1
|
Tsujii M, Kobayashi A, Kano A, Kera K, Takagi T, Nagata N, Kojima S, Hikosaka K, Oguchi R, Sonoike K, Azai C, Inagaki T, Ishimaru Y, Uozumi N. Na + -driven pH regulation by Na+/H+ antiporters promotes photosynthetic efficiency in cyanobacteria. PLANT PHYSIOLOGY 2024; 197:kiae562. [PMID: 39446395 DOI: 10.1093/plphys/kiae562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 12/25/2024]
Abstract
Photosynthetic organisms have developed mechanisms to regulate light reactions in response to varying light conditions. Photosynthetic electron transport leads to the formation of a ΔpH across the thylakoid membrane (TM), which is crucial for regulating electron transport. However, other pH modulators remain to be identified, particularly in cyanobacteria. In this study, we evaluated the potential involvement of six Na+/H+ antiporters (NhaS1 to NhaS6) in control of pH in the cyanobacterium Synechocystis sp. PCC 6803. Synechocystis showed a strong requirement for Na+ at high light intensities, with ΔnhaS1 and ΔnhaS2 strains unable to grow under high-light conditions. We analyzed Na+ efflux-driven H + -uptake activities of NhaS1 to NhaS6 in inverted membranes of Escherichia coli. Biological fractionation and immunoelectron microscopy revealed that NhaS1 localizes to both the plasma and TMs, while NhaS2 localizes to the plasma membrane (PM). Measurement of photosynthesis activity indicated that NhaS2 promotes ATP production and electron transport from PQ to P700. Measurements of pH outside of the cells and in the cytoplasm suggested that both NhaS1 and NhaS2 are involved in PM-mediated light-dependent H+ uptake and cytoplasmic acidification. NhaS1 and NhaS2 were also found to prevent photoinhibition under high-light treatment. These results indicate that H+ transport mediated by NhaS1 and NhaS2 plays a role in regulating intracellular pH and maintaining photosynthetic electron transport.
Collapse
Affiliation(s)
- Masaru Tsujii
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayumu Kobayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Ayaka Kano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Kota Kera
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Noriko Nagata
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Seiji Kojima
- Creative Interdisciplinary Research Division, Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8577, Japan
- Technology Division, Panasonic Holdings Corporation, Moriguchi 570-8501, Japan
| | - Kouki Hikosaka
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aobayama 6-6-07, Sendai 980-8578, Japan
| | - Riichi Oguchi
- Department of Biology, Graduate School of Science, Osaka Metropolitan University, 2000, Kisaichi, Katano, Osaka, 576-0004, Japan
| | - Kintake Sonoike
- Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Chihiro Azai
- Faculty of Science and Engineering, Chuo University, 1-13-27, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Tomomi Inagaki
- Graduate School of Life Sciences, Ritsumeikan University, 1-1-1, Kusatsu, Shiga 525-8577, Japan
| | - Yasuhiro Ishimaru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan
| |
Collapse
|
2
|
Reyes-Umana VM, Coates JD. A description of the genus Denitromonas nom. rev.: Denitromonas iodatirespirans sp. nov., a novel iodate-reducing bacterium, and two novel perchlorate-reducing bacteria, Denitromonas halophila and Denitromonas ohlonensis, isolated from San Francisco Bay intertidal mudflats. Microbiol Spectr 2023; 11:e0091523. [PMID: 37772843 PMCID: PMC10581121 DOI: 10.1128/spectrum.00915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/04/2023] [Indexed: 09/30/2023] Open
Abstract
The genus Denitromonas is currently a non-validated taxon that has been identified in several recent publications as members of microbial communities arising from marine environments. Very little is known about the biology of Denitromonas spp., and no pure cultures are presently found in any culture collections. The current epitaph of Denitromonas was given to the organism under the assumption that all members of this genus are denitrifying bacteria. This study performs phenotypic and genomic analyses on three new Denitromonas spp. isolated from tidal mudflats in the San Francisco Bay. We demonstrate that Denitromonas spp. are indeed all facultative denitrifying bacteria that utilize a variety of carbon sources such as acetate, lactate, and succinate. In addition, individual strains also use the esoteric electron acceptors perchlorate, chlorate, and iodate. Both 16S and Rps/Rpl phylogenetic analyses place Denitromonas spp. as a deep branching clade in the family Zoogloeaceae, separate from either Thauera spp., Azoarcus spp., or Aromatoleum spp. Genome sequencing reveals a G + C content ranging from 63.72% to 66.54%, and genome sizes range between 4.39 and 5.18 Mb. Genes for salt tolerance and denitrification are distinguishing features that separate Denitromonas spp. from the closely related Azoarcus and Aromatoleum genera. IMPORTANCE The genus Denitromonas is currently a non-validated taxon that has been identified in several recent publications as members of microbial communities arising from marine environments. Very little is known about the biology of Denitromonas spp., and no pure cultures are presently found in any culture collections. The current epitaph of Denitromonas was given to the organism under the assumption that all members of this genus are denitrifying bacteria. This study performs phenotypic and genomic analyses on three Denitromonas spp., Denitromonas iodatirespirans sp. nov.-a novel iodate-reducing bacterium-and two novel perchlorate-reducing bacteria, Denitromonas halophila and Denitromonas ohlonensis, isolated from San Francisco Bay intertidal mudflats.
Collapse
Affiliation(s)
- Victor M. Reyes-Umana
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - John D. Coates
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| |
Collapse
|
3
|
Agaras BC, Grossi CEM, Ulloa RM. Unveiling the Secrets of Calcium-Dependent Proteins in Plant Growth-Promoting Rhizobacteria: An Abundance of Discoveries Awaits. PLANTS (BASEL, SWITZERLAND) 2023; 12:3398. [PMID: 37836138 PMCID: PMC10574481 DOI: 10.3390/plants12193398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
The role of Calcium ions (Ca2+) is extensively documented and comprehensively understood in eukaryotic organisms. Nevertheless, emerging insights, primarily derived from studies on human pathogenic bacteria, suggest that this ion also plays a pivotal role in prokaryotes. In this review, our primary focus will be on unraveling the intricate Ca2+ toolkit within prokaryotic organisms, with particular emphasis on its implications for plant growth-promoting rhizobacteria (PGPR). We undertook an in silico exploration to pinpoint and identify some of the proteins described in the existing literature, including prokaryotic Ca2+ channels, pumps, and exchangers that are responsible for regulating intracellular Calcium concentration ([Ca2+]i), along with the Calcium-binding proteins (CaBPs) that play a pivotal role in sensing and transducing this essential cation. These investigations were conducted in four distinct PGPR strains: Pseudomonas chlororaphis subsp. aurantiaca SMMP3, P. donghuensis SVBP6, Pseudomonas sp. BP01, and Methylobacterium sp. 2A, which have been isolated and characterized within our research laboratories. We also present preliminary experimental data to evaluate the influence of exogenous Ca2+ concentrations ([Ca2+]ex) on the growth dynamics of these strains.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratory of Physiology and Genetics of Plant Probiotic Bacteria (LFGBBP), Centre of Biochemistry and Microbiology of Soils, National University of Quilmes, Bernal B1876BXD, Argentina
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
| | - Cecilia Eugenia María Grossi
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
| | - Rita María Ulloa
- National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina;
- Laboratory of Plant Signal Transduction, Institute of Genetic Engineering and Molecular Biology (INGEBI), National Scientific and Technical Research Council (CONICET), Buenos Aires C1425FQB, Argentina
- Biochemistry Department, Faculty of Exact and Natural Sciences, University of Buenos Aires (FCEN-UBA), Buenos Aires C1428EGA, Argentina
| |
Collapse
|
4
|
Kumar A, Song HW, Mishra S, Zhang W, Zhang YL, Zhang QR, Yu ZG. Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review. CHEMOSPHERE 2023; 318:137894. [PMID: 36657570 DOI: 10.1016/j.chemosphere.2023.137894] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
The occurrence of imbalanced heavy metals concentration due to anthropogenic hindrances in the aquatic and terrestrial environment has become a potential risk to life after circulating through different food chains. The microbial-induced carbonate precipitation (MICP) method has gradually received great attention from global researchers but the underlying mechanism of heavy metal mineralization is not well-understood and challenging, limiting the applications in wastewater engineering. This paper reviews the metabolic pathways, mechanisms, operational factors, and mathematical/modeling approaches in the MICP process. Subsequently, the recent advancement in MICP for the remediation of heavy metal pollution is being discussed. In the follow-up, the key challenges and prospective associated with technical bottlenecks of MICP method are elaborated. The prospective study reveals that MICP technology could be efficiently used to remediate heavy metal contaminants from the natural environment in a cost-effective way and has the potential to improve soil properties while remediating heavy metal contaminated soil.
