1
|
Lu T, Wang XM, Chen PX, Xi J, Yang HB, Zheng WF, Zhao YX. Adaptative responses of Neurospora crassa by histidine kinases upon the attack of the arthropod Sinella curviseta. Curr Genet 2024; 70:16. [PMID: 39276284 DOI: 10.1007/s00294-024-01302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024]
Abstract
Histidine kinases (HKs) are important sensor proteins in fungi and play an essential role in environmental adaptation. However, the mechanisms by which fungi sense and respond to fungivores attack via HKs are not fully understood. In this study, we utilized Neurospora crassa to investigate the involvement of HKs in responding to fungivores attack. We found that the 11 HKs in N. crassa not only affected the growth and development, but also led to fluctuations in antioxidant production. Ten mutants in the genes encoding HKs (except ∆phy1) showed increased production of reactive oxygen species (ROS), especially upon Sinella curviseta attack. The ROS burst triggered changes in conidia and perithecial beaks formation, as well as accumulation of β-glucan, ergothioneine, ergosterol, and carotenoids. β-glucan was increased in ∆hk9, ∆os1, ∆hcp1, ∆nik2, ∆sln1, ∆phy1 and ∆phy2 mutants compared to the wild-type strain. In parallel, ergothioneine accumulation was improved in ∆phy1 and ∆hk16 mutants and further increased upon attack, except in ∆os1 and ∆hk16 mutants. Additionally, fungivores attack stimulated ergosterol and dehydroergosterol production in ∆hk9 and ∆os1 mutants. Furthermore, deletion of these genes altered carotenoid accumulation, with wild-type strain, ∆hk9, ∆os1, ∆hcp1, ∆sln1, ∆phy2, and ∆dcc1mutants showing an increase in carotenoids upon attack. Taken together, HKs are involved in regulating the production of conidia and antioxidants. Thus, HKs may act as sensors of fungivores attack and effectively improve the adaptive capacity of fungi to environmental stimuli.
Collapse
Affiliation(s)
- Ting Lu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiao-Meng Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Peng-Xu Chen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Juan Xi
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Han-Bing Yang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wei-Fa Zheng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Yan-Xia Zhao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
2
|
Ruger-Herreros M, Nordzieke S, Vega-Álvarez C, Avalos J, Limón MC. Relation between CarS expression and activation of carotenogenesis by stress in Fusarium fujikuroi. Front Bioeng Biotechnol 2022; 10:1000129. [PMID: 36277400 PMCID: PMC9581392 DOI: 10.3389/fbioe.2022.1000129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/12/2022] [Indexed: 11/19/2022] Open
Abstract
Fusarium fujikuroi, a model organism for secondary metabolism in fungi, produces carotenoids, terpenoid pigments with antioxidant activity. Previous results indicate that carotenoid synthesis in F. fujikuroi is stimulated by light or by different stress conditions and downregulated by a RING finger protein encoded by carS gene. Here, we have analyzed the effects of three stressors, nitrogen scarcity, heat shock, and oxidative stress. We compared them with the effect of light in the wild type, a carS mutant that overproduces carotenoids, and its complemented strain. The assayed stressors increase the synthesis of carotenoids in the three strains, but mRNA levels of structural genes of carotenogenesis, carRA and carB, are only enhanced in the presence of a functional carS gene. In the wild-type strain, the four conditions affect in different manners the mRNA levels of carS: greater in the presence of light, without significant changes in nitrogen starvation, and with patent decreases after heat shock or oxidative stress, suggesting different activation mechanisms. The spores of the carS mutant are more resistant to H2O2 than those of the wild type; however, the mutant shows a greater H2O2 sensitivity at the growth level, which may be due to the participation of CarS in the regulation of genes with catalase domains, formerly described. A possible mechanism of regulation by heat stress has been found in the alternative splicing of the intron of the carS gene, located close to its 3' end, giving rise to the formation of a shorter protein. This action could explain the inducing effect of the heat shock, but not of the other inducing conditions, which may involve other mechanisms of action on the CarS regulator, either transcriptionally or post-transcriptionally.
Collapse
Affiliation(s)
| | | | | | | | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, Seville, Spain
| |
Collapse
|
3
|
High Throughput Identification of the Potential Antioxidant Peptides in Ophiocordyceps sinensis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020438. [PMID: 35056752 PMCID: PMC8780859 DOI: 10.3390/molecules27020438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022]
Abstract
Ophiocordyceps sinensis, an ascomycete caterpillar fungus, has been used as a Traditional Chinese Medicine owing to its bioactive properties. However, until now the bio-active peptides have not been identified in this fungus. Here, the raw RNA sequences of three crucial growth stages of the artificially cultivated O. sinensis and the wild-grown mature fruit-body were aligned to the genome of O. sinensis. Both homology-based prediction and de novo-based prediction methods were used to identify 8541 putative antioxidant peptides (pAOPs). The expression profiles of the cultivated mature fruiting body were similar to those found in the wild specimens. The differential expression of 1008 pAOPs matched genes had the highest difference between ST and MF, suggesting that the pAOPs were primarily induced and play important roles in the process of the fruit-body maturation. Gene ontology analysis showed that most of pAOPs matched genes were enriched in terms of ‘cell redox homeostasis’, ‘response to oxidative stresses’, ‘catalase activity’, and ‘ integral component of cell membrane’. A total of 1655 pAOPs was identified in our protein-seqs, and some crucial pAOPs were selected, including catalase, peroxiredoxin, and SOD [Cu–Zn]. Our findings offer the first identification of the active peptide ingredients in O. sinensis, facilitating the discovery of anti-infectious bio-activity and the understanding of the roles of AOPs in fungal pathogenicity and the high-altitude adaptation in this medicinal fungus.
Collapse
|
4
|
Luo W, Wang Y, Yang P, Qu Y, Yu X. Multilevel Regulation of Carotenoid Synthesis by Light and Active Oxygen in Blakeslea trispora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10974-10988. [PMID: 34510898 DOI: 10.1021/acs.jafc.1c03389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although Blakeslea trispora has been used for industrial production of β-carotene, the effects of light and oxidative stress on its synthesis have not been fully clarified. The present study focuses on the effects of light and reactive oxygen species (ROS) on carotenoid synthesis and their multilevel regulation in B. trispora. Blue light significantly influenced the intracellular ROS levels, carotenoid contents, and transcription of carotenoid structural genes, while ROS levels were positively correlated with intracellular carotenoid contents and transcriptional levels of carotenoid structural genes. Blue light and ROS were both significant factors affecting carotenoid synthesis with a significant interaction between them. Irradiation by pulsed blue light and (or) addition of generating agents for active oxygen could partially compensate for the inhibition derived from the transcription inhibitor (dactinomycin) and translation inhibitor (cycloheximide) on the multilevel phenotype. Therefore, blue light and ROS act on the transcription and translation of carotenoid structural genes to promote the accumulation of carotenoid in B. trispora.
