was located opposite protein-U on the LH1-ring opening, and both its position and conformation differed from that of previous reports of dimeric LH1-RC structures obtained at low-resolution. Twenty-six molecules of the carotenoid spheroidene arranged in two distinct configurations were resolved in the Rba. sphaeroides LH1 and were positioned within the complex to block its channels. Our findings offer an exciting new view of the core photocomplex of Rba. sphaeroides and the connections between structure and function in bacterial photocomplexes in general. Rhodobacter (Rba.) sphaeroides is a model organism for studying bacterial photosynthesis. Here, the authors present the 2.9 Å cryo-EM structure of the monomeric light-harvesting-reaction center core complex from Rba. sphaeroides strain IL106, which revealed the position and conformation of PufX and the presence of an additional component protein-U, an integral membrane protein.
Collapse
|
4
|
Bracun L, Yamagata A, Christianson BM, Terada T, Canniffe DP, Shirouzu M, Liu LN. Cryo-EM structure of the photosynthetic RC-LH1-PufX supercomplex at 2.8-Å resolution. SCIENCE ADVANCES 2021; 7:7/25/eabf8864. [PMID: 34134992 PMCID: PMC8208714 DOI: 10.1126/sciadv.abf8864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/04/2021] [Indexed: 05/07/2023]
Abstract
The reaction center (RC)-light-harvesting complex 1 (LH1) supercomplex plays a pivotal role in bacterial photosynthesis. Many RC-LH1 complexes integrate an additional protein PufX that is key for bacterial growth and photosynthetic competence. Here, we present a cryo-electron microscopy structure of the RC-LH1-PufX supercomplex from Rhodobacter veldkampii at 2.8-Å resolution. The RC-LH1-PufX monomer contains an LH ring of 15 αβ-polypeptides with a 30-Å gap formed by PufX. PufX acts as a molecular "cross brace" to reinforce the RC-LH1 structure. The unusual PufX-mediated large opening in the LH1 ring and defined arrangement of proteins and cofactors provide the molecular basis for the assembly of a robust RC-LH1-PufX supercomplex and efficient quinone transport and electron transfer. These architectural features represent the natural strategies for anoxygenic photosynthesis and environmental adaptation.
Collapse
Affiliation(s)
- Laura Bracun
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Atsushi Yamagata
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Bern M Christianson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daniel P Canniffe
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Lu-Ning Liu
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
- College of Marine Life Sciences and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Kimura Y, Hashimoto K, Akimoto S, Takenouchi M, Suzuki K, Kishi R, Imanishi M, Takenaka S, Madigan MT, Nagashima KVP, Wang-Otomo ZY. Biochemical and Spectroscopic Characterizations of a Hybrid Light-Harvesting Reaction Center Core Complex. Biochemistry 2018; 57:4496-4503. [PMID: 29965735 DOI: 10.1021/acs.biochem.8b00644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light-harvesting 1 reaction center (LH1-RC) complex from Thermochromatium tepidum exhibits a largely red-shifted LH1 Q y absorption at 915 nm due to binding of Ca2+, resulting in an "uphill" energy transfer from LH1 to the reaction center (RC). In a recent study, we developed a heterologous expression system (strain TS2) to construct a functional hybrid LH1-RC with LH1 from Tch. tepidum and the RC from Rhodobacter sphaeroides [Nagashima, K. V. P., et al. (2017) Proc. Natl. Acad. Sci. U. S. A. 114, 10906]. Here, we present detailed characterizations of the hybrid LH1-RC from strain TS2. Effects of metal cations on the phototrophic growth of strain TS2 revealed that Ca2+ is an indispensable element for its growth, which is also true for Tch. tepidum but not for Rba. sphaeroides. The thermal stability of the TS2 LH1-RC was strongly dependent on Ca2+ in a manner similar to that of the native Tch. tepidum, but interactions between the heterologous LH1 and RC became relatively weaker in strain TS2. A Fourier transform infrared analysis demonstrated that the Ca2+-binding site of TS2 LH1 was similar but not identical to that of Tch. tepidum. Steady-state and time-resolved fluorescence measurements revealed that the uphill energy transfer rate from LH1 to the RC was related to the energy gap in an order of Rba. sphaeroides, Tch. tepidum, and strain TS2; however, the quantum yields of LH1 fluorescence did not exhibit such a correlation. On the basis of these findings, we discuss the roles of Ca2+, interactions between LH1 and the RC from different species, and the uphill energy transfer mechanisms.
Collapse
Affiliation(s)
- Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Kanako Hashimoto
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Seiji Akimoto
- Department of Science, Graduate School of Science , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Mizuki Takenouchi
- Faculty of Science , Ibaraki University , Bunkyo, Mito 310-8512 , Japan
| | - Kengo Suzuki
- Hamamatsu Photonics K. K. , Joko-cho, Hamamatsu 431-3196 , Japan
| | - Rikako Kishi
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Michie Imanishi
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Shinji Takenaka
- Department of Agrobioscience, Graduate School of Agriculture , Kobe University , Nada, Kobe 657-8501 , Japan
| | - Michael T Madigan
- Department of Microbiology , Southern Illinois University , Carbondale , Illinois 62901 , United States
| | - Kenji V P Nagashima
- Research Institute for Photobiological Hydrogen Production , Kanagawa University , Tsuchiya, Hiratsuka 259-1293 , Japan
| | | |
Collapse
|
6
|
Liu J, Friebe V, Swainsbury DJK, Crouch LI, Szabo DA, Frese RN, Jones MR. Engineered photoproteins that give rise to photosynthetically-incompetent bacteria are effective as photovoltaic materials for biohybrid photoelectrochemical cells. Faraday Discuss 2018; 207:307-327. [PMID: 29364305 PMCID: PMC5903125 DOI: 10.1039/c7fd00190h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/04/2017] [Indexed: 01/27/2023]
Abstract
Reaction centre/light harvesting proteins such as the RCLH1X complex from Rhodobacter sphaeroides carry out highly quantum-efficient conversion of solar energy through ultrafast energy transfer and charge separation, and these pigment-proteins have been incorporated into biohybrid photoelectrochemical cells for a variety of applications. In this work we demonstrate that, despite not being able to support normal photosynthetic growth of Rhodobacter sphaeroides, an engineered variant of this RCLH1X complex lacking the PufX protein and with an enlarged light harvesting antenna is unimpaired in its capacity for photocurrent generation in two types of bio-photoelectrochemical cells. Removal of PufX also did not impair the ability of the RCLH1 complex to act as an acceptor of energy from synthetic light harvesting quantum dots. Unexpectedly, the removal of PufX led to a marked improvement in the overall stability of the RCLH1 complex under heat stress. We conclude that PufX-deficient RCLH1 complexes are fully functional in solar energy conversion in a device setting and that their enhanced structural stability could make them a preferred choice over their native PufX-containing counterpart. Our findings on the competence of RCLH1 complexes for light energy conversion in vitro are discussed with reference to the reason why these PufX-deficient proteins are not capable of light energy conversion in vivo.
