1
|
Zhang N, Chen P, Cui Z, Zhou X, Hao C, Xie B, Hao P, Ye BC, Li X, Jing X. Revealing Differential RNA Editing Specificity of Human ADAR1 and ADAR2 in Schizosaccharomyces pombe. Genes (Basel) 2024; 15:898. [PMID: 39062677 PMCID: PMC11276115 DOI: 10.3390/genes15070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing mutations in RNA using therapeutic guide oligonucleotides to direct ADAR editing at specific sites. Humans have two active ADARs whose preferences and specificities are not well understood. To investigate their substrate specificity, we introduced hADAR1 and hADAR2, respectively, into Schizosaccharomyces pombe (S. pombe), which lacks endogenous ADARs, and evaluated their editing activities in vivo. Using transcriptome sequencing of S. pombe cultured at optimal growth temperature (30 °C), we identified 483 A-to-I high-confident editing sites for hADAR1 and 404 for hADAR2, compared with the non-editing wild-type control strain. However, these sites were mostly divergent between hADAR1 and hADAR2-expressing strains, sharing 33 common sites that are less than 9% for each strain. Their differential specificity for substrates was attributed to their differential preference for neighboring sequences of editing sites. We found that at the -3-position relative to the editing site, hADAR1 exhibits a tendency toward T, whereas hADAR2 leans toward A. Additionally, when varying the growth temperature for hADAR1- and hADAR2-expressing strains, we observed increased editing sites for them at both 20 and 35 °C, compared with them growing at 30 °C. However, we did not observe a significant shift in hADAR1 and hADAR2's preference for neighboring sequences across three temperatures. The vast changes in RNA editing sites at lower and higher temperatures were also observed for hADAR2 previously in budding yeast, which was likely due to the influence of RNA folding at these different temperatures, among many other factors. We noticed examples of longer lengths of dsRNA around the editing sites that induced editing at 20 or 35 °C but were absent at the other two temperature conditions. We found genes' functions can be greatly affected by editing of their transcripts, for which over 50% of RNA editing sites for both hADAR1 and hADAR2 in S. pombe were in coding sequences (CDS), with more than 60% of them resulting in amino acid changes in protein products. This study revealed the extensive differences in substrate selectivity between the two active human ADARS, i.e., ADAR1 and ADAR2, and provided novel insight when utilizing the two different enzymes for in vivo treatment of human genetic diseases using the RNA editing approach.
Collapse
Affiliation(s)
- Niubing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zilin Cui
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chenhui Hao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Domingo E, Martínez-González B, García-Crespo C, Somovilla P, de Ávila AI, Soria ME, Durán-Pastor A, Perales C. Puzzles, challenges, and information reservoir of SARS-CoV-2 quasispecies. J Virol 2023; 97:e0151123. [PMID: 38092661 PMCID: PMC10734546 DOI: 10.1128/jvi.01511-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Brenda Martínez-González
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Carlos García-Crespo
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Pilar Somovilla
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Ana Isabel de Ávila
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Antoni Durán-Pastor
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
| | - Celia Perales
- Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, Madrid, Spain
- Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| |
Collapse
|
3
|
Zambrano-Mila MS, Witzenberger M, Rosenwasser Z, Uzonyi A, Nir R, Ben-Aroya S, Levanon EY, Schwartz S. Dissecting the basis for differential substrate specificity of ADAR1 and ADAR2. Nat Commun 2023; 14:8212. [PMID: 38081817 PMCID: PMC10713624 DOI: 10.1038/s41467-023-43633-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Millions of adenosines are deaminated throughout the transcriptome by ADAR1 and/or ADAR2 at varying levels, raising the question of what are the determinants guiding substrate specificity and how these differ between the two enzymes. We monitor how secondary structure modulates ADAR2 vs ADAR1 substrate selectivity, on the basis of systematic probing of thousands of synthetic sequences transfected into cell lines expressing exclusively ADAR1 or ADAR2. Both enzymes induce symmetric, strand-specific editing, yet with distinct offsets with respect to structural disruptions: -26 nt for ADAR2 and -35 nt for ADAR1. We unravel the basis for these differences in offsets through mutants, domain-swaps, and ADAR homologs, and find it to be encoded by the differential RNA binding domain (RBD) architecture. Finally, we demonstrate that this offset-enhanced editing can allow an improved design of ADAR2-recruiting therapeutics, with proof-of-concept experiments demonstrating increased on-target and potentially decreased off-target editing.
Collapse
Affiliation(s)
- Marlon S Zambrano-Mila
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Monika Witzenberger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Zohar Rosenwasser
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Anna Uzonyi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Ronit Nir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel
| | - Shay Ben-Aroya
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Erez Y Levanon
- Faculty of Life Sciences, Bar Ilan University, 5290002, Ramat Gan, Israel
| | - Schraga Schwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 7630031, Israel.
| |
Collapse
|
4
|
Voss G, Rosenthal JJC. High-level RNA editing diversifies the coleoid cephalopod brain proteome. Brief Funct Genomics 2023; 22:525-532. [PMID: 37981860 DOI: 10.1093/bfgp/elad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 11/21/2023] Open
Abstract
Coleoid cephalopods (octopus, squid and cuttlefish) have unusually complex nervous systems. The coleoid nervous system is also the only one currently known to recode the majority of expressed proteins through A-to-I RNA editing. The deamination of adenosine by adenosine deaminase acting on RNA (ADAR) enzymes produces inosine, which is interpreted as guanosine during translation. If this occurs in an open reading frame, which is the case for tens of thousands of editing sites in coleoids, it can recode the encoded protein. Here, we describe recent findings aimed at deciphering the mechanisms underlying high-level recoding and its adaptive potential. We describe the complement of ADAR enzymes in cephalopods, including a recently discovered novel domain in sqADAR1. We further summarize current evidence supporting an adaptive role of high-level RNA recoding in coleoids, and review recent studies showing that a large proportion of recoding sites is temperature-sensitive. Despite these new findings, the mechanisms governing the high level of RNA recoding in coleoid cephalopods remain poorly understood. Recent advances using genome editing in squid may provide useful tools to further study A-to-I RNA editing in these animals.
Collapse
Affiliation(s)
- Gjendine Voss
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| | - Joshua J C Rosenthal
- The Eugene Bell Center, The Marine Biological Laboratory, 7 MBL Street, Woods Hole MA 02543, United States
| |
Collapse
|
5
|
Diaz Quiroz JF, Ojha N, Shayhidin EE, De Silva D, Dabney J, Lancaster A, Coull J, Milstein S, Fraley AW, Brown CR, Rosenthal JJC. Development of a selection assay for small guide RNAs that drive efficient site-directed RNA editing. Nucleic Acids Res 2023; 51:e41. [PMID: 36840708 PMCID: PMC10123091 DOI: 10.1093/nar/gkad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
A major challenge confronting the clinical application of site-directed RNA editing (SDRE) is the design of small guide RNAs (gRNAs) that can drive efficient editing. Although many gRNA designs have effectively recruited endogenous Adenosine Deaminases that Act on RNA (ADARs), most of them exceed the size of currently FDA-approved antisense oligos. We developed an unbiased in vitro selection assay to identify short gRNAs that promote superior RNA editing of a premature termination codon. The selection assay relies on hairpin substrates in which the target sequence is linked to partially randomized gRNAs in the same molecule, so that gRNA sequences that promote editing can be identified by sequencing. These RNA substrates were incubated in vitro with ADAR2 and the edited products were selected using amplification refractory mutation system PCR and used to regenerate the substrates for a new round of selection. After nine repetitions, hairpins which drove superior editing were identified. When gRNAs of these hairpins were delivered in trans, eight of the top ten short gRNAs drove superior editing both in vitro and in cellula. These results show that efficient small gRNAs can be selected using our approach, an important advancement for the clinical application of SDRE.
Collapse
Affiliation(s)
- Juan Felipe Diaz Quiroz
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| | - Namrata Ojha
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | | | | | | | | | | | | | - Joshua J C Rosenthal
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, The Marine Biological Laboratory, Woods Hole, MA, USA
| |
Collapse
|
6
|
Atypical Mutational Spectrum of SARS-CoV-2 Replicating in the Presence of Ribavirin. Antimicrob Agents Chemother 2023; 67:e0131522. [PMID: 36602354 PMCID: PMC9872624 DOI: 10.1128/aac.01315-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.