Collapse
Affiliation(s)
- Wei Luo
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Ying Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Xiaobin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education; School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
5
|
Tong X, Wang F, Zhang H, Bai J, Dong Q, Yue P, Jiang X, Li X, Wang L, Guo J. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2021; 9:e10940. [PMID: 33717691 PMCID: PMC7936569 DOI: 10.7717/peerj.10940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
In this study, using an isobaric tags for relative and absolute quantitation (iTRAQ ) approach coupled with LC-MS / MS and bioinformatics, the proteomes were analyzed for the crucial three stages covering the fruiting body development of Ophiocordyceps sinensis, including sclerotium (ST), primordium (PR) and mature fruiting body (MF), with a focus on fruiting body development-related proteins and the potential mechanisms of the development. A total of 1,875 proteins were identified. Principal Component Analysis (PCA) demonstrated that the protein patterns between PR and MF were more similar than ST. Differentially accumulated proteins (DAPs) analysis showed that there were 510, 173 and 514 DAPs in the comparisons of ST vs. PR, PR vs. MF and ST vs. MF, respectively. A total of 62 shared DAPs were identified and primarily enriched in proteins related to ‘carbon transport and mechanism’, ‘the response to oxidative stress’, ‘antioxidative activity’ and ‘translation’. KEGG and GO databases showed that the DAPs were enriched in terms of ‘primary metabolisms (amino acid/fatty acid/energy metabolism)’, ‘the response to oxidative stress’ and ‘peroxidase’. Furthermore, 34 DAPs involved in reactive oxygen species (ROS) metabolism were identified and clustered across the three stages using hierarchical clustering implemented in hCluster R package . It was suggested that their roles and the underlying mechanisms may be stage-specific. ROS may play a role in fungal pathogenicity in ST, the fruit-body initiation in PR, sexual reproduction and highland adaptation in MF. Crucial ROS-related proteins were identified, such as superoxide dismutase (SOD, T5A6F1), Nor-1 (T5AFX3), electron transport protein (T5AHD1), histidine phosphotransferase (HPt, T5A9Z5) and Glutathione peroxidase (T5A9V1). Besides, the accumulation of ROS at the three stages were assayed using 2,7-dichlorofuorescin diacetate (DCFH-DA) stanning. A much stronger ROS accumulation was detected at the stage MF, compared to the stages of PR and ST. Sections of ST and fruit-body part of MF were stained by DCFH-DA and observed under the fluorescencemicroscope, showing ROS was distributed within the conidiospore and ascus. Besides, SOD activity increased across the three stages, while CAT activity has a strong increasement in MF compared to the stages of ST and PR. It was suggested that ROS may act in gradient-dependent manner to regulate the fruiting body development. The coding region sequences of six DAPs were analyzed at mRNA level by quantitative real-time PCR (qRT-PCR). The results support the result of DAPs analysis and the proteome sequencing data. Our findings offer the perspective of proteome to understand the biology of fruiting body development and highland adaptation in O. sinensis, which would inform the big industry of this valuable fungus.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing Bai
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qiang Dong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Pan Yue
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyi Jiang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinrui Li
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Li Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Parra-Rivero O, Paes de Barros M, Prado MDM, Gil JV, Hornero-Méndez D, Zacarías L, Rodrigo MJ, Limón MC, Avalos J. Neurosporaxanthin Overproduction by Fusarium fujikuroi and Evaluation of Its Antioxidant Properties. Antioxidants (Basel) 2020; 9:E528. [PMID: 32560158 PMCID: PMC7346100 DOI: 10.3390/antiox9060528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/16/2022] Open
Abstract
Neurosporaxanthin (NX) is a carboxylic carotenoid produced by some filamentous fungi, including species of the genera Neurospora and Fusarium. NX biosynthetic genes and their regulation have been thoroughly investigated in Fusarium fujikuroi, an industrial fungus used for gibberellin production. In this species, carotenoid-overproducing mutants, affected in the regulatory gene carS, exhibit an upregulated expression of the NX pathway. Based on former data on a stimulatory effect of nitrogen starvation on carotenoid biosynthesis, we developed culture conditions with carS mutants allowing the production of deep-pigmented mycelia. With this method, we obtained samples with ca. 8 mg NX/g dry mass, in turn the highest concentration for this carotenoid described so far. NX-rich extracts obtained from these samples were used in parallel with carS-complemented NX-poor extracts obtained under the same conditions, to check the antioxidant properties of this carotenoid in in vitro assays. NX-rich extracts exhibited higher antioxidant capacity than NX-poor extracts, either when considering their quenching activity against [O2(1g)] in organic solvent (singlet oxygen absorption capacity (SOAC) assays) or their scavenging activity against different free radicals in aqueous solution and in liposomes. These results make NX a promising carotenoid as a possible feed or food additive, and encourage further studies on its chemical properties.
Collapse
Affiliation(s)
- Obdulia Parra-Rivero
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - Marcelo Paes de Barros
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity Sciences and Sports (ICAFE), Cruzeiro do Sul University, Rua Galvão Bueno 868, São Paulo SP 01506-000, Brazil
| | - María del Mar Prado
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - José-Vicente Gil
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
- Food Technology Area, Faculty of Pharmacy, University of Valencia, Burjassot, 46100 Valencia, Spain
| | - Dámaso Hornero-Méndez
- Department of Food Phytochemistry, Instituto de la Grasa (IG-CSIC), 41013 Seville, Spain;
| | - Lorenzo Zacarías
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
| | - María J. Rodrigo
- Department of Food Biotechnology, Institute of Agrochemistry and Food Technology (IATA-CSIC), 46980 Valencia, Spain; (M.P.d.B.); (J.-V.G.); (L.Z.); (M.J.R.)
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, 41012 Seville, Spain; (O.P.-R.); (M.d.M.P.); (M.C.L.)
| |
Collapse
|
7
|
Tong X, Zhang H, Wang F, Xue Z, Cao J, Peng C, Guo J. Comparative transcriptome analysis revealed genes involved in the fruiting body development of Ophiocordyceps sinensis. PeerJ 2020; 8:e8379. [PMID: 31988806 PMCID: PMC6970007 DOI: 10.7717/peerj.8379] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022] Open
Abstract
Ophiocordyceps sinensis is a highly valued fungus that has been used as traditional Asian medicine. This fungus is one of the most important sources of income for the nomadic populations of the Tibetan Plateau. With global warming and excessive collection, the wild O. sinensis resources declined dramatically. The cultivation of O. sinensis hasn’t been fully operational due to the unclear genetic basis of the fruiting body development. Here, our study conducted pairwise comparisons between transcriptomes acquired from different growth stages of O. sinensis including asexual mycelium (CM), developing fruiting body (DF) and mature fruiting body (FB). All RNA-Seq reads were aligned to the genome of O. sinensis CO18 prior to comparative analyses. Cluster analysis showed that the expression profiles of FB and DF were highly similar compared to CM. Alternative splicing analysis (AS) revealed that the stage-specific splicing genes may have important functions in the development of fruiting body. Functional enrichment analyses showed that differentially expressed genes (DEGs) were enriched in protein synthesis and baseline metabolism during fruiting body development, indicating that more protein and energy might be required for fruiting body development. In addition, some fruiting body development-associated genes impacted by ecological factors were up-regulated in FB samples, such as the nucleoside diphosphate kinase gene (ndk), β subunit of the fatty acid synthase gene (cel-2) and the superoxide dismutase gene (sod). Moreover, the expression levels of several cytoskeletons genes were significantly altered during all these growth stages, suggesting that these genes play crucial roles in both vegetative growth and the fruiting body development. Quantitative PCR (qPCR) was used to validate the gene expression profile and the results supported the accuracy of the RNA-Seq and DEGs analysis. Our study offers a novel perspective to understand the underlying growth stage-specific molecular differences and the biology of O. sinensis fruiting body development.
Collapse
Affiliation(s)
- Xinxin Tong
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Han Zhang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fang Wang
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengyao Xue
- Department of Food Science and Technology, University of California, Davis, CA, United States of America
| | - Jing Cao
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Cheng Peng
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jinlin Guo
- Key Laboratory of Standardization of Chinese Medicine, Ministry of Education; Key Laboratory of Systematic Research, Development and Utilization of Chinese Medicine Resources in Sichuan Province-Key Laboratory Breeding Base founded by Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Ruger-Herreros M, Parra-Rivero O, Pardo-Medina J, Romero-Campero FJ, Limón MC, Avalos J. Comparative transcriptomic analysis unveils interactions between the regulatory CarS protein and light response in Fusarium. BMC Genomics 2019; 20:67. [PMID: 30665350 PMCID: PMC6340186 DOI: 10.1186/s12864-019-5430-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/03/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The orange pigmentation of the agar cultures of many Fusarium species is due to the production of carotenoids, terpenoid pigments whose synthesis is stimulated by light. The genes of the carotenoid pathway and their regulation have been investigated in detail in Fusarium fujikuroi. In this and other Fusarium species, such as F. oxysporum, deep-pigmented mutants affected in the gene carS, which encodes a protein of the RING-finger family, overproduce carotenoids irrespective of light. The induction of carotenogenesis by light and its deregulation in carS mutants are achieved on the transcription of the structural genes of the pathway. We have carried out global RNA-seq transcriptomics analyses to investigate the relationship between the regulatory role of CarS and the control by light in these fungi. RESULTS The absence of a functional carS gene or the illumination exert wide effects on the transcriptome of F. fujikuroi, with predominance of genes activated over repressed and a greater functional diversity in the case of genes induced by light. The number of the latter decreases drastically in a carS mutant (1.1% vs. 4.8% in the wild-type), indicating that the deregulation produced by the carS mutation affects the light response of many genes. Moreover, approximately 27% of the genes activated at least 2-fold by light or by the carS mutation are coincident, raising to 40% for an 8-fold activation threshold. As expected, the genes with the highest changes under both regulatory conditions include those involved in carotenoid metabolism. In addition, light and CarS strongly influence the expression of some genes associated with stress responses, including three genes with catalase domains, consistent with roles in the control of oxidative stress. The effects of the CarS mutation or light in the transcriptome of F. oxysporum were partially coincident with those of F. fujikuroi, indicating the conservation of the objectives of their regulatory mechanisms. CONCLUSIONS The CarS RING finger protein down-regulates many genes whose expression is up-regulated by light in wild strains of the two investigated Fusarium species, indicating a regulatory interplay between the mechanism of action of the CarS protein and the control by light.