Collapse
Affiliation(s)
- Juntai Liu
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Vincent M. Friebe
- Department of Physics and Astronomy , LaserLaB Amsterdam , VU University Amsterdam , De Boelelaan 1081, 1081 HV , Amsterdam , The Netherlands
| | - David J. K. Swainsbury
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Lucy I. Crouch
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - David A. Szabo
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| | - Raoul N. Frese
- Department of Physics and Astronomy , LaserLaB Amsterdam , VU University Amsterdam , De Boelelaan 1081, 1081 HV , Amsterdam , The Netherlands
| | - Michael R. Jones
- School of Biochemistry , University of Bristol , Medical Sciences Building, University Walk , Bristol BS8 1TD , UK .
| |
Collapse
|
7
|
Ting JJL. Proposal for verifying dipole properties of light-harvesting antennas. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 179:134-138. [PMID: 29367148 DOI: 10.1016/j.jphotobiol.2018.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/09/2018] [Accepted: 01/12/2018] [Indexed: 11/26/2022]
Abstract
For light harvesters with a reaction center complex (LH1-RC complex) of three types, we propose an experiment to verify our analysis based upon antenna theories that automatically include the required structural information. Our analysis conforms to the current understanding of light-harvesting antennas in that we can explain known properties of these complexes. We provide an explanation for the functional roles of the notch at the light harvester, a functional role of the polypeptide called PufX or W at the opening, a functional role of the special pair, a reason that the cross section of the light harvester must not be circular, a reason that the light harvester must not be spherical, reasons for the use of dielectric bacteriochlorophylls instead of conductors to make the light harvester, a mechanism to prevent damage from excess sunlight, an advantage of the dimeric form, and reasons for the modular design of nature. Based upon our analysis we provide a mechanism for dimerization. We predict that the dimeric form of light-harvesting complexes is favored under intense sunlight. We further comment upon the classification of the dimeric or S-shape complexes. The S-shape complexes should not be considered as the third type of light harvester but simply as a composite form.
Collapse
|
8
|
Jankowiak R, Rancova O, Chen J, Kell A, Saer RG, Beatty JT, Abramavicius D. Mutation-Induced Changes in the Protein Environment and Site Energies in the (M)L214G Mutant of the Rhodobacter sphaeroides Bacterial Reaction Center. J Phys Chem B 2016; 120:7859-71. [PMID: 27458891 DOI: 10.1021/acs.jpcb.6b06151] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This work focuses on the low-temperature (5 K) photochemical (transient) hole-burned (HB) spectra within the P870 absorption band, and their theoretical analysis, for the (M)L214G mutant of the photosynthetic Rhodobacter sphaeroides bacterial reaction center (bRC). To provide insight into system-bath interactions of the bacteriochlorophyll a (BChl a) special pair, i.e., P870, in the mutated bRC, the optical line shape function for the P870 band is calculated numerically. On the basis of the modeling studies, we demonstrate that (M)L214G mutation leads to a heterogeneous population of bRCs with modified (increased) total electron-phonon coupling strength of the special pair BChl a and larger inhomogeneous broadening. Specifically, we show that after mutation in the (M)L214G bRC a large fraction (∼50%) of the bacteriopheophytin (HA) chromophores shifts red and the 800 nm absorption band broadens, while the remaining fraction of HA cofactors retains nearly the same site energy as HA in the wild-type bRC. Modeling using these two subpopulations allowed for fits of the absorption and nonresonant (transient) HB spectra of the mutant bRC in the charge neutral, oxidized, and charge-separated states using the Frenkel exciton Hamiltonian, providing new insight into the mutant's complex electronic structure. Although the average (M)L214G mutant quantum efficiency of P(+)QA(-) state formation seems to be altered in comparison with the wild-type bRC, the average electron transfer time (measured via resonant transient HB spectra within the P870 band) was not affected. Thus, mutation in the vicinity of the electron acceptor (HA) does not tune the charge separation dynamics. Finally, quenching of the (M)L214G mutant excited states by P(+) is addressed by persistent HB spectra burned within the B band in chemically oxidized samples.
Collapse
Affiliation(s)
| | - Olga Rancova
- Department of Theoretical Physics, Vilnius University , 10222 Vilnius, Lithuania
| | | | | | - Rafael G Saer
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - J Thomas Beatty
- Department of Microbiology and Immunology, University of British Columbia , Vancouver, BC V6T 1Z3, Canada
| | - Darius Abramavicius
- Department of Theoretical Physics, Vilnius University , 10222 Vilnius, Lithuania
| |
Collapse
|
9
|
Rancova O, Jankowiak R, Kell A, Jassas M, Abramavicius D. Band Structure of the Rhodobacter sphaeroides Photosynthetic Reaction Center from Low-Temperature Absorption and Hole-Burned Spectra. J Phys Chem B 2016; 120:5601-16. [DOI: 10.1021/acs.jpcb.6b02595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Olga Rancova
- Department
of Theoretical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| | | | | | | | - Darius Abramavicius
- Department
of Theoretical Physics, Vilnius University, Sauletekio al 9-III, 10222 Vilnius, Lithuania
| |
Collapse
|
10
|
|
11
|
Schroeder CA, Caycedo-Soler F, Huelga SF, Plenio MB. Optical Signatures of Quantum Delocalization over Extended Domains in Photosynthetic Membranes. J Phys Chem A 2015; 119:9043-50. [PMID: 26256512 DOI: 10.1021/acs.jpca.5b04804] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The prospect of coherent dynamics and excitonic delocalization across several light-harvesting structures in photosynthetic membranes is of considerable interest, but challenging to explore experimentally. Here we demonstrate theoretically that the excitonic delocalization across extended domains involving several light-harvesting complexes can lead to unambiguous signatures in the optical response, specifically, linear absorption spectra. We characterize, under experimentally established conditions of molecular assembly and protein-induced inhomogeneities, the optical absorption in these arrays from polarized and unpolarized excitation, and demonstrate that it can be used as a diagnostic tool to determine the resonance coupling between iso-energetic light-harvesting structures. The knowledge of these couplings would then provide further insight into the dynamical properties of transfer, such as facilitating the accurate determination of Förster rates.
Collapse
Affiliation(s)
- Christopher A Schroeder
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany.,Joint Quantum Institute, Department of Physics, University of Maryland and National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | - Felipe Caycedo-Soler
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Susana F Huelga
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| | - Martin B Plenio
- Institute of Theoretical Physics, University of Ulm , Albert-Einstein-Allee 11, D-89069 Ulm, Germany
| |
Collapse
|
12
|
Koblížek M, Moulisová V, Muroňová M, Oborník M. Horizontal transfers of two types of puf operons among phototrophic members of the Roseobacter clade. Folia Microbiol (Praha) 2014; 60:37-43. [PMID: 25090942 DOI: 10.1007/s12223-014-0337-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/14/2014] [Indexed: 11/30/2022]
Abstract
The Roseobacter clade represents one of the most important bacterial groups in marine environments. While some of its members are heterotrophs, many Roseobacter clade members contain bacterial photosynthetic reaction centers. We investigated the phylogeny of pufL and pufM genes encoding the L and M subunits of reaction centers using available genomic data and our own cultured species. Interestingly, phylogeny of pufL and pufM genes largely deviated from 16S rRNA-based phylogeny. The sequences split into two clearly distinct clades. While most of the studied species contained pufL and pufM sequences related to those found in Roseobacter litoralis, some of the marine species contained sequences related to the freshwater Rhodobacter species. In addition, genomic data documents that Roseobacter-type centers contain cytochrome c subunits (pufC gene product), whereas Rhodobacter-type centers incorporate PufX proteins. This indicates that the two forms of the reaction centers are not only distinct phylogenetically, but also structurally. The large deviation of pufL and pufM phylogeny from 16S phylogeny indicates multiple horizontal transfers of the puf operon among members of the order Rhodobacterales.
