1
|
Watt NT, McGrane A, Roberts LD. Linking the unfolded protein response to bioactive lipid metabolism and signalling in the cell non-autonomous extracellular communication of ER stress. Bioessays 2023; 45:e2300029. [PMID: 37183938 PMCID: PMC11475223 DOI: 10.1002/bies.202300029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
The endoplasmic reticulum (ER) organelle is the key intracellular site of both protein and lipid biosynthesis. ER dysfunction, termed ER stress, can result in protein accretion within the ER and cell death; a pathophysiological process contributing to a range of metabolic diseases and cancers. ER stress leads to the activation of a protective signalling cascade termed the Unfolded Protein Response (UPR). However, chronic UPR activation can ultimately result in cellular apoptosis. Emerging evidence suggests that cells undergoing ER stress and UPR activation can release extracellular signals that can propagate UPR activation to target tissues in a cell non-autonomous signalling mechanism. Separately, studies have determined that the UPR plays a key regulatory role in the biosynthesis of bioactive signalling lipids including sphingolipids and ceramides. Here we weigh the evidence to combine these concepts and propose that during ER stress, UPR activation drives the biosynthesis of ceramide lipids, which are exported and function as cell non-autonomous signals to propagate UPR activation in target cells and tissues.
Collapse
Affiliation(s)
- Nicole T. Watt
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Anna McGrane
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
2
|
Schofield JH, Schafer ZT. Regulators mount up: the metabolic roles of apoptotic proteins. FRONTIERS IN CELL DEATH 2023; 2:1223926. [PMID: 37521407 PMCID: PMC10373711 DOI: 10.3389/fceld.2023.1223926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
The induction of apoptosis, a programmed cell death pathway governed by activation of caspases, can result in fundamental changes in metabolism that either facilitate or restrict the execution of cell death. In addition, metabolic adaptations can significantly impact whether cells in fact initiate the apoptotic cascade. In this mini-review, we will highlight and discuss the interconnectedness of apoptotic regulation and metabolic alterations, two biological outcomes whose regulators are intertwined.
Collapse
Affiliation(s)
- James H. Schofield
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
3
|
Costa-Pinheiro P, Heher A, Raymond MH, Jividen K, Shaw JJ, Paschal BM, Walker SJ, Fox TE, Kester M. Role of SPTSSB-Regulated de Novo Sphingolipid Synthesis in Prostate Cancer Depends on Androgen Receptor Signaling. iScience 2020; 23:101855. [PMID: 33313495 PMCID: PMC7721643 DOI: 10.1016/j.isci.2020.101855] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/23/2020] [Accepted: 11/19/2020] [Indexed: 02/06/2023] Open
Abstract
Anti-androgens are a common therapy in prostate cancer (PCa) targeting androgen receptor (AR) signaling. However, these therapies fail due to selection of highly aggressive AR-negative cancer cells that have no therapeutic options available. We demonstrate that elevating endogenous ceramide levels with administration of exogenous ceramide nanoliposomes (CNLs) was efficacious in AR-negative cell lines with limited efficacy in AR-positive cells. This effect is mediated through reduced de novo sphingolipid synthesis in AR-positive cells. We show that anti-androgens elevate de novo generation of sphingolipids via SPTSSB, a rate-limiting mediator of sphingolipid generation. Moreover, pharmacological inhibition of AR increases the efficacy of CNL in AR-positive cells through de novo synthesis, while SPTSSB knockdown limited CNL's efficacy in AR-negative cells. Alluding to clinical relevance, SPTSSB is upregulated in patients with advanced PCa after anti-androgens treatment. These findings emphasize the relevance of AR regulation upon sphingolipid metabolism and the potential of CNL as a PCa therapeutic. AR-negative PCa cells are more susceptible to CNL than AR-positive cells Combination of anti-androgens and CNL results in enhanced efficacy for AR-positive PCa AR negatively regulates the de novo synthesis of sphingolipids through SPTSSB SPTSSB is crucial for CNL effect in AR-negative PCa and is upregulated in neuroendocrine tumors
Collapse
Affiliation(s)
| | - Abigail Heher
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - Michael H Raymond
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Kasey Jividen
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA
| | - Jeremy Jp Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA 22903, USA
| | - Bryce M Paschal
- Center for Cell Signaling, University of Virginia, Charlottesville, VA 22903, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Susan J Walker
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Todd E Fox
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA.,nanoSTAR Institute, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
4
|
Ouyang J, Shu Z, Chen S, Xiang H, Lu H. The role of sphingosine 1-phosphate and its receptors in cardiovascular diseases. J Cell Mol Med 2020; 24:10290-10301. [PMID: 32803879 PMCID: PMC7521328 DOI: 10.1111/jcmm.15744] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/12/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
There are many different types of cardiovascular diseases, which impose a huge economic burden due to their extremely high mortality rates, so it is necessary to explore the underlying mechanisms to achieve better supportive and curative care outcomes. Sphingosine 1‐phosphate (S1P) is a bioactive lipid mediator with paracrine and autocrine activities that acts through its cell surface S1P receptors (S1PRs) and intracellular signals. In the circulatory system, S1P is indispensable for both normal and disease conditions; however, there are very different views on its diverse roles, and its specific relevance to cardiovascular pathogenesis remains elusive. Here, we review the synthesis, release and functions of S1P, specifically detail the roles of S1P and S1PRs in some common cardiovascular diseases, and then address several controversial points, finally, we focus on the development of S1P‐based therapeutic approaches in cardiovascular diseases, such as the selective S1PR1 modulator amiselimod (MT‐1303) and the non‐selective S1PR1 and S1PR3 agonist fingolimod, which may provide valuable insights into potential therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ouyang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhihao Shu
- Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Shuhua Chen
- Department of Biochemistry, School of Life Sciences of Central South University, Changsha, China
| | - Hong Xiang
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongwei Lu
- Center for Experimental Medical Research, the Third Xiangya Hospital of Central South University, Changsha, China.,Department of Cardiology, the Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
5
|
Snider JM, Luberto C, Hannun YA. Approaches for probing and evaluating mammalian sphingolipid metabolism. Anal Biochem 2019; 575:70-86. [PMID: 30917945 DOI: 10.1016/j.ab.2019.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/22/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023]
Abstract
Sphingolipid metabolism plays a critical role in regulating processes that control cellular fate. This dynamic pathway can generate and degrade the central players: ceramide, sphingosine and sphingosine-1-phosphate in almost any membrane in the cell, adding an unexpected level of complexity in deciphering signaling events. While in vitro assays have been developed for most enzymes in SL metabolism, these assays are setup for optimal activity conditions and can fail to take into account regulatory components such as compartmentalization, substrate limitations, and binding partners that can affect cellular enzymatic activity. Therefore, many in-cell assays have been developed to derive results that are authentic to the cellular situation which may give context to alteration in SL mass. This review will discuss approaches for utilizing probes for mammalian in-cell assays to interrogate most enzymatic steps central to SL metabolism. The use of inhibitors in conjunction with these probes can verify the specificity of cellular assays as well as provide valuable insight into flux in the SL network. The use of inhibitors specific to each of the central sphingolipid enzymes are also discussed to assist researchers in further interrogation of these pathways.