Collapse
|
7
|
Dutta N, Deb I, Sarzynska J, Lahiri A. Inosine and its methyl derivatives: Occurrence, biogenesis, and function in RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 169-170:21-52. [PMID: 35065168 DOI: 10.1016/j.pbiomolbio.2022.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/11/2021] [Accepted: 01/11/2022] [Indexed: 05/21/2023]
Abstract
Inosine is one of the most common post-transcriptional modifications. Since its discovery, it has been noted for its ability to contribute to non-Watson-Crick interactions within RNA. Rapidly accumulating evidence points to the widespread generation of inosine through hydrolytic deamination of adenosine to inosine by different classes of adenosine deaminases. Three naturally occurring methyl derivatives of inosine, i.e., 1-methylinosine, 2'-O-methylinosine and 1,2'-O-dimethylinosine are currently reported in RNA modification databases. These modifications are expected to lead to changes in the structure, folding, dynamics, stability and functions of RNA. The importance of the modifications is indicated by the strong conservation of the modifying enzymes across organisms. The structure, binding and catalytic mechanism of the adenosine deaminases have been well-studied, but the underlying mechanism of the catalytic reaction is not very clear yet. Here we extensively review the existing data on the occurrence, biogenesis and functions of inosine and its methyl derivatives in RNA. We also included the structural and thermodynamic aspects of these modifications in our review to provide a detailed and integrated discussion on the consequences of A-to-I editing in RNA and the contribution of different structural and thermodynamic studies in understanding its role in RNA. We also highlight the importance of further studies for a better understanding of the mechanisms of the different classes of deamination reactions. Further investigation of the structural and thermodynamic consequences and functions of these modifications in RNA should provide more useful information about their role in different diseases.
Collapse
Affiliation(s)
- Nivedita Dutta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Indrajit Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Ansuman Lahiri
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, 700009, West Bengal, India.
| |
Collapse
|
8
|
Xu W, Biswas J, Singer RH, Rosbash M. Targeted RNA editing: novel tools to study post-transcriptional regulation. Mol Cell 2022; 82:389-403. [PMID: 34739873 PMCID: PMC8792254 DOI: 10.1016/j.molcel.2021.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 01/22/2023]
Abstract
RNA binding proteins (RBPs) regulate nearly all post-transcriptional processes within cells. To fully understand RBP function, it is essential to identify their in vivo targets. Standard techniques for profiling RBP targets, such as crosslinking immunoprecipitation (CLIP) and its variants, are limited or suboptimal in some situations, e.g. when compatible antibodies are not available and when dealing with small cell populations such as neuronal subtypes and primary stem cells. This review summarizes and compares several genetic approaches recently designed to identify RBP targets in such circumstances. TRIBE (targets of RNA binding proteins identified by editing), RNA tagging, and STAMP (surveying targets by APOBEC-mediated profiling) are new genetic tools useful for the study of post-transcriptional regulation and RBP identification. We describe the underlying RNA base editing technology, recent applications, and therapeutic implications.
Collapse
Affiliation(s)
- Weijin Xu
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | - Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, Department of Biology, Brandeis University, Waltham, MA 02451, USA.
| |
Collapse
|
9
|
Katrekar D, Xiang Y, Palmer N, Saha A, Meluzzi D, Mali P. Comprehensive interrogation of the ADAR2 deaminase domain for engineering enhanced RNA editing activity and specificity. eLife 2022; 11:e75555. [PMID: 35044296 PMCID: PMC8809894 DOI: 10.7554/elife.75555] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) can be repurposed to enable programmable RNA editing, however their exogenous delivery leads to transcriptome-wide off-targeting, and additionally, enzymatic activity on certain RNA motifs, especially those flanked by a 5' guanosine is very low thus limiting their utility as a transcriptome engineering toolset. Towards addressing these issues, we first performed a novel deep mutational scan of the ADAR2 deaminase domain, directly measuring the impact of every amino acid substitution across 261 residues, on RNA editing. This enabled us to create a domain-wide mutagenesis map while also revealing a novel hyperactive variant with improved enzymatic activity at 5'-GAN-3' motifs. As overexpression of ADAR enzymes, especially hyperactive variants, can lead to significant transcriptome-wide off-targeting, we next engineered a split-ADAR2 deaminase which resulted in >100-fold more specific RNA editing as compared to full-length deaminase overexpression. Taken together, we anticipate this systematic engineering of the ADAR2 deaminase domain will enable broader utility of the ADAR toolset for RNA biotechnology applications.
Collapse
Affiliation(s)
- Dhruva Katrekar
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Yichen Xiang
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Nathan Palmer
- Division of Biological Sciences, University of California San DiegoSan DiegoUnited States
| | - Anushka Saha
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Dario Meluzzi
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| | - Prashant Mali
- Department of Bioengineering, University of California San DiegoSan DiegoUnited States
| |
Collapse
|
10
|
Abstract
C6 deamination of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA) is catalyzed by a family of enzymes known as ADARs (adenosine deaminases acting on RNA) encoded by three genes in mammals. Alternative promoters and splicing produce two ADAR1 proteins, an interferon-inducible cytoplasmic p150 and a constitutively expressed p110 that like ADAR2 is a nuclear enzyme. ADAR3 lacks deaminase activity. A-to-I editing occurs with both viral and cellular RNAs. Deamination activity is dependent on dsRNA substrate structure and regulatory RNA-binding proteins and ranges from highly site selective with hepatitis D RNA and glutamate receptor precursor messenger RNA (pre-mRNA) to hyperediting of measles virus and polyomavirus transcripts and cellular inverted Alu elements. Because I base-pairs as guanosine instead of A, editing can alter mRNA decoding, pre-mRNA splicing, and microRNA silencing. Editing also alters dsRNA structure, thereby suppressing innate immune responses including interferon production and action. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Christian K Pfaller
- Division of Veterinary Medicine, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Cyril X George
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| | - Charles E Samuel
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, California 93106, USA;
| |
Collapse
|
11
|
Abstract
RNA editing of adenosines to inosines contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect, accurate mapping of inosines is necessary. The most conventional method to identify an editing site is to compare the cDNA sequence with its corresponding genomic sequence. However, this method has a high false discovery rate because guanosine signals, due to experimental errors or noise in the obtained sequences, contaminate genuine inosine signals detected as guanosine. To ensure high accuracy, we developed the Inosine Chemical Erasing (ICE) method to accurately and biochemically identify inosines in RNA strands utilizing inosine cyanoethylation and reverse transcription-PCR. Furthermore, we applied this technique to next-generation sequencing technology, called ICE-seq, to conduct an unbiased genome-wide screening of A-to-I editing sites in the transcriptome.
Collapse
|
12
|
Yeo JY, Koh DWS, Yap P, Goh GR, Gan SKE. Spontaneous Mutations in HIV-1 Gag, Protease, RT p66 in the First Replication Cycle and How They Appear: Insights from an In Vitro Assay on Mutation Rates and Types. Int J Mol Sci 2020; 22:E370. [PMID: 33396460 PMCID: PMC7796399 DOI: 10.3390/ijms22010370] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
While drug resistant mutations in HIV-1 are largely credited to its error prone HIV-1 RT, the time point in the infection cycle that these mutations can arise and if they appear spontaneously without selection pressures both remained enigmatic. Many HIV-1 RT mutational in vitro studies utilized reporter genes (LacZ) as a template to investigate these questions, thereby not accounting for the possible contribution of viral codon usage. To address this gap, we investigated HIV-1 RT mutation rates and biases on its own Gag, protease, and RT p66 genes in an in vitro selection pressure free system. We found rare clinical mutations with a general avoidance of crucial functional sites in the background mutations rates for Gag, protease, and RT p66 at 4.71 × 10-5, 6.03 × 10-5, and 7.09 × 10-5 mutations/bp, respectively. Gag and p66 genes showed a large number of 'A to G' mutations. Comparisons with silently mutated p66 sequences showed an increase in mutation rates (1.88 × 10-4 mutations/bp) and that 'A to G' mutations occurred in regions reminiscent of ADAR neighbor sequence preferences. Mutational free energies of the 'A to G' mutations revealed an avoidance of destabilizing effects, with the natural p66 gene codon usage providing barriers to disruptive amino acid changes. Our study demonstrates the importance of studying mutation emergence in HIV genes in a RT-PCR in vitro selection pressure free system to understand how fast drug resistance can emerge, providing transferable applications to how new viral diseases and drug resistances can emerge.