Collapse
Affiliation(s)
| | - Obdulia Parra-Rivero
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Javier Pardo-Medina
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Francisco J. Romero-Campero
- Department of Computer Science and artificial Intelligence, University of Seville, E-41012 Seville, Spain
- Plant Development Unit, Institute for Plant Biochemistry and Photosynthesis, University of Seville – CSIC, E-41012 Seville, Spain
| | - M. Carmen Limón
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| | - Javier Avalos
- Department of Genetics, Faculty of Biology, University of Seville, E-41012 Seville, Spain
| |
Collapse
|
9
|
Sephton-Clark PCS, Voelz K. Spore Germination of Pathogenic Filamentous Fungi. ADVANCES IN APPLIED MICROBIOLOGY 2017; 102:117-157. [PMID: 29680124 DOI: 10.1016/bs.aambs.2017.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Fungi, algae, plants, protozoa, and bacteria are all known to form spores, especially hardy and ubiquitous propagation structures that are also often the infectious agents of diseases. Spores can survive for thousands of years, frozen in the permafrost (Kochkina et al., 2012), with the oldest viable spores extracted after 250 million years from salt crystals (Vreeland, Rosenzweig, & Powers, 2000). Their resistance to high levels of UV, desiccation, pressure, heat, and cold enables the survival of spores in the harshest conditions (Setlow, 2016). For example, Bacillus subtilis spores can survive and remain viable after experiencing conditions similar to those on Mars (Horneck et al., 2012). Spores are disseminated through environmental factors. Wind, water, or animal carriage allow spores to be spread ubiquitously throughout the environment. Spores will break dormancy and begin to germinate once exposed to favorable conditions. Germination is the mechanism that converts the spore from a dormant biological organism to one that grows vegetatively and is capable of either sexual or asexual reproduction. The process of germination has been well studied in plants, moss, bacteria, and many fungi (Hohe & Reski, 2005; Huang & Hull, 2017; Vesty et al., 2016). Unfortunately, information on the complex signaling involved in the regulation of germination, particularly in fungi remains lacking. This chapter will discuss germination of fungal spores covering our current understanding of the regulation, signaling, outcomes, and implications of germination of pathogenic fungal spores. Owing to the morphological similarities between the spore-hyphal and yeast-hyphal transition and their relevance for disease progression, relevant aspects of fungal dimorphism will be discussed alongside spore germination in this chapter.
Collapse
Affiliation(s)
- Poppy C S Sephton-Clark
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Kerstin Voelz
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.
| |
Collapse
|
10
|
Barman A, Tamuli R. The pleiotropic vegetative and sexual development phenotypes of Neurospora crassa arise from double mutants of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet 2017; 63:861-875. [PMID: 28265741 DOI: 10.1007/s00294-017-0682-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 11/25/2022]
Abstract
We investigated phenotypes of the double mutants of the calcium (Ca2+) signaling genes plc-1, splA2, and cpe-1 encoding for a phospholipase C1 (PLC-1), a secretory phospholipase A2 (sPLA2), and a Ca2+/H+ exchanger (CPE-1), respectively, to understand the cell functions regulated by their genetic interactions. Mutants lacking plc-1 and either splA2 or cpe-1 exhibited numerous defects including reduced colonial growth, stunted aerial hyphae, premature conidiation on plates with delayed germination, inappropriate conidiation in submerged culture, and lesser mycelial pigmentation. Moreover, the ∆plc-1; ∆splA2 and ∆plc-1; ∆cpe-1 double mutants were female-sterile when crossed with wild type as the male parent. In addition, ∆plc-1, ∆splA2, and ∆cpe-1 single mutants displayed higher carotenoid accumulation and an increased level of intracellular reactive oxygen species (ROS). Therefore, the pleiotropic phenotype of the double mutants of plc-1, splA2, and cpe-1 suggested that the genetic interaction of these genes plays a critical role for normal vegetative and sexual development in N. crassa.
Collapse
Affiliation(s)
- Ananya Barman
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
11
|
Cetz-Chel JE, Balcázar-López E, Esquivel-Naranjo EU, Herrera-Estrella A. The Trichoderma atroviride putative transcription factor Blu7 controls light responsiveness and tolerance. BMC Genomics 2016; 17:327. [PMID: 27142227 PMCID: PMC4855978 DOI: 10.1186/s12864-016-2639-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 04/22/2016] [Indexed: 11/23/2022] Open
Abstract
Background Most living organisms use sunlight as a source of energy and/or information about their environment. Consequently, they have developed mechanisms to sense light quality and quantity. In the fungus Trichoderma atroviride blue-light is perceived through the Blue Light Regulator Complex, which in turn up-regulates a set of genes (blu) and down-regulates another set (bld), triggering asexual reproduction. To gain insight into this process, we characterized the blu7 gene, which encodes a protein containing a C2H2 zinc finger domain. Results Δblu7 mutants show reduced conidiation at low light fluences, which is still clear even when exposed to saturating light. For the first time we show a genome wide survey of light regulated gene expression in T. atroviride, including RNA-seq analyses of the wild type and the Δblu7 strains after brief exposure to blue-light. Our data show a reduction in the number of induced genes and an increase in down-regulated genes in the mutant. Light activates stress responses and several metabolic processes in the wild type strain that are no longer activated in the mutant. In agreement with the misregulation of metabolic processes, continuous exposure to white light strongly inhibited growth of the ∆blu7 mutant, in a carbon source dependent fashion. RNA-seq analyses under constant white light using glucose as sole carbon source revealed that localization and transport process present the opposite regulation pattern in the ∆blu7 and wild type strains. Genes related to amino acid, sugar and general transporters were enriched in the induced genes in the mutant and the repressed genes of the wild type. Peptone supplemented in the media restored growth of the ∆blu7 mutant in constant light, suggesting a role of Blu7 in the regulation of nitrogen metabolism in the presence of light. Conclusions Blu7 appears to regulate light sensitivity in terms of induction of conidiation, and to play a major role in supporting growth under continuous exposure to light. The diminished conidiation observed in ∆blu7 mutants is likely due to misregulation of the cAMP signaling pathway and ROS production, whereas their low tolerance to continuous exposure to light indicates that Blu7 is required for adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- José E Cetz-Chel
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgar Balcázar-López
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico
| | - Edgardo U Esquivel-Naranjo
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.,Present Address: Unit for Basic and Applied Microbiology, Faculty of Natural Sciences, Autonomous University of Querétaro, Querétaro, 76230, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, CINVESTAV Sede Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-León, 36821, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
12
|
Assessing the relevance of light for fungi: Implications and insights into the network of signal transmission. ADVANCES IN APPLIED MICROBIOLOGY 2016; 76:27-78. [PMID: 21924971 DOI: 10.1016/b978-0-12-387048-3.00002-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Light represents an important environmental cue, which provides information enabling fungi to prepare and react to the different ambient conditions between day and night. This adaptation requires both anticipation of the changing conditions, which is accomplished by daily rhythmicity of gene expression brought about by the circadian clock, and reaction to sudden illumination. Besides perception of the light signal, also integration of this signal with other environmental cues, most importantly nutrient availability, necessitates light-dependent regulation of signal transduction pathways and metabolic pathways. An influence of light and/or the circadian clock is known for the cAMP pathway, heterotrimeric G-protein signaling, mitogen-activated protein kinases, two-component phosphorelays, and Ca(2+) signaling. Moreover, also the target of rapamycin signaling pathway and reactive oxygen species as signal transducing elements are assumed to be connected to the light-response pathway. The interplay of the light-response pathway with signaling cascades results in light-dependent regulation of primary and secondary metabolism, morphology, development, biocontrol activity, and virulence. The frequent use of fungi in biotechnology as well as analysis of fungi in the artificial environment of a laboratory therefore requires careful consideration of still operative evolutionary heritage of these organisms. This review summarizes the diverse effects of light on fungi and the mechanisms they apply to deal both with the information content and with the harmful properties of light. Additionally, the implications of the reaction of fungi to light in a laboratory environment for experimental work and industrial applications are discussed.
Collapse
|
13
|
Dasgupta A, Fuller KK, Dunlap JC, Loros JJ. Seeing the world differently: variability in the photosensory mechanisms of two model fungi. Environ Microbiol 2015; 18:5-20. [PMID: 26373782 DOI: 10.1111/1462-2920.13055] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/01/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
Light plays an important role for most organisms on this planet, serving either as a source of energy or information for the adaptation of biological processes to specific times of day. The fungal kingdom is estimated to contain well over a million species, possibly 10-fold more, and it is estimated that a majority of the fungi respond to light, eliciting changes in several physiological characteristics including pathogenesis, development and secondary metabolism. Two model organisms for photobiological studies have taken centre-stage over the last few decades--Neurospora crassa and Aspergillus nidulans. In this review, we will first discuss our understanding of the light response in N. crassa, about which the most is known, and will then juxtapose N. crassa with A. nidulans, which, as will be described below, provides an excellent template for understanding photosensory cross-talk. Finally, we will end with a commentary on the variability of the light response among other relevant fungi, and how our molecular understanding in the aforementioned model organisms still provides a strong base for dissecting light responses in such species.