Collapse
Affiliation(s)
- Justin M Snider
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Chiara Luberto
- The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA; The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA; Departments of Biochemistry, Pathology and Pharmacology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
6
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017; 8:556. [PMID: 28878674 PMCID: PMC5572949 DOI: 10.3389/fphar.2017.00556] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/07/2017] [Indexed: 12/20/2022] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States.,Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States.,Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy.,Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
7
|
Ceramide phosphoethanolamine synthase SMSr is a target of caspase-6 during apoptotic cell death. Biosci Rep 2017; 37:BSR20170867. [PMID: 28659495 PMCID: PMC5567093 DOI: 10.1042/bsr20170867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/25/2017] [Accepted: 06/28/2017] [Indexed: 01/11/2023] Open
Abstract
Ceramides are essential precursors of sphingolipids with a dual role as mediators of apoptotic cell death. Previous work revealed that the ER-resident ceramide phosphoethanolamine (CPE) synthase SMSr/SAMD8 is a suppressor of ceramide-mediated apoptosis in cultured cells. Anti-apoptotic activity of SMSr requires a catalytically active enzyme but also relies on the enzyme’s N-terminal sterile α-motif or SAM domain. Here, we demonstrate that SMSr itself is a target of the apoptotic machinery. Treatment of cells with staurosporine or the death receptor ligand FasL triggers caspase-mediated cleavage of SMSr at a conserved aspartate located downstream of the enzyme’s SAM domain and upstream of its first membrane span. Taking advantage of reconstitution experiments with SMSr produced in a cell-free expression system, specific caspase-inhibitors and gene silencing approaches, we show that SMSr is a novel and specific substrate of caspase-6, a non-conventional effector caspase implicated in Huntington’s and Alzheimer’s diseases. Our findings underscore a role of SMSr as negative regulator of ceramide-induced cell death and, in view of a prominent expression of the enzyme in brain, raise questions regarding its potential involvement in neurodegenerative disorders.
Collapse
|
8
|
Boppana NB, Kraveka JM, Rahmaniyan M, Li LI, Bielawska A, Bielawski J, Pierce JS, Delor JS, Zhang K, Korbelik M, Separovic D. Fumonisin B1 Inhibits Endoplasmic Reticulum Stress Associated-apoptosis After FoscanPDT Combined with C6-Pyridinium Ceramide or Fenretinide. Anticancer Res 2017; 37:455-463. [PMID: 28179290 DOI: 10.21873/anticanres.11337] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Combining an anticancer agent fenretinide (HPR) or C6-pyridinium ceramide (LCL29) with Foscan-mediated photodynamic therapy (FoscanPDT) is expected to augment anticancer benefits of each substance. We showed that treatment with FoscanPDT+HPR enhanced accumulation of C16-dihydroceramide, and that fumonisin B1 (FB), an inhibitor of ceramide synthase, counteracted caspase-3 activation and colony-forming ability of head and neck squamous cell carcinoma (HNSCC) cells. Because cancer cells appear to be more susceptible to increased levels of the endoplasmic reticulum (ER) stress than normal cells, herein we tested the hypothesis that FoscanPDT combined with HPR or LCL29 induces FB-sensitive ER stress-associated apoptosis that affects cell survival. MATERIALS AND METHODS Using an HNSCC cell line, we determined: cell survival by clonogenic assay, caspase-3 activity by spectrofluorometry, the expression of the ER markers BiP and CHOP by quantitative real-time polymerase chain reaction and western immunoblotting, and sphingolipid levels by mass spectrometry. RESULTS Similar to HPR+FoscanPDT, LCL29+FoscanPDT induced enhanced loss of clonogenicity and caspase-3 activation, that were both inhibited by FB. Our additional pharmacological evidence showed that the enhanced loss of clonogenicity after the combined treatments was singlet oxygen-, ER stress- and apoptosis-dependent. The combined treatments induced enhanced, FB-sensitive, up-regulation of BiP and CHOP, as well as enhanced accumulation of sphingolipids. CONCLUSION Our data suggest that enhanced clonogenic cell killing after the combined treatments is dependent on oxidative- and ER-stress, apoptosis, and FB-sensitive sphingolipid production, and should help develop more effective mechanism-based therapeutic strategies.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Jacqueline M Kraveka
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Mehrdad Rahmaniyan
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - L I Li
- Department of Pediatrics Division of Hematology-Oncology, Charles Darby Children's Research Institute, and Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, U.S.A
| | - Jeremy S Delor
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics and Department of Immunology and Microbiology, Wayne State University School of Medicine, Wayne State University, Detroit, MI, U.S.A
| | | | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, U.S.A. .,Karmanos Cancer Institute, Wayne State University, Detroit, MI, U.S.A
| |
Collapse
|
9
|
Cannavo A, Liccardo D, Komici K, Corbi G, de Lucia C, Femminella GD, Elia A, Bencivenga L, Ferrara N, Koch WJ, Paolocci N, Rengo G. Sphingosine Kinases and Sphingosine 1-Phosphate Receptors: Signaling and Actions in the Cardiovascular System. Front Pharmacol 2017. [PMID: 28878674 DOI: 10.3389/fphar.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
The sphingosine kinases 1 and 2 (SphK1 and 2) catalyze the phosphorylation of the lipid, sphingosine, generating the signal transmitter, sphingosine 1-phosphate (S1P). The activation of such kinases and the subsequent S1P generation and secretion in the blood serum of mammals represent a major checkpoint in many cellular signaling cascades. In fact, activating the SphK/S1P system is critical for cell motility and proliferation, cytoskeletal organization, cell growth, survival, and response to stress. In the cardiovascular system, the physiological effects of S1P intervene through the binding and activation of a family of five highly selective G protein-coupled receptors, called S1PR1-5. Importantly, SphK/S1P signal is present on both vascular and myocardial cells. S1P is a well-recognized survival factor in many tissues. Therefore, it is not surprising that the last two decades have seen a flourishing of interest and investigative efforts directed to obtain additional mechanistic insights into the signaling, as well as the biological activity of this phospholipid, and of its receptors, especially in the cardiovascular system. Here, we will provide an up-to-date account on the structure and function of sphingosine kinases, discussing the generation, release, and function of S1P. Keeping the bull's eye on the cardiovascular system, we will review the structure and signaling cascades and biological actions emanating from the stimulation of different S1P receptors. We will end this article with a summary of the most recent, experimental and clinical observations targeting S1PRs and SphKs as possible new therapeutic avenues for cardiovascular disorders, such as heart failure.