Collapse
Affiliation(s)
- Joshua Yi Yeo
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Darius Wen-Shuo Koh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
| | - Ping Yap
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Ghin-Ray Goh
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
| | - Samuel Ken-En Gan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore; (J.Y.Y.); (D.W.-S.K.); (P.Y.); (G.-R.G.)
- Experimental Drug Development Centre, A*STAR, 10 Biopolis Road Chromos #05-01, Singapore 138670, Singapore
- p53 Laboratory, A*STAR, 8A Biomedical Grove, #06-04/05 Neuros/Immunos, Singapore 138648, Singapore
| |
Collapse
|
13
|
Vallecillo-Viejo IC, Liscovitch-Brauer N, Diaz Quiroz JF, Montiel-Gonzalez MF, Nemes SE, Rangan KJ, Levinson SR, Eisenberg E, Rosenthal JJC. Spatially regulated editing of genetic information within a neuron. Nucleic Acids Res 2020; 48:3999-4012. [PMID: 32201888 PMCID: PMC7192619 DOI: 10.1093/nar/gkaa172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/14/2020] [Accepted: 03/11/2020] [Indexed: 12/11/2022] Open
Abstract
In eukaryotic cells, with the exception of the specialized genomes of mitochondria and plastids, all genetic information is sequestered within the nucleus. This arrangement imposes constraints on how the information can be tailored for different cellular regions, particularly in cells with complex morphologies like neurons. Although messenger RNAs (mRNAs), and the proteins that they encode, can be differentially sorted between cellular regions, the information itself does not change. RNA editing by adenosine deamination can alter the genome's blueprint by recoding mRNAs; however, this process too is thought to be restricted to the nucleus. In this work, we show that ADAR2 (adenosine deaminase that acts on RNA), an RNA editing enzyme, is expressed outside of the nucleus in squid neurons. Furthermore, purified axoplasm exhibits adenosine-to-inosine activity and can specifically edit adenosines in a known substrate. Finally, a transcriptome-wide analysis of RNA editing reveals that tens of thousands of editing sites (>70% of all sites) are edited more extensively in the squid giant axon than in its cell bodies. These results indicate that within a neuron RNA editing can recode genetic information in a region-specific manner.
Collapse
Affiliation(s)
| | - Noa Liscovitch-Brauer
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Juan F Diaz Quiroz
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | | | - Sonya E Nemes
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Kavita J Rangan
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| | - Simon R Levinson
- Department of Physiology and Biophysics, University of Colorado at Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Eli Eisenberg
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Joshua J C Rosenthal
- The Eugene Bell Center, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02540, USA
| |
Collapse
|
14
|
Huang H, Kapeli K, Jin W, Wong YP, Arumugam TV, Koh JH, Srimasorn S, Mallilankaraman K, Chua JJE, Yeo GW, Soong TW. Tissue-selective restriction of RNA editing of CaV1.3 by splicing factor SRSF9. Nucleic Acids Res 2019; 46:7323-7338. [PMID: 29733375 PMCID: PMC6101491 DOI: 10.1093/nar/gky348] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Adenosine DeAminases acting on RNA (ADAR) catalyzes adenosine-to-inosine (A-to-I) conversion within RNA duplex structures. While A-to-I editing is often dynamically regulated in a spatial-temporal manner, the mechanisms underlying its tissue-selective restriction remain elusive. We have previously reported that transcripts of voltage-gated calcium channel CaV1.3 are subject to brain-selective A-to-I RNA editing by ADAR2. Here, we show that editing of CaV1.3 mRNA is dependent on a 40 bp RNA duplex formed between exon 41 and an evolutionarily conserved editing site complementary sequence (ECS) located within the preceding intron. Heterologous expression of a mouse minigene that contained the ECS, intermediate intronic sequence and exon 41 with ADAR2 yielded robust editing. Interestingly, editing of CaV1.3 was potently inhibited by serine/arginine-rich splicing factor 9 (SRSF9). Mechanistically, the inhibitory effect of SRSF9 required direct RNA interaction. Selective down-regulation of SRSF9 in neurons provides a basis for the neuron-specific editing of CaV1.3 transcripts.
Collapse
Affiliation(s)
- Hua Huang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Katannya Kapeli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Wenhao Jin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yuk Peng Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| | - Thiruma Valavan Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Joanne Huifen Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Sumitra Srimasorn
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Karthik Mallilankaraman
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - John Jia En Chua
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore.,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore
| | - Gene W Yeo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Department of Cellular and Molecular Medicine, Stem Cell Program and Institute for Genomic Medicine, University of California, San Diego, La Jolla, USA.,Molecular Engineering Laboratory, A*STAR, Singapore, Singapore
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.,Neurobiology/Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
15
|
Nakano M, Fukami T, Nakajima M. Adenosine Deaminases Acting on RNA Downregulate the Expression of Constitutive Androstane Receptor in the Human Liver–Derived Cells by Attenuating Splicing. J Pharmacol Exp Ther 2019; 370:408-415. [DOI: 10.1124/jpet.119.260109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
|
16
|
Xuan N, Rajashekar B, Picimbon JF. DNA and RNA-dependent polymerization in editing of Bombyx chemosensory protein (CSP) gene family. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.aggene.2019.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Samuel CE. Adenosine deaminase acting on RNA (ADAR1), a suppressor of double-stranded RNA-triggered innate immune responses. J Biol Chem 2019; 294:1710-1720. [PMID: 30710018 PMCID: PMC6364763 DOI: 10.1074/jbc.tm118.004166] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Herbert "Herb" Tabor, who celebrated his 100th birthday this past year, served the Journal of Biological Chemistry as a member of the Editorial Board beginning in 1961, as an Associate Editor, and as Editor-in-Chief for 40 years, from 1971 until 2010. Among the many discoveries in biological chemistry during this period was the identification of RNA modification by C6 deamination of adenosine (A) to produce inosine (I) in double-stranded (ds) RNA. This posttranscriptional RNA modification by adenosine deamination, known as A-to-I RNA editing, diversifies the transcriptome and modulates the innate immune interferon response. A-to-I editing is catalyzed by a family of enzymes, adenosine deaminases acting on dsRNA (ADARs). The roles of A-to-I editing are varied and include effects on mRNA translation, pre-mRNA splicing, and micro-RNA silencing. Suppression of dsRNA-triggered induction and action of interferon, the cornerstone of innate immunity, has emerged as a key function of ADAR1 editing of self (cellular) and nonself (viral) dsRNAs. A-to-I modification of RNA is essential for the normal regulation of cellular processes. Dysregulation of A-to-I editing by ADAR1 can have profound consequences, ranging from effects on cell growth and development to autoimmune disorders.
Collapse
Affiliation(s)
- Charles E Samuel
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106.
| |
Collapse
|
18
|
Okada S, Ueda H, Noda Y, Suzuki T. Transcriptome-wide identification of A-to-I RNA editing sites using ICE-seq. Methods 2018; 156:66-78. [PMID: 30578846 DOI: 10.1016/j.ymeth.2018.12.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/15/2023] Open
Abstract
In A-to-I RNA editing, adenosine is converted to inosine in double-stranded regions of RNAs. Inosine, an abundant epitranscriptomic mark, contributes to a wide range of biological processes by regulating gene expression post-transcriptionally. To understand the effect of A-to-I RNA editing on regulation of the epitranscriptome, accurate mapping of inosines is necessary. To this end, we established a biochemical method called inosine chemical erasing sequencing (ICE-seq) that enables unbiased and reliable identification of A-to-I RNA editing sites throughout the transcriptome. Here, we describe our updated protocol for ICE-seq in the human transcriptome.