Collapse
Affiliation(s)
- Michal Koblížek
- Institute of Microbiology CAS, Opatovický mlýn, 379 81, Třeboň, Czech Republic,
| | | | | | | |
Collapse
|
13
|
D'Haene SE, Crouch LI, Jones MR, Frese RN. Organization in photosynthetic membranes of purple bacteria in vivo: the role of carotenoids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1665-73. [PMID: 25017691 DOI: 10.1016/j.bbabio.2014.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/19/2022]
Abstract
Photosynthesis in purple bacteria is performed by pigment-protein complexes that are closely packed within specialized intracytoplasmic membranes. Here we report on the influence of carotenoid composition on the organization of RC-LH1 pigment-protein complexes in intact membranes and cells of Rhodobacter sphaeroides. Mostly dimeric RC-LH1 complexes could be isolated from strains expressing native brown carotenoids when grown under illuminated/anaerobic conditions, or from strains expressing green carotenoids when grown under either illuminated/anaerobic or dark/semiaerobic conditions. However, mostly monomeric RC-LH1 complexes were isolated from strains expressing the native photoprotective red carotenoid spheroidenone, which is synthesized during phototrophic growth in the presence of oxygen. Despite this marked difference, linear dichroism (LD) and light-minus-dark LD spectra of oriented intact intracytoplasmic membranes indicated that RC-LH1 complexes are always assembled in ordered arrays, irrespective of variations in the relative amounts of isolated dimeric and monomeric RC-LH1 complexes. We propose that part of the photoprotective response to the presence of oxygen mediated by synthesis of spheroidenone may be a switch of the structure of the RC-LH1 complex from dimers to monomers, but that these monomers are still organized into the photosynthetic membrane in ordered arrays. When levels of the dimeric RC-LH1 complex were very high, and in the absence of LH2, LD and ∆LD spectra from intact cells indicated an ordered arrangement of RC-LH1 complexes. Such a degree of ordering implies the presence of highly elongated, tubular membranes with dimensions requiring orientation along the length of the cell and in a proportion larger than previously observed.
Collapse
Affiliation(s)
- Sandrine E D'Haene
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| | - Lucy I Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom.
| | - Raoul N Frese
- Biophysics of photosynthesis/Physics of Energy, Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, Amsterdam 1081 HV, The Netherlands.
| |
Collapse
|
14
|
Verméglio A, Joliot P. Modulation of the redox state of quinones by light in Rhodobacter sphaeroides under anaerobic conditions. PHOTOSYNTHESIS RESEARCH 2014; 120:237-246. [PMID: 24379133 DOI: 10.1007/s11120-013-9961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Illumination of intact cells of Rhodobacter sphaeroides under anaerobic conditions has a dual effect on the redox state of the quinone pool. A large oxidation of the quinone pool is observed during the first seconds following the illumination. This oxidation is suppressed by the addition of an uncoupler in agreement with a light-induced reverse electron transfer at the level of the complex I, present both in the non-invaginated part of the membrane and in the chromatophores. At longer dark times, this illumination increases the reducing power of the cells leading to a significant reduction of the others reaction centers (RCs). From the observation that a significant proportion of RCs could be reduced by the preillumination without affecting the numbers of charge separation for the RCs, we conclude that there is no rapid thermodynamic equilibrium between the quinones present in the non-invaginated part of the membrane and those localized in the chromatophores. Under anaerobic conditions where the chromatophores quinone pool is fully reduced, we deduce, on the basis of flash-induced fluorescence kinetics, that the reduced RCs are exclusively reoxidized by the quinone generated at the Q o site of the cyt bc 1 complex. The supramolecular association between a dimeric RC-LHI complex and one cyt bc 1 complex allows the confinement of a quinone between the RC-LHI directly associated to the cyt bc1 complex.
Collapse
Affiliation(s)
- André Verméglio
- CEA-Cadarache, DSV-SBVME, Laboratoire de Bioénergétique Cellulaire, UMR 7265, CNRS-CEA-Aix-Marseille II, 13108, Saint Paul lez Durance Cedex, France,
| | | |
Collapse
|
15
|
Scheuring S, Nevo R, Liu LN, Mangenot S, Charuvi D, Boudier T, Prima V, Hubert P, Sturgis JN, Reich Z. The architecture of Rhodobacter sphaeroides chromatophores. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:1263-70. [PMID: 24685429 DOI: 10.1016/j.bbabio.2014.03.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 12/18/2022]
Abstract
The chromatophores of Rhodobacter (Rb.) sphaeroides represent a minimal bio-energetic system, which efficiently converts light energy into usable chemical energy. Despite extensive studies, several issues pertaining to the morphology and molecular architecture of this elemental energy conversion system remain controversial or unknown. To tackle these issues, we combined electron microscope tomography, immuno-electron microscopy and atomic force microscopy. We found that the intracellular Rb. sphaeroides chromatophores form a continuous reticulum rather than existing as discrete vesicles. We also found that the cytochrome bc1 complex localizes to fragile chromatophore regions, which most likely constitute the tubular structures that interconnect the vesicles in the reticulum. In contrast, the peripheral light-harvesting complex 2 (LH2) is preferentially hexagonally packed within the convex vesicular regions of the membrane network. Based on these observations, we propose that the bc1 complexes are in the inter-vesicular regions and surrounded by reaction center (RC) core complexes, which in turn are bounded by arrays of peripheral antenna complexes. This arrangement affords rapid cycling of electrons between the core and bc1 complexes while maintaining efficient excitation energy transfer from LH2 domains to the RCs.
Collapse
Affiliation(s)
- Simon Scheuring
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France.
| | - Reinat Nevo
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lu-Ning Liu
- U1006 INSERM, Aix-Marseille Université, Parc Scientifique de Luminy, Marseille F-13009, France
| | | | - Dana Charuvi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Thomas Boudier
- Sorbonne Universités, UPMC Univ Paris 06, IBPS, F-75005 Paris, France
| | - Valerie Prima
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Pierre Hubert
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - James N Sturgis
- LISM CNRS, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | - Ziv Reich
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
16
|
Structure of the LH1–RC complex from Thermochromatium tepidum at 3.0 Å. Nature 2014; 508:228-32. [DOI: 10.1038/nature13197] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/04/2014] [Indexed: 11/08/2022]
|
17
|
Sznee K, Crouch LI, Jones MR, Dekker JP, Frese RN. Variation in supramolecular organisation of the photosynthetic membrane of Rhodobacter sphaeroides induced by alteration of PufX. PHOTOSYNTHESIS RESEARCH 2014; 119:243-256. [PMID: 24197265 DOI: 10.1007/s11120-013-9949-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In purple bacteria of the genus Rhodobacter (Rba.), an LH1 antenna complex surrounds the photochemical reaction centre (RC) with a PufX protein preventing the LH1 complex from completely encircling the RC. In membranes of Rba. sphaeroides, RC-LH1 complexes associate as dimers which in turn assemble into longer range ordered arrays. The present work uses linear dichroism (LD) and dark-minus-light difference LD (ΔLD) to probe the organisation of genetically altered RC-LH1 complexes in intact membranes. The data support previous proposals that Rba. capsulatus, and Rba. sphaeroides heterologously expressing the PufX protein from Rba. capsulatus, produce monomeric core complexes in membranes that lack long-range order. Similarly, Rba. sphaeroides with a point mutation in the Gly 51 residue of PufX, which is located on the membrane-periplasm interface, assembles mainly non-ordered RC-LH1 complexes that are most likely monomeric. All the Rba. sphaeroides membranes in their ΔLD spectra exhibited a spectral fingerprint of small degree of organisation implying the possibility of ordering influence of LH1, and leading to an important conclusion that PufX itself has no influence on ordering RC-LH1 complexes, as long-range order appears to be induced only through its role of configuring RC-LH1 complexes into dimers.