Collapse
Affiliation(s)
- Alessandro Cannavo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Daniela Liccardo
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Klara Komici
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Graziamaria Corbi
- Department of Medicine and Health Science, University of MoliseCampobasso, Italy
| | - Claudio de Lucia
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | | | - Andrea Elia
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Leonardo Bencivenga
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
| | - Nicola Ferrara
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| | - Walter J Koch
- Lewis Katz School of Medicine, Center for Translational Medicine, Temple University, PhiladelphiaPA, United States
| | - Nazareno Paolocci
- Division of Cardiology, Johns Hopkins University Medical Institutions, BaltimoreMD, United States
- Department of Experimental Medicine, University of PerugiaPerugia, Italy
| | - Giuseppe Rengo
- Department of Translational Medical Sciences, University of Naples Federico IINaples, Italy
- Istituti Clinici Scientifici Maugeri SpA Società Benefit, Telese Terme Institute (BN)Telese, Italy
| |
Collapse
|
10
|
Cabukusta B, Köhlen JA, Richter CP, You C, Holthuis JCM. Monitoring Changes in the Oligomeric State of a Candidate Endoplasmic Reticulum (ER) Ceramide Sensor by Single-molecule Photobleaching. J Biol Chem 2016; 291:24735-24746. [PMID: 27729449 DOI: 10.1074/jbc.m116.749812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/07/2016] [Indexed: 11/06/2022] Open
Abstract
Single-molecule photobleaching has emerged as a powerful non-invasive approach to extract the stoichiometry of multimeric membrane proteins in their native cellular environment. However, this method has mainly been used to determine the subunit composition of ion channels and receptors at the plasma membrane. Here, we applied single-molecule photobleaching to analyze the oligomeric state of an endoplasmic reticulum (ER) resident candidate ceramide sensor protein, SMSr/SAMD8. Co-immunoprecipitation and chemical cross-linking studies previously revealed that the N-terminal sterile alpha motif (or SAM) domain of SMSr drives self-assembly of the protein into oligomers and that SMSr oligomerization is promoted by curcumin, a drug known to perturb ER ceramide and calcium homeostasis. Application of cell spreading surface-active coating materials in combination with total internal reflection fluorescence (TIRF) microscopy allowed us to image GFP-tagged SMSr proteins as single fluorescent spots in the ER of HeLa cells in which expression of endogenous SMSr was abolished. In line with our biochemical analysis, we find that the number of bleaching steps in SMSr-GFP-positive spots displays a substantial drop after removal of the SAM domain. In contrast, treatment of cells with curcumin increased the number of bleaching steps. Our results document the first successful application of single-molecule photobleaching to resolve drug-induced and domain-dependent changes in the oligomeric state of an ER-resident membrane protein, hence establishing a complementary method to unravel the mechanism by which SMSr controls ceramide levels in the ER.
Collapse
Affiliation(s)
| | | | - Christian P Richter
- Biophysics Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany and
| | - Changjiang You
- Biophysics Division, Faculty of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany and
| | - Joost C M Holthuis
- From the Molecular Cell Biology Division and; Membrane Biochemistry and Biophysics, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
11
|
Electroporation-mediated delivery of the FER gene in the resolution of trauma-related fatal pneumonia. Gene Ther 2016; 23:785-796. [PMID: 27454317 PMCID: PMC5096957 DOI: 10.1038/gt.2016.58] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/19/2016] [Accepted: 07/11/2016] [Indexed: 12/18/2022]
Abstract
Injured patients with lung contusion (LC) are at risk of developing bacterial pneumonia (PNA) followed by sepsis and death. A recent genome-wide association study (GWAS) showed FER gene expression positively correlating with survival rates among individuals with above conditions. We sought to determine whether electroporation (EP)-mediated delivery of FER gene could indeed improve survival, in a lethal model of combined LC and PNA. C57BL/6 mice sustained unilateral LC, which preceded a 500 Klebsiella colony forming unit (CFU) inoculation by 6 h. In-between these insults, human FER plasmid (pFER) was introduced into the lungs followed by eight EP pulses applied externally (10 ms at 200 V cm-1). Control groups included EP of empty vector (pcDNA3) or Na+/K+-ATPase genes (pPump) and no treatment (LC+PNA). We recorded survival, histology, lung mechanics, bronchial alveolar lavage (BAL) fluid, FER and inflammatory gene expression and bacteriology. The data show that 7-day survival was significantly improved by pFER compared with control groups. pFER increased BAL monocytes and activated antibacterial response genes (nitric oxide synthase (NOS), Fizz). pFER treatment showed decreased lung and blood Klebsiella counts reaching, in some cases, complete sterilization. In conclusion, FER gene delivery promoted survival in LC+PNA mice via recruitment of activated immune cells, improving efficiency of bacterial clearance within contused lung.
Collapse
|
12
|
Enhanced apoptotic cancer cell killing after Foscan photodynamic therapy combined with fenretinide via de novo sphingolipid biosynthesis pathway. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:191-5. [PMID: 27085050 DOI: 10.1016/j.jphotobiol.2016.02.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
Abstract
We and others have shown that stresses, including photodynamic therapy (PDT), can disrupt the de novo sphingolipid biosynthesis pathway, leading to changes in the levels of sphingolipids, and subsequently, modulation of cell death. The de novo sphingolipid biosynthesis pathway includes a ceramide synthase-dependent reaction, giving rise to dihydroceramide, which is then converted in a desaturase-dependent reaction to ceramide. In this study we tested the hypothesis that combining Foscan-mediated PDT with desaturase inhibitor fenretinide (HPR) enhances cancer cell killing. We discovered that by subjecting SCC19 cells, a human head and neck squamous cell carcinoma cell line, to PDT+HPR resulted in enhanced accumulation of C16-dihydroceramide, not ceramide. Concomitantly, mitochondrial depolarization was enhanced by the combined treatment. Enhanced activation of caspase-3 after PDT+HPR was inhibited by FB. Enhanced clonogenic cell death after the combination was sensitive to FB, as well as Bcl2- and caspase inhibitors. Treatment of mouse SCCVII squamous cell carcinoma tumors with PDT+HPR resulted in improved long-term tumor cures. Overall, our data showed that combining PDT with HPR enhanced apoptotic cancer cell killing and antitumor efficacy of PDT. The data suggest the involvement of the de novo sphingolipid biosynthesis pathway in enhanced apoptotic cell killing after PDT+HPR, and identify the combination as a novel more effective anticancer treatment than either treatment alone.
Collapse
|
13
|
Wang SW, Hojabrpour P, Zhang P, Kolesnick RN, Steinbrecher UP, Gómez-Muñoz A, Duronio V. Regulation of ceramide generation during macrophage apoptosis by ASMase and de novo synthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:1482-9. [PMID: 26253821 DOI: 10.1016/j.bbalip.2015.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 07/17/2015] [Accepted: 08/03/2015] [Indexed: 12/29/2022]
Abstract
The survival of macrophages depends on the presence of specific cytokines that activate survival signaling events, as well as suppressing formation of apoptosis-inducing pathways. We have previously shown that macrophages deprived of macrophage colony stimulating factor (M-CSF) produce ceramide that contributes to apoptosis of these cells, a pathway that is suppressed by exposure to oxidized LDL. In this study we have examined macrophages derived from mice lacking acid sphingomyelinase (ASMase) to ask whether these events are altered due to the impaired ability of these cells to break down sphingomyelin and produce ceramide. We found that these cells do survive better than cells from wild type mice, but they still undergo cell death and some ceramide is formed. We show that the ceramide is being produced by a de novo synthetic pathway. Therefore, ceramide production in M-CSF-deprived macrophages arises from a combination of ASMase activity and de novo synthesis.