Collapse
Affiliation(s)
- Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroki Ueda
- Biological Data Science Division, Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo 153-8904, Japan
| | - Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
19
|
Abstract
Rett syndrome (RTT) is a debilitating neurological disorder caused by mutations in the gene encoding the transcription factor Methyl CpG Binding Protein 2 (MECP2). A distinct disorder results from MECP2 gene duplication, suggesting that therapeutic approaches must restore close to normal levels of MECP2. Here, we apply the approach of site-directed RNA editing to repair, at the mRNA level, a disease-causing guanosine to adenosine (G > A) mutation in the mouse MeCP2 DNA binding domain. To mediate repair, we exploit the catalytic domain of Adenosine Deaminase Acting on RNA (ADAR2) that deaminates A to inosine (I) residues that are subsequently translated as G. We fuse the ADAR2 domain, tagged with a nuclear localization signal, to an RNA binding peptide from bacteriophage lambda. In cultured neurons from mice that harbor an RTT patient G > A mutation and express engineered ADAR2, along with an appropriate RNA guide to target the enzyme, 72% of Mecp2 mRNA is repaired. Levels of MeCP2 protein are also increased significantly. Importantly, as in wild-type neurons, the repaired MeCP2 protein is enriched in heterochromatic foci, reflecting restoration of normal MeCP2 binding to methylated DNA. This successful use of site-directed RNA editing to repair an endogenous mRNA and restore protein function opens the door to future in vivo applications to treat RTT and other diseases.
Collapse
|
20
|
Liu G, Arnaud P, Offmann B, Picimbon JF. Genotyping and Bio-Sensing Chemosensory Proteins in Insects. SENSORS (BASEL, SWITZERLAND) 2017; 17:E1801. [PMID: 28777348 PMCID: PMC5579523 DOI: 10.3390/s17081801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/20/2022]
Abstract
Genotyping is the process of determining differences in the genetic make-up of an individual and comparing it to that of another individual. Focus on the family of chemosensory proteins (CSPs) in insects reveals differences at the genomic level across various strains and biotypes, but none at the level of individuals, which could be extremely useful in the biotyping of insect pest species necessary for the agricultural, medical and veterinary industries. Proposed methods of genotyping CSPs include not only restriction enzymatic cleavage and amplification of cleaved polymorphic sequences, but also detection of retroposons in some specific regions of the insect chromosome. Design of biosensors using CSPs addresses tissue-specific RNA mutations in a particular subtype of the protein, which could be used as a marker of specific physiological conditions. Additionally, we refer to the binding properties of CSP proteins tuned to lipids and xenobiotic insecticides for the development of a new generation of biosensor chips, monitoring lipid blood concentration and chemical environmental pollution.
Collapse
Affiliation(s)
- Guoxia Liu
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
| | - Philippe Arnaud
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Bernard Offmann
- Protein Engineering and Functionality Unit, University of Nantes, Nantes 44322, France.
| | - Jean-François Picimbon
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
- QILU University of Technology, School of Bioengineering, Jinan 250353, China.
| |
Collapse
|
21
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
22
|
RNA editing signature during myeloid leukemia cell differentiation. Leukemia 2017; 31:2824-2832. [PMID: 28484266 PMCID: PMC5729351 DOI: 10.1038/leu.2017.134] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 01/25/2023]
Abstract
Adenosine deaminases acting on RNA (ADARs) are key proteins for hematopoietic stem cell self-renewal and for survival of differentiating progenitor cells. However, their specific role in myeloid cell maturation has been poorly investigated. Here we show that ADAR1 is present at basal level in the primary myeloid leukemia cells obtained from patients at diagnosis as well as in myeloid U-937 and THP1 cell lines and its expression correlates with the editing levels. Upon phorbol-myristate acetate or Vitamin D3/granulocyte macrophage colony-stimulating factor (GM-CSF)-driven differentiation, both ADAR1 and ADAR2 enzymes are upregulated, with a concomitant global increase of A-to-I RNA editing. ADAR1 silencing caused an editing decrease at specific ADAR1 target genes, without, however, interfering with cell differentiation or with ADAR2 activity. Remarkably, ADAR2 is absent in the undifferentiated cell stage, due to its elimination through the ubiquitin-proteasome pathway, being strongly upregulated at the end of the differentiation process. Of note, peripheral blood monocytes display editing events at the selected targets similar to those found in differentiated cell lines. Taken together, the data indicate that ADAR enzymes play important and distinct roles in myeloid cells.
Collapse
|
23
|
Mazloomian A, Meyer IM. Genome-wide identification and characterization of tissue-specific RNA editing events in D. melanogaster and their potential role in regulating alternative splicing. RNA Biol 2016; 12:1391-401. [PMID: 26512413 PMCID: PMC4829317 DOI: 10.1080/15476286.2015.1107703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
RNA editing is a widespread mechanism that plays a crucial role in diversifying gene products. Its abundance and importance in regulating cellular processes were revealed using new sequencing technologies. The majority of these editing events, however, cannot be associated with regulatory mechanisms. We use tissue-specific high-throughput libraries of D. melanogaster to study RNA editing. We introduce an analysis pipeline that utilises large input data and explicitly captures ADAR's requirement for double-stranded regions. It combines probabilistic and deterministic filters and can identify RNA editing events with a low estimated false positive rate. Analyzing ten different tissue types, we predict 2879 editing sites and provide their detailed characterization. Our analysis pipeline accurately distinguishes genuine editing sites from SNPs and sequencing and mapping artifacts. Our editing sites are 3 times more likely to occur in exons with multiple splicing acceptor/donor sites than in exons with unique splice sites (p-value < 2.10−15). Furthermore, we identify 244 edited regions where RNA editing and alternative splicing are likely to influence each other. For 96 out of these 244 regions, we find evolutionary evidence for conserved RNA secondary-structures near splice sites suggesting a potential regulatory mechanism where RNA editing may alter splicing patterns via changes in local RNA structure.
Collapse
Affiliation(s)
- Alborz Mazloomian
- a Centre for High-Throughput Biology; Department of Computer Science and Department of Medical Genetics ; University of British Columbia ; Vancouver ; BC , Canada
| | - Irmtraud M Meyer
- a Centre for High-Throughput Biology; Department of Computer Science and Department of Medical Genetics ; University of British Columbia ; Vancouver ; BC , Canada
| |
Collapse
|
24
|
Cuevas JM, Combe M, Torres-Puente M, Garijo R, Guix S, Buesa J, Rodríguez-Díaz J, Sanjuán R. Human norovirus hyper-mutation revealed by ultra-deep sequencing. INFECTION GENETICS AND EVOLUTION 2016; 41:233-239. [PMID: 27094861 PMCID: PMC7172324 DOI: 10.1016/j.meegid.2016.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 02/02/2023]
Abstract
Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To more directly test for hyper-mutation, we performed transfection assays in which the production of mutations was restricted to a single cell infection cycle. This confirmed the presence of sequences with multiple U-to-C/A-to-G transitions, and suggested that hyper-mutation contributed a large fraction of the total NoV spontaneous mutation rate. The type of changes produced and their sequence context are compatible with ADAR-mediated editing of the viral RNA. Norovirus U-to-C hyper-mutants are present in patient samples. Analysis of hyper-mutants in cell culture suggests ADAR-mediated RNA edition. Hyper-mutation may contribute to norovirus diversity and evolution.
Collapse
Affiliation(s)
- José M Cuevas
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Marine Combe
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Manoli Torres-Puente
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Valencia, Spain
| | - Raquel Garijo
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain
| | - Susana Guix
- Departament de Microbiologia, Universitat de Barcelona, Barcelona, Spain
| | - Javier Buesa
- Departament de Microbiologia, Universitat de València, Valencia, Spain
| | | | - Rafael Sanjuán
- Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain; Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
25
|
Genetic Architectures of Quantitative Variation in RNA Editing Pathways. Genetics 2015; 202:787-98. [PMID: 26614740 DOI: 10.1534/genetics.115.179481] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/17/2015] [Indexed: 11/18/2022] Open
Abstract
RNA editing refers to post-transcriptional processes that alter the base sequence of RNA. Recently, hundreds of new RNA editing targets have been reported. However, the mechanisms that determine the specificity and degree of editing are not well understood. We examined quantitative variation of site-specific editing in a genetically diverse multiparent population, Diversity Outbred mice, and mapped polymorphic loci that alter editing ratios globally for C-to-U editing and at specific sites for A-to-I editing. An allelic series in the C-to-U editing enzyme Apobec1 influences the editing efficiency of Apob and 58 additional C-to-U editing targets. We identified 49 A-to-I editing sites with polymorphisms in the edited transcript that alter editing efficiency. In contrast to the shared genetic control of C-to-U editing, most of the variable A-to-I editing sites were determined by local nucleotide polymorphisms in proximity to the editing site in the RNA secondary structure. Our results indicate that RNA editing is a quantitative trait subject to genetic variation and that evolutionary constraints have given rise to distinct genetic architectures in the two canonical types of RNA editing.
