1
|
Vasilopoulos G, Moser R, Petersen J, Aktas M, Narberhaus F. Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158926. [PMID: 33766680 DOI: 10.1016/j.bbalip.2021.158926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Bacterial membranes are primarily composed of phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL). In the canonical PE biosynthesis pathway, phosphatidylserine (PS) is decarboxylated by the Psd enzyme. CL formation typically depends on CL synthases (Cls) using two PG molecules as substrates. Only few bacteria produce phosphatidylcholine (PC), the hallmark of eukaryotic membranes. Most of these bacteria use phospholipid N-methyltransferases to successively methylate PE to PC and/or a PC synthase (Pcs) to catalyze the condensation of choline and CDP-diacylglycerol (CDP-DAG) to PC. In this study, we show that membranes of Pseudomonas species able to interact with eukaryotes contain PE, PG, CL and PC. More specifically, we report on PC formation and a poorly characterized CL biosynthetic pathway in the plant pathogen P. syringae pv. tomato. It encodes a Pcs enzyme responsible for choline-dependent PC biosynthesis. CL formation is catalyzed by a promiscuous phospholipase D (PLD)-type enzyme (PSPTO_0095) that we characterized in vivo and in vitro. Like typical bacterial CL biosynthesis enzymes, it uses PE and PG for CL production. This enzyme is also able to convert PE and glycerol to PG, which is then combined with another PE molecule to synthesize CL. In addition, the enzyme is capable of converting ethanolamine or methylated derivatives into the corresponding phospholipids such as PE both in P. syringae and in E. coli. It can also hydrolyze CDP-DAG to yield phosphatidic acid (PA). Our study adds an example of a promiscuous Cls enzyme able to synthesize a suite of products according to the available substrates.
Collapse
Affiliation(s)
| | - Roman Moser
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Jonas Petersen
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Bochum, Germany.
| | | |
Collapse
|
2
|
Li J, Chu Y, Yang R, Lin J, Shao L, Wang L. An alkali-tolerant phospholipase D from Sphingobacterium thalpophilum 2015: Gene cloning, overproduction and characterization. J GEN APPL MICROBIOL 2021; 67:1-8. [PMID: 32981922 DOI: 10.2323/jgam.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The phospholipase pl-S.t gene of Sphingobacterium thalpophilum 2015 was cloned and the gene sequence was submitted to NCBI with Accession Number KX674735.1. The phylogenetic analysis showed that this PL-S.t was clustered to phospholipase D (PLD). As far as we know, the PL-S.t with a molecular mass of 22.5 kDa is the lowest of the currently purified bacterial PLDs, which belongs to a non-HKD PLD enzyme. This PL-S.t was resistant to a wide range of alkali pHs (7.5-9.0) after 1 h incubation, retaining more than 90% of its maximum activity. The PL-S.t activity can be enhanced by Ni2+, Co2+ and Mn2+. This PL-S.t has only one cysteine residue and fewer negatively-charged amino acids (AAs). The hydrogen bonds network was found around the cystein108, which may be beneficial to the stability and activity of PL-S.t in Ni2+ solution. This study has laid the foundation for further research on the molecular mechanism of the catalytic characteristics of low molecular weight alkalic PLD from S. thalpophilum 2015.
Collapse
Affiliation(s)
- Jing Li
- College of Environment and Ecology, Chengdu University of Technology
| | - Yiwen Chu
- Sichuan Industrial Institute of Antibiotics (SIIA)
| | - Ruilan Yang
- College of Environment and Ecology, Chengdu University of Technology
| | - Jiafu Lin
- Sichuan Industrial Institute of Antibiotics (SIIA)
| | - Lin Shao
- College of Environment and Ecology, Chengdu University of Technology
| | - Li Wang
- College of Life Science and Technology, Southwest Minzu University
| |
Collapse
|
3
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
4
|
Djakpa H, Kulkarni A, Barrows-Murphy S, Miller G, Zhou W, Cho H, Török B, Stieglitz K. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays. Chem Biol Drug Des 2016; 87:714-29. [DOI: 10.1111/cbdd.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Helene Djakpa
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Aditya Kulkarni
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | | - Greg Miller
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Weihong Zhou
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Hyejin Cho
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Béla Török
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | |
Collapse
|
5
|
Rodriguez F, Lillington J, Johnson S, Timmel CR, Lea SM, Berks BC. Crystal structure of the Bacillus subtilis phosphodiesterase PhoD reveals an iron and calcium-containing active site. J Biol Chem 2014; 289:30889-99. [PMID: 25217636 PMCID: PMC4223295 DOI: 10.1074/jbc.m114.604892] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The PhoD family of extra-cytoplasmic phosphodiesterases are among the most commonly occurring bacterial phosphatases. The exemplars for this family are the PhoD protein of Bacillus subtilis and the phospholipase D of Streptomyces chromofuscus. We present the crystal structure of B. subtilis PhoD. PhoD is most closely related to purple acid phosphatases (PAPs) with both types of enzyme containing a tyrosinate-ligated Fe3+ ion. However, the PhoD active site diverges from that found in PAPs and uses two Ca2+ ions instead of the single extra Fe2+, Mn2+, or Zn2+ ion present in PAPs. The PhoD crystals contain a phosphate molecule that coordinates all three active site metal ions and that is proposed to represent a product complex. A C-terminal helix lies over the active site and controls access to the catalytic center. The structure of PhoD defines a new phosphatase active site architecture based on Fe3+ and Ca2+ ions.