Collapse
Affiliation(s)
- Shih Wei Wang
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Payman Hojabrpour
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Peng Zhang
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | | | - Urs P Steinbrecher
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Antonio Gómez-Muñoz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, Spain
| | - Vincent Duronio
- Department of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
14
|
Boppana NB, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D. Enhanced killing of SCC17B human head and neck squamous cell carcinoma cells after photodynamic therapy plus fenretinide via the de novo sphingolipid biosynthesis pathway and apoptosis. Int J Oncol 2015; 46:2003-10. [PMID: 25739041 PMCID: PMC4383026 DOI: 10.3892/ijo.2015.2909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/05/2015] [Indexed: 02/05/2023] Open
Abstract
Because photodynamic therapy (PDT) alone is not always effective as an anticancer treatment, PDT is combined with other anticancer agents for improved efficacy. The clinically-relevant fenretinide [N-(4-hydroxyphenyl) retinamide; 4HPR], was combined with the silicon phthalocyanine photosensitizer Pc4-mediated PDT to test for their potential to enhance killing of SCC17B cells, a clinically-relevant model of human head and neck squamous cell carcinoma. Because each of these treatments induces apoptosis and regulates the de novo sphingolipid (SL) biosynthesis pathway, the role of ceramide synthase, the pathway-associated enzyme, in PDT+4HPR-induced apoptotic cell death was determined using the ceramide synthase inhibitor fumonisin B1 (FB). PDT+4HPR enhanced loss of clonogenicity. zVAD-fmk, a pan-caspase inhibitor, and FB, protected cells from death post-PDT+4HPR. In contrast, the anti-apoptotic protein Bcl2 inhibitor ABT199 enhanced cell killing after PDT+4HPR. Combining PDT with 4HPR led to FB-sensitive, enhanced Bax associated with mitochondria and cytochrome c redistribution. Mass spectrometry data showed that the accumulation of C16-dihydroceramide, a precursor of ceramide in the de novo SL biosynthesis pathway, was enhanced after PDT+4HPR. Using quantitative confocal microscopy, we found that PDT+4HPR enhanced dihydroceramide/ceramide accumulation in the ER, which was inhibited by FB. The results suggest that SCC17B cells are sensitized to PDT by 4HPR via the de novo SL biosynthesis pathway and apoptosis, and imply potential clinical relevance of the combination for cancer treatment.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Ursula Stochaj
- Department of Physiology, McGill University, Montreal, QC H3G 1YC, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, Montreal, QC H3G 1YC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Boppana NB, Stochaj U, Kodiha M, Bielawska A, Bielawski J, Pierce JS, Korbelik M, Separovic D. C6-pyridinium ceramide sensitizes SCC17B human head and neck squamous cell carcinoma cells to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 143:163-8. [PMID: 25635908 DOI: 10.1016/j.jphotobiol.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 11/17/2022]
Abstract
Combining photodynamic therapy (PDT) with another anticancer treatment modality is an important strategy for improved efficacy. PDT with Pc4, a silicon phthalocyanine photosensitizer, was combined with C6-pyridinium ceramide (LCL29) to determine their potential to promote death of SCC17B human head and neck squamous cell carcinoma cells. PDT+LCL29-induced enhanced cell death was inhibited by zVAD-fmk, a pan-caspase inhibitor, and fumonisin B1 (FB), a ceramide synthase inhibitor. Quantitative confocal microscopy showed that combining PDT with LCL29 enhanced FB-sensitive ceramide accumulation in the mitochondria. Furthermore, PDT+LCL29 induced enhanced FB-sensitive redistribution of cytochrome c and caspase-3 activation. Overall, the data indicate that PDT+LCL29 enhanced cell death via FB-sensitive, mitochondrial ceramide accumulation and apoptosis.
Collapse
Affiliation(s)
- Nithin B Boppana
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA
| | - Ursula Stochaj
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Mohamed Kodiha
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1YC, Canada
| | - Alicja Bielawska
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jacek Bielawski
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Jason S Pierce
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Ave., Charleston, SC 29425, USA
| | - Mladen Korbelik
- British Columbia Cancer Agency, 675 West 10th Ave., Vancouver, BC V5Z 1L3, Canada
| | - Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA; Karmanos Cancer Institute, Wayne State University, 4100 John R, Detroit, MI 48201, USA.
| |
Collapse
|
16
|
Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2014; 2:1-23. [PMID: 25048553 DOI: 10.1016/s1572-1000(05)00030-x] [Citation(s) in RCA: 501] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 12/29/2022]
Abstract
Photodynamic therapy (PDT) has been known for over a hundred years, but is only now becoming widely used. Originally developed as a tumor therapy, some of its most successful applications are for non-malignant disease. In the second of a series of three reviews, we will discuss the mechanisms that operate in PDT on a cellular level. In Part I [Castano AP, Demidova TN, Hamblin MR. Mechanism in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 2004;1:279-93] it was shown that one of the most important factors governing the outcome of PDT, is how the photosensitizer (PS) interacts with cells in the target tissue or tumor, and the key aspect of this interaction is the subcellular localization of the PS. PS can localize in mitochondria, lysosomes, endoplasmic reticulum, Golgi apparatus and plasma membranes. An explosion of investigation and explorations in the field of cell biology have elucidated many of the pathways that mammalian cells undergo when PS are delivered in tissue culture and subsequently illuminated. There is an acute stress response leading to changes in calcium and lipid metabolism and production of cytokines and stress proteins. Enzymes particularly, protein kinases, are activated and transcription factors are expressed. Many of the cellular responses are centered on mitochondria. These effects frequently lead to induction of apoptosis either by the mitochondrial pathway involving caspases and release of cytochrome c, or by pathways involving ceramide or death receptors. However, under certain circumstances cells subjected to PDT die by necrosis. Although there have been many reports of DNA damage caused by PDT, this is not thought to be an important cell-death pathway. This mechanistic research is expected to lead to optimization of PDT as a tumor treatment, and to rational selection of combination therapies that include PDT as a component.
Collapse
Affiliation(s)
- Ana P Castano
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| | - Tatiana N Demidova
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Cellular, Molecular and Developmental Biology, Tufts University, USA
| | - Michael R Hamblin
- BAR314B, Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Bartlett 3, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, USA
| |
Collapse
|
17
|
Giussani P, Tringali C, Riboni L, Viani P, Venerando B. Sphingolipids: key regulators of apoptosis and pivotal players in cancer drug resistance. Int J Mol Sci 2014; 15:4356-92. [PMID: 24625663 PMCID: PMC3975402 DOI: 10.3390/ijms15034356] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/17/2022] Open
Abstract
Drug resistance elicited by cancer cells still constitutes a huge problem that frequently impairs the efficacy of both conventional and novel molecular therapies. Chemotherapy usually acts to induce apoptosis in cancer cells; therefore, the investigation of apoptosis control and of the mechanisms used by cancer cells to evade apoptosis could be translated in an improvement of therapies. Among many tools acquired by cancer cells to this end, the de-regulated synthesis and metabolism of sphingolipids have been well documented. Sphingolipids are known to play many structural and signalling roles in cells, as they are involved in the control of growth, survival, adhesion, and motility. In particular, in order to increase survival, cancer cells: (a) counteract the accumulation of ceramide that is endowed with pro-apoptotic potential and is induced by many drugs; (b) increase the synthesis of sphingosine-1-phosphate and glucosylceramide that are pro-survivals signals; (c) modify the synthesis and the metabolism of complex glycosphingolipids, particularly increasing the levels of modified species of gangliosides such as 9-O acetylated GD3 (αNeu5Ac(2-8)αNeu5Ac(2-3)βGal(1-4)βGlc(1-1)Cer) or N-glycolyl GM3 (αNeu5Ac (2-3)βGal(1-4)βGlc(1-1)Cer) and de-N-acetyl GM3 (NeuNH(2)βGal(1-4)βGlc(1-1)Cer) endowed with anti-apoptotic roles and of globoside Gb3 related to a higher expression of the multidrug resistance gene MDR1. In light of this evidence, the employment of chemical or genetic approaches specifically targeting sphingolipid dysregulations appears a promising tool for the improvement of current chemotherapy efficacy.