Collapse
Affiliation(s)
- Kinga Sznee
- Division of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands,
| | | | | | | | | |
Collapse
|
18
|
Li Y, Kimura Y, Arikawa T, Wang-Otomo ZY, Ohno T. ATR–FTIR Detection of Metal-Sensitive Structural Changes in the Light-Harvesting 1 Reaction Center Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2013; 52:9001-8. [DOI: 10.1021/bi401033y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yong Li
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yukihiro Kimura
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Teruhisa Arikawa
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | | | - Takashi Ohno
- Department
of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
19
|
Liu LN, Scheuring S. Investigation of photosynthetic membrane structure using atomic force microscopy. TRENDS IN PLANT SCIENCE 2013; 18:277-86. [PMID: 23562040 DOI: 10.1016/j.tplants.2013.03.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/01/2013] [Indexed: 05/26/2023]
Abstract
Photosynthetic processes, including light capture, electron transfer, and energy conversion, are not only ensured by the activities of individual photosynthetic complexes but also substantially determined and regulated by the composition and assembly of the overall photosynthetic apparatus at the supramolecular level. In recent years, atomic force microscopy (AFM) has matured as a unique and powerful tool for directly assessing the supramolecular assembly of integral membrane protein complexes in their native membrane environment at submolecular resolution. This review highlights the major contributions and advances of AFM studies to our understanding of the structure of the bacterial photosynthetic machinery and its regulatory arrangement during chromatic adaptation. AFM topographs of other biological membrane systems and potential future applications of AFM are also discussed.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.
| | | |
Collapse
|
20
|
Semchonok DA, Chauvin JP, Frese RN, Jungas C, Boekema EJ. Structure of the dimeric RC-LH1-PufX complex from Rhodobaca bogoriensis investigated by electron microscopy. Philos Trans R Soc Lond B Biol Sci 2013; 367:3412-9. [PMID: 23148268 DOI: 10.1098/rstb.2012.0063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Electron microscopy and single-particle averaging were performed on isolated reaction centre (RC)-antenna complexes (RC-LH1-PufX complexes) of Rhodobaca bogoriensis strain LBB1, with the aim of establishing the LH1 antenna conformation, and, in particular, the structural role of the PufX protein. Projection maps of dimeric complexes were obtained at 13 Å resolution and show the positions of the 2 × 14 LH1 α- and β-subunits. This new dimeric complex displays two open, C-shaped LH1 aggregates of 13 αβ polypeptides partially surrounding the RCs plus two LH1 units forming the dimer interface in the centre. Between the interface and the two half rings are two openings on each side. Next to the openings, there are four additional densities present per dimer, considered to be occupied by four copies of PufX. The position of the RC in our model was verified by comparison with RC-LH1-PufX complexes in membranes. Our model differs from previously proposed configurations for Rhodobacter species in which the LH1 ribbon is continuous in the shape of an S, and the stoichiometry is of one PufX per RC.
Collapse
Affiliation(s)
- Dmitry A Semchonok
- Electron Microscopy Group, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
21
|
Kimura Y, Inada Y, Numata T, Arikawa T, Li Y, Zhang JP, Wang ZY, Ohno T. Metal cations modulate the bacteriochlorophyll–protein interaction in the light-harvesting 1 core complex from Thermochromatium tepidum. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1022-9. [DOI: 10.1016/j.bbabio.2012.03.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/07/2012] [Accepted: 03/11/2012] [Indexed: 11/16/2022]
|
22
|
Fujitsuka M, Majima T. Photoinduced Electron Transfer Processes in Biological and Artificial Supramolecules. Supramol Chem 2012. [DOI: 10.1002/9780470661345.smc090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
23
|
Sakai S, Hiro A, Kondo M, Mizuno T, Tanaka T, Dewa T, Nango M. Overexpression of Rhodobacter sphaeroides PufX-bearing maltose-binding protein and its effect on the stability of reconstituted light-harvesting core antenna complex. PHOTOSYNTHESIS RESEARCH 2012; 111:63-69. [PMID: 21809113 DOI: 10.1007/s11120-011-9673-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 07/12/2011] [Indexed: 05/31/2023]
Abstract
The PufX protein, encoded by the pufX gene of Rhodobacter sphaeroides, plays a key role in the organization and function of the core antenna (LH1)-reaction centre (RC) complex, which collects photons and triggers primary photochemical reactions. We synthesized a PufX/maltose-binding protein (MBP) fusion protein to study the effect of the PufX protein on the reconstitution of B820 subunit-type and LH1-type complexes. The fusion protein was synthesized using an Escherichia coli expression system and purified by affinity chromatography. Reconstitution experiments demonstrated that the MBP-PufX protein destabilizes the subunit-type complex (20°C), consistent with previous reports. Interestingly, however, the preformed LH1-type complex was stable in the presence of MBP-PufX. The MBP-PufX protein did not influence the preformed LH1-type complexes (4°C). The LH1-type complex containing MBP-PufX showed a unique temperature-dependent structural transformation that was irreversible. The predominant form of the complex at 4°C was the LH1-type. When shifted to 20°C, subunit-type complexes became predominant. Upon subsequent cooling back to 4°C, instead of re-forming the LH1-type complexes, the predominant form remained the subunit-type complexes. In contrast, reversible transformation of LH1 (4°C) and subunit-type complexes (20°C) occurs in the absence of PufX. These results are consistent with the suggestion that MBP-PufX interacts with the LH1α- polypeptide in the subunit (α/β)-type complex (at 20°C), preventing oligomerization of the subunit to form LH1-type complexes.