Collapse
Affiliation(s)
- Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - He-Wei Song
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Saurabh Mishra
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Wei Zhang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China.
| | - Yu-Ling Zhang
- College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| | - Qian-Ru Zhang
- Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 100081, China.
| | - Zhi-Guo Yu
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| |
Collapse
|
5
|
Zhou H, Tian L, Ni M, Zhu S, Zhang R, Wang L, Wang M, Wang Z. Effect of dissolved organic matter and its fractions on disinfection by-products formation upon karst surface water. CHEMOSPHERE 2022; 308:136324. [PMID: 36084825 DOI: 10.1016/j.chemosphere.2022.136324] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
In this study, disinfection by-products (DBP) formation from dissolved organic matter (DOM) and its fractions, including both hydrophilic and hydrophobic components, were investigated at a typical karst surface water. The subsequent DBP formation potential was evaluated by deducing chemical characteristics of DOM fractions and representative algal organic matter (Chlorella sp. AOM) under the influence of divalent ions (Ca2+ and Mg2+) via spectra analysis. Both terrigenous and autochthonous DOM performed as critical DBP precursors, and DBP formation patterns were tightly correlated to organic matter chemical variations. DBP formation was significantly higher in drought period compared to that in wet period (P < 0.05). Particularly, trichloromethane (TCM) and dichloroacetonitrile (DCAN) showed distinct formation patterns compared to the scenarios in non-karst water. For DOM fractions, hydrophobic components showed higher DBP formation compared to hydrophilic counterparts, hydrophilic neutral enriched more reactive organic nitrogen for N-DBPs production. It was preferable to enrich humic-like substances after Ca2+ and Mg2+complexation in Chlorella sp. AOM, TCM formation increased whereas DCAN production remained unchanged in the presence of divalent ions. This study innovatively provided a linkage between chemical characteristics of DOM and understanding of DBP formation in karst surface water.
Collapse
Affiliation(s)
- Hui Zhou
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Liye Tian
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Maofei Ni
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| | - Sixi Zhu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Runyu Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550009, China
| | - Liying Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550009, China
| | - Ming Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhikang Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China.
| |
Collapse
|
6
|
The ctpF Gene Encoding a Calcium P-Type ATPase of the Plasma Membrane Contributes to Full Virulence of Mycobacterium tuberculosis. Int J Mol Sci 2022; 23:ijms23116015. [PMID: 35682696 PMCID: PMC9180918 DOI: 10.3390/ijms23116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Identification of alternative attenuation targets of Mycobacterium tuberculosis (Mtb) is pivotal for designing new candidates for live attenuated anti-tuberculosis (TB) vaccines. In this context, the CtpF P-type ATPase of Mtb is an interesting target; specifically, this plasma membrane enzyme is involved in calcium transporting and response to oxidative stress. We found that a mutant of MtbH37Rv lacking ctpF expression (MtbΔctpF) displayed impaired proliferation in mouse alveolar macrophages (MH-S) during in vitro infection. Further, the levels of tumor necrosis factor and interferon-gamma in MH-S cells infected with MtbΔctpF were similar to those of cells infected with the parental strain, suggesting preservation of the immunogenic capacity. In addition, BALB/c mice infected with Mtb∆ctpF showed median survival times of 84 days, while mice infected with MtbH37Rv survived 59 days, suggesting reduced virulence of the mutant strain. Interestingly, the expression levels of ctpF in a mouse model of latent TB were significantly higher than in a mouse model of progressive TB, indicating that ctpF is involved in Mtb persistence in the dormancy state. Finally, the possibility of complementary mechanisms that counteract deficiencies in Ca2+ transport mediated by P-type ATPases is suggested. Altogether, our results demonstrate that CtpF could be a potential target for Mtb attenuation.
Collapse
|
7
|
Medina Ferrer F, Rosen MR, Feyhl-Buska J, Russell VV, Sønderholm F, Loyd S, Shapiro R, Stamps BW, Petryshyn V, Demirel-Floyd C, Bailey JV, Johnson HA, Spear JR, Corsetti FA. Potential role for microbial ureolysis in the rapid formation of carbonate tufa mounds. GEOBIOLOGY 2022; 20:79-97. [PMID: 34337850 DOI: 10.1111/gbi.12467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
Modern carbonate tufa towers in the alkaline (~pH 9.5) Big Soda Lake (BSL), Nevada, exhibit rapid precipitation rates (exceeding 3 cm/year) and host diverse microbial communities. Geochemical indicators reveal that carbonate precipitation is, in part, promoted by the mixing of calcium-rich groundwater and carbonate-rich lake water, such that a microbial role for carbonate precipitation is unknown. Here, we characterize the BSL microbial communities and evaluate their potential effects on carbonate precipitation that may influence fast carbonate precipitation rates of the active tufa mounds of BSL. Small subunit rRNA gene surveys indicate a diverse microbial community living endolithically, in interior voids, and on tufa surfaces. Metagenomic DNA sequencing shows that genes associated with metabolisms that are capable of increasing carbonate saturation (e.g., photosynthesis, ureolysis, and bicarbonate transport) are abundant. Enzyme activity assays revealed that urease and carbonic anhydrase, two microbial enzymes that promote carbonate precipitation, are active in situ in BSL tufa biofilms, and urease also increased calcium carbonate precipitation rates in laboratory incubation analyses. We propose that, although BSL tufas form partially as a result of water mixing, tufa-inhabiting microbiota promote rapid carbonate authigenesis via ureolysis, and potentially via bicarbonate dehydration and CO2 outgassing by carbonic anhydrase. Microbially induced calcium carbonate precipitation in BSL tufas may generate signatures preserved in the carbonate microfabric, such as stromatolitic layers, which could serve as models for developing potential biosignatures on Earth and elsewhere.