Collapse
Affiliation(s)
- Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Cristina Tringali
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Paola Viani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| | - Bruno Venerando
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan 20090), Italy.
| |
Collapse
|
18
|
Tafesse FG, Vacaru AM, Bosma EF, Hermansson M, Jain A, Hilderink A, Somerharju P, Holthuis JCM. Sphingomyelin synthase-related protein SMSr is a suppressor of ceramide-induced mitochondrial apoptosis. J Cell Sci 2013; 127:445-54. [PMID: 24259670 DOI: 10.1242/jcs.138933] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells synthesize ceramides in the endoplasmic reticulum (ER) as precursors for sphingolipids to form an impermeable plasma membrane. As ceramides are engaged in apoptotic pathways, cells would need to monitor their levels closely to avoid killing themselves during sphingolipid biosynthesis. How this is accomplished remains to be established. Here we identify SMSr (SAMD8), an ER-resident ceramide phosphoethanolamine (CPE) synthase, as a suppressor of ceramide-mediated cell death. Disruption of SMSr catalytic activity causes a rise in ER ceramides and their mislocalization to mitochondria, triggering a mitochondrial pathway of apoptosis. Blocking de novo ceramide synthesis, stimulating ceramide export from the ER or targeting a bacterial ceramidase to mitochondria rescues SMSr-deficient cells from apoptosis. We also show that SMSr-catalyzed CPE production, although essential, is not sufficient to suppress ceramide-induced cell death and that SMSr-mediated ceramide homeostasis requires the N-terminal sterile α-motif, or SAM domain, of the enzyme. These results define ER ceramides as bona fide transducers of mitochondrial apoptosis and indicate a primary role of SMSr in monitoring ER ceramide levels to prevent inappropriate cell death during sphingolipid biosynthesis.
Collapse
Affiliation(s)
- Fikadu G Tafesse
- Membrane Enzymology, Bijvoet Center and Institute of Biomembranes, Utrecht University, 3584 CH Utrecht, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Separovic D, Breen P, Boppana NB, Van Buren E, Joseph N, Kraveka JM, Rahmaniyan M, Li L, Gudz TI, Bielawska A, Bai A, Bielawski J, Pierce JS, Korbelik M. Increased killing of SCCVII squamous cell carcinoma cells after the combination of Pc 4 photodynamic therapy and dasatinib is associated with enhanced caspase-3 activity and ceramide synthase 1 upregulation. Int J Oncol 2013; 43:2064-72. [PMID: 24126464 PMCID: PMC3834346 DOI: 10.3892/ijo.2013.2132] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/06/2013] [Indexed: 02/01/2023] Open
Abstract
Photodynamic therapy (PDT) is not always effective as an anticancer treatment, therefore, PDT is combined with other anticancer agents for improved efficacy. The combination of dasatinib and PDT with the silicone phthalocyanine photosensitizer Pc 4 was assessed for increased killing of SCCVII mouse squamous cell carcinoma cells, a preclinical model of head and neck squamous cell carcinoma, using apoptotic markers and colony formation as experimental end-points. Because each of these treatments regulates the metabolism of the sphingolipid ceramide, their effects on mRNA levels of ceramide synthase, a ceramide-producing enzyme, and the sphingolipid profile were determined. PDT + dasatinib induced an additive loss of clonogenicity. Unlike PDT alone or PDT + dasatinib, dasatinib induced zVAD-fmk-dependent cell killing. PDT or dasatinib-induced caspase-3 activation was potentiated after the combination. PDT alone induced mitochondrial depolarization, and the effect was inhibited after the combination. Annexin V+ and propidium iodide+ cells remained at control levels after treatments. In contrast to PDT alone, dasatinib induced upregulation of ceramide synthase 1 mRNA, and the effect was enhanced after the combination. Dasatinib induced a modest increase in C20:1-and C22-ceramide but had no effect on total ceramide levels. PDT increased the levels of 12 individual ceramides and total ceramides, and the addition of dasatinib did not affect these increases. PDT alone decreased substantially sphingosine levels and inhibited the activity of acid ceramidase, an enzyme that converts ceramide to sphingosine. The data suggest that PDT-induced increases in ceramide levels do not correlate with ceramide synthase mRNA levels but rather with inhibition of ceramidase. Cell killing was zVAD-fmk-sensitive after dasatinib but not after either PDT or the combination and enhanced cell killing after the combination correlated with potentiated caspase-3 activation and upregulation of ceramide synthase 1 mRNA but not the production of ceramide. The data imply potential significance of the combination for cancer treatment.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
21
|
Korbelik M, Zhang W, Saw KM, Szulc ZM, Bielawska A, Separovic D. Cationic ceramides and analogues, LCL30 and LCL85, as adjuvants to photodynamic therapy of tumors. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:72-7. [PMID: 23911762 DOI: 10.1016/j.jphotobiol.2013.06.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/01/2013] [Accepted: 06/22/2013] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT) is known to alter the expression of various genes in treated cells. This prompted us to examine the activity of genes encoding two important enzymes in sphingolipid (SL) metabolism, dihydroceramide desaturase (DES) and sphingosine kinase (SPHK), in mouse SCCVII tumor cells treated by PDT using either the porphyrin-based photosensitizer Photofrin or silicon phthalocyanine Pc4. The results revealed that PDT induced an upregulation in the expression of two major isoforms of both genes (DES1 and DES2 as well as SPHK1 and SPHK2). While the changes were generally moderate (2-3-fold gains), the increase in DES2 expression was more pronounced and it was much greater with Photofrin-PDT than with Pc4-PDT (over 23-fold vs. less than 5-fold). Combining either Photofrin-PDT or Pc4-PDT with the cationic C16-ceramide LCL30 (20mg/kg i.p.) for treatment of subcutaneously growing SCCVII tumors rendered important differences in the therapy outcome. Photofrin-PDT, used at a dose that attained good initial response but no tumor cures, produced 50% cures when combined with a single LCL30 treatment. In contrast, the same LCL30 treatment combined with Pc4-PDT had no significant effect on tumor response. The optimal timing of LCL30 injection was immediately after Photofrin-PDT. The therapeutic benefit was lost when LCL30 was given in two 20mg/kg injections encompassing intervals before and after PDT. LCL85, the cationic B13 ceramide analogue and SL-modulating agent, also increased cure rates of Photofrin-PDT treated tumors, but the therapeutic benefit was less pronounced than with LCL30. These results with LCL30 and LCL85, and our previous findings for LCL29 (another SL analogue), assert the potential of SLs for use as adjuvants to augment the efficacy of PDT-mediated tumor destruction.