Collapse
|
26
|
George CX, John L, Samuel CE. An RNA editor, adenosine deaminase acting on double-stranded RNA (ADAR1). J Interferon Cytokine Res 2015; 34:437-46. [PMID: 24905200 DOI: 10.1089/jir.2014.0001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adenosine deaminase acting on RNA1 (ADAR1) catalyzes the C6 deamination of adenosine (A) to produce inosine (I) in regions of RNA with double-stranded (ds) character. This process is known as A-to-I RNA editing. Alternative promoters drive the expression of the Adar1 gene and alternative splicing gives rise to transcripts that encode 2 ADAR1 protein size isoforms. ADAR1 p150 is an interferon (IFN)-inducible dsRNA adenosine deaminase found in the cytoplasm and nucleus, whereas ADAR1 p110 is constitutively expressed and nuclear in localization. Dependent on the duplex structure of the dsRNA substrate, deamination of adenosine by ADAR can be either highly site-selective or nonspecific. A-to-I editing can alter the stability of RNA structures and the coding of RNA as I is read as G instead of A by ribosomes during mRNA translation and by polymerases during RNA replication. A-to-I editing is of broad physiologic significance. Both the production and the action of IFNs, and hence the subsequent interaction of viruses with their hosts, are among the processes affected by A-to-I editing.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California , Santa Barbara, California
| | | | | |
Collapse
|
27
|
Grüttner S, Hopf C, Kumar A, Kempken F. Deletions in cox2 mRNA result in loss of splicing and RNA editing and gain of novel RNA editing sites. PLoS One 2013; 8:e82067. [PMID: 24324745 PMCID: PMC3852756 DOI: 10.1371/journal.pone.0082067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 10/21/2013] [Indexed: 11/28/2022] Open
Abstract
As previously demonstrated, the maize cox2 RNA is fully edited in cauliflower mitochondria. Use of constructs with a deleted cox2 intron, however, led to a loss of RNA editing at almost all editing sites, with only a few sites still partially edited. Likewise, one deletion in exon 1 and three in exon 2 abolish RNA editing at all cox2 sites analyzed. Furthermore, intron splicing is abolished using these deletions. Mutation of a cytosine residue, which is normally edited and localized directly adjacent to the intron, to thymidine did not result in restoration of splicing, indicating that the loss of splicing was not due to loss of RNA editing. One deletion in exon 2 did not lead to loss of splicing. Instead, most editing sites were found to be edited, only three were not edited. Unexpectedly, we observed additional RNA editing events at new sites. Thus it appears that deletions in the cox2 RNA sequence can have a strong effect on RNA processing, leading to loss of splicing, loss of editing at all sites, or even to a gain of new editing sites. As these effects are not limited to the vicinity of the respective deletions, but appear to be widespread or even affect all editing sites, they may not be explained by the loss of PPR binding sites. Instead, it appears that several parts of the cox2 transcript are required for proper RNA processing. This indicates the roles of the RNA sequence and structural elements in the recognition of the editing sites.
Collapse
Affiliation(s)
- Stefanie Grüttner
- Abteilung für Botanische Genetik und Molekularbiologie, Botanisches Institut und Botanischer Garten, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | | | | | | |
Collapse
|
28
|
Garrett SC, Rosenthal JJC. A role for A-to-I RNA editing in temperature adaptation. Physiology (Bethesda) 2013; 27:362-9. [PMID: 23223630 DOI: 10.1152/physiol.00029.2012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A-to-I RNA editing can recode mRNAs, giving organisms the option to express diverse, functionally distinct protein isoforms. Here, we propose that RNA editing is inherently geared for temperature adaptation because it tends to recode to smaller, less stabilizing amino acids. Studies on how editing affects protein function support this idea.
Collapse
Affiliation(s)
- Sandra C Garrett
- Institute of Neurobiology, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico.
| | | |
Collapse
|
29
|
Eifler T, Pokharel S, Beal PA. RNA-Seq analysis identifies a novel set of editing substrates for human ADAR2 present in Saccharomyces cerevisiae. Biochemistry 2013; 52:7857-69. [PMID: 24124932 DOI: 10.1021/bi4006539] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ADAR2 is a member of a family of RNA editing enzymes found in metazoa that bind double helical RNAs and deaminate select adenosines. We find that when human ADAR2 is overexpressed in the budding yeast Saccharomyces cerevisiae it substantially reduces the rate of cell growth. This effect is dependent on the deaminase activity of the enzyme, suggesting yeast transcripts are edited by ADAR2. Characterization of this novel set of RNA substrates provided a unique opportunity to gain insight into ADAR2's site selectivity. We used RNA-Seq. to identify transcripts present in S. cerevisiae subject to ADAR2-catalyzed editing. From this analysis, we identified 17 adenosines present in yeast RNAs that satisfied our criteria for candidate editing sites. Substrates identified include both coding and noncoding RNAs. Subsequent Sanger sequencing of RT-PCR products from yeast total RNA confirmed efficient editing at a subset of the candidate sites including BDF2 mRNA, RL28 intron RNA, HAC1 3'UTR RNA, 25S rRNA, U1 snRNA, and U2 snRNA. Two adenosines within the U1 snRNA sequence not identified as substrates during the original RNA-Seq. screen were shown to be deaminated by ADAR2 during the follow-up analysis. In addition, examination of the RNA sequence surrounding each edited adenosine in this novel group of ADAR2 sites revealed a previously unrecognized sequence preference. Remarkably, rapid deamination at one of these sites (BDF2 mRNA) does not require ADAR2's dsRNA-binding domains (dsRBDs). Human glioma-associated oncogene 1 (GLI1) mRNA is a known ADAR2 substrate with similar flanking sequence and secondary structure to the yeast BDF2 site discovered here. As observed with the BDF2 site, rapid deamination at the GLI1 site does not require ADAR2's dsRBDs.
Collapse
Affiliation(s)
- Tristan Eifler
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | | | | |
Collapse
|
30
|
ADAR regulates RNA editing, transcript stability, and gene expression. Cell Rep 2013; 5:849-60. [PMID: 24183664 PMCID: PMC3935819 DOI: 10.1016/j.celrep.2013.10.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/26/2013] [Accepted: 10/01/2013] [Indexed: 01/03/2023] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) convert adenosine to inosine, which is then recognized as guanosine. To study the role of ADAR proteins in RNA editing and gene regulation, we sequenced and compared the DNA and RNA of human B cells. Then, we followed up the findings experimentally with siRNA knockdown and RNA and protein immunoprecipitations. The results uncovered over 60,000 A-to-G editing sites and several thousand genes whose expression levels are influenced by ADARs. Of these ADAR targets, 90% were identified. Our results also reveal that ADAR regulates transcript stability and gene expression through interaction with HuR (ELAVL1). These findings extend the role of ADAR and show that it cooperates with other RNA-processing proteins to regulate the sequence and expression of transcripts in human cells.
Collapse
|
31
|
Dridi S. Alu mobile elements: from junk DNA to genomic gems. SCIENTIFICA 2012; 2012:545328. [PMID: 24278713 PMCID: PMC3820591 DOI: 10.6064/2012/545328] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 11/06/2012] [Indexed: 06/02/2023]
Abstract
Alus, the short interspersed repeated sequences (SINEs), are retrotransposons that litter the human genomes and have long been considered junk DNA. However, recent findings that these mobile elements are transcribed, both as distinct RNA polymerase III transcripts and as a part of RNA polymerase II transcripts, suggest biological functions and refute the notion that Alus are biologically unimportant. Indeed, Alu RNAs have been shown to control mRNA processing at several levels, to have complex regulatory functions such as transcriptional repression and modulating alternative splicing and to cause a host of human genetic diseases. Alu RNAs embedded in Pol II transcripts can promote evolution and proteome diversity, which further indicates that these mobile retroelements are in fact genomic gems rather than genomic junks.