Collapse
Affiliation(s)
- Arko Dasgupta
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Kevin K Fuller
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jennifer J Loros
- Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
14
|
Avalos J, Carmen Limón M. Biological roles of fungal carotenoids. Curr Genet 2014; 61:309-24. [PMID: 25284291 DOI: 10.1007/s00294-014-0454-x] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/12/2014] [Accepted: 09/12/2014] [Indexed: 01/28/2023]
Abstract
Carotenoids are terpenoid pigments widespread in nature, produced by bacteria, fungi, algae and plants. They are also found in animals, which usually obtain them through the diet. Carotenoids in plants provide striking yellow, orange or red colors to fruits and flowers, and play important metabolic and physiological functions, especially relevant in photosynthesis. Their functions are less clear in non-photosynthetic microorganisms. Different fungi produce diverse carotenoids, but the mutants unable to produce them do not exhibit phenotypic alterations in the laboratory, apart of lack of pigmentation. This review summarizes the current knowledge on the functional basis for carotenoid production in fungi. Different lines of evidence support a protective role of carotenoids against oxidative stress and exposure to visible light or UV irradiation. In addition, the carotenoids are intermediary products in the biosynthesis of physiologically active apocarotenoids or derived compounds. This is the case of retinal, obtained from the symmetrical oxidative cleavage of β-carotene. Retinal is the light-absorbing prosthetic group of the rhodopsins, membrane-bound photoreceptors present also in many fungal species. In Mucorales, β-carotene is an intermediary in the synthesis of trisporoids, apocarotenoid derivatives that include the sexual hormones the trisporic acids, and they are also presumably used in the synthesis of sporopollenin polymers. In conclusion, fungi have adapted their ability to produce carotenoids for different non-essential functions, related with stress tolerance or with the synthesis of physiologically active by-products.
Collapse
Affiliation(s)
- Javier Avalos
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, 41080, Seville, Spain,
| | | |
Collapse
|
15
|
Glukhova LB, Sokolyanskaya LO, Plotnikov EV, Gerasimchuk AL, Karnachuk OV, Solioz M, Karnachuk RA. Increased mycelial biomass production by Lentinula edodes intermittently illuminated by green light emitting diodes. Biotechnol Lett 2014; 36:2283-9. [PMID: 25048231 DOI: 10.1007/s10529-014-1605-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 06/24/2014] [Indexed: 11/28/2022]
Abstract
Fungi possess a range of light receptors to regulate metabolism and differentiation. To study the effect of light on Lentinula edodes (the shiitake mushroom), mycelial cultures were exposed to blue, green, and red fluorescent lights and light-emitting diodes, as well as green laser light. Biomass production, morphology, and pigment production were evaluated. Exposure to green light at intervals of 1 min/d at 0.4 W/m(2) stimulated biomass production by 50-100 %, depending on the light source. Light intensities in excess of 1.8 W/m(2) or illumination longer than 30 min/d did not affect biomass production. Carotenoid production and morphology remained unaltered during increased biomass production. These observations provide a cornerstone to the study of photoreception by this important fungus.
Collapse
Affiliation(s)
- Lubov B Glukhova
- Dept. of Plant Physiology and Biotechnology, Tomsk State University, Lenin Prospect 36, 634050, Toms, Russian Federation,
| | | | | | | | | | | | | |
Collapse
|
16
|
Gyöngyösi N, Káldi K. Interconnections of reactive oxygen species homeostasis and circadian rhythm in Neurospora crassa. Antioxid Redox Signal 2014; 20:3007-23. [PMID: 23964982 DOI: 10.1089/ars.2013.5558] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
SIGNIFICANCE Both circadian rhythm and the production of reactive oxygen species (ROS) are fundamental features of aerobic eukaryotic cells. The circadian clock enhances the fitness of organisms by enabling them to anticipate cycling changes in the surroundings. ROS generation in the cell is often altered in response to environmental changes, but oscillations in ROS levels may also reflect endogenous metabolic fluctuations governed by the circadian clock. On the other hand, an effective regulation and timing of antioxidant mechanisms may be crucial in the defense of cellular integrity. Thus, an interaction between the circadian timekeeping machinery and ROS homeostasis or signaling in both directions may be of advantage at all phylogenetic levels. RECENT ADVANCES The Frequency-White Collar-1 and White Collar-2 oscillator (FWO) of the filamentous fungus Neurospora crassa is well characterized at the molecular level. Several members of the ROS homeostasis were found to be controlled by the circadian clock, and ROS levels display circadian rhythm in Neurospora. On the other hand, multiple data indicate that ROS affect the molecular oscillator. CRITICAL ISSUES Increasing evidence suggests the interplay between ROS homeostasis and oscillators that may be partially or fully independent of the FWO. In addition, ROS may be part of a complex cellular network synchronizing non-transcriptional oscillators with timekeeping machineries based on the classical transcription-translation feedback mechanism. FUTURE DIRECTIONS Further investigations are needed to clarify how the different layers of the bidirectional interactions between ROS homeostasis and circadian regulation are interconnected.
Collapse
|
17
|
|
18
|
Gyöngyösi N, Nagy D, Makara K, Ella K, Káldi K. Reactive oxygen species can modulate circadian phase and period in Neurospora crassa. Free Radic Biol Med 2013; 58:134-43. [PMID: 23277144 DOI: 10.1016/j.freeradbiomed.2012.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/14/2012] [Accepted: 12/17/2012] [Indexed: 11/24/2022]
Abstract
Reactive oxygen species (ROS) may serve as signals coupling metabolism to other cell functions. In addition to being by-products of normal metabolism, they are generated at elevated levels under environmental stress situations. We analyzed how reactive oxygen species affect the circadian clock in the model organism Neurospora crassa. In light/dark cycles, an increase in the levels of reactive oxygen species advanced the phase of both the conidiation rhythm and the expression of the clock gene frequency. Our results indicate a dominant role of the superoxide anion in the control of the phase. Elevation of superoxide production resulted in the activation of protein phosphatase 2A, a regulator of the positive element of the circadian clock. Our data indicate that even under nonstress conditions, reactive oxygen species affect circadian timekeeping. Reduction of their basal levels results in a delay of the phase in light/dark cycles and a longer period under constant conditions. We show that under entrained conditions the phase depends on the temperature and reactive oxygen species contribute to this effect. Our results suggest that the superoxide anion is an important factor controlling the circadian oscillator and is able to reset the clock most probably by activating protein phosphatase 2A, thereby modulating the activity of the White Collar complex.
Collapse
Affiliation(s)
- Norbert Gyöngyösi
- Department of Physiology, Semmelweis University, H-1092 Budapest, Hungary
| | | | | | | | | |
Collapse
|
19
|
Multifunction of autophagy-related genes in filamentous fungi. Microbiol Res 2012; 167:339-45. [DOI: 10.1016/j.micres.2012.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/11/2012] [Accepted: 01/16/2012] [Indexed: 12/19/2022]
|
20
|
Hunt S, Elvin M, Heintzen C. Temperature-sensitive and circadian oscillators of Neurospora crassa share components. Genetics 2012; 191:119-31. [PMID: 22367035 PMCID: PMC3338254 DOI: 10.1534/genetics.111.137976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/06/2012] [Indexed: 11/18/2022] Open
Abstract
In Neurospora crassa, the interactions between products of the frequency (frq), frequency-interacting RNA helicase (frh), white collar-1 (wc-1), and white collar-2 (wc-2) genes establish a molecular circadian clockwork, called the FRQ-WC-Oscillator (FWO), which is required for the generation of molecular and overt circadian rhythmicity. In strains carrying nonfunctional frq alleles, circadian rhythms in asexual spore development (conidiation) are abolished in constant conditions, yet conidiation remains rhythmic in temperature cycles. Certain characteristics of these temperature-synchronized rhythms have been attributed to the activity of a FRQ-less oscillator (FLO). The molecular components of this FLO are as yet unknown. To test whether the FLO depends on other circadian clock components, we created a strain that carries deletions in the frq, wc-1, wc-2, and vivid (vvd) genes. Conidiation in this ΔFWO strain was still synchronized to cyclic temperature programs, but temperature-induced rhythmicity was distinct from that seen in single frq knockout strains. These results and other evidence presented indicate that components of the FWO are part of the temperature-induced FLO.
Collapse
Affiliation(s)
- Suzanne Hunt
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Mark Elvin
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Christian Heintzen
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
21
|
Sánchez-Arreguín A, Pérez-Martínez AS, Herrera-Estrella A. Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. EUKARYOTIC CELL 2012; 11:30-41. [PMID: 22058143 PMCID: PMC3255938 DOI: 10.1128/ec.05263-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 10/24/2011] [Indexed: 11/20/2022]
Abstract
The genus Trichoderma is one of the most widely used biological control agents of plant-pathogenic fungi. The main mechanism for survival and dispersal of Trichoderma is through the production of asexual spores (conidia). The transition from filamentous growth to conidiation can be triggered by light, nutrient deprivation, and mechanical damage of the mycelium. We conducted proteomic profiling analyses of Trichoderma atroviride after a blue light pulse. The use of two-dimensional electrophoresis (2-DE) and mass spectrometry (MS) analysis allowed us to identify 72 proteins whose expression was affected by blue light. Functional category analysis showed that the various proteins are involved in metabolism, cell rescue, and protein synthesis. We determined the relationship between mRNA levels of selected genes 30 min after a light pulse and protein expression levels at different times after the pulse and found this correlation to be very weak. The correlation was highest when protein and mRNA levels were compared for the same time point. The transcription factors BLR-1 and BLR-2 are vital to the photoconidiation process; here we demonstrate that both BLR proteins are active in darkness and affect several elements at both the transcript and protein levels. Unexpectedly, in darkness, downregulation of proteins prevailed in the Δblr-1 mutant, while upregulation of proteins predominated in the Δblr-2 mutant. Our data demonstrate that the BLR proteins play roles individually and as a complex.