Collapse
Affiliation(s)
- Fernanda Rodriguez
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU
| | - James Lillington
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, and the Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Steven Johnson
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, and
| | - Christiane R Timmel
- the Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Susan M Lea
- the Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, and
| | - Ben C Berks
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU,
| |
Collapse
|
6
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
7
|
Selvy PE, Lavieri RR, Lindsley CW, Brown HA. Phospholipase D: enzymology, functionality, and chemical modulation. Chem Rev 2011; 111:6064-119. [PMID: 21936578 PMCID: PMC3233269 DOI: 10.1021/cr200296t] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Paige E Selvy
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37064, USA
| | | | | | | |
Collapse
|
8
|
Kang HC, Yoon SH, Lee CM, Koo BS. Expression and Biochemical Characteristics of a Phospholipase D from Bacillus licheniformis. ACTA ACUST UNITED AC 2011. [DOI: 10.3839/jabc.2011.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Mansfeld J, Ulbrich-Hofmann R. Modulation of phospholipase D activity in vitro. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:913-26. [DOI: 10.1016/j.bbalip.2009.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 03/03/2009] [Accepted: 03/04/2009] [Indexed: 11/30/2022]
|
10
|
Uesugi Y, Hatanaka T. Phospholipase D mechanism using Streptomyces PLD. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:962-9. [PMID: 19416643 DOI: 10.1016/j.bbalip.2009.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 01/19/2009] [Accepted: 01/28/2009] [Indexed: 11/17/2022]
Abstract
Phospholipase D (PLD) plays various roles in important biological processes and physiological functions, including cell signaling. Streptomyces PLDs show significant sequence similarity and belong to the PLD superfamily containing two catalytic HKD motifs. These PLDs have conserved catalytic regions and are among the smallest PLD enzymes. Therefore, Streptomyces PLDs are thought to be suitable models for studying the reaction mechanism among PLDs from other sources. Furthermore, Streptomyces PLDs present advantages related to their broad substrate specificity and ease of enzyme preparation. Moreover, the tertiary structure of PLD has been elucidated only for PLD from Streptomyces sp. PMF. This article presents a review of recently reported studies of the mechanism of the catalytic reaction, substrate recognition, substrate specificity and stability of Streptomyces PLD using various protein engineering methods and surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences (RIBS), Kaga-gun, Okayama, Japan
| | | |
Collapse
|
11
|
Uesugi Y, Mori K, Arima J, Iwabuchi M, Hatanaka T. Recognition of phospholipids in Streptomyces phospholipase D. J Biol Chem 2005; 280:26143-51. [PMID: 15899903 DOI: 10.1074/jbc.m414319200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the contribution of amino acid residues to the enzyme reaction of Streptomyces phospholipase D (PLD), we constructed a chimeric gene library between two highly homologous plds, which indicated different activity in transphosphatidylation, using RIBS (repeat-length independent and broad spectrum) in vivo DNA shuffling. By comparing the activities of chimeras, six candidate residues related to transphosphatidylation activity were shown. Based on the above result, we constructed several mutants to identify the key residues involved in the recognition of phospholipids. By kinetic analysis, we identified that Gly188 and Asp191 of PLD from Streptomyces septatus TH-2, which are not present in the highly conserved catalytic HXKXXXXD (HKD) motifs, are key amino acid residues related to the transphosphatidylation activity. To investigate the role of two residues in the recognition of phospholipids, the effects of these residues on binding to substrates were analyzed by surface plasmon spectroscopy. The result suggests that Gly188 and Asp191 are involved in the recognition of phospholipids in correlation with the N-terminal HKD motif. Furthermore, this study also provides experimental evidence that the N-terminal HKD motif contains the catalytic nucleophile, which attacks the phosphatidyl group of the substrate.