Collapse
Affiliation(s)
- Shunnsuke Sakai
- Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, 466-8555, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Neupane B, Jaschke P, Saer R, Beatty JT, Reppert M, Jankowiak R. Electron Transfer in Rhodobacter sphaeroides Reaction Centers Containing Zn-Bacteriochlorophylls: A Hole-Burning Study. J Phys Chem B 2012; 116:3457-66. [DOI: 10.1021/jp300304r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Paul Jaschke
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Rafael Saer
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - J. Thomas Beatty
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Mike Reppert
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | | |
Collapse
|
25
|
Stahl AD, Crouch LI, Jones MR, van Stokkum I, van Grondelle R, Groot ML. Role of PufX in Photochemical Charge Separation in the RC-LH1 Complex from Rhodobacter sphaeroides: An Ultrafast Mid-IR Pump–Probe Investigation. J Phys Chem B 2011; 116:434-44. [DOI: 10.1021/jp206697k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Andreas D. Stahl
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lucy I. Crouch
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Michael R. Jones
- School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - Ivo van Stokkum
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Rienk van Grondelle
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| | - Marie Louise Groot
- Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Crouch LI, Jones MR. Cross-species investigation of the functions of the Rhodobacter PufX polypeptide and the composition of the RC-LH1 core complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:336-52. [PMID: 22079525 DOI: 10.1016/j.bbabio.2011.10.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
Abstract
In well-characterised species of the Rhodobacter (Rba.) genus of purple photosynthetic bacteria it is known that the photochemical reaction centre (RC) is intimately-associated with an encircling LH1 antenna pigment protein, and this LH1 antenna is prevented from completely surrounding the RC by a single copy of the PufX protein. In Rba. veldkampii only monomeric RC-LH1 complexes are assembled in the photosynthetic membrane, whereas in Rba. sphaeroides and Rba. blasticus a dimeric form is also assembled in which two RCs are surrounded by an S-shaped LH1 antenna. The present work established that dimeric RC-LH1 complexes can also be isolated from Rba. azotoformans and Rba. changlensis, but not from Rba. capsulatus or Rba. vinaykumarii. The compositions of the monomers and dimers isolated from these four species of Rhodobacter were similar to those of the well-characterised RC-LH1 complexes present in Rba. sphaeroides. Pigment proteins were also isolated from strains of Rba. sphaeroides expressing chimeric RC-LH1 complexes. Replacement of either the Rba. sphaeroides LH1 antenna or PufX with its counterpart from Rba. capsulatus led to a loss of the dimeric form of the RC-LH1 complex, but the monomeric form had a largely unaltered composition, even in strains in which the expression level of LH1 relative to the RC was reduced. The chimeric RC-LH1 complexes were also functional, supporting bacterial growth under photosynthetic conditions. The findings help to tease apart the different functions of PufX in different species of Rhodobacter, and a specific protein structural arrangement that allows PufX to fulfil these three functions is proposed.
Collapse
|
27
|
Hsin J, LaPointe LM, Kazy A, Chipot C, Senes A, Schulten K. Oligomerization state of photosynthetic core complexes is correlated with the dimerization affinity of a transmembrane helix. J Am Chem Soc 2011; 133:14071-81. [PMID: 21790140 PMCID: PMC3168531 DOI: 10.1021/ja204869h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the Rhodobacter (Rba.) species of photosynthetic purple bacteria, a single transmembrane α-helix, PufX, is found within the core complex, an essential photosynthetic macromolecular assembly that performs the absorption and the initial processing of light energy. Despite its structural simplicity, many unresolved questions surround PufX, the most important of which is its location within the photosynthetic core complex. One proposed placement of PufX is at the center of a core complex dimer, where two PufX helices associate in the membrane and form a homodimer. Inability for PufX of certain Rba. species to form a homodimer is thought to lead to monomeric core complexes. In the present study, we employ a combination of computational and experimental techniques to test the hypothesized homodimerization of PufX. We carry out a systematic investigation to measure the dimerization affinity of PufX from four Rba. species, Rba. blasticus , Rba. capsulatus , Rba. sphaeroides , and Rba. veldkampii , using a molecular dynamics-based free-energy method, as well as experimental TOXCAT assays. We found that the four PufX helices have substantially different dimerization affinities. Both computational and experimental techniques demonstrate that species with dimeric core complexes have PufX that can potentially form a homodimer, whereas the one species with monomeric core complexes has a PufX with little to no dimerization propensity. Our analysis of the helix-helix interface revealed a number of positions that may be important for PufX dimerization and the formation of a hydrogen-bond network between these GxxxG-containing helices. Our results suggest that the different oligomerization states of core complexes in various Rba. species can be attributed, among other factors, to the different propensity of its PufX helix to homodimerize.
Collapse
|
28
|
Uchiyama D, Oikawa H, Otomo K, Nango M, Dewa T, Fujiyoshi S, Matsushita M. Reconstitution of bacterial photosynthetic unit in a lipid bilayer studied by single-molecule spectroscopy at 5 K. Phys Chem Chem Phys 2011; 13:11615-9. [PMID: 21597611 DOI: 10.1039/c1cp20172g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a model of photosynthetic unit (PSU), self-assembled aggregates of pigment-protein complexes from photosynthetic bacteria were prepared in a lipid bilayer by reconstitution of the light-harvesting 2 (LH2) complex and light-harvesting 1-reaction center (LH1-RC) complex through detergent removal of their micelles in the presence of lipids. By performing polarization-controlled fluorescence and fluorescence-excitation spectroscopy on single aggregates at a temperature of 5 K, the composition of individual aggregates was determined and excitation energy transfer (EET) between constituent complexes was observed. LH2 and LH1-RC from a bacterium, Rhodobacter (Rb.) sphaeroides, were found to form a trimeric aggregate in which EET takes place from one LH2 to two LH1-RCs. In contrast, a heterodimer of LH2 and LH1-RC in which EET works was found to assemble from a combination of complexes of different bacterial species, that is, LH2 from Rb. sphaeroides and LH1-RC from Rhodopseudomonas (Rps.) palustris.
Collapse
Affiliation(s)
- Daisuke Uchiyama
- Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Kimura Y, Inada Y, Yu LJ, Wang ZY, Ohno T. A Spectroscopic Variant of the Light-Harvesting 1 Core Complex from the Thermophilic Purple Sulfur Bacterium Thermochromatium tepidum. Biochemistry 2011; 50:3638-48. [DOI: 10.1021/bi200278u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yukihiro Kimura
- Organization of Advanced Science and Technology, Kobe University, Nada, Kobe 657-8501, Japan
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Yuta Inada
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| | - Long-Jiang Yu
- Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Zheng-Yu Wang
- Faculty of Science, Ibaraki University, Bunkyo, Mito 310-8512, Japan
| | - Takashi Ohno
- Department of Agrobioscience, Graduate School of Agriculture, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
30
|
Jaschke PR, Saer RG, Noll S, Beatty JT. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 2011; 497:519-38. [PMID: 21601102 DOI: 10.1016/b978-0-12-385075-1.00023-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis.
Collapse
Affiliation(s)
- Paul R Jaschke
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
31
|
Ratcliffe EC, Tunnicliffe RB, Ng IW, Adams PG, Qian P, Holden-Dye K, Jones MR, Williamson MP, Hunter CN. Experimental evidence that the membrane-spanning helix of PufX adopts a bent conformation that facilitates dimerisation of the Rhodobacter sphaeroides RC-LH1 complex through N-terminal interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:95-107. [PMID: 20937243 DOI: 10.1016/j.bbabio.2010.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/27/2010] [Accepted: 10/04/2010] [Indexed: 10/19/2022]
Abstract
The PufX polypeptide is an integral component of some photosynthetic bacterial reaction center-light harvesting 1 (RC-LH1) core complexes. Many aspects of the structure of PufX are unresolved, including the conformation of its long membrane-spanning helix and whether C-terminal processing occurs. In the present report, NMR data recorded on the Rhodobacter sphaeroides PufX in a detergent micelle confirmed previous conclusions derived from equivalent data obtained in organic solvent, that the α-helix of PufX adopts a bent conformation that would allow the entire helix to reside in the membrane interior or at its surface. In support of this, it was found through the use of site-directed mutagenesis that increasing the size of a conserved glycine on the inside of the bend in the helix was not tolerated. Possible consequences of this bent helical structure were explored using a series of N-terminal deletions. The N-terminal sequence ADKTIFNDHLN on the cytoplasmic face of the membrane was found to be critical for the formation of dimers of the RC-LH1 complex. It was further shown that the C-terminus of PufX is processed at an early stage in the development of the photosynthetic membrane. A model in which two bent PufX polypeptides stabilise a dimeric RC-LH1 complex is presented, and it is proposed that the N-terminus of PufX from one half of the dimer engages in electrostatic interactions with charged residues on the cytoplasmic surface of the LH1α and β polypeptides on the other half of the dimer.