Collapse
Affiliation(s)
- Fernando Medina Ferrer
- Department of Earth & Environmental Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Michael R Rosen
- US Geological Survey, California Water Science Center, Carson City, Nevada, USA
| | - Jayme Feyhl-Buska
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Virginia V Russell
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Fredrik Sønderholm
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Sean Loyd
- Department of Geological Sciences, California State University Fullerton, Fullerton, California, USA
| | | | - Blake W Stamps
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
- UES, Inc., Dayton, Ohio, USA
| | - Victoria Petryshyn
- Environmental Studies Program, University of Southern California, Los Angeles, California, USA
| | | | - Jake V Bailey
- Department of Earth & Environmental Sciences, University of Minnesota, Twin Cities, Minneapolis, Minnesota, USA
| | - Hope A Johnson
- Department of Biological Science, California State University Fullerton, Fullerton, California, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Frank A Corsetti
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
8
|
Wang J, Huang X, Ge H, Wang Y, Chen W, Zheng L, Huang C, Yang H, Li L, Sui N, Wang Y, Zhang Y, Lu D, Fang L, Xu W, Jiang Y, Huang F, Wang Y. The Quantitative Proteome Atlas of a Model Cyanobacterium. J Genet Genomics 2021; 49:96-108. [PMID: 34775074 DOI: 10.1016/j.jgg.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022]
Abstract
Cyanobacteria are a group of oxygenic photosynthetic bacteria with great potentials in biotechnological applications and advantages as models for photosynthesis research. The subcellular locations of the majority of proteins in any cyanobacteria remain undetermined, representing a major challenge in using cyanobacteria for both basic and industrial researches. Here, using label free quantitative proteomics we mapped 2027 proteins of Synechocystis sp. PCC6803, a model cyanobacterium, to different subcellular compartments, and generated a proteome atlas with such information. The atlas leads to numerous unexpected but important findings, including the predominant localization of the histidine kinases Hik33 and Hik27 on the thylakoid but not the plasma membrane. Such information completely changes the concept regarding how the two kinases are activated. Together, the atlas provides subcellular localization information for nearly 60% proteome of a model cyanobacterium, and will serve as an important resource for the cyanobacterial research community.
Collapse
Affiliation(s)
- Jinlong Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haitao Ge
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyang Chen
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limin Zheng
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengcheng Huang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haomeng Yang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China
| | - Lingyu Li
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanya Zhang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Longfa Fang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Huang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Bejing 100093, China.
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Current knowledge and recent advances in understanding metabolism of the model cyanobacterium Synechocystis sp. PCC 6803. Biosci Rep 2021; 40:222317. [PMID: 32149336 PMCID: PMC7133116 DOI: 10.1042/bsr20193325] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/06/2023] Open
Abstract
Cyanobacteria are key organisms in the global ecosystem, useful models for studying metabolic and physiological processes conserved in photosynthetic organisms, and potential renewable platforms for production of chemicals. Characterizing cyanobacterial metabolism and physiology is key to understanding their role in the environment and unlocking their potential for biotechnology applications. Many aspects of cyanobacterial biology differ from heterotrophic bacteria. For example, most cyanobacteria incorporate a series of internal thylakoid membranes where both oxygenic photosynthesis and respiration occur, while CO2 fixation takes place in specialized compartments termed carboxysomes. In this review, we provide a comprehensive summary of our knowledge on cyanobacterial physiology and the pathways in Synechocystis sp. PCC 6803 (Synechocystis) involved in biosynthesis of sugar-based metabolites, amino acids, nucleotides, lipids, cofactors, vitamins, isoprenoids, pigments and cell wall components, in addition to the proteins involved in metabolite transport. While some pathways are conserved between model cyanobacteria, such as Synechocystis, and model heterotrophic bacteria like Escherichia coli, many enzymes and/or pathways involved in the biosynthesis of key metabolites in cyanobacteria have not been completely characterized. These include pathways required for biosynthesis of chorismate and membrane lipids, nucleotides, several amino acids, vitamins and cofactors, and isoprenoids such as plastoquinone, carotenoids, and tocopherols. Moreover, our understanding of photorespiration, lipopolysaccharide assembly and transport, and degradation of lipids, sucrose, most vitamins and amino acids, and haem, is incomplete. We discuss tools that may aid our understanding of cyanobacterial metabolism, notably CyanoSource, a barcoded library of targeted Synechocystis mutants, which will significantly accelerate characterization of individual proteins.
Collapse
|
10
|
Zheng Y, Wang LB, Sun SF, Liu SY, Liu MJ, Lin J. Phylogenetic and ion-response analyses reveal a relationship between gene expansion and functional divergence in the Ca 2+/cation antiporter family in Angiosperms. PLANT MOLECULAR BIOLOGY 2021; 105:303-320. [PMID: 33123851 DOI: 10.1007/s11103-020-01088-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/21/2020] [Indexed: 05/28/2023]
Abstract
Plant CaCA superfamily genes with higher tendency to retain after WGD are more gene expression and function differentiated in ion-response. Plants and animals face different environmental stresses but share conserved Ca2+ signaling pathways, such as Ca2+/Cation transport. The Ca2+/cation antiporters superfamily (CaCAs) is an ancient and widespread family of ion-coupled cation transporters found in all kingdoms of life. We analyzed the molecular evolution progress of the family through comparative genomics and phylogenetics of CaCAs genes from plants and animals, grouping these genes into several families and clades, and identified multiple gene duplication retention events, particularly in the CAX (H+/cation exchanger), CCX (cation/Ca2+ exchanger), and NCL (Na+/Ca2+ exchanger-like) families. The tendency of duplication retention differs between families and gene clades. The gene duplication events were probably the result of whole-genome duplication (WGD) in plants and might have led to functional divergence. Tissue and ion-response expression analyses revealed that CaCAs genes with more highly differentiated expression patterns are more likely to be retained as duplicates than those with more conserved expression profiles. Phenotype of Arabidopsis thaliana mutants showed that loss of genes with a greater tendency to be retained after duplication resulted in more severe growth deficiency. CaCAs genes in salt-tolerant species tended to inherit the expression characteristics of their most recent common ancestral genes, with conservative ion-response expression. This study indicates a possible evolutionary scheme for cation transport and illustrates distinct fates and a mechanism for the evolution of gene duplicates. The increased copy numbers of genes and divergences in expression might have contributed to the divergent functions of CaCAs protein, allowing plants to cope with environmental stresses and adapt to a larger number of ecological niches.