Collapse
Affiliation(s)
- Sami Dridi
- Nutrition Research Institute, The University of North Carolina at Chapel Hill, 500 Laureate Way, Kannapolis, NC 28081, USA
| |
Collapse
|
32
|
Balik A, Penn AC, Nemoda Z, Greger IH. Activity-regulated RNA editing in select neuronal subfields in hippocampus. Nucleic Acids Res 2012; 41:1124-34. [PMID: 23172290 PMCID: PMC3553983 DOI: 10.1093/nar/gks1045] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA editing by adensosine deaminases is a widespread mechanism to alter genetic information in metazoa. In addition to modifications in non-coding regions, editing contributes to diversification of protein function, in analogy to alternative splicing. However, although splicing programs respond to external signals, facilitating fine tuning and homeostasis of cellular functions, a similar regulation has not been described for RNA editing. Here, we show that the AMPA receptor R/G editing site is dynamically regulated in the hippocampus in response to activity. These changes are bi-directional, reversible and correlate with levels of the editase Adar2. This regulation is observed in the CA1 hippocampal subfield but not in CA3 and is thus subfield/celltype-specific. Moreover, alternative splicing of the flip/flop cassette downstream of the R/G site is closely linked to the editing state, which is regulated by Ca2+. Our data show that A-to-I RNA editing has the capacity to tune protein function in response to external stimuli.
Collapse
Affiliation(s)
- Ales Balik
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
33
|
Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci 2012; 70:1949-63. [PMID: 22960755 PMCID: PMC7079809 DOI: 10.1007/s00018-012-1149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Effective antiviral immunity depends on accurate recognition of viral RNAs by the innate immune system. Double-stranded RNA (dsRNA) often accumulates in virally infected cells and was initially considered a unique viral signature that was sufficient to initiate antiviral response through dsRNA receptors and dsRNA-dependent effectors such as Toll-like receptor 3, retinoic acid inducible gene-1, protein kinase RNA-activated and oligoadenylate synthetase. However, dsRNA is also present in many cellular RNAs, raising a question of how these receptors and effectors discriminate between viral and cellular dsRNAs. Accumulating evidence suggests that innate immune sensors detect not only dsRNA structure but also other and often multiple features of RNA such as length, sequence, cellular location, post-transcriptional processing and modification, which are divergent between viral and cellular RNAs. This review summarizes recent findings on the substrate specificities of a few selected dsRNA-dependent effectors and receptors, which have revealed more complex mechanisms involved in cellular discrimination between self and non-self RNA.
Collapse
|
34
|
Dependencies among editing sites in serotonin 2C receptor mRNA. PLoS Comput Biol 2012; 8:e1002663. [PMID: 22969417 PMCID: PMC3435259 DOI: 10.1371/journal.pcbi.1002663] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 07/15/2012] [Indexed: 12/14/2022] Open
Abstract
The serotonin 2C receptor (5-HT2CR)–a key regulator of diverse neurological processes–exhibits functional variability derived from editing of its pre-mRNA by site-specific adenosine deamination (A-to-I pre-mRNA editing) in five distinct sites. Here we describe a statistical technique that was developed for analysis of the dependencies among the editing states of the five sites. The statistical significance of the observed correlations was estimated by comparing editing patterns in multiple individuals. For both human and rat 5-HT2CR, the editing states of the physically proximal sites A and B were found to be strongly dependent. In contrast, the editing states of sites C and D, which are also physically close, seem not to be directly dependent but instead are linked through the dependencies on sites A and B, respectively. We observed pronounced differences between the editing patterns in humans and rats: in humans site A is the key determinant of the editing state of the other sites, whereas in rats this role belongs to site B. The structure of the dependencies among the editing sites is notably simpler in rats than it is in humans implying more complex regulation of 5-HT2CR editing and, by inference, function in the human brain. Thus, exhaustive statistical analysis of the 5-HT2CR editing patterns indicates that the editing state of sites A and B is the primary determinant of the editing states of the other three sites, and hence the overall editing pattern. Taken together, these findings allow us to propose a mechanistic model of concerted action of ADAR1 and ADAR2 in 5-HT2CR editing. Statistical approach developed here can be applied to other cases of interdependencies among modification sites in RNA and proteins. The serotonin receptor 2C is a key regulator of diverse neurological processes that affect feeding behavior, sleep, sexual behavior, anxiety and depression. The function of the receptor itself is regulated via so-called pre-mRNA editing, i.e. site-specific adenosine deamination in five distinct sites. The greater the number of edited sites in the serotonin receptor mRNA, the lower the activity of the receptor it encodes. Here we used the results of extensive massively parallel sequencing from human and rat brains to elucidate the dependencies among the editing states of the five sites. Despite the apparent simplicity of the problem, disambiguation of these dependencies is a difficult task that required development of a new statistical technique. We employed this method to analyse the dependencies among editing in the 5 susceptible sites of the receptor mRNA and found that the proximal, juxtaposed sites A and B are strongly interdependent, and that the editing state of these two sites is a major determinant of the editing states of the other three sites, and hence the overall editing pattern. The statistical approach we developed for the analysis of mRNA editing can be applied to other cases of multiple site modification in RNA and proteins.
Collapse
|
35
|
Daniel C, Venø MT, Ekdahl Y, Kjems J, Öhman M. A distant cis acting intronic element induces site-selective RNA editing. Nucleic Acids Res 2012; 40:9876-86. [PMID: 22848101 PMCID: PMC3479170 DOI: 10.1093/nar/gks691] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transcripts have been found to be site selectively edited from adenosine-to-inosine (A-to-I) in the mammalian brain, mostly in genes involved in neurotransmission. While A-to-I editing occurs at double-stranded structures, other structural requirements are largely unknown. We have investigated the requirements for editing at the I/M site in the Gabra-3 transcript of the GABAA receptor. We identify an evolutionarily conserved intronic duplex, 150 nt downstream of the exonic hairpin where the I/M site resides, which is required for its editing. This is the first time a distant RNA structure has been shown to be important for A-to-I editing. We demonstrate that the element also can induce editing in related but normally not edited RNA sequences. In human, thousands of genes are edited in duplexes formed by inverted repeats in non-coding regions. It is likely that numerous such duplexes can induce editing of coding regions throughout the transcriptome.
Collapse
Affiliation(s)
- Chammiran Daniel
- Department of Molecular Biology and Functional Genomics, Stockholm University, Svante Arrheniusväg 20C, SE-10691, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
36
|
Rodriguez J, Menet JS, Rosbash M. Nascent-seq indicates widespread cotranscriptional RNA editing in Drosophila. Mol Cell 2012; 47:27-37. [PMID: 22658416 DOI: 10.1016/j.molcel.2012.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 03/08/2012] [Accepted: 04/16/2012] [Indexed: 01/31/2023]
Abstract
The RNA editing enzyme ADAR chemically modifies adenosine (A) to inosine (I), which is interpreted by the ribosome as a guanosine. Here we assess cotranscriptional A-to-I editing in Drosophila by isolating nascent RNA from adult fly heads and subjecting samples to high throughput sequencing. There are a large number of edited sites within nascent exons. Nascent RNA from an ADAR-null strain was also sequenced, indicating that almost all A-to-I events require ADAR. Moreover, mRNA editing levels correlate with editing levels within the cognate nascent RNA sequence, indicating that the extent of editing is set cotranscriptionally. Surprisingly, the nascent data also identify an excess of intronic over exonic editing sites. These intronic sites occur preferentially within introns that are poorly spliced cotranscriptionally, suggesting a link between editing and splicing. We conclude that ADAR-mediated editing is more widespread than previously indicated and largely occurs cotranscriptionally.