Collapse
Affiliation(s)
- Emma C Ratcliffe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Liu LN, Sturgis JN, Scheuring S. Native architecture of the photosynthetic membrane from Rhodobacter veldkampii. J Struct Biol 2010; 173:138-45. [PMID: 20797440 DOI: 10.1016/j.jsb.2010.08.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/18/2010] [Accepted: 08/19/2010] [Indexed: 11/27/2022]
Abstract
The photosynthetic membrane in purple bacteria contains several pigment-protein complexes that assure light capture and establishment of the chemiosmotic gradient. The bioenergetic tasks of the photosynthetic membrane require the strong interaction between these various complexes. In the present work, we acquired the first images of the native outer membrane architecture and the supramolecular organization of the photosynthetic apparatus in vesicular chromatophores of Rhodobacter (Rb.) veldkampii. Mixed with LH2 (light-harvesting complex 2) rings, the PufX-containing LH1-RC (light-harvesting complex 1--reaction center) core complexes appear as C-shaped monomers, with random orientations in the photosynthetic membrane. Within the LH1 fence surrounding the RC, a remarkable gap that is probably occupied (or partially occupied) by PufX is visualized. Sequence alignment revealed that one specific region in PufX may be essential for PufX-induced core dimerization. In this region of ten amino acids in length all Rhodobacter species had five conserved amino acids, with the exception of Rb. veldkampii. Our findings provide direct evidence that the presence of PufX in Rb. veldkampii does not directly govern the dimerization of LH1-RC core complexes in the native membrane. It is indicated, furthermore, that the high membrane curvature of Rb. veldkampii chromatophores (Rb. veldkampii features equally small vesicular chromatophores alike Rb. sphaeroides) is not due to membrane bending induced by dimeric RC-LH1-PufX cores, as it has been proposed in Rb. sphaeroides.
Collapse
Affiliation(s)
- Lu-Ning Liu
- Institut Curie, U1006 INSERM, UMR168 CNRS, 26 Rue d'Ulm, 75248 Paris, France
| | | | | |
Collapse
|
33
|
Dezi M, Fribourg PF, Di Cicco A, Arnaud O, Marco S, Falson P, Di Pietro A, Lévy D. The multidrug resistance half-transporter ABCG2 is purified as a tetramer upon selective extraction from membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2094-101. [PMID: 20691149 DOI: 10.1016/j.bbamem.2010.07.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/27/2010] [Accepted: 07/27/2010] [Indexed: 01/07/2023]
Abstract
ABCG2 is a human membrane ATP-binding cassette half-transporter that hydrolyzes ATP to efflux a large number of chemotherapeutic agents. Several oligomeric states of ABCG2 from homodimers to dodecamers have been reported depending on the overexpression systems and/or the protocols used for purification. Here, we compared the oligomeric state of His(6)-ABCG2 expressed in Sf9 insect cells and in human Flp-In-293/ABCG2 cells after solubilization in mild detergents. His(6)-ABCG2 was purified through a new approach involving its specific recognition onto a functionalized lipid layer containing a Ni-NTA lipid. This approach allowed the purification of His-ABCG2 in presence of all solubilized membrane components that might be involved in the stabilisation of native oligomers and without requiring any additional washing or concentration passages. ABCG2 purified onto the NiNTA lipid surfaces were directly analyzed by electron microscopy and by biochemical assays. Altogether, our data are consistent with a tetrameric organization of ABCG2 when expressed in either heterologous Sf9 insect cells or in human homologous cells.
Collapse
Affiliation(s)
- Manuela Dezi
- Institut Curie, Centre de Recherche, Paris, F-75231, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hsin J, Strümpfer J, Sener M, Qian P, Hunter CN, Schulten K. Energy Transfer Dynamics in an RC-LH1-PufX Tubular Photosynthetic Membrane. NEW JOURNAL OF PHYSICS 2010; 12:085005. [PMID: 21152381 PMCID: PMC2997751 DOI: 10.1088/1367-2630/12/8/085005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Light absorption and the subsequent transfer of excitation energy are the first two steps of the photosynthetic process, carried out by protein-bound pigments, mainly bacteriochlorophylls (BChls), in photosynthetic bacteria. BChls are anchored in light-harvesting (LH) complexes, such as light-harvesting complex I (LH1), which directly associates with the reaction center (RC), forming the RC-LH1 core complex. In Rhodobacter sphaeroides, RC-LH1 core complexes contain an additional protein, PufX, and assemble into dimeric RC-LH1-PufX core complexes. In the absence of light-harvesting complexes II, the former complexes can aggregate into a helically ordered tubular photosynthetic membrane. We examined the excitation transfer dynamics in a single RC-LH1-PufX core complex dimer using the hierarchical equations of motion for dissipative quantum dynamics that accurately, yet computationally costly, treat the coupling between BChls and their protein environment. A widely employed description, generalized Förster theory, was also used to calculate the transfer rates of the same excitonic system in order to verify the accuracy of this computationally cheap method. Additionally, in light of the structural uncertainties in the Rhodobacter sphaeroides RC-LH1-PufX core complex, geometrical alterations were introduced in the BChl organization. It is shown that the energy transfer dynamics is not affected by the considered changes in the BChl organization, and that generalized Förster theory provides accurate transfer rates. An all-atom model for a tubular photosynthetic membrane is then constructed on the basis of electron microscopy data, and the overall energy transfer properties of this membrane are computed.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Johan Strümpfer
- Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Melih Sener
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Klaus Schulten
- Department of Physics and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology and Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
35
|
Crouch LI, Holden-Dye K, Jones MR. Dimerisation of the Rhodobacter sphaeroides RC-LH1 photosynthetic complex is not facilitated by a GxxxG motif in the PufX polypeptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1812-9. [PMID: 20646993 DOI: 10.1016/j.bbabio.2010.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 07/09/2010] [Accepted: 07/13/2010] [Indexed: 11/24/2022]
Abstract
In purple photosynthetic bacteria the initial steps of light energy transduction take place in an RC-LH1 complex formed by the photochemical reaction centre (RC) and the LH1 light harvesting pigment-protein. In Rhodobacter sphaeroides, the RC-LH1 complex assembles in a dimeric form in which two RCs are surrounded by an S-shaped LH1 antenna. There is currently debate over the detailed architecture of this dimeric RC-LH1 complex, with particular emphasis on the location and precise function of a minor polypeptide component termed PufX. It has been hypothesised that the membrane-spanning helical region of PufX contains a GxxxG dimerisation motif that facilitates the formation of a dimer of PufX at the interface of the RC-LH1 dimer, and more specifically that the formation of this PufX dimer seeds assembly of the remaining RC-LH1 dimer (J. Busselez et al., 2007). In the present work this hypothesis was tested by site directed mutagenesis of the glycine residues proposed to form the GxxxG motif. Mutation of these glycines to leucine did not decrease the propensity of the RC-LH1 complex to assemble in a dimeric form, as would be expected from experimental studies of the effect of mutation on GxxxG motifs in other membrane proteins. Indeed increased yields of dimer were seen in two of the glycine-to-leucine mutants constructed. It is concluded that the PufX from Rhodobacter sphaeroides does not contain a genuine GxxxG helix dimerisation motif.