Collapse
Affiliation(s)
- Ye Zheng
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Lin-Bo Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shu-Feng Sun
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Shi-Ying Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Ming-Jia Liu
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China
| | - Juan Lin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, 200433, People's Republic of China.
| |
Collapse
|
11
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
12
|
Diverse Physiological Functions of Cation Proton Antiporters across Bacteria and Plant Cells. Int J Mol Sci 2020; 21:ijms21124566. [PMID: 32604959 PMCID: PMC7349511 DOI: 10.3390/ijms21124566] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Membrane intrinsic transport systems play an important role in maintaining ion and pH homeostasis and forming the proton motive force in the cytoplasm and cell organelles. In most organisms, cation/proton antiporters (CPAs) mediate the exchange of K+, Na+ and Ca2+ for H+ across the membrane in response to a variety of environmental stimuli. The tertiary structure of the ion selective filter and the regulatory domains of Escherichia coli CPAs have been determined and a molecular mechanism of cation exchange has been proposed. Due to symbiogenesis, CPAs localized in mitochondria and chloroplasts of eukaryotic cells resemble prokaryotic CPAs. CPAs primarily contribute to keeping cytoplasmic Na+ concentrations low and controlling pH, which promotes the detoxification of electrophiles and formation of proton motive force across the membrane. CPAs in cyanobacteria and chloroplasts are regulators of photosynthesis and are essential for adaptation to high light or osmotic stress. CPAs in organellar membranes and in the plasma membrane also participate in various intracellular signal transduction pathways. This review discusses recent advances in our understanding of the role of CPAs in cyanobacteria and plant cells.
Collapse
|
13
|
De Wever A, Benzerara K, Coutaud M, Caumes G, Poinsot M, Skouri-Panet F, Laurent T, Duprat E, Gugger M. Evidence of high Ca uptake by cyanobacteria forming intracellular CaCO 3 and impact on their growth. GEOBIOLOGY 2019; 17:676-690. [PMID: 31347755 DOI: 10.1111/gbi.12358] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/15/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Several species of cyanobacteria biomineralizing intracellular amorphous calcium carbonates (ACC) were recently discovered. However, the mechanisms involved in this biomineralization process and the determinants discriminating species forming intracellular ACC from those not forming intracellular ACC remain unknown. Recently, it was hypothesized that the intensity of Ca uptake (i.e., how much Ca was scavenged from the extracellular solution) might be a major parameter controlling the capability of a cyanobacterium to form intracellular ACC. Here, we tested this hypothesis by systematically measuring the Ca uptake by a set of 52 cyanobacterial strains cultured in the same growth medium. The results evidenced a dichotomy among cyanobacteria regarding Ca sequestration capabilities, with all strains forming intracellular ACC incorporating significantly more calcium than strains not forming ACC. Moreover, Ca provided at a concentration of 50 μM in BG-11 was shown to be limiting for the growth of some of the strains forming intracellular ACC, suggesting an overlooked quantitative role of Ca for these strains. All cyanobacteria forming intracellular ACC contained at least one gene coding for a mechanosensitive channel, which might be involved in Ca influx, as well as at least one gene coding for a Ca2+ /H+ exchanger and membrane proteins of the UPF0016 family, which might be involved in active Ca transport either from the cytosol to the extracellular solution or the cytosol toward an intracellular compartment. Overall, massive Ca sequestration may have an indirect role by allowing the formation of intracellular ACC. The latter may be beneficial to the growth of the cells as a storage of inorganic C and/or a buffer of intracellular pH. Moreover, high Ca scavenging by cyanobacteria biomineralizing intracellular ACC, a trait shared with endolithic cyanobacteria, suggests that these cyanobacteria should be considered as potentially significant geochemical reservoirs of Ca.
Collapse
Affiliation(s)
- Alexis De Wever
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Margot Coutaud
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Géraldine Caumes
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Mélanie Poinsot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Fériel Skouri-Panet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Thierry Laurent
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| | - Elodie Duprat
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, UMR CNRS 7590, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Muriel Gugger
- Collection des Cyanobactéries, Institut Pasteur, Paris Cedex 15, France
| |
Collapse
|
14
|
Xie H, Ma Q, Wei DZ, Wang FQ. Transcriptomic analysis of Aspergillus niger strains reveals the mechanism underlying high citric acid productivity. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0208-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
15
|
Zhang B, Qin Y, Han Y, Dong C, Li P, Shang Q. Comparative proteomic analysis reveals intracellular targets for bacillomycin L to induce Rhizoctonia solani Kühn hyphal cell death. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1152-1159. [PMID: 27267622 DOI: 10.1016/j.bbapap.2016.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
Abstract
Bacillomycin L, a natural iturinic lipopeptide produced by Bacillus amyloliquefaciens, is characterized by strong antifungal activity against a variety of agronomically important filamentous fungi including Rhizoctonia solani Kühn. To further understand its antifungal actions, proteomes were comparatively studied within R. solani hyphal cells treated with or without bacillomycin L. The results show that 39 proteins were alternatively expressed within cells in response to this lipopeptide, which are involved in stress response, carbohydrate, amino acid and nucleotide metabolism, cellular component organization, calcium homeostasis, protein degradation, RNA processing, gene transcription, and others, suggesting that, in addition to inducing cell membrane permeabilization, iturin exhibits antibiotic activities by targeting intracellular molecules. Based on these results, a model of action of bacillomycin L against R. solani hyphal cells was proposed. Our study provides new insight into the antibiotic mechanisms of iturins.
Collapse
Affiliation(s)
- Bao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuxuan Qin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China
| | - Yuzhu Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Chunjuan Dong
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pinglan Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100083, China.
| | - Qingmao Shang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
16
|
Carraretto L, Teardo E, Checchetto V, Finazzi G, Uozumi N, Szabo I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. MOLECULAR PLANT 2016; 9:371-395. [PMID: 26751960 DOI: 10.1016/j.molp.2015.12.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/22/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Recent technical advances in electrophysiological measurements, organelle-targeted fluorescence imaging, and organelle proteomics have pushed the research of ion transport a step forward in the case of the plant bioenergetic organelles, chloroplasts and mitochondria, leading to the molecular identification and functional characterization of several ion transport systems in recent years. Here we focus on channels that mediate relatively high-rate ion and water flux and summarize the current knowledge in this field, focusing on targeting mechanisms, proteomics, electrophysiology, and physiological function. In addition, since chloroplasts evolved from a cyanobacterial ancestor, we give an overview of the information available about cyanobacterial ion channels and discuss the evolutionary origin of chloroplast channels. The recent molecular identification of some of these ion channels allowed their physiological functions to be studied using genetically modified Arabidopsis plants and cyanobacteria. The view is emerging that alteration of chloroplast and mitochondrial ion homeostasis leads to organelle dysfunction, which in turn significantly affects the energy metabolism of the whole organism. Clear-cut identification of genes encoding for channels in these organelles, however, remains a major challenge in this rapidly developing field. Multiple strategies including bioinformatics, cell biology, electrophysiology, use of organelle-targeted ion-sensitive probes, genetics, and identification of signals eliciting specific ion fluxes across organelle membranes should provide a better understanding of the physiological role of organellar channels and their contribution to signaling pathways in plants in the future.
Collapse
Affiliation(s)
- Luca Carraretto
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Enrico Teardo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy
| | | | - Giovanni Finazzi
- UMR 5168 Laboratoire de Physiologie Cellulaire Végétale (LPCV) CNRS/ UJF / INRA / CEA, Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV), CEA Grenoble, 38054 Grenoble, France.