Collapse
|
22
|
Selvam SP, Ogretmen B. Sphingosine kinase/sphingosine 1-phosphate signaling in cancer therapeutics and drug resistance. Handb Exp Pharmacol 2013:3-27. [PMID: 23563649 DOI: 10.1007/978-3-7091-1511-4_1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In this chapter, roles of bioactive sphingolipids, specifically sphingosine kinase 1 (SK1) and 2 (SK2) and their product-sphingosine 1-phosphate (S1P)-will be reviewed with respect to regulation of cancer growth, metastasis, chemotherapeutics, and drug resistance. Sphingolipids are known to be key bioeffector molecules that regulate cancer proliferation, angiogenesis, and cell death. Sphingolipid molecules such as ceramide and S1P have been shown to control cancer cell death and proliferation, respectively. Roles of S1P have been described with respect to their intracellular and extracellular pro-survival and drug resistance functions mostly through S1P receptor (S1PR1-5) engagement. Identification of novel intracellular SK/S1P targets has broadened the existing complex regulatory roles of bioactive sphingolipids in cancer pathogenesis and therapeutics. Thus, deciphering the biochemical and molecular regulation of SK/S1P/S1PR signaling could permit development of novel therapeutic interventions to improve cancer therapy and/or overcome drug resistance.
Collapse
Affiliation(s)
- Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
23
|
Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 2012; 32:3242-52. [PMID: 22688512 DOI: 10.1128/mcb.00121-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration.
Collapse
|
24
|
Korbelik M, Zhang W, Separovic D. Amplification of cancer cell apoptosis in photodynamic therapy-treated tumors by adjuvant ceramide analog LCL29. Lasers Surg Med 2011; 43:614-20. [DOI: 10.1002/lsm.21068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Separovic D, Joseph N, Breen P, Bielawski J, Pierce JS, Buren EV, Bhatti G, Saad ZH, Bai A, Bielawska A. Combining anticancer agents photodynamic therapy and LCL85 leads to distinct changes in the sphingolipid profile, autophagy, caspase-3 activation in the absence of cell death, and long-term sensitization. Biochem Biophys Res Commun 2011; 409:372-7. [PMID: 21545791 DOI: 10.1016/j.bbrc.2011.04.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Accepted: 04/19/2011] [Indexed: 11/18/2022]
Abstract
Two anticancer agents, LCL85 and photodynamic therapy (PDT) were combined to test whether the combination PDT/LCL85 evokes changes in the sphingolipid (SL) profile and promotes cell death. Treatment of SCCVII mouse squamous carcinoma cells using the silicone phthalocyanine Pc 4 for PDT induced increases in the prodeath global ceramides/dihydroceramides (DHceramides), and no changes in the prosurvival sphingosine-1-phosphate (S1P). In contrast, after LCL85, the levels of most ceramides and DHceramides were reduced, whereas the levels of S1P were increased. After PDT/LCL85 the levels of global ceramides and DHceramides, and of S1P, were restored to resting levels. PDT/LCL85 also enhanced the levels of C18-, C20-, and C20:1-ceramide, and C18-DHceramide. Treatment with PDT, with or without LCL85, led to substantial reductions in sphingosine levels. PDT/LCL85 induced enhanced autophagy and caspase-3 activation. None of the treatments affected short-term viability of cells. In contrast, long-term clonogenic survival was reduced not only after PDT or LCL85, but even more after PDT/LCL85. Overall, our data show that short-term exposure to PDT/LCL85 led to distinct signature effects on the SL profile, enhanced autophagy, and caspase-3 activation without cell death. Long-term exposure to PDT/LCL85 enhanced overall cell killing, supporting translational potential of PDT/LCL85.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Ave., Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ponnusamy S, Meyers-Needham M, Senkal CE, Saddoughi SA, Sentelle D, Selvam SP, Salas A, Ogretmen B. Sphingolipids and cancer: ceramide and sphingosine-1-phosphate in the regulation of cell death and drug resistance. Future Oncol 2011; 6:1603-24. [PMID: 21062159 DOI: 10.2217/fon.10.116] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingolipids have emerged as bioeffector molecules, controlling various aspects of cell growth and proliferation in cancer, which is becoming the deadliest disease in the world. These lipid molecules have also been implicated in the mechanism of action of cancer chemotherapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates antiproliferative responses, such as cell growth inhibition, apoptosis induction, senescence modulation, endoplasmic reticulum stress responses and/or autophagy. Interestingly, recent studies suggest de novo-generated ceramides may have distinct and opposing roles in the promotion/suppression of tumors, and that these activities are based on their fatty acid chain lengths, subcellular localization and/or direct downstream targets. For example, in head and neck cancer cells, ceramide synthase 6/C(16)-ceramide addiction was revealed, and this was associated with increased tumor growth, whereas downregulation of its synthesis resulted in ER stress-induced apoptosis. By contrast, ceramide synthase 1-generated C(18)-ceramide has been shown to suppress tumor growth in various cancer models, both in situ and in vivo. In addition, ceramide metabolism to generate sphingosine-1-phosphate (S1P) by sphingosine kinases 1 and 2 mediates, with or without the involvement of G-protein-coupled S1P receptor signaling, prosurvival, angiogenesis, metastasis and/or resistance to drug-induced apoptosis. Importantly, recent findings regarding the mechanisms by which sphingolipid metabolism and signaling regulate tumor growth and progression, such as identifying direct intracellular protein targets of sphingolipids, have been key for the development of new chemotherapeutic strategies. Thus, in this article, we will present conclusions of recent studies that describe opposing roles of de novo-generated ceramides by ceramide synthases and/or S1P in the regulation of cancer pathogenesis, as well as the development of sphingolipid-based cancer therapeutics and drug resistance.
Collapse
Affiliation(s)
- Suriyan Ponnusamy
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
C16-Ceramide Analog Combined with Pc 4 Photodynamic Therapy Evokes Enhanced Total Ceramide Accumulation, Promotion of DEVDase Activation in the Absence of Apoptosis, and Augmented Overall Cell Killing. J Lipids 2010; 2011:713867. [PMID: 21490809 PMCID: PMC3066794 DOI: 10.1155/2011/713867] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 09/24/2010] [Indexed: 12/13/2022] Open
Abstract
Because of the failure of single modality approaches, combination therapy for cancer treatment is a promising alternative. Sphingolipid analogs, with or without anticancer drugs, can improve tumor response. C16-pyridinium ceramide analog LCL30, was used in combination with photodynamic therapy (PDT), an anticancer treatment modality, to test the hypothesis that the combined treatment will trigger changes in the sphingolipid profile and promote cell death. Using SCCVII mouse squamous carcinoma cells, and the silicone phthalocyanine Pc 4 for PDT, we showed that combining PDT with LCL30 (PDT/LCL30) was more effective than individual treatments in raising global ceramide levels, as well as in reducing dihydrosphingosine levels. Unlike LCL30, PDT, alone or combined, increased total dihydroceramide levels. Sphingosine levels were unaffected by LCL30, but were abolished after PDT or the combination. LCL30-triggered rise in sphingosine-1-phosphate was reversed post-PDT or the combination. DEVDase activation was evoked after PDT or LCL30, and was promoted post- PDT/LCL30. Neither mitochondrial depolarization nor apoptosis were observed after any of the treatments. Notably, treatment with the combination resulted in augmented overall cell killing. Our data demonstrate that treatment with PDT/LCL30 leads to enhanced global ceramide levels and DEVDase activation in the absence of apoptosis, and promotion of total cell killing.