Collapse
Affiliation(s)
- Lucy I Crouch
- Department of Biochemistry, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
36
|
Hsin J, Chandler DE, Gumbart J, Harrison CB, Şener M, Strumpfer J, Schulten K. Self-assembly of photosynthetic membranes. Chemphyschem 2010; 11:1154-9. [PMID: 20183845 PMCID: PMC3086839 DOI: 10.1002/cphc.200900911] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Indexed: 11/08/2022]
Abstract
Bacterial photosynthetic membranes, also known as chromatophores, are tightly packed with integral membrane proteins that work together to carry out photosynthesis. Chromatophores display a wide range of cellular morphologies; spherical, tubular, and lamellar chromatophores have all been observed in different bacterial species, or with different protein constituents. Through recent computational modeling and simulation, it has been demonstrated that the light-harvesting complexes abundant in chromatophores induce local membrane curvature via multiple mechanisms. These protein complexes assemble to generate a global curvature and sculpt the chromatophores into various cellular-scale architectures.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Danielle E. Chandler
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - James Gumbart
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | | | - Melih Şener
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Johan Strumpfer
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
37
|
D'Amici GM, Rinalducci S, Murgiano L, Italiano F, Zolla L. Oligomeric characterization of the photosynthetic apparatus of Rhodobacter sphaeroides R26.1 by nondenaturing electrophoresis methods. J Proteome Res 2010; 9:192-203. [PMID: 19899738 DOI: 10.1021/pr9005052] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Blue and colorless native gel electrophoresis in combination with LC-ESI-MS/MS are powerful tools in the analysis of protein networks in biological membranes. We used these techniques in the present study to generate a comprehensive overview on a proteome-wide scale of intracytoplasmic membrane (ICM) associated proteins in order to investigate the native supramolecular organization of Rhodobacter sphaeroides R26.1 photosynthetic apparatus. The results obtained were compared with past proteomic data, as well as with models for the topology of photosynthetic membranes as derived from previously published atomic force microscopy studies. We identified 52 proteins organized in 10 different multiprotein complexes. We were able to demonstrate the existence of different oligomeric states for the integral membrane pigment-protein complexes dedicated to bacterial photosynthesis. Specifically, we found dimers and trimers, as well as supercomplexes of light-harvesting (LH) 2 at very high molecular weights (around 10,000 kDa). We recovered the monomeric form of the photochemical reaction center (RC), as well as the monomer and dimer of the reaction center-light harvesting 1-PufX (RC-LH1-PufX) complex. Curiously, no type of LH1 complex was detected. Lastly, ATP synthase and cytochrome bc(1) complexes were only recovered in their monomeric states. Purified ICM vesicles were shown to be rich in newly discovered gene products, including three proteins with unknown functions (RSP_2125, RSP_3238, RSP_6207), a possible alkane hydroxylase and a spheroidene monooxygenase. Other multiprotein complexes were found to be localized in the ICM, including succinate dehydrogenase in trimeric form and sarcosine oxidase in two different aggregation states. These findings contribute to the growing body of evidence that the bacterial ICM is a specialized bioenergetic membrane hosting, not only photosynthesis, but many other critical activities.
Collapse
|
38
|
Amarie S, Lupo D, Lenz MO, Saegesser R, Ghosh R, Wachtveitl J. Excitation energy pathways in the photosynthetic units of reaction center LM- and H-subunit deletion mutants of Rhodospirillum rubrum. PHOTOSYNTHESIS RESEARCH 2010; 103:141-151. [PMID: 20099080 DOI: 10.1007/s11120-009-9520-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
Light-induced reaction dynamics of isolated photosynthetic membranes obtained from wild-type (WT) and reaction center (RC)-subunit deletion strains SPUHK1 (an H-subunit deletion mutant) and SK Delta LM (an (L+M) deletion mutant) of the purple non-sulphur bacterium Rhodospirillum rubrum have been investigated by femtosecond transient absorption spectroscopy. Upon excitation of the spirilloxanthin (Spx) S(2) state at 546 nm, of the bacteriochlorophyll Soret band at 388 nm and probing spectral regions, which are characteristic for carotenoids, similar dynamics in the SPUHK1, SK Delta LM and WT strains could be observed. The excitation of Spx S(2) is followed by the simultaneous population of the lower singlet excited states S(1) and S* which decay with lifetimes of 1.4 and 5 ps, respectively for the mutants, and 1.4 and 4 ps, respectively, for the wild-type. The excitation of the BChl Soret band is followed by relaxation into BChl lower excited states which compete with excitation energy transfer BChl-to-Spx. The deexcitation pathway BChl(Soret) --> Spx(S(2)) --> Spx(S(1)) occurs with the same transition rate for all investigated samples (WT, SPUHK1 and SK Delta LM). The kinetic traces measured for the Spx S(1) --> S(N) transition display similar behaviour for all samples showing a positive signal which increases within the first 400 fs (i.e. the time needed for the excitation energy to reach the Spx S(1) excited state) and decays with a lifetime of about 1.5 ps. This suggests that the Spx excited state dynamics in the investigated complexes do not differ significantly. Moreover, a longer excited state lifetime of BChl for SPUHK1 in comparison to WT was observed, consistent with a photochemical quenching channel present in the presence of RC. For long delay times, photobleaching of the RC special pair and an electrochromic blue shift of the monomeric BChl a can be observed only for the WT but not for the mutants. The close similarity of the excited state decay processes of all strains indicates that the pigment geometry of the LH1 complex in native membranes is unaffected by the presence of an RC and allows us to draw a model representation of the WT, SK Delta LM and SPUHK1 PSU complexes.
Collapse
Affiliation(s)
- Sergiu Amarie
- Institute for Physical and Theoretical Chemistry, Institute of Biophysics, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, Building N120/224, 60438, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Hsin J, Chipot C, Schulten K. A glycophorin A-like framework for the dimerization of photosynthetic core complexes. J Am Chem Soc 2010; 131:17096-8. [PMID: 19891482 DOI: 10.1021/ja905903n] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The core complex in photosynthetic bacteria plays a central role in photosynthesis. This molecular assembly is composed of two protein complexes, viz., the light-harvesting complex I (LH1), which absorbs sunlight by means of the protein-bound bacteriochlorophylls, and the reaction center (RC), which uses the light-excitation energy absorbed by the LH complexes to produce a transmembrane (TM) charge gradient, subsequently employed for energy conversion. In Rhodobacter (Rba.) sphaeroides, the core complex contains, in addition, two copies of the single TM alpha-helix protein, PufX, and forms a (RC-LH1-PufX)(2) dimer. To this date, no high-resolution structure has been reported for the entire core complex. In particular, the location of PufX within the (RC-LH1-PufX)(2) dimer is still the subject of much debate. Here, one of the proposed locations for PufX, requiring its dimerization, is examined. The PufX-dimer model on the basis of the glycophorin A (GpA) dimer was constructed, and its robustness was probed through a series of molecular dynamics (MD) simulations. The free-energy change due to the replacement of Gly35 by valine was also determined to assess whether this mutation is responsible for distinct PufX oligomerization states in different Rba. species. The present study shows that PufX helices form a stable GpA-like dimer with a helix-helix crossing angle that could constitute the molecular basis of the reported highly bent and V-shaped structure of the Rba. sphaeroides core complex dimer.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics and Beckman Institute for Advanced Science and Engineering, University of Illinois at Urbana-Champaign, Urbana 61801, USA
| | | | | |
Collapse
|
40
|
Scheuring S, Sturgis JN. Atomic force microscopy of the bacterial photosynthetic apparatus: plain pictures of an elaborate machinery. PHOTOSYNTHESIS RESEARCH 2009; 102:197-211. [PMID: 19266309 DOI: 10.1007/s11120-009-9413-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 02/10/2009] [Indexed: 05/27/2023]
Abstract
Photosynthesis both in the past and present provides the vast majority of the energy used on the planet. The purple photosynthetic bacteria are a group of organisms that are able to perform photosynthesis using a particularly simple system that has been much studied. The main molecular constituents required for photosynthesis in these organisms are a small number of transmembrane pigment-protein complexes. These are able to function together with a high quantum efficiency (about 95%) to convert light energy into chemical potential energy. While the structure of the various proteins have been solved for several years, direct studies of the supramolecular assembly of these complexes in native membranes needed maturity of the atomic force microscope (AFM). Here, we review the novel findings and the direct conclusions that could be drawn from high-resolution AFM analysis of photosynthetic membranes. These conclusions rely on the possibility that the AFM brings of obtaining molecular resolution images of large membrane areas and thereby bridging the resolution gap between atomic structures and cellular ultrastructure.