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aobayama 6-6-07, Sendai 980-8579, Japan.
| | - Ildiko Szabo
- Department of Biology, University of Padova, Padova 35121, Italy; CNR Institute of Neuroscience, University of Padova, Padova 35121, Italy.
| |
Collapse
|
17
|
Zhu T, Dittrich M. Carbonate Precipitation through Microbial Activities in Natural Environment, and Their Potential in Biotechnology: A Review. Front Bioeng Biotechnol 2016; 4:4. [PMID: 26835451 PMCID: PMC4718973 DOI: 10.3389/fbioe.2016.00004] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/07/2016] [Indexed: 11/24/2022] Open
Abstract
Calcium carbonate represents a large portion of carbon reservoir and is used commercially for a variety of applications. Microbial carbonate precipitation, a by-product of microbial activities, plays an important metal coprecipitation and cementation role in natural systems. This natural process occurring in various geological settings can be mimicked and used for a number of biotechnologies, such as metal remediation, carbon sequestration, enhanced oil recovery, and construction restoration. In this study, different metabolic activities leading to calcium carbonate precipitation, their native environment, and potential applications and challenges are reviewed.
Collapse
Affiliation(s)
- Tingting Zhu
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| | - Maria Dittrich
- Department of Physical and Environmental Sciences, University of Toronto Scarborough , Toronto, ON , Canada
| |
Collapse
|
18
|
Zhang L, Hao J, Bao M, Hasi A, Niu Y. Cloning and characterization of a Ca(2+)/H(+) exchanger from the halophyte Salicornia europaea L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 96:321-328. [PMID: 26332662 DOI: 10.1016/j.plaphy.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 06/05/2023]
Abstract
The calcium ion (Ca(2+)), which functions as a second messenger, plays an important role in plants' responses to various abiotic stresses, and Ca(2+)/H(+) exchangers (CAXs) are an important part of this process. In this study, we isolated and characterized a putative Ca(2+)/H(+) exchanger gene (SeCAX3) from Salicornia europaea L., a succulent, leafless euhalophyte. The SeCAX3 open reading frame was 1368 bp long and encoded a 455-amino-acid polypeptide that showed 67.9% similarity to AtCAX3. SeCAX3 was expressed in the shoots and roots of S. europaea. Expression of SeCAX3 was up-regulated by Ca(2+), Na(+), sorbitol, Li(+), abscisic acid, and cold treatments in shoots, but down-regulated by Ca(2+), sorbitol, abscisic acid, and cold treatments in roots. When SeCAX3 was transformed into a Ca-sensitive yeast strain, the transformed cells were able to grow in the presence of 200 mM Ca(2+). Furthermore, SeCAX3 conferred drought, salt, and cold tolerance in yeast. Compared with the control strains, the yeast transformants expressing SeCAX3 were able to grow well in the presence of 30 mM Li(+), 150 mM Mg(2+), or 6 mM Ba(2+). These results showed that the expression of SeCAX3 in yeast suppressed its Ca(2+) hypersensitivity and conferred tolerance to Mg(2+) and Ba(2+). Together, these findings suggest that SeCAX3 might be a Ca(2+) transporter that plays a role in regulating cation tolerance and the responses of S. europaea to various abiotic stresses.
Collapse
Affiliation(s)
- Liquan Zhang
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Jinfeng Hao
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Mulan Bao
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Agula Hasi
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China
| | - Yiding Niu
- Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, College of Life Sciences, Inner Mongolia University, Hohhot 010021, PR China.
| |
Collapse
|
19
|
Bachin D, Nazarenko LV, Mironov KS, Pisareva T, Allakhverdiev SI, Los DA. Mechanosensitive ion channel MscL controls ionic fluxes during cold and heat stress in Synechocystis. FEMS Microbiol Lett 2015; 362:fnv090. [DOI: 10.1093/femsle/fnv090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2015] [Indexed: 12/25/2022] Open
|
20
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
21
|
Sodium-Dependent Uptake of Glutamate by Novel ApGltS Enhanced Growth under Salt Stress of Halotolerant CyanobacteriumAphanothece halophytica. Biosci Biotechnol Biochem 2014; 76:1702-7. [DOI: 10.1271/bbb.120309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
22
|
Calcium homeostasis in Pseudomonas aeruginosa requires multiple transporters and modulates swarming motility. Cell Calcium 2013; 54:350-61. [PMID: 24074964 DOI: 10.1016/j.ceca.2013.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/21/2013] [Accepted: 08/30/2013] [Indexed: 11/21/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen causing severe acute and chronic infections. Earlier we have shown that calcium (Ca(2+)) induces P. aeruginosa biofilm formation and production of virulence factors. To enable further studies of the regulatory role of Ca(2+), we characterized Ca(2+) homeostasis in P. aeruginosa PAO1 cells. By using Ca(2+)-binding photoprotein aequorin, we determined that the concentration of free intracellular Ca(2+) ([Ca(2+)]in) is 0.14±0.05μM. In response to external Ca(2+), the [Ca(2+)]in quickly increased at least 13-fold followed by a multi-phase decline by up to 73%. Growth at elevated Ca(2+) modulated this response. Treatment with inhibitors known to affect Ca(2+) channels, monovalent cations gradient, or P-type and F-type ATPases impaired [Ca(2+)]in response, suggesting the importance of the corresponding mechanisms in Ca(2+) homeostasis. To identify Ca(2+) transporters maintaining this homeostasis, bioinformatic and LC-MS/MS-based membrane proteomic analyses were used. [Ca(2+)]in homeostasis was monitored for seven Ca(2+)-affected and eleven bioinformatically predicted transporters by using transposon insertion mutants. Disruption of P-type ATPases PA2435, PA3920, and ion exchanger PA2092 significantly impaired Ca(2+) homeostasis. The lack of PA3920 and vanadate treatment abolished Ca(2+)-induced swarming, suggesting the role of the P-type ATPase in regulating P. aeruginosa response to Ca(2+).