Collapse
Affiliation(s)
- Alejandro Sánchez-Arreguín
- Laboratorio Nacional de Gnómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico National, Irapuato, Guanajuato, México
| | | | | |
Collapse
|
22
|
Yoshida Y, Iigusa H, Wang N, Hasunuma K. Cross-talk between the cellular redox state and the circadian system in Neurospora. PLoS One 2011; 6:e28227. [PMID: 22164247 PMCID: PMC3229512 DOI: 10.1371/journal.pone.0028227] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 11/03/2011] [Indexed: 01/03/2023] Open
Abstract
The circadian system is composed of a number of feedback loops, and multiple feedback loops in the form of oscillators help to maintain stable rhythms. The filamentous fungus Neurospora crassa exhibits a circadian rhythm during asexual spore formation (conidiation banding) and has a major feedback loop that includes the FREQUENCY (FRQ)/WHITE COLLAR (WC) -1 and -2 oscillator (FWO). A mutation in superoxide dismutase (sod)-1, an antioxidant gene, causes a robust and stable circadian rhythm compared with that of wild-type (Wt). However, the mechanisms underlying the functions of reactive oxygen species (ROS) remain unknown. Here, we show that cellular ROS concentrations change in a circadian manner (ROS oscillation), and the amplitudes of ROS oscillation increase with each cycle and then become steady (ROS homeostasis). The ROS oscillation and homeostasis are produced by the ROS-destroying catalases (CATs) and ROS-generating NADPH oxidase (NOX). cat-1 is also induced by illumination, and it reduces ROS levels. Although ROS oscillation persists in the absence of frq, wc-1 or wc-2, its homeostasis is altered. Furthermore, genetic and biochemical evidence reveals that ROS concentration regulates the transcriptional function of WCC and a higher ROS concentration enhances conidiation banding. These findings suggest that the circadian system engages in cross-talk with the cellular redox state via ROS-regulatory factors.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Kihara Institute for Biological Research, Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama, Japan.
| | | | | | | |
Collapse
|
23
|
Sun X, Zhang H, Zhang Z, Wang Y, Li S. Involvement of a helix–loop–helix transcription factor CHC-1 in CO2-mediated conidiation suppression in Neurospora crassa. Fungal Genet Biol 2011; 48:1077-86. [DOI: 10.1016/j.fgb.2011.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/19/2011] [Accepted: 09/29/2011] [Indexed: 01/25/2023]
|
24
|
Neurospora crassa Light Signal Transduction Is Affected by ROS. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2012:791963. [PMID: 22046507 PMCID: PMC3199206 DOI: 10.1155/2012/791963] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/23/2011] [Indexed: 11/17/2022]
Abstract
In the ascomycete fungus Neurospora crassa blue-violet light controls the expression of genes responsible for differentiation of reproductive structures, synthesis of secondary metabolites, and the circadian oscillator activity. A major photoreceptor in Neurospora cells is WCC, a heterodimeric complex formed by the PAS-domain-containing polypeptides WC-1 and WC-2, the products of genes white collar-1 and white collar-2. The photosignal transduction is started by photochemical activity of an excited FAD molecule noncovalently bound by the LOV domain (a specialized variant of the PAS domain). The presence of zinc fingers (the GATA-recognizing sequences) in both WC-1 and WC-2 proteins suggests that they might function as transcription factors. However, a critical analysis of the phototransduction mechanism considers the existence of residual light responses upon absence of WCC or its homologs in fungi. The data presented
point at endogenous ROS generated by a photon stimulus as an alternative input to pass on light signals to downstream targets.
Collapse
|
25
|
Bartoszewska M, Kiel JAKW. The role of macroautophagy in development of filamentous fungi. Antioxid Redox Signal 2011; 14:2271-87. [PMID: 20712412 DOI: 10.1089/ars.2010.3528] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Autophagy (macroautophagy) is a bulk degradative pathway by which cytoplasmic components are delivered to the vacuole for recycling. This process is conserved from yeast to human, where it is implicated in cancer and neurodegenerative diseases. During the last decade, many ATG genes involved in autophagy have been identified, initially in Saccharomyces cerevisiae. This review summarizes the knowledge on the molecular mechanisms of autophagy using yeast as model system. Although many of the core components involved in autophagy are conserved from yeast to human, there are, nevertheless, significant differences between these organisms, for example, during autophagy initiation. Autophagy also plays an essential role in filamentous fungi especially during differentiation. Remarkably, in these species autophagy may reflect features of both yeast and mammals. This is exemplified by the finding that filamentous fungi lack the S. cerevisiae clade-specific Atg31 protein, but contain Atg101, which is absent in this clade. A reappraisal of genome data further suggests that, similar to yeast and mammals, filamentous fungi probably also contain two distinct phosphatidylinositol 3-kinase complexes. This review also summarizes the state of knowledge on the role of autophagy in filamentous fungi during differentiation, such as pathogenic development, programmed cell death during heteroincompatibility, and spore formation.
Collapse
Affiliation(s)
- Magdalena Bartoszewska
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
| | | |
Collapse
|
26
|
Hasunuma K, Yoshida Y, Haque ME, Wang NY, Fukamatsu Y, Miyoshi O, Lee B. Global warming, plant paraquat resistance, and light signal transduction through nucleoside diphosphate kinase as a paradigm for increasing food supply. Naunyn Schmiedebergs Arch Pharmacol 2011; 384:391-5. [PMID: 21603975 DOI: 10.1007/s00210-011-0640-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/07/2011] [Indexed: 11/26/2022]
Abstract
Light signal transduction was studied in extracts of mycelia of the fungus Neurospora crassa, and the third internodes of dark-grown Pisum sativum cv Alaska. Both processes increased the phosphorylation of nucleoside diphosphate kinase (NDPK). NDPK may function as a carrier of reduction equivalents, as it binds NADH, thereby providing electrons to transform singlet oxygen to superoxide by catalases (CAT). As the C-termini of NDPK interact with CAT which receive singlet oxygen, emitted from photoreceptors post light perception (which is transmitted to ambient triplet oxygen), we hypothesize that this may increase phospho-NDPK. Singlet oxygen, emitted from the photoreceptor, also reacts with unsaturated fatty acids in membranes thereby forming malonedialdehyde, which in turn could release ions from, e.g., the thylacoid membrane thereby reducing the rate of photosynthesis. A mutant of Alaska pea, which exhibited two mutations in chloroplast NDPK-2 and one mutation in mitochondrial localized NDPK-3, was resistant to reactive oxygen species including singlet oxygen and showed an increase in the production of carotenoids, anthocyanine, and thereby could reduce the concentration of singlet oxygen. The reduction of the concentration of singlet oxygen is predicted to increase the yield of crop plants, such as Alaska pea, soybean, rice, wheat, barley, and sugarcane. This approach to increase the yield of crop plants may contribute not only to enhance food supply, but also to reduce the concentration of CO(2) in the atmosphere.
Collapse
Affiliation(s)
- Kohji Hasunuma
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan.