Collapse
|
28
|
Separovic D, Bielawski J, Pierce JS, Merchant S, Tarca AL, Bhatti G, Ogretmen B, Korbelik M. Enhanced tumor cures after Foscan photodynamic therapy combined with the ceramide analog LCL29. Evidence from mouse squamous cell carcinomas for sphingolipids as biomarkers of treatment response. Int J Oncol 2010; 38:521-7. [PMID: 21152858 DOI: 10.3892/ijo.2010.863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 08/02/2010] [Indexed: 01/12/2023] Open
Abstract
To improve anticancer therapeutic success of photodynamic therapy (PDT), combination treatments represent a viable strategy. Sphingolipid analogs combined with anticancer drugs can enhance tumor response. We have shown that LCL29, a C6-pyridinium ceramide, promotes therapeutic efficacy of Photofrin-PDT in mouse SCCVII squamous cell carcinoma tumors. The long-term effect of the combination PDT + LCL29 is unknown. In this study we used the same model to test the long-term curative potential of Foscan-PDT + LCL29. We show that treatment of SCCVII tumors with the combination led to enhanced long-term tumor cure compared to PDT alone. LCL29 itself did not prevent tumor growth. All treatments triggered early increases in tumor-associated C16-ceramide, C18-ceramide, dihydrosphingosine, and global levels of dihydroceramides. PDT-evoked increases in tumor-associated sphingosine-1-phosphate and dihydrosphingosine-1-phosphate remained elevated or were attenuated after the combination, respectively; in contrast, LCL29 had no effect on these two sphingolipids. Our data demonstrate that adjuvant LCL29 improves PDT long-term therapeutic efficacy, implying translational potential of the combination. Furthermore, our findings indicate that changes in the sphingolipid profile might serve as predictive biomarkers of tumor response to treatments.
Collapse
Affiliation(s)
- D Separovic
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Ave, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Voelzmann A, Bauer R. Ceramide synthases in mammalians, worms, and insects: emerging schemes. Biomol Concepts 2010; 1:411-22. [DOI: 10.1515/bmc.2010.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
AbstractThe ceramide synthase (CerS) gene family comprises a group of highly conserved transmembrane proteins, which are found in all studied eukaryotes. The key feature of the CerS proteins is their role in ceramide synthase activity. Therefore, their original name ‘longevity assurance gene (Lass) homologs’, after the founding member, the yeast longevity assurance gene lag1, was altered to ‘CerS’. All CerS have high sequence similarity in a domain called LAG1 motif and a subset of CerS proteins is predicted to contain a Homeobox (Hox) domain. These domains could be the key to the multiple roles CerS have. CerS proteins play a role in diverse biological processes such as proliferation, differentiation, apoptosis, stress response, cancer, and neurodegeneration. In this review, we focus on CerS structure and biological function with emphasis of biological functions in the widely used model systems Caenorhabditis elegans and Drosophila melanogaster. Also, we focus on the accumulating data suggesting a role for CerS in lipid homeostasis.
Collapse
Affiliation(s)
- André Voelzmann
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| | - Reinhard Bauer
- 1LIMES Institute, Program Unit Development and Genetics, Laboratory for Molecular Developmental Biology, University of Bonn, Carl-Troll-Str. 31, D-53115 Bonn, Germany
| |
Collapse
|
30
|
Abstract
In mammals, ceramide, a key intermediate in sphingolipid metabolism and an important signaling molecule, is synthesized by a family of six ceramide synthases (CerS), each of which synthesizes ceramides with distinct acyl chain lengths. There are a number of common biochemical features between the CerS, such as their catalytic mechanism, and their structure and intracellular localization. Different CerS also display remarkable differences in their biological properties, with each of them playing distinct roles in processes as diverse as cancer and tumor suppression, in the response to chemotherapeutic drugs, in apoptosis, and in neurodegenerative diseases.
Collapse
Affiliation(s)
- Michal Levy
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
31
|
Separovic D, Kelekar A, Nayak AK, Tarca AL, Hanada K, Pierce JS, Bielawski J. Increased ceramide accumulation correlates with downregulation of the autophagy protein ATG-7 in MCF-7 cells sensitized to photodamage. Arch Biochem Biophys 2010; 494:101-5. [PMID: 19944062 PMCID: PMC2877393 DOI: 10.1016/j.abb.2009.11.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to determine the sphingolipid (SL) profile in cells defective in autophagy protein ATG-7 and overall cell death after photodynamic therapy (PDT) with the photosensitizer Pc 4. MCF-7 human breast cancer cells with downregulated ATG-7 and their scrambled controls (Scr) were used. Exposure of ATG-7 knockdown cells to PDT led to increased cell killing. PDT evoked an early (2h) greater global increase in ceramides in ATG-7 defective cells compared to Scr cells. The total increases in dihydroceramide (DHceramide) were significant at 2 and 24h in both cell types post-PDT. The levels of sphingosine-1-phosphate (S1P) and sphingosine were decreased below resting levels at both time points irrespective of the cell type. The data imply that ceramide might be a marker of ATG-7 deficiency in cells sensitized to PDT.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Increased tumour dihydroceramide production after Photofrin-PDT alone and improved tumour response after the combination with the ceramide analogue LCL29. Evidence from mouse squamous cell carcinomas. Br J Cancer 2009; 100:626-32. [PMID: 19223911 PMCID: PMC2653738 DOI: 10.1038/sj.bjc.6604896] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Photodynamic therapy (PDT) has been proven effective for treatment of several types of cancer. Photodynamic therapy alone, however, attains limited cures with some tumours and there is need for its improved efficacy in such cases. Sphingolipid (SL) analogues can promote tumour response in combination with anticancer drugs. In this study, we used mouse SCCVII squamous cell carcinoma tumours to determine the impact of Photofrin-PDT on the in vivo SL profile and the effect of LCL29, a C6-pyridinium ceramide, on PDT tumour response. Following PDT, the levels of dihydroceramides (DHceramides), in particular C20-DHceramide, were elevated in tumours. Similarly, increases in DHceramides, in addition to C20:1-ceramide, were found in PDT-treated SCCVII cells. These findings indicate the importance of the de novo ceramide pathway in Photofrin-PDT response not only in cells but also in vivo. Notably, co-exposure of SCCVII tumours to Photofrin-PDT and LCL29 led to enhanced tumour response compared with PDT alone. Thus, we show for the first time that Photofrin-PDT has a distinct signature effect on the SL profile in vitro and in vivo, and that the combined treatment advances PDT therapeutic gain, implying translational significance of the combination.
Collapse
|
33
|
Abstract
In this chapter, roles of bioactive sphingolipids in the regulation of cancer pathogenesis and therapy will be reviewed. Sphingolipids have emerged as bioeffector molecules, which control various aspects of cell growth, proliferation, and anti-cancer therapeutics. Ceramide, the central molecule of sphingolipid metabolism, generally mediates anti-proliferative responses such as inhibition of cell growth, induction of apoptosis, and/or modulation of senescence. On the other hand, sphingosine 1-phosphate (S1P) plays opposing roles, and induces transformation, cancer cell growth, or angiogenesis. A network of metabolic enzymes regulates the generation of ceramide and S1P, and these enzymes serve as transducers of sphingolipid-mediated responses that are coupled to various exogenous or endogenous cellular signals. Consistent with their key roles in the regulation of cancer growth and therapy, attenuation of ceramide generation and/or increased S1P levels are implicated in the development of resistance to drug-induced apoptosis, and escape from cell death. These data strongly suggest that advances in the molecular and biochemical understanding of sphingolipid metabolism and function will lead to the development of novel therapeutic strategies against human cancers, which may also help overcome drug resistance.