Collapse
|
23
|
Jiang HB, Cheng HM, Gao KS, Qiu BS. Inactivation of Ca(2+)/H(+) exchanger in Synechocystis sp. strain PCC 6803 promotes cyanobacterial calcification by upregulating CO(2)-concentrating mechanisms. Appl Environ Microbiol 2013; 79:4048-55. [PMID: 23624472 PMCID: PMC3697565 DOI: 10.1128/aem.00681-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/19/2013] [Indexed: 11/20/2022] Open
Abstract
Cyanobacteria are important players in the global carbon cycle, accounting for approximately 25% of global CO2 fixation. Their CO2-concentrating mechanisms (CCMs) are thought to play a key role in cyanobacterial calcification, but the mechanisms are not completely understood. In Synechocystis sp. strain PCC 6803, a single Ca(2+)/H(+) exchanger (Slr1336) controls the Ca(2+)/H(+) exchange reaction. We knocked out the exchanger and investigated the effects on cyanobacterial calcification and CCMs. Inactivation of slr1336 significantly increased the calcification rate and decreased the zeta potential, indicating a relatively stronger Ca(2+)-binding ability. Some genes encoding CCM-related components showed increased expression levels, including the cmpA gene, which encodes the Ca(2+)-dependent HCO3(-) transporter BCT1. The transcript level of cmpA in the mutant was 30 times that in wild type. A Western blot analysis further confirmed that protein levels of CmpA were higher in the mutant than the wild type. Measurements of inorganic carbon fluxes and O2 evolution proved that both the net HCO3(-) uptake rate and the BCT1 transporter supported photosynthetic rate in the slr1336 mutant were significantly higher than in the wild type. This would cause the mutant cells to liberate more OH(-) ions out of the cell and stimulate CaCO3 precipitation in the microenvironment. We conclude that the mutation of the Ca(2+)/H(+) exchanger in Synechocystis promoted the cyanobacterial calcification process by upregulating CCMs, especially the BCT1 HCO3(-) transporter. These results shed new light on the mechanism by which CCM-facilitated photosynthesis promotes cyanobacterial calcification.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Hui-Min Cheng
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| | - Kun-Shan Gao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian, People's Republic of China
| | - Bao-Sheng Qiu
- College of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
24
|
Use of proteomic analysis to elucidate the role of calcium in acetone-butanol-ethanol fermentation by Clostridium beijerinckii NCIMB 8052. Appl Environ Microbiol 2012; 79:282-93. [PMID: 23104411 DOI: 10.1128/aem.02969-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calcium carbonate increases growth, substrate utilization, and acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii NCIMB 8052. Toward an understanding of the basis for these pleiotropic effects, we profiled changes in the C. beijerinckii NCIMB 8052 proteome that occur in response to the addition of CaCO(3). We observed increases in the levels of different heat shock proteins (GrpE and DnaK), sugar transporters, and proteins involved in DNA synthesis, repair, recombination, and replication. We also noted significant decreases in the levels of proteins involved in metabolism, nucleic acid stabilization, sporulation, oxidative and antibiotic stress responses, and signal transduction. We determined that CaCO(3) enhances ABE fermentation due to both its buffering effects and its ability to influence key cellular processes, such as sugar transport, butanol tolerance, and solventogenesis. Moreover, activity assays in vitro for select solventogenic enzymes revealed that part of the underpinning for the CaCO(3)-mediated increase in the level of ABE fermentation stems from the enhanced activity of these catalysts in the presence of Ca(2+). Collectively, these proteomic and biochemical studies provide new insights into the multifactorial basis for the stimulation of ABE fermentation and butanol tolerance in the presence of CaCO(3).
Collapse
|
25
|
Stael S, Wurzinger B, Mair A, Mehlmer N, Vothknecht UC, Teige M. Plant organellar calcium signalling: an emerging field. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1525-42. [PMID: 22200666 PMCID: PMC3966264 DOI: 10.1093/jxb/err394] [Citation(s) in RCA: 213] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This review provides a comprehensive overview of the established and emerging roles that organelles play in calcium signalling. The function of calcium as a secondary messenger in signal transduction networks is well documented in all eukaryotic organisms, but so far existing reviews have hardly addressed the role of organelles in calcium signalling, except for the nucleus. Therefore, a brief overview on the main calcium stores in plants-the vacuole, the endoplasmic reticulum, and the apoplast-is provided and knowledge on the regulation of calcium concentrations in different cellular compartments is summarized. The main focus of the review will be the calcium handling properties of chloroplasts, mitochondria, and peroxisomes. Recently, it became clear that these organelles not only undergo calcium regulation themselves, but are able to influence the Ca(2+) signalling pathways of the cytoplasm and the entire cell. Furthermore, the relevance of recent discoveries in the animal field for the regulation of organellar calcium signals will be discussed and conclusions will be drawn regarding potential homologous mechanisms in plant cells. Finally, a short overview on bacterial calcium signalling is included to provide some ideas on the question where this typically eukaryotic signalling mechanism could have originated from during evolution.
Collapse
Affiliation(s)
- Simon Stael
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Bernhard Wurzinger
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Andrea Mair
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
| | - Norbert Mehlmer
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Ute C. Vothknecht
- Department of Biology I, Botany, LMU Munich, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
- Center for Integrated Protein Science (Munich) at the Department of Biology of the LMU Munich, D-81377 Munich, Germany
| | - Markus Teige
- Department of Biochemistry and Cell Biology, MFPL, University of Vienna, Dr Bohrgasse 9, A-1030 Vienna, Austria
- To whom correspondence should be addressed.
| |
Collapse
|
26
|
Assembly of the water-oxidizing complex in photosystem II. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:204-11. [DOI: 10.1016/j.jphotobiol.2011.02.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/27/2011] [Accepted: 02/03/2011] [Indexed: 11/21/2022]
|
27
|
Soontharapirakkul K, Promden W, Yamada N, Kageyama H, Incharoensakdi A, Iwamoto-Kihara A, Takabe T. Halotolerant cyanobacterium Aphanothece halophytica contains an Na+-dependent F1F0-ATP synthase with a potential role in salt-stress tolerance. J Biol Chem 2011; 286:10169-76. [PMID: 21262962 DOI: 10.1074/jbc.m110.208892] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aphanothece halophytica is a halotolerant alkaliphilic cyanobacterium that can grow in media of up to 3.0 m NaCl and pH 11. Here, we show that in addition to a typical H(+)-ATP synthase, Aphanothece halophytica contains a putative F(1)F(0)-type Na(+)-ATP synthase (ApNa(+)-ATPase) operon (ApNa(+)-atp). The operon consists of nine genes organized in the order of putative subunits β, ε, I, hypothetical protein, a, c, b, α, and γ. Homologous operons could also be found in some cyanobacteria such as Synechococcus sp. PCC 7002 and Acaryochloris marina MBIC11017. The ApNa(+)-atp operon was isolated from the A. halophytica genome and transferred into an Escherichia coli mutant DK8 (Δatp) deficient in ATP synthase. The inverted membrane vesicles of E. coli DK8 expressing ApNa(+)-ATPase exhibited Na(+)-dependent ATP hydrolysis activity, which was inhibited by monensin and tributyltin chloride, but not by the protonophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The Na(+) ion protected the inhibition of ApNa(+)-ATPase by N,N'-dicyclohexylcarbodiimide. The ATP synthesis activity was also observed using the Na(+)-loaded inverted membrane vesicles. Expression of the ApNa(+)-atp operon in the heterologous cyanobacterium Synechococcus sp. PCC 7942 showed its localization in the cytoplasmic membrane fractions and increased tolerance to salt stress. These results indicate that A. halophytica has additional Na(+)-dependent F(1)F(0)-ATPase in the cytoplasmic membrane playing a potential role in salt-stress tolerance.
Collapse
|
28
|
Free Ca2+ as an early intracellular biomarker of exposure of cyanobacteria to environmental pollution. Anal Bioanal Chem 2010; 400:1015-29. [DOI: 10.1007/s00216-010-4209-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
29
|
Glutamate 85 is involved in the sodium/proton exchange activity of the Escherichia coli ChaA. Biosci Biotechnol Biochem 2010; 74:1116-9. [PMID: 20460696 DOI: 10.1271/bbb.90947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hitherto, the roles of specific amino acid residues of ChaA, one of three Na(+)/H(+) antiporters in Escherichia coli, in exchange activity have not been reported. Here we examined the role of acidic amino acid residues, Glu-85 and Glu-325, on the hydrophobic transmembrane domains. It was found that ChaA is involved in salt tolerance at alkaline pH. Mutagenesis analyses revealed the importance of Glu-85, but not Glu-325, in the exchange activity.