| | | | | | | | | | | | | |
Collapse
|
27
|
Chen CH, Dunlap JC, Loros JJ. Neurospora illuminates fungal photoreception. Fungal Genet Biol 2010; 47:922-9. [PMID: 20637887 PMCID: PMC3649881 DOI: 10.1016/j.fgb.2010.07.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 07/07/2010] [Accepted: 07/08/2010] [Indexed: 10/19/2022]
Abstract
Light not only is indispensable as an energy source for life on earth but also serves as an essential environmental cue conveying the information of daily and seasonal time to organisms across different kingdoms. Although the molecular mechanisms underlying light responses are actively explored in various light-sensitive organisms, these studies are either hindered by the complexity of the systems or an incomplete familiarity with the light signaling components involved in the scheme. Therefore, study of a simple and well-characterized model system is desirable to expand our knowledge of basic properties underlying the regulation of biological light responses. This review will briefly introduce the basic light sensing machinery in Neurospora crassa, a filamentous fungus, and then focus on the most recent advances in employing Neurospora as a model to study light signaling cascades, photoadaptation, and circadian clock-modulated effects in eukaryotic cells. Also, we will summarize the functions of a number of putative photoreceptors in Neurospora, and discuss the implications of the study of Neurospora to the field of fungal photobiology and some challenges for future studies.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
28
|
Haque ME, Yoshida Y, Hasunuma K. ROS resistance in Pisum sativum cv. Alaska: the involvement of nucleoside diphosphate kinase in oxidative stress responses via the regulation of antioxidants. PLANTA 2010; 232:367-82. [PMID: 20458498 DOI: 10.1007/s00425-010-1173-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 04/11/2010] [Indexed: 05/29/2023]
Abstract
This study investigated the reactive oxygen species (ROS) tolerance mechanism of a paraquat-resistant Pisum sativum line (R3-1) compared with the wild type (WT). Physiological and biochemical analyses showed significant differences in the phenotypes, such as delayed leaf and floral development, superior branching, and greater biomass and yields in the R3-1 line, as well as an increased level of antioxidant pigments and a lower rate of cellular lipid peroxidation in the resistant R3-1. Additionally, the phosphorylation of crude proteins showed distinguishable differences in band mobility and intensity between the R3-1 and WT plants. cDNA cloning and sequence analysis of NDPKs, which were candidate phosphorylated proteins, revealed that two of the deduced amino acids in NDPK2 (IL12L and Glu205Lys) and one in NDPK3 (P45S) were mutated in R3-1. Using glutathione S-transferase-NDPK fusion constructs, we found that the precursor recombinant R3-1 NDPK2 showed an increased level of activity and autophosphorylation in R3-1 plants compared to WT plants. Native PAGE analysis of the crude proteins revealed that NDPK and catalase (CAT) activity co-existed in the same area of the gel. In a yeast two-hybrid assay, the N-terminal region of NDPK2 showed an interaction with the full-length CAT1 protein. Furthermore, we found that WT showed a decreased level of CAT activity compared with R3-1 under illumination and/or on media containing ROS-releasing reagents. Taken together, these results suggest that there is a strong interaction between NDPK2 and CAT1 in R3-1 plants, which possibly plays a vital role in the antioxidant defense against ROS.
Collapse
Affiliation(s)
- Md Emdadul Haque
- Kihara Institute for Biological Research, Yokohama City University, Totsuka-ku, Yokohama, Japan.
| | | | | |
Collapse
|
29
|
Isakova EP, Deryabina YI, Gessler NN, Belozerskaya TA, Rabinovich YM. Comparative analysis of respiratory activity in the wild type strain of Neurospora crassa and its photoreceptor complex mutants. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810030129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Lamb JS, Zoltowski BD, Pabit SA, Li L, Crane BR, Pollack L. Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering. J Mol Biol 2009; 393:909-19. [PMID: 19712683 PMCID: PMC2858630 DOI: 10.1016/j.jmb.2009.08.045] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/14/2009] [Accepted: 08/18/2009] [Indexed: 02/04/2023]
Abstract
The PAS-LOV domain is a signal-transducing component found in a large variety of proteins that is responsible for sensing different stimuli such as light, oxygen, and voltage. The LOV protein VVD regulates blue light responses in the filamentous fungi Neurospora crassa. Using photocoupled, time-resolved small-angle X-ray scattering, we extract the solution protein structure in both dark-adapted and light-activated states. Two distinct dark-adapted conformations are detected in the wild-type protein: a compact structure that corresponds to the crystal structure of the dark-state monomer as well as an extended structure that is well modeled by introducing conformational disorder at the N-terminus of the protein. These conformations are accentuated in carefully selected variants, in which a key residue for propagating structural transitions, Cys71, has been mutated or oxidized. Despite different dark-state conformations, all proteins form a common dimer in response to illumination. Taken together, these data support a reaction scheme that describes the mechanism for light-induced dimerization of VVD. Envelope reconstructions of the transient light-state dimer reveal structures that are best described by a parallel arrangement of subunits that have significantly changed conformation compared to the crystal structure.
Collapse
Affiliation(s)
- Jessica S Lamb
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
31
|
Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 2009; 5:827-34. [PMID: 19718042 PMCID: PMC2865183 DOI: 10.1038/nchembio.210] [Citation(s) in RCA: 212] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 06/11/2009] [Indexed: 01/07/2023]
Abstract
Phototropin-like LOV domains form a cysteinyl-flavin adduct in response to blue light but show considerable variation in output signal and the lifetime of the photo-adduct signaling state. Mechanistic studies of the slow-cycling fungal LOV photoreceptor Vivid (VVD) reveal the importance of reactive cysteine conformation, flavin electronic environment and solvent accessibility for adduct scission and thermal reversion. Proton inventory, pH effects, base catalysis and structural studies implicate flavin N(5) deprotonation as rate-determining for recovery. Substitutions of active site residues Ile74, Ile85, Met135 and Met165 alter photoadduct lifetimes by over four orders of magnitude in VVD, and similar changes in other LOV proteins show analogous effects. Adduct state decay rates also correlate with changes in conformational and oligomeric properties of the protein necessary for signaling. These findings link natural sequence variation of LOV domains to function and provide a means to design broadly reactive light-sensitive probes.
Collapse
|
32
|
Nucleoside diphosphate kinase-1 regulates hyphal development via the transcriptional regulation of catalase inNeurospora crassa. FEBS Lett 2009; 583:3291-5. [DOI: 10.1016/j.febslet.2009.09.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 09/11/2009] [Accepted: 09/11/2009] [Indexed: 12/18/2022]
|
33
|
Chen CH, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ. Genome-wide analysis of light-inducible responses reveals hierarchical light signalling in Neurospora. EMBO J 2009; 28:1029-42. [PMID: 19262566 DOI: 10.1038/emboj.2009.54] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 02/09/2009] [Indexed: 12/11/2022] Open
Abstract
White collar-1 (WC-1) and white collar-2 (WC-2) are essential for light-mediated responses in Neurospora crassa, but the molecular mechanisms underlying gene induction and the roles of other real and putative photoreceptors remain poorly characterized. Unsupervised hierarchical clustering of genome-wide microarrays reveals 5.6% of detectable transcripts, including several novel mediators, that are either early or late light responsive. Evidence is shown for photoreception in the absence of the dominant, and here confirmed, white collar complex (WCC) that regulates both types of light responses. VVD primarily modulates late responses, whereas light-responsive submerged protoperithecia-1 (SUB-1), a GATA family transcription factor, is essential for most late light gene expression. After a 15-min light stimulus, the WCC directly binds the sub-1 promoter. Bioinformatics analysis detects many early light response elements (ELREs), as well as identifying a late light response element (LLRE) required for wild-type activity of late light response promoters. The data provide a global picture of transcriptional response to light, as well as illuminating the cis- and trans-acting elements comprising the regulatory signalling cascade that governs the photobiological response.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755-3844, USA
| | | | | | | | | |
Collapse
|
34
|
Friedl MA, Schmoll M, Kubicek CP, Druzhinina IS. Photostimulation of Hypocrea atroviridis growth occurs due to a cross-talk of carbon metabolism, blue light receptors and response to oxidative stress. MICROBIOLOGY-SGM 2008; 154:1229-1241. [PMID: 18375815 DOI: 10.1099/mic.0.2007/014175-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Light is a fundamental abiotic factor which stimulates growth and development of the majority of living organisms. In soil saprotrophic fungi, light is primarily known to influence morphogenesis, particularly sexual and asexual spore formation. Here we present a new function of light, the enhancement of mycelial growth. The photostimulated mycelial growth of the soil fungus Hypocrea atroviridis was detected on 17 (out of 95 tested carbon sources) carbohydrates and polyols, which are metabolically related to cellulose and hemicelluloses, and which are mainly available in the upper soil litter layer. This stimulation depends differently on the function of the two blue light receptor proteins BLR-1 and BLR-2, respectively, BLR-1 being responsible for carbon source selectivity and response to permanent light. Evocation of oxidative stress response in darkness imitates the photostimulation on nine of these carbon sources, and this effect was fully dependent on the function of BLR-1. We conclude that light in combination with the availability of litter-specific carbon sources serves as a signal for the fungus to be above ground, thereby stimulating fast growth in order to produce a maximum of propagules in the shortest time. We further deduce that this process involves oxidative stress response and the two blue light receptor proteins BLR-1 and BLR-2, the former playing the major role.