Collapse
Affiliation(s)
- Joseph Rodriguez
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology, Brandeis University, Waltham, MA 02451, USA
| | | | | |
Collapse
|
37
|
Orlandi C, Barbon A, Barlati S. Activity Regulation of Adenosine Deaminases Acting on RNA (ADARs). Mol Neurobiol 2011; 45:61-75. [DOI: 10.1007/s12035-011-8220-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/09/2011] [Indexed: 01/01/2023]
|
38
|
Borik S, Simon AJ, Nevo-Caspi Y, Mishali D, Amariglio N, Rechavi G, Paret G. Increased RNA editing in children with cyanotic congenital heart disease. Intensive Care Med 2011; 37:1664-71. [PMID: 21720910 DOI: 10.1007/s00134-011-2296-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 06/07/2011] [Indexed: 12/01/2022]
Abstract
PURPOSE To test the hypothesis that RNA editing is altered in pediatric patients with cyanotic congenital heart disease (CHD) and to determine whether A-to-I RNA editing is associated with the postoperative course following cardiac surgery. Cyanotic CHD is associated with a unique pathophysiology caused by chronic hypoxia. The perioperative course of cyanotic infants is partly dictated by the degree of expression of inflammatory and cardiac genes, some of which undergo A-to-I RNA editing. METHODS RNA was extracted pre- and postoperatively from blood samples of cyanotic and acyanotic patients. Each sample was analyzed for A-to-I RNA editing using automatic DNA sequencing of an intronic segment of the MED13 gene. RNA expression levels of adenosine deaminase acting on RNA (ADAR) enzymes responsible for RNA editing were examined by quantitative reverse-transcriptase polymerase chain reaction. RESULTS A-to-I RNA editing in MED13 was significantly higher among cyanotic patients (n = 19) than acyanotic ones (n = 18) both pre- and postoperatively, as manifested by average editing at seven highly edited sites (27.4 ± 8.5% versus 20.8 ± 10.2%; P = 0.038) and editing at specific sites, e.g., position 14 (20.2 ± 5.1% versus 14.5 ± 5.2%; P = 0.002). Cyanotic patients exhibited a more complicated postoperative course than acyanotic patients. ADAR2 RNA levels were significantly lower among cyanotic patients. CONCLUSIONS Cyanotic children manifest significantly higher rates of A-to-I RNA editing than acyanotic children as well as a more complicated surgical course. Posttranscriptional RNA changes may affect cellular and metabolic pathways and influence the perioperative course following hypoxia.
Collapse
Affiliation(s)
- Sharon Borik
- Department of Pediatric Critical Care Medicine, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Wahlstedt H, Ohman M. Site-selective versus promiscuous A-to-I editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:761-71. [PMID: 21976281 DOI: 10.1002/wrna.89] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RNA editing by adenosine deamination is acting on polymerase II derived transcripts in all metazoans. Adenosine-to-inosine (A-to-I) editing is mediated by the adenosine deaminase that acts on RNA (ADAR) enzymes. Two types of adenosine to inosine (A-to-I) RNA editing have been defined: site selective and hyper-editing. Typically, in site selectively edited substrates, one or a few A-to-I sites are edited in double-stranded RNA structures, frequently interrupted by single-stranded bulges and loops. Hyper-editing occurs in long stretches of duplex RNA where multiple adenosines are subjected to deamination. In this review, recent findings on editing within noncoding RNA as well as examples of site selective editing within coding regions are presented. We discuss how these two editing events have evolved and the structural differences between a site selective and hyper-edited substrate.
Collapse
Affiliation(s)
- Helene Wahlstedt
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | | |
Collapse
|
40
|
Tian N, Yang Y, Sachsenmaier N, Muggenhumer D, Bi J, Waldsich C, Jantsch MF, Jin Y. A structural determinant required for RNA editing. Nucleic Acids Res 2011; 39:5669-81. [PMID: 21427087 PMCID: PMC3141254 DOI: 10.1093/nar/gkr144] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
RNA editing by adenosine deaminases acting on RNAs (ADARs) can be both specific and non-specific, depending on the substrate. Specific editing of particular adenosines may depend on the overall sequence and structural context. However, the detailed mechanisms underlying these preferences are not fully understood. Here, we show that duplex structures mimicking an editing site in the Gabra3 pre-mRNA unexpectedly fail to support RNA editing at the Gabra3 I/M site, although phylogenetic analysis suggest an evolutionarily conserved duplex structure essential for efficient RNA editing. These unusual results led us to revisit the structural requirement for this editing by mutagenesis analysis. In vivo nuclear injection experiments of mutated editing substrates demonstrate that a non-conserved structure is a determinant for editing. This structure contains bulges either on the same or the strand opposing the edited adenosine. The position of these bulges and the distance to the edited base regulate editing. Moreover, elevated folding temperature can lead to a switch in RNA editing suggesting an RNA structural change. Our results indicate the importance of RNA tertiary structure in determining RNA editing.
Collapse
Affiliation(s)
- Nan Tian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University (Zijingang Campus), Hangzhou, Zhejiang, ZJ310058, PR of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Doria M, Tomaselli S, Neri F, Ciafrè SA, Farace MG, Michienzi A, Gallo A. ADAR2 editing enzyme is a novel human immunodeficiency virus-1 proviral factor. J Gen Virol 2011; 92:1228-1232. [PMID: 21289159 DOI: 10.1099/vir.0.028043-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The adenosine deaminases acting on RNA (ADAR) enzymes catalyse conversion of adenosine to inosine in dsRNA. A positive effect of ADAR1 on human immunodeficiency virus type 1 (HIV-1) replication has recently been reported. Here, we show that another ADAR enzyme, ADAR2, positively affects the replication process of HIV-1. We found that, analogously to ADAR1, ADAR2 enhances the release of progeny virions by an editing-dependent mechanism. However, differently from the ADAR1 enzyme, ADAR2 does not increase the infectious potential of the virus. Importantly, downregulation of ADAR2 in Jurkat cells significantly impairs viral replication. Therefore, ADAR2 shares some but not all proviral functions of ADAR1. These results suggest a novel role of ADAR2 as a viral regulator.
Collapse
Affiliation(s)
- Margherita Doria
- Laboratory of Immunoinfectivology, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Sara Tomaselli
- RNA Editing Laboratory, Department of Pediatric Hematology/Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Francesca Neri
- Laboratory of Immunoinfectivology, Children's Hospital Bambino Gesù, 00165 Rome, Italy
| | - Silvia Anna Ciafrè
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', 00133 Rome, Italy
| | - Maria Giulia Farace
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', 00133 Rome, Italy
| | - Alessandro Michienzi
- Department of Experimental Medicine and Biochemical Sciences, University of Rome 'Tor Vergata', 00133 Rome, Italy
| | - Angela Gallo
- RNA Editing Laboratory, Department of Pediatric Hematology/Oncology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| |
Collapse
|
42
|
Abstract
The main type of RNA editing in mammals is the conversion of adenosine to inosine which is translated as if it were guanosine. The enzymes that catalyze this reaction are ADARs (adenosine deaminases that act on RNA), of which there are four in mammals, two of which are catalytically inactive. ADARs edit transcripts that encode proteins expressed mainly in the CNS and editing is crucial to maintain a correctly functioning nervous system. However, the majority of editing has been found in transcripts encoding Alu repeat elements and the biological role of this editing remains a mystery. This chapter describes in detail the different ADAR enzymes and the phenotype of animals that are deficient in their activity. Besides being enzymes, ADARs are also double-stranded RNA-binding proteins, so by binding alone they can interfere with other processes such as RNA interference. Lack of editing by ADARs has been implicated in disorders such as forebrain ischemia and Amyotrophic Lateral Sclerosis (ALS) and this will also be discussed.
Collapse
Affiliation(s)
- Marion Hogg
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, UK
| | | | | | | |
Collapse
|
43
|
Barraud P, Allain FHT. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr Top Microbiol Immunol 2011; 353:35-60. [PMID: 21728134 DOI: 10.1007/82_2011_145] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adenosine deaminases acting on RNA (ADAR) catalyze adenosine to inosine editing within double-stranded RNA (dsRNA) substrates. Inosine is read as a guanine by most cellular processes and therefore these changes create codons for a different amino acid, stop codons or even a new splice-site allowing protein diversity generated from a single gene. We review here the current structural and molecular knowledge on RNA editing by the ADAR family of protein. We focus especially on two types of nucleic acid binding domains present in ADARs, namely the dsRNA and Z-DNA binding domains.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zürich, Switzerland
| | | |
Collapse
|
44
|
Abstract
Since the discovery of the adenosine deaminase (ADA) acting on RNA (ADAR) family of proteins in 1988 (Bass and Weintraub, Cell 55:1089-1098, 1988) (Wagner et al. Proc Natl Acad Sci U S A 86:2647-2651, 1989), we have learned much about their structure and catalytic mechanism. However, much about these enzymes is still unknown, particularly regarding the selective recognition and processing of specific adenosines within substrate RNAs. While a crystal structure of the catalytic domain of human ADAR2 has been solved, we still lack structural data for an ADAR catalytic domain bound to RNA, and we lack any structural data for other ADARs. However, by analyzing the structural data that is available along with similarities to other deaminases, mutagenesis and other biochemical experiments, we have been able to advance the understanding of how these fascinating enzymes function.