Collapse
|
30
|
Wei Y, Liu J, Ma Y, Krulwich TA. Three putative cation/proton antiporters from the soda lake alkaliphile Alkalimonas amylolytica N10 complement an alkali-sensitive Escherichia coli mutant. MICROBIOLOGY-SGM 2007; 153:2168-2179. [PMID: 17600061 PMCID: PMC2538799 DOI: 10.1099/mic.0.2007/007450-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Attempts to identify members of the antiporter complement of the alkali- and saline-adapted soda lake alkaliphile Alkalimonas amylolytica N10 have used screens of DNA libraries in antiporter-deficient Escherichia coli KNabc. Earlier screens used Na(+) or Li(+) for selection but only identified one NhaD-type antiporter whose properties were inconsistent with a robust role in pH homeostasis. Here, new screens using elevated pH for selection identified three other putative antiporter genes that conferred resistance to pH >or=8.5 as well as Na(+) resistance. The three predicted gene products were in the calcium/cation antiporter (CaCA), cation/proton antiporter-2 (CPA2) and cation/proton antiporter-1 (CPA1) families of membrane transporters, and were designated Aa-CaxA, Aa-KefB and Aa-NhaP respectively, reflecting homology within those families. Aa-CaxA conferred the poorest Na(+) resistance and also conferred modest Ca(2+) resistance. Aa-KefB and Aa-NhaP inhibited growth of a K(+) uptake-deficient E. coli mutant (TK2420), suggesting that they catalysed K(+) efflux. For Aa-NhaP, the reversibility of the growth inhibition by high K(+) concentrations depended upon an organic nitrogen source, e.g. glutamine, rather than ammonium. This suggests that as well as K(+) efflux is catalysed by Aa-NhaP. Vesicles of E. coli KNabc expressing Aa-NhaP, which conferred the strongest alkali resistance, exhibited K(+)/H(+) antiport activity in a pH range from 7.5 to 9.5, and with an apparent K(m) for K(+) of 0.5 mM at pH 8.0. The properties of this antiporter are consistent with the possibility that this soda lake alkaliphile uses K(+)( )/H(+) antiport as part of its alkaline pH homeostasis mechanism and part of its capacity to reduce potentially toxic accumulation of cytoplasmic K(+) or respectively, under conditions of high osmolarity or active amino acid catabolism.
Collapse
Affiliation(s)
- Yi Wei
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Jun Liu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Yanhe Ma
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
| | - Terry A Krulwich
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
31
|
Cai X. Molecular evolution and structural analysis of the Ca(2+) release-activated Ca(2+) channel subunit, Orai. J Mol Biol 2007; 368:1284-91. [PMID: 17400243 DOI: 10.1016/j.jmb.2007.03.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 03/07/2007] [Accepted: 03/08/2007] [Indexed: 12/15/2022]
Abstract
Depletion of intracellular Ca(2+) stores evokes Ca(2+) entry across the plasma membrane by inducing Ca(2+) release-activated Ca(2+) (CRAC) currents in many cell types. Recently, Orai and STIM proteins were identified as the molecular identities of the CRAC channel subunit and the endoplasmic reticulum Ca(2+) sensor, respectively. Here, extensive database searching and phylogenetic analysis revealed several lineage-specific duplication events in the Orai protein family, which may account for the evolutionary origins of distinct functional properties among mammalian Orai proteins. Based on similarity to key structural domains and essential residues for channel functions in Orai proteins, database searching also identifies a putative primordial Orai sequence in hyperthermophilic archaeons. Furthermore, modern Orai appears to acquire new structural domains as early as Urochodata, before divergence into vertebrates. The evolutionary patterns of structural domains might be related to distinct functional properties of Drosophila and mammalian CRAC currents. Interestingly, Orai proteins display two conserved internal repeats located at transmembrane segments 1 and 3, both of which contain key amino acids essential for channel function. These findings demonstrate biochemical and physiological relevance of Orai proteins in light of different evolutionary origins and will provide novel insights into future structural and functional studies of Orai proteins.
Collapse
Affiliation(s)
- Xinjiang Cai
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| |
Collapse
|
32
|
Campbell AK, Naseem R, Wann K, Holland IB, Matthews SB. Fermentation product butane 2,3-diol induces Ca2+ transients in E. coli through activation of lanthanum-sensitive Ca2+ channels. Cell Calcium 2007; 41:97-106. [PMID: 16842848 DOI: 10.1016/j.ceca.2006.05.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 05/11/2006] [Accepted: 05/14/2006] [Indexed: 12/17/2022]
Abstract
The results here are the first demonstration of a physiological agonist opening Ca2+ channels in bacteria. Bacteria in the gut ferment glucose and other substrates, producing alcohols, diols, ketones and acids, that play a key role in lactose intolerance, through the activation of Ca2+ and other ion channels in host cells and neighbouring bacteria. Here we show butane 2,3-diol (5-200mM; half maximum 25mM) activates Ca2+ transients in E. coli, monitored by aequorin. Ca2+-transient magnitude depended on external Ca2+ (0.1-10mM). meso-Butane 2,3-diol was approximately twice as potent as 2R,3R (-) and 2S,3S (+) butane 2,3-diol. There were no detectable effects on cytosolic free Ca2+ of butane 1,3-diol, butane 1,4-diol and ethylene glycol. The glycerol fermentation product propane 1,3-diol only induced significant Ca2+ transients in 10mM external Ca2. Ca2+ butane 2,3-diol Ca2+ transients were due to activation of Ca2+ influx, followed by activation of Ca2+ efflux. The effect of butane 2,3-diol was abolished by La3+, and markedly reduced as a function of growth phase. These results were consistent with butane 2,3-diol activating a novel La3+-sensitive Ca2+ channel. They have important implications for the role of butane 2,3-diol and Ca2+ in bacterial-host cell signalling.
Collapse
Affiliation(s)
- Anthony K Campbell
- Department of Medical Biochemistry and Immunology, School of Medicine, Tenovus Building, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | |
Collapse
|
33
|
Shigaki T, Rees I, Nakhleh L, Hirschi KD. Identification of three distinct phylogenetic groups of CAX cation/proton antiporters. J Mol Evol 2006; 63:815-25. [PMID: 17086450 DOI: 10.1007/s00239-006-0048-4] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2006] [Accepted: 07/21/2006] [Indexed: 11/26/2022]
Abstract
Ca(2+)/cation antiporter (CaCA) proteins are integral membrane proteins that transport Ca(2+) or other cations using the H(+) or Na(+) gradient generated by primary transporters. The CAX (for CAtion eXchanger) family is one of the five families that make up the CaCA superfamily. CAX genes have been found in bacteria, Dictyostelium, fungi, plants, and lower vertebrates, but only a small number of CAXs have been functionally characterized. In this study, we explored the diversity of CAXs and their phylogenetic relationships. The results demonstrate that there are three major types of CAXs: type I (CAXs similar to Arabidopsis thaliana CAX1, found in plants, fungi, and bacteria), type II (CAXs with a long N-terminus hydrophilic region, found in fungi, Dictyostelium, and lower vertebrates), and type III (CAXs similar to Escherichia coli ChaA, found in bacteria). Some CAXs were found to have secondary structures that are different from the canonical six transmembrane (TM) domains-acidic motif-five TM domain structure. Our phylogenetic tree indicated no evidence to support the cyanobacterial origin of plant CAXs or the classification of Arabidopsis exchangers CAX7 to CAX11. For the first time, these results clearly define the CAX exchanger family and its subtypes in phylogenetic terms. The surprising diversity of CAXs demonstrates their potential range of biochemical properties and physiologic relevance.