Collapse
Affiliation(s)
- Martina A Friedl
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Christian P Kubicek
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| | - Irina S Druzhinina
- Research Area of Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9-1665, A-1060 Vienna, Austria
| |
Collapse
|
35
|
Gessler NN, Rudchenko MN, Belozerskaya TA. Stress factor-induced changes in the activity of antioxidant protective mechanisms in the wild type strain of Neurospora crassa and in its photoreceptor complex mutants. Microbiology (Reading) 2008. [DOI: 10.1134/s0026261708020033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
36
|
Wen F, Xing D, Zhang L. Hydrogen peroxide is involved in high blue light-induced chloroplast avoidance movements in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:2891-901. [PMID: 18550599 DOI: 10.1093/jxb/ern147] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
One of the most important functions of blue light (BL) is to induce chloroplast movements in order to reduce the damage to the photosynthetic machinery under excess light. Hydrogen peroxide (H(2)O(2)), which is commonly generated under various environmental stimuli, can act as a signalling molecule that regulates a number of developmental processes and stress responses. To investigate whether H(2)O(2) is involved in high-fluence BL-induced chloroplast avoidance movements, a laser scanning confocal microscope and a luminescence spectrometer were used to observe H(2)O(2) generation in situ with the assistance of the fluorescence probe dichlorofluorescein diacetate (H(2)DCF-DA). After treatment with high-fluence BL, an enhanced accumulation of H(2)O(2), indicated by the fluorescence intensity of DCF, can be observed in leaf cells of Arabidopsis thaliana. Exogenously applied H(2)O(2) promotes the high-fluence BL-induced chloroplast movements in a concentration-dependent manner within the range of 0-10(-4) M, not only increasing the degree of movements but also accelerating the start of migrations. Moreover, the high-fluence BL-induced H(2)O(2) generation and the subsequent chloroplast movements can be largely abolished by the administration of the H(2)O(2)-specific scavenger catalase and other antioxidants. In addition, in-depth subcellular experiments indicated that high-fluence BL-induced H(2)O(2) generation can be partly abolished by the addition of diphenyleneiodonium (DPI), which is an NADPH oxidase inhibitor, and the blocker of electron transport chain dichlorophenyl dimethylurea (DCMU), respectively. The results presented here suggest that high-fluence BL can induce H(2)O(2) generation at both the plasma membrane and the chloroplast, and that the production of H(2)O(2) is involved in high-fluence BL-induced chloroplast avoidance movements.
Collapse
Affiliation(s)
- Feng Wen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China
| | | | | |
Collapse
|
37
|
Yoshida Y, Maeda T, Lee B, Hasunuma K. Conidiation rhythm and light entrainment in superoxide dismutase mutant in Neurospora crassa. Mol Genet Genomics 2007; 279:193-202. [DOI: 10.1007/s00438-007-0308-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/19/2007] [Accepted: 11/21/2007] [Indexed: 02/02/2023]
|
38
|
Gessler NN, Aver’yanov AA, Belozerskaya TA. Reactive oxygen species in regulation of fungal development. BIOCHEMISTRY (MOSCOW) 2007; 72:1091-109. [DOI: 10.1134/s0006297907100070] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Belozerskaya TA, Gessler NN. Reactive oxygen species and the strategy of antioxidant defense in fungi: A review. APPL BIOCHEM MICRO+ 2007. [DOI: 10.1134/s0003683807050031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen CH, Loros JJ, Dunlap JC. The band mutation in Neurospora crassa is a dominant allele of ras-1 implicating RAS signaling in circadian output. Genes Dev 2007; 21:1494-505. [PMID: 17575051 PMCID: PMC1891427 DOI: 10.1101/gad.1551707] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
band, an allele enabling clear visualization of circadianly regulated spore formation (conidial banding), has remained an integral tool in the study of circadian rhythms for 40 years. bd was mapped using single-nucleotide polymorphisms (SNPs), cloned, and determined to be a T79I point mutation in ras-1. Alterations in light-regulated gene expression in the ras-1(bd) mutant suggests that the Neurospora photoreceptor WHITE COLLAR-1 is a target of RAS signaling, and increases in transcription of both wc-1 and fluffy show that regulators of conidiation are elevated in ras-1(bd). Comparison of ras-1(bd) with dominant active and dominant-negative ras-1 mutants and biochemical assays of RAS function indicate that RAS-1(bd) displays a modest enhancement of GDP/GTP exchange and no change in GTPase activity. Because the circadian clock in ras-1(bd) appears to be normal, ras-1(bd) apparently acts to amplify a subtle endogenous clock output signal under standard assay conditions. Reactive oxygen species (ROS), which can affect and be affected by RAS signaling, increase conidiation, suggesting a link between generation of ROS and RAS-1 signaling; surprisingly, however, ROS levels are not elevated in ras-1(bd). The data suggest that interconnected RAS- and ROS-responsive signaling pathways regulate the amplitude of circadian- and light-regulated gene expression in Neurospora.
Collapse
Affiliation(s)
- William J. Belden
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Luis F. Larrondo
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Allan C. Froehlich
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Mi Shi
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Chen-Hui Chen
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jennifer J. Loros
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
| | - Jay C. Dunlap
- Dartmouth Medical School, Genetics Department, Hanover, New Hampshire 03755, USA
- Corresponding author.E-MAIL ; FAX (603) 650-1233
| |
Collapse
|
41
|
Wang N, Yoshida Y, Hasunuma K. Catalase-1 (CAT-1) and nucleoside diphosphate kinase-1 (NDK-1) play an important role in protecting conidial viability under light stress in Neurospora crassa. Mol Genet Genomics 2007; 278:235-42. [PMID: 17636331 DOI: 10.1007/s00438-007-0244-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 04/26/2007] [Indexed: 10/23/2022]
Abstract
Recently we reported that Catalase-1 (CAT-1) played an important role in protecting conidial viability in Neurospora crassa, and interacted with a light signal transducer, nucleoside diphosphate kinase-1 (NDK-1). To disclose the functional interaction between CAT-1 and NDK-1 at the genetic level, we created CAT-1 and NDK-1 double mutants, cat-1;ndk-1-1 and cat-1;ndk-1-2, by crossing single mutants of cat-1 ( RIP ) and ndk-1 ( P72H ) previously isolated in our laboratory. The double mutant strains grew normally, but showed increased CAT-2 activity. In cat-1 ( RIP ), NDK activity was increased when dCDP was used as a substrate. ndk-1 ( P72H ), cat-1;ndk-1-1, and cat-1;ndk-1-2 were more sensitive to riboflavin than the wild type and cat-1 ( RIP ) under strong light (100 microE m(-2) s(-1)). The pull-down experiment suggests that His-tagged NDK-1 is bound to [(32)P]NADH. However, his-tagged NDK-1(P72H) was not bound to [(32)P]NADH. The double mutants showed much lower conidial viability and lost all conidial germination ability much more rapidly than cat-1 ( RIP ), when they were cultured under continuous light for more than 2 weeks. These results indicate that the interaction of CAT-1 with NDK-1 plays an important role in supporting the survival of conidia under oxidative and light-induced stress including singlet oxygen, and confirm our former conclusion that reactive oxygen species play an important role in light signal transduction via NDK-1 at the genetic level.
Collapse
Affiliation(s)
- Niyan Wang
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | |
Collapse
|
42
|
Egan MJ, Wang ZY, Jones MA, Smirnoff N, Talbot NJ. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc Natl Acad Sci U S A 2007; 104:11772-7. [PMID: 17600089 PMCID: PMC1913907 DOI: 10.1073/pnas.0700574104] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Indexed: 11/18/2022] Open
Abstract
One of the first responses of plants to microbial attack is the production of extracellular superoxide surrounding infection sites. Here, we report that Magnaporthe grisea, the causal agent of rice blast disease, undergoes an oxidative burst of its own during plant infection, which is associated with its development of specialized infection structures called appressoria. Scavenging of these oxygen radicals significantly delayed the development of appressoria and altered their morphology. We targeted two superoxide-generating NADPH oxidase-encoding genes, Nox1 and Nox2, and demonstrated genetically, that each is independently required for pathogenicity of M. grisea. Deltanox1 and Deltanox2 mutants are incapable of causing plant disease because of an inability to bring about appressorium-mediated cuticle penetration. The initiation of rice blast disease therefore requires production of superoxide by the invading pathogen.
Collapse
Affiliation(s)
- Martin J. Egan
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Zheng-Yi Wang
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Mark A. Jones
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Nicholas Smirnoff
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter EX4 4QG, United Kingdom
| |
Collapse
|
43
|
Zoltowski BD, Schwerdtfeger C, Widom J, Loros JJ, Bilwes AM, Dunlap JC, Crane BR. Conformational switching in the fungal light sensor Vivid. Science 2007; 316:1054-7. [PMID: 17510367 PMCID: PMC3682417 DOI: 10.1126/science.1137128] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Neurospora crassa photoreceptor Vivid tunes blue-light responses and modulates gating of the circadian clock. Crystal structures of dark-state and light-state Vivid reveal a light, oxygen, or voltage Per-Arnt-Sim domain with an unusual N-terminal cap region and a loop insertion that accommodates the flavin cofactor. Photoinduced formation of a cystein-flavin adduct drives flavin protonation to induce an N-terminal conformational change. A cysteine-to-serine substitution remote from the flavin adenine dinucleotide binding site decouples conformational switching from the flavin photocycle and prevents Vivid from sending signals in Neurospora. Key elements of this activation mechanism are conserved by other photosensors such as White Collar-1, ZEITLUPE, ENVOY, and flavin-binding, kelch repeat, F-BOX 1 (FKF1).