Collapse
|
45
|
George CX, Gan Z, Liu Y, Samuel CE. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res 2010; 31:99-117. [PMID: 21182352 DOI: 10.1089/jir.2010.0097] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminases acting on RNA (ADARs) catalyze adenosine (A) to inosine (I) editing of RNA that possesses double-stranded (ds) structure. A-to-I RNA editing results in nucleotide substitution, because I is recognized as G instead of A both by ribosomes and by RNA polymerases. A-to-I substitution can also cause dsRNA destabilization, as I:U mismatch base pairs are less stable than A:U base pairs. Three mammalian ADAR genes are known, of which two encode active deaminases (ADAR1 and ADAR2). Alternative promoters together with alternative splicing give rise to two protein size forms of ADAR1: an interferon-inducible ADAR1-p150 deaminase that binds dsRNA and Z-DNA, and a constitutively expressed ADAR1-p110 deaminase. ADAR2, like ADAR1-p110, is constitutively expressed and binds dsRNA. A-to-I editing occurs with both viral and cellular RNAs, and affects a broad range of biological processes. These include virus growth and persistence, apoptosis and embryogenesis, neurotransmitter receptor and ion channel function, pancreatic cell function, and post-transcriptional gene regulation by microRNAs. Biochemical processes that provide a framework for understanding the physiologic changes following ADAR-catalyzed A-to-I ( = G) editing events include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA-structure-dependent activities such as microRNA production or targeting or protein-RNA interactions.
Collapse
Affiliation(s)
- Cyril X George
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106, USA
| | | | | | | |
Collapse
|
46
|
Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J Virol 2010; 85:2458-62. [PMID: 21159878 DOI: 10.1128/jvi.02138-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We sought to examine ADAR-1 editing of measles and influenza virus genomes derived from inactivated seasonal influenza and live attenuated measles virus vaccines grown on chicken cells as the culture substrate. Using highly sensitive 3DI-PCR (R. Suspène et al., Nucleic Acids Res. 36:e72, 2008), it was possible to show that ADAR-1 could hyperdeaminate adenosine residues in both measles virus and influenza virus A genomes. Detailed analysis of the dinucleotide editing context showed preferences for 5'ArA and 5'UrA, which is typical of editing in mammalian cells. The hyperedited mutant frequency, including genomes and antigenomes, was a log greater for influenza virus compared to measles virus, suggesting a greater sensitivity to restriction by ADAR-1.
Collapse
|
47
|
Kleinberger Y, Eisenberg E. Large-scale analysis of structural, sequence and thermodynamic characteristics of A-to-I RNA editing sites in human Alu repeats. BMC Genomics 2010; 11:453. [PMID: 20667096 PMCID: PMC3091650 DOI: 10.1186/1471-2164-11-453] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Accepted: 07/28/2010] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alu repeats in the human transcriptome undergo massive adenosine to inosine RNA editing. This process is selective, as editing efficiency varies greatly among different adenosines. Several studies have identified weak sequence motifs characterizing the editing sites, but these alone do not account for the large diversity observed. RESULTS Here we build a dataset of 29,971 editing sites and use it to characterize editing preferences. We focus on structural aspects, studying the double-stranded RNA structure of the Alu repeats, and show the editing frequency of a given site to depend strongly on the micro-structure it resides in. Surprisingly, we find that interior loops, and especially the nucleotides at their edges, are more likely to be edited than helices. In addition, the sequence motifs characterizing editing sites vary with the micro-structure. Finally, we show that thermodynamic stability of the site is important for its editing. CONCLUSIONS Analysis of a large dataset of editing events reveals more information on sequence and structural motifs characterizing the A-to-I editing process.
Collapse
Affiliation(s)
- Yoav Kleinberger
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
48
|
Hundley HA, Bass BL. ADAR editing in double-stranded UTRs and other noncoding RNA sequences. Trends Biochem Sci 2010; 35:377-83. [PMID: 20382028 DOI: 10.1016/j.tibs.2010.02.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/18/2010] [Accepted: 02/19/2010] [Indexed: 10/19/2022]
Abstract
ADARs are a family of enzymes, present in all animals, that convert adenosine to inosine within double-stranded RNA (dsRNA). Inosine and adenosine have different base-pairing properties, and thus, editing alters RNA structure, coding potential and splicing patterns. The first ADAR substrates identified were edited in codons, and ADARs were presumed to function primarily in proteome diversification. Although this is an important function of ADARs, especially in the nervous system, editing in coding sequences is rare compared to editing in noncoding sequences. Introns and untranslated regions of mRNA are the primary noncoding targets, but editing also occurs in small RNAs, such as miRNAs. Although the role of editing in noncoding sequences remains unclear, ongoing research suggests functions in the regulation of a variety of post-transcriptional processes.
Collapse
Affiliation(s)
- Heather A Hundley
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
49
|
Pokharel S, Jayalath P, Maydanovych O, Goodman RA, Wang SC, Tantillo DJ, Beal PA. Matching active site and substrate structures for an RNA editing reaction. J Am Chem Soc 2009; 131:11882-91. [PMID: 19642681 DOI: 10.1021/ja9034076] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The RNA-editing adenosine deaminases (ADARs) catalyze deamination of adenosine to inosine in a double-stranded structure found in various RNA substrates, including mRNAs. Here we present recent efforts to define structure/activity relationships for the ADAR reaction. We describe the synthesis of new phosphoramidites for the incorporation of 7-substituted-8-aza-7-deazaadenosine derivatives into RNA. These reagents were used to introduce the analogues into mimics of the R/G-editing site found in the pre-mRNA for the human glutamate receptor B subunit (GluR B). Analysis of the kinetics of the ADAR2 reaction with analogue-containing RNAs indicated 8-aza-7-deazaadenosine is an excellent substrate for this enzyme with a deamination rate eight times greater than that for adenosine. However, replacing the C7 hydrogen in this analogue with bromine, iodine, or propargyl alcohol failed to increase the deamination rate further but rather decreased the rate. Modeling of nucleotide binding in the enzyme active site suggested amino acid residues that may be involved in nucleotide recognition. We carried out a functional screen of a library of ADAR2 mutants expressed in S. cerevisiae that varied the identity of these residues to identify active deaminases with altered active sites. One of these mutants (ADAR2 R455A) was able to substantially overcome the inhibitory effect of the bulky C7 substituents (-Br, -I, propargyl alcohol). These results advance our understanding of the importance of functional groups found in the edited nucleotide and the role of specific active site residues of ADAR2.
Collapse
Affiliation(s)
- Subhash Pokharel
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
St Laurent G, Savva YA, Reenan R. Enhancing non-coding RNA information content with ADAR editing. Neurosci Lett 2009; 466:89-98. [PMID: 19751800 DOI: 10.1016/j.neulet.2009.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/02/2009] [Accepted: 09/05/2009] [Indexed: 10/20/2022]
Abstract
The depth and complexity of the non-coding transcriptome in nervous system tissues provides a rich substrate for adenosine de-amination acting on RNA (ADAR). Non-coding RNAs (ncRNAs) serve diverse regulatory and computational functions, coupling signal flow from the environment to evolutionarily coded analog and digital information elements within the transcriptome. We present a perspective of ADARs interaction with the non-coding transcriptome as a computational matrix, enhancing the information processing power of the cell, adding flexibility, rapid response, and fine tuning to critical pathways. Dramatic increases in ADAR activity during stress response and inflammation result in powerful information processing events that change the functional state of the cell. This review examines the pathways and mechanisms of ADAR interaction with the non-coding transcriptome, and their functional consequences for information processing in nervous system tissues.
Collapse
Affiliation(s)
- Georges St Laurent
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|