Collapse
Affiliation(s)
- T Shigaki
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Room 9016, CNRC, 1100 Bates Street, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
34
|
Kurian D, Phadwal K, Mäenpää P. Proteomic characterization of acid stress response inSynechocystis sp. PCC 6803. Proteomics 2006; 6:3614-24. [PMID: 16691555 DOI: 10.1002/pmic.200600033] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A comparative proteomic analysis using 2-DE coupled with MALDI-MS and LC-MS/MS was performed in Synechocystis sp. PCC 6803 to identify protein candidates involved in acid stress response in cyanobacteria. Comparison of soluble proteins from the cytoplasmic fraction of cells grown on media set at pH 7.5 and 5.5 using 2-DE identified four proteins, which showed significant changes in the abundance. Surprisingly, several general stress proteins, either the heat shock family proteins or chaperonins, did not show perceptible fold changes in response to acidity. Compared to the cytoplasmic proteome, the periplasmic proteome showed remarkable changes as a function of external pH. Protein expression profiling at different external pH, i.e., 9.0, 7.5, 6.0 and 5.5, allowed classifying the periplasmic proteins depending on their preferential expression patterns towards acidity or alkalinity. Among the acid- and base-induced proteins, oxalate decarboxylase and carbonic anhydrase were already known for their role in pH homeostasis. Several unknown proteins from the periplasm, that showed significant changes in response to pH, provide ideal targets for further studies in understanding pH stress response in cyanobacteria. This study also identified 14 novel proteins, hitherto unknown from the periplasmic space of Synechocystis.
Collapse
Affiliation(s)
- Dominic Kurian
- Laboratory of Plant Physiology and Molecular Biology, Department of Biology, University of Turku, Finland.
| | | | | |
Collapse
|
35
|
Srivastava R, Battchikova N, Norling B, Aro EM. Plasma membrane of Synechocystis PCC 6803: a heterogeneous distribution of membrane proteins. Arch Microbiol 2006; 185:238-43. [PMID: 16432747 DOI: 10.1007/s00203-006-0086-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Revised: 11/15/2005] [Accepted: 01/05/2006] [Indexed: 11/28/2022]
Abstract
Proteomic studies carried out previously on the plasma membrane of Synechocystis have identified several peripheral and integral proteins. The distribution of these proteins along the membrane still remains obscure. In this study, the distribution of proteins along the plasma membrane of Synechocystis was carried out using subfractions, the right-side-out (RSO) and inside-out (ISO) vesicles, fractionated from a pure and specific fraction of the plasma membrane. These subfractions were analyzed and quantified for several proteins by immunoblotting. It was found that the ISO fraction contained higher quantities of preD1, D1 and PsaD, the integral proteins of photosystem I and II known to be present also in the plasma membrane. Lower amounts of peripheral vesicle inducing protein Vipp1 and nitrate/nitrite binding protein NrtA were present in the ISO compared to the RSO fraction. On the contrary, the distribution of two integral transporter proteins, SbtA and PxcA, was found equal in both fractions. Our studies clearly establish that the plasma membrane of Synechocystis has a heterogeneous composition with respect to protein distribution. The accumulation of photosynthesis-associated proteins in the ISO fraction provides evidence that the discrete regions of the plasma membrane harbor sites for biogenesis of photosystems.
Collapse
Affiliation(s)
- Renu Srivastava
- Department of Biology, Plant Physiology and Molecular Biology, University of Turku, 20014 Turku, Finland
| | | | | | | |
Collapse
|
36
|
Kamiya T, Akahori T, Ashikari M, Maeshima M. Expression of the vacuolar Ca2+/H+ exchanger, OsCAX1a, in rice: cell and age specificity of expression, and enhancement by Ca2+. PLANT & CELL PHYSIOLOGY 2006; 47:96-106. [PMID: 16275657 DOI: 10.1093/pcp/pci227] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Calcium is an essential macronutrient for plants and functions in signal transduction. Regulation of the cytosolic calcium concentration is required for normal cell growth. In calcium homeostasis in plant cells, Ca(2+)/H(+) exchangers are involved in Ca(2+) compartmentalization into intracellular compartments. Here, we examine the intracellular localization of a rice Ca(2+)/H(+) exchanger, OsCAX1a, fused to a green fluorescent protein and transiently expressed in onion epidermis and rice protoplasts. Green fluorescence was observed in the vacuolar membrane. After sucrose gradient centrifugation of the homogenate of rice plants, OsCAX1a was detected in the same fraction as the vacuolar membrane aquaporin gamma-TIP. We then quantified the mRNA and protein of OsCAX1a in plants grown with metal ions. OsCAX1a mRNA was induced in roots by high concentrations of Ca(2+). The protein level in shoots was also increased in the presence of high concentrations of Ca(2+). Furthermore, transgenic rice plants transformed with the OsCAX1a promoter fused to beta-glucuronidase showed reporter expression in vascular bundles, stomata, trichomes, steles, flowers, embryos and aleurone layers. In the case of stomata and trichomes, transcription of OsCAX1a was particularly high in aged organs. These results suggest that OsCAX1a transports Ca(2+) into vacuoles and is involved in Ca(2+) homeostasis in cells that suffer from high concentrations of Ca(2+).
Collapse
Affiliation(s)
- Takehiro Kamiya
- Laboratory of Cell Dynamics, Graduate School of Bioagricultural Sciences, Nagoya University, Japan
| | | | | | | |
Collapse
|
37
|
Abstract
Whereas the importance of calcium as a cell regulator is well established in eukaryotes, the role of calcium in prokaryotes is still elusive. Over the past few years, there has been an increased interest in the role of calcium in bacteria. It has been demonstrated that as in eukaryotic organisms, the intracellular calcium concentration in prokaryotes is tightly regulated ranging from 100 to 300 nM. It has been found that calcium ions are involved in the maintenance of cell structure, motility, transport and cell differentiation processes such as sporulation, heterocyst formation and fruiting body development. In addition, a number of calcium-binding proteins have been isolated in several prokaryotic organisms. The characterization of these proteins and the identification of other factors suggest the possibility that calcium signal transduction exists in bacteria. This review presents recent developments of calcium in bacteria as it relates to signal transduction.
Collapse
Affiliation(s)
- Delfina C Dominguez
- College of Health Sciences, The University of Texas at El Paso, El Paso, TX 79902, USA.
| |
Collapse
|