Collapse
Affiliation(s)
- Yoshiko Uesugi
- Research Institute for Biological Sciences, Okayama, 7549-1 Kibichuo-cho, Kaga-gun, Okayama 716-1241, Japan
| | | | | | | | | |
Collapse
|
12
|
van Meeteren LA, Ruurs P, Christodoulou E, Goding JW, Takakusa H, Kikuchi K, Perrakis A, Nagano T, Moolenaar WH. Inhibition of autotaxin by lysophosphatidic acid and sphingosine 1-phosphate. J Biol Chem 2005; 280:21155-61. [PMID: 15769751 DOI: 10.1074/jbc.m413183200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotaxin (ATX) or nucleotide pyrophosphatase/phosphodiesterase 2 (NPP2) is an NPP family member that promotes tumor cell motility, experimental metastasis, and angiogenesis. ATX primarily functions as a lysophospholipase D, generating the lipid mediator lysophosphatidic acid (LPA) from lysophosphatidylcholine. ATX uses a single catalytic site for the hydrolysis of both lipid and non-lipid phosphodiesters, but its regulation is not well understood. Using a new fluorescence resonance energy transfer-based phosphodiesterase sensor that reports ATX activity with high sensitivity, we show here that ATX is potently and specifically inhibited by LPA and sphingosine 1-phosphate (S1P) in a mixed-type manner (Ki approximately 10(-7) M). The homologous ecto-phosphodiesterase NPP1, which lacks lysophospholipase D activity, is insensitive to LPA and S1P. Our results suggest that, by repressing ATX activity, LPA can regulate its own biosynthesis in the extracellular environment, and they reveal a novel role for S1P as an inhibitor of ATX, in addition to its well established role as a receptor ligand.
Collapse
Affiliation(s)
- Laurens A van Meeteren
- Division of Cellular Biochemistry and Center for Biomedical Genetics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zambonelli C, Roberts MF. Non-HKD Phospholipase D Enzymes: New Players in Phosphatidic Acid Signaling? ACTA ACUST UNITED AC 2005; 79:133-81. [PMID: 16096028 DOI: 10.1016/s0079-6603(04)79003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Carlo Zambonelli
- Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
14
|
Yang H, Roberts MF. Expression and characterization of a heterodimer of Streptomyces chromofuscus phospholipase D. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1703:43-51. [PMID: 15588701 DOI: 10.1016/j.bbapap.2004.09.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 09/10/2004] [Accepted: 09/14/2004] [Indexed: 11/20/2022]
Abstract
Streptomyces chromofuscus phospholipase D (PLD) is secreted by the bacterium and proteolytically cleaved to a more active form (PLD(37/18)) where the two parts of the molecule are still tightly associated. Based on previous sequencing results of authentic PLD(37/18), we have constructed a vector consisting of separate ORFs for the N-terminal and C-terminal portions of S. chromofuscus PLD and overexpressed active heterodimeric PLD. Neither fragment cloned separately folded properly. The identity of each peptide was confirmed by peptide-mass fingerprinting with MALDI-TOF mass spectrometry. The recombinant complex had a specific activity about six times higher than that of the recombinant intact PLD enzyme and was no longer activated by phosphatidic acid (PA). Phosphotransferase activity, binding affinity to phospholipid vesicles, loss of product activation, pH profile and pH-related Ca(2+) activation and inhibition were comparable to authentic PLD(37/18) purified from S. chromofuscus growth medium. PLD(37) alone could also be isolated; the enzyme was active but not as stable as PLD(37/18). These experimental results strongly support the hypothesis that the C-terminal peptide is necessary for correct folding and insertion of catalytic metal ions. However, they suggest the ligands involved in Fe(3+) coordination must be altered upon cleavage of the protein. Asp389, in the C-terminal fragment, whose replacement impairs Fe(3+) binding to the protein, must be replaced by another ligand, since the N-terminal fragment, once folded, is active. In the process of cloning the two peptides, the complete signal sequence for this protein was also determined. The signal peptide of S. chromofuscus PLD enzyme contained a twin arginine motif suggesting that S. chromofuscus PLD, like Bacillus subtilis phoD, is most likely secreted by the TAT translocation pathway under the transcriptional control of the pho regulon.
Collapse
Affiliation(s)
- Hongying Yang
- Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02167, USA
| | | |
Collapse
|