Collapse
Affiliation(s)
- Brian D. Zoltowski
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Joanne Widom
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer J. Loros
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Alexandrine M. Bilwes
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jay C. Dunlap
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
- To whom correspondence should be addressed.
| |
Collapse
|
44
|
Abstract
Filamentous fungi respond to a variety of environmental signals. One of them is light, providing critical information about orientation, or impending stress. Cells of filamentous fungi appear to sense blue light through a unique transcription factor that has a flavin chromophore and activates its targets in a light-dependent manner, the white collar (WC) complex. Fungal photophysiology, though, predicted a greater complexity of responses to the whole visible spectrum. The rapidly growing fungal genome database provides candidates to explain how fungi see not only blue, but also near-UV, green and red light. At the same time, there are surprises in the genomes, including photoreceptors for which there are no obvious photoresponses. Linking these genes and their functions will help understand how a list of only a few biological chromophores accounts for such a diversity of responses. At the same time, deeper mechanistic understanding of how the WC complex functions will lead to fundamental insights at the point where the environment impinges, in this case in the form of photons, on the transcriptional machinery of the cell.
Collapse
Affiliation(s)
- Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Campus Guanajuato, Irapuato 36500, Guanajuato, México
| | | |
Collapse
|
45
|
Loros JJ, Dunlap JC, Larrondo LF, Shi M, Belden WJ, Gooch VD, Chen CH, Baker CL, Mehra A, Colot HV, Schwerdtfeger C, Lambreghts R, Collopy PD, Gamsby JJ, Hong CI. Circadian output, input, and intracellular oscillators: insights into the circadian systems of single cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:201-14. [PMID: 18419278 PMCID: PMC3671946 DOI: 10.1101/sqb.2007.72.067] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Circadian output comprises the business end of circadian systems in terms of adaptive significance. Work on Neurospora pioneered the molecular analysis of circadian output mechanisms, and insights from this model system continue to illuminate the pathways through which clocks control metabolism and overt rhythms. In Neurospora, virtually every strain examined in the context of rhythms bears the band allele that helps to clarify the overt rhythm in asexual development. Recent cloning of band showed it to be an allele of ras-1 and to affect a wide variety of signaling pathways yielding enhanced light responses and asexual development. These can be largely phenocopied by treatments that increase levels of intracellular reactive oxygen species. Although output is often unidirectional, analysis of the prd-4 gene provided an alternative paradigm in which output feeds back to affect input. prd-4 is an allele of checkpoint kinase-2 that bypasses the requirement for DNA damage to activate this kinase; FRQ is normally a substrate of activated Chk2, so in Chk2(PRD-4), FRQ is precociously phosphorylated and the clock cycles more quickly. Finally, recent adaptation of luciferase to fully function in Neurospora now allows the core FRQ/WCC feedback loop to be followed in real time under conditions where it no longer controls the overt rhythm in development. This ability can be used to describe the hierarchical relationships among FRQ-Less Oscillators (FLOs) and to see which are connected to the circadian system. The nitrate reductase oscillator appears to be connected, but the oscillator controlling the long-period rhythm elicited upon choline starvation appears completely disconnected from the circadian system; it can be seen to run with a very long noncompensated 60-120-hour period length under conditions where the circadian FRQ/WCC oscillator continues to cycle with a fully compensated circadian 22-hour period.
Collapse
Affiliation(s)
- J J Loros
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 2007; 6:725-36. [PMID: 17609765 DOI: 10.1039/b702155k] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light regulates fungal development and behaviour and activates metabolic pathways. In addition, light is one of the many signals that fungi use to perceive and interact with the environment. In the ascomycete Neurospora crassa blue light is perceived by the white collar (WC) complex, a protein complex formed by WC-1 and WC-2. WC-1 is a protein with a flavin-binding domain and a zinc-finger domain, and interacts with WC-2, another zinc-finger domain protein. The WC complex operates as a photoreceptor and a transcription factor for blue-light responses in Neurospora. Proteins similar to WC-1 and WC-2 have been described in other fungi, suggesting a general role for the WC complex as a fungal receptor for blue light. The ascomycete Aspergillus nidulans uses red light perceived by a fungal phytochrome as a signal to regulate sexual and asexual development. In addition, other photoreceptors, rhodopsins and cryptochromes, have been identified in fungi, but their functional relevance has not been elucidated. The investigation of fungal light responses provides an opportunity to understand how fungi perceive the environment and to identify the mechanisms involved in the regulation by light of cellular development and metabolism.
Collapse
Affiliation(s)
- Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, E-41080, Sevilla, Spain.
| |
Collapse
|
47
|
Youssar L, Avalos J. Genetic basis of the ovc phenotype of Neurospora: identification and analysis of a 77 kb deletion. Curr Genet 2006; 51:19-30. [PMID: 17082948 DOI: 10.1007/s00294-006-0104-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/22/2006] [Accepted: 09/30/2006] [Indexed: 10/24/2022]
Abstract
The ovc mutant of Neurospora crassa accumulates more carotenoids than the wild type in the light, is sensitive to high osmotic pressure and exhibits an altered aerial development. The three traits are complemented by a single gene, cut-1, but only the two latter are exhibited by a mutant of this gene carrying a premature stop mutation. Targeted cut-1 deletion results in a normal carotenoid content, confirming the involvement of at least a second gene in the carotenoid-overproducing phenotype of the ovc strain. Molecular analysis of ovc genomic DNA indicates the absence of a large DNA segment affecting the gene cut-1. A PCR walking approach allowed the identification of a deletion extending along 77,078 bp on linkage group IV. The break-points are located in ApA/TpT sequences, suggesting the involvement of UV-induced thymine dimers in the origin of the deletion. The ovc mutant lacks 21 predicted ORFs, including cut-1 as the only known genetic marker, and four ORFs from a 22-member transmethylase gene family. Ten ORFs have no similarity with any predicted gene from other species. Three of them are closely related by sequence and linkage, evoking ancestral gene duplications.
Collapse
Affiliation(s)
- L Youssar
- Departamento de Genética, Universidad de Sevilla, Apartado1095, 41080 Sevilla, Spain
| | | |
Collapse
|
48
|
Wang N, Yoshida Y, Hasunuma K. Loss of Catalase-1 (Cat-1) results in decreased conidial viability enhanced by exposure to light in Neurospora crassa. Mol Genet Genomics 2006; 277:13-22. [PMID: 17077971 DOI: 10.1007/s00438-006-0170-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 09/14/2006] [Indexed: 12/01/2022]
Abstract
Light is one of the most important factors inducing morphogenesis in Neurospora crassa. The reception of light triggers the generation of reactive oxygen species (ROS) including hydrogen peroxide (H(2)O(2)). Catalase-1 (Cat-1) is one of three catalases known to detoxify H(2)O(2) into water and oxygen. We reported that the photomorphogenetic characteristics of mutants in nucleoside diphosphate kinase-1 (NDK-1), a light signal transducer, are severely affected, and NDK-1 interacted with Cat-1 in a yeast two-hybrid assay. To disclose the function of Cat-1, we created a Cat-1 loss-of-function mutant (cat-1 ( RIP )) by the repeat induced point-mutation (RIPing) method. No Cat-1 activity was detected in the mutant strain. Forty guanines were replaced with adenines in the cat-1 gene of cat-1 ( RIP ), which caused 30 amino acid substitutions. The mutant strain grew normally, but its conidia and mycelia were more sensitive to H(2)O(2) than those of the wild type. The lack of Cat-1 activity also caused a significant reduction in the conidial germination rate. Furthermore, light enhanced this reduction in cat-1 ( RIP ) more than that in the wild type. Introduction of cat-1 into the mutant reversed all of these defective phenotypes. These results indicate that Cat-1 plays an important role in supporting the survival of conidia under oxidative and light-induced stress.
Collapse
Affiliation(s)
- Niyan Wang
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan
| | | | | |
Collapse
|
49
|
Belozerskaya TA, Gessler NN. Oxidative stress and differentiation in Neurospora crassa. Microbiology (Reading) 2006. [DOI: 10.1134/s0026261706040102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Yoshida Y, Ogura Y, Hasunuma K. Interaction of nucleoside diphosphate kinase and catalases for stress and light responses in Neurospora crassa. FEBS Lett 2006; 580:3282-6. [PMID: 16697373 DOI: 10.1016/j.febslet.2006.01.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2005] [Revised: 01/16/2006] [Accepted: 01/20/2006] [Indexed: 02/06/2023]
Abstract
Nucleoside diphosphate kinase (NDK) is an ubiquitous enzyme with the function of a signal transducer. In Neurospora crassa, an ndk-1(P72H) mutant carrying the point mutation Pro72His was isolated. We found that ndk-1(P72H) showed hypersensitivity to oxidative and heat stress and a decrease in the levels of catalase (Cat)-1 and -3 induced by oxidative, heat stress and illumination compared with wild type (Wt). We found, by conducting a yeast two-hybrid assay, that Cat-1 interacted with NDK-1. NDK-1 was suggested to control Cat-1 and Cat-3 at the post-transcriptional level in response to heat, oxidative stress and light.
Collapse
Affiliation(s)
- Yusuke Yoshida
- Kihara Institute for Biological Research and Graduate School of Integrated Science, Yokohama City University, Totsuka-ku, Yokohama 244-0813, Japan
| | | | | |
Collapse
|