Collapse
Affiliation(s)
- Simon Scheuring
- Institut Curie, UMR168-CNRS, 26 Rue d’Ulm, 75248 Paris, France.
| | | |
Collapse
|
41
|
Hsin J, Gumbart J, Trabuco LG, Villa E, Qian P, Hunter CN, Schulten K. Protein-induced membrane curvature investigated through molecular dynamics flexible fitting. Biophys J 2009; 97:321-9. [PMID: 19580770 PMCID: PMC2711417 DOI: 10.1016/j.bpj.2009.04.031] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Revised: 04/04/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022] Open
Abstract
In the photosynthetic purple bacterium Rhodobacter (Rba.) sphaeroides, light is absorbed by membrane-bound light-harvesting (LH) proteins LH1 and LH2. LH1 directly surrounds the reaction center (RC) and, together with PufX, forms a dimeric (RC-LH1-PufX)2 protein complex. In LH2-deficient Rba. sphaeroides mutants, RC-LH1-PufX dimers aggregate into tubular vesicles with a radius of approximately 250-550 A, making RC-LH1-PufX one of the few integral membrane proteins known to actively induce membrane curvature. Recently, a three-dimensional electron microscopy density map showed that the Rba. sphaeroides RC-LH1-PufX dimer exhibits a prominent bend at its dimerizing interface. To investigate the curvature properties of this highly bent protein, we employed molecular dynamics simulations to fit an all-atom structural model of the RC-LH1-PufX dimer within the electron microscopy density map. The simulations reveal how the dimer produces a membrane with high local curvature, even though the location of PufX cannot yet be determined uniquely. The resulting membrane curvature agrees well with the size of RC-LH1-PufX tubular vesicles, and demonstrates how the local curvature properties of the RC-LH1-PufX dimer propagate to form the observed long-range organization of the Rba. sphaeroides tubular vesicles.
Collapse
Affiliation(s)
- Jen Hsin
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - James Gumbart
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Leonardo G. Trabuco
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Elizabeth Villa
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Pu Qian
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - C. Neil Hunter
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Klaus Schulten
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
42
|
Sturgis JN, Tucker JD, Olsen JD, Hunter CN, Niederman RA. Atomic Force Microscopy Studies of Native Photosynthetic Membranes. Biochemistry 2009; 48:3679-98. [DOI: 10.1021/bi900045x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- James N. Sturgis
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR 9027, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseilles, France, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K., and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8082
| | - Jaimey D. Tucker
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR 9027, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseilles, France, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K., and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8082
| | - John D. Olsen
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR 9027, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseilles, France, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K., and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8082
| | - C. Neil Hunter
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR 9027, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseilles, France, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K., and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8082
| | - Robert A. Niederman
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires, UPR 9027, Aix Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseilles, France, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, U.K., and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854-8082
| |
Collapse
|
43
|
Ma F, Kimura Y, Yu LJ, Wang P, Ai XC, Wang ZY, Zhang JP. Specific Ca2+-binding motif in the LH1 complex from photosynthetic bacterium Thermochromatium tepidum as revealed by optical spectroscopy and structural modeling. FEBS J 2009; 276:1739-49. [DOI: 10.1111/j.1742-4658.2009.06905.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Scheuring S. The Supramolecular Assembly of the Photosynthetic Apparatus of Purple Bacteria Investigated by High-Resolution Atomic Force Microscopy. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_47] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
45
|
Organization and Assembly of Light-Harvesting Complexes in the Purple Bacterial Membrane. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/978-1-4020-8815-5_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
46
|
|
47
|
Lavergne J, Verméglio A, Joliot P. Functional Coupling Between Reaction Centers and Cytochrome bc 1 Complexes. THE PURPLE PHOTOTROPHIC BACTERIA 2009. [DOI: 10.1007/978-1-4020-8815-5_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
48
|
Mascle-Allemand C, Lavergne J, Bernadac A, Sturgis JN. Organisation and function of the Phaeospirillum molischianum photosynthetic apparatus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:1552-9. [PMID: 18948077 DOI: 10.1016/j.bbabio.2008.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Revised: 09/01/2008] [Accepted: 09/18/2008] [Indexed: 10/21/2022]
Abstract
We have investigated the organisation of the photosynthetic apparatus in Phaeospirillum molischianum, using biochemical fractionation and functional kinetic measurements. We show that only a fraction of the ATP-synthase is present in the membrane regions which contain most of the photosynthetic apparatus and that, despite its complicated stacked structure, the intracytoplasmic membrane delimits a single connected space. We find that the diffusion time required for a quinol released by the reaction centre to reach a cytochrome bc1 complex is about 260 ms. On the other hand, the reduction of the cytochrome c chain by the cytochrome bc1 complex in the presence of a reduced quinone pool occurs with a time constant of about 5 ms. The overall turnover time of the cyclic electron transfer is about 25 ms in vivo under steady-state illumination. The sluggishness of the quinone shuttle appears to be compensated, at least in part, by the size of the quinone pool. Together, our results show that P. molischianum contains a photosynthetic system, with a very different organisation from that found in Rhodobacter sphaeroides, in which quinone/quinol diffusion between the RC and the cytochrome bc1 is likely to be the rate-limiting factor for cyclic electron transfer.
Collapse
Affiliation(s)
- Camille Mascle-Allemand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UPR 9027, Institut de Biologie Structurale et Microbiologie, CNRS, 31 Chemin Joseph Aiguier, Marseille, 13402, France
| | | | | | | |
Collapse
|
49
|
Holden-Dye K, Crouch LI, Jones MR. Structure, function and interactions of the PufX protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:613-30. [DOI: 10.1016/j.bbabio.2008.04.015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 04/06/2008] [Accepted: 04/10/2008] [Indexed: 11/26/2022]
|
50
|
Liu LN, Aartsma TJ, Frese RN. Dimers of light-harvesting complex 2 from Rhodobacter sphaeroides characterized in reconstituted 2D crystals with atomic force microscopy. FEBS J 2008; 275:3157-66. [DOI: 10.1111/j.1742-4658.2008.06469.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|