Collapse
|
34
|
De novo N-palmitoylsphingosine synthesis is the major biochemical mechanism of ceramide accumulation following p53 up-regulation. Prostaglandins Other Lipid Mediat 2008; 86:41-8. [DOI: 10.1016/j.prostaglandins.2008.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 02/11/2008] [Accepted: 02/26/2008] [Indexed: 12/17/2022]
|
35
|
Håversen L, Danielsson KN, Fogelstrand L, Wiklund O. Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages. Atherosclerosis 2008; 202:382-93. [PMID: 18599066 DOI: 10.1016/j.atherosclerosis.2008.05.033] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 10/22/2022]
Abstract
Increased circulating free fatty acids in subjects with type 2 diabetes may contribute to activation of macrophages, and thus the development of atherosclerosis. In this study, we investigated the effect of the saturated fatty acids (SFA) palmitate, stearate, myristate and laurate, and the unsaturated fatty acid linoleate, on the production of proinflammatory cytokines in phorbol ester-differentiated THP-1 cells, a model of human macrophages. Palmitate induced secretion and mRNA expression of TNF-alpha, IL-8 and IL-1 beta, and enhanced lipopolysaccharide (LPS)-induced IL-1 beta secretion. Proinflammatory cytokine secretion was also induced by stearate, but not by the shorter chain SFA, myristate and laurate, or linoleate. Triacsin C abolished the palmitate-induced cytokine secretion, suggesting that palmitate activation to palmitoyl-CoA is required for its effect. Palmitate-induced cytokine secretion was decreased by knockdown of serine palmitoyltransferase and mimicked by C(2)-ceramide, indicating that ceramide is involved in palmitate-induced cytokine secretion. Palmitate phosphorylated p38 and JNK kinases, and blocking of these kinases with specific inhibitors diminished the palmitate-induced cytokine secretion. Palmitate also activated the AP-1 (c-Jun) transcription factor. Knockdown of MyD88 reduced the palmitate-induced IL-8, but not TNF-alpha or IL-1 beta secretion. In conclusion, our data suggest that the long-chain SFA induce proinflammatory cytokines in human macrophages via pathways involving de novo ceramide synthesis. This might contribute to the activation of macrophages in atherosclerotic plaques, especially in type 2 diabetes.
Collapse
Affiliation(s)
- Liliana Håversen
- Wallenberg Laboratory for Cardiovascular Research, Sahlgrenska Academy, Göteborg University, Bruna Stråket 16, 41345 Göteborg, Sweden.
| | | | | | | |
Collapse
|
36
|
Suppression of sphingomyelin synthase 1 by small interference RNA is associated with enhanced ceramide production and apoptosis after photodamage. Exp Cell Res 2008; 314:1860-8. [PMID: 18374917 DOI: 10.1016/j.yexcr.2008.02.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Revised: 02/19/2008] [Accepted: 02/20/2008] [Indexed: 02/07/2023]
Abstract
We have shown that overexpression of SMS1, an enzyme that converts de novo ceramide into sphingomyelin, is accompanied by attenuated ceramide response and apoptotic resistance after photodamage with the photosensitizer Pc 4 (photodynamic therapy; PDT). To test whether SMS1 overexpression-related effects after PDT can be reversed, in this study SMS1 was downregulated in Jurkat T lymphoma/leukemia cells using small inhibitory RNA (siRNA) for SMS1. Compared to scrambled (control) siRNA-transfectants, in SMS1 siRNA-transfected cells the activity of SMS at rest was downregulated with concomitant decrease in sphingomyelin mass. In SMS1 siRNA-transfected cells increases in ceramides were higher than in control siRNA-transfectants after PDT. Similar findings were obtained for dihydroceramides suggesting the involvement of de novo ceramide pathway. PDT-induced DEVDase (caspase-3-like) activation was enhanced in SMS1 siRNA-transfected cells compared to their control counterparts. The data show that RNA interference-dependent downregulation of SMS1 is associated with increased accumulation of ceramide and dihydroceramide with concomitant sensitization of cells to apoptosis after photodamage. Similarly, in SMS2 siRNA-transfected cells, downregulation of SMS activity was accompanied by potentiated DEVDase activation post-photodamage. These findings suggest that SMS is a potential novel molecular target that can augment therapeutic efficacy of PDT.
Collapse
|
37
|
Dolgachev V, Berlin AA, Lukacs NW. Eosinophil activation of fibroblasts from chronic allergen-induced disease utilizes stem cell factor for phenotypic changes. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 172:68-76. [PMID: 18156208 DOI: 10.2353/ajpath.2008.070082] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the present studies the role of stem cell factor (SCF) in mediating eosinophil and fibroblast activation during their interaction was investigated. SCF was significantly higher in fibroblasts grown from lungs of chronic allergen-challenged mice compared to fibroblasts grown from normal mice. When eosinophils were layered onto fibroblasts from allergic mice, a significant increase in SCF was detected compared to fibroblasts from nonallergic mice. The interaction of fibroblasts with eosinophils also increased the production of asthma-associated chemokines, CCL5 and CCL6, was dependent on cell-to-cell interaction, and was observed only with fibroblasts derived from lungs of chronic allergen-challenged mice and not from those derived from unchallenged normal mice. Chemokine production was significantly decreased when anti-SCF antibodies were added during eosinophil-fibroblast interaction. The interaction of fibroblasts from chronic allergen-challenged mice with eosinophils also increased alpha-smooth muscle cell actin and procollagen I expression as well as induced transforming growth factor-beta. The changes in myofibroblast activation were dependent on SCF-mediated pathways because anti-SCF antibody treatment reduced the expression of all three of these latter fibrosis-associated markers. Thus, our data suggest that SCF mediates an important activation pathway for fibroblasts during chronic allergic responses on interaction with recruited eosinophils and suggest a potential mechanism of airway remodeling during chronic disease.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Pathology, University of Michigan, 109 Zina Pitcher, Ann Arbor, MI 48109-2200, USA.
| | | | | |
Collapse
|
38
|
Buytaert E, Dewaele M, Agostinis P. Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta Rev Cancer 2007; 1776:86-107. [PMID: 17693025 DOI: 10.1016/j.bbcan.2007.07.001] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 06/27/2007] [Accepted: 07/01/2007] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) is a recently developed anticancer modality utilizing the generation of singlet oxygen and other reactive oxygen species, through visible light irradiation of a photosensitive dye accumulated in the cancerous tissue. Multiple signaling cascades are concomitantly activated in cancer cells exposed to the photodynamic stress and depending on the subcellular localization of the damaging ROS, these signals are transduced into adaptive or cell death responses. Recent evidence indicates that PDT can kill cancer cells directly by the efficient induction of apoptotic as well as non-apoptotic cell death pathways. The identification of the molecular effectors regulating the cross-talk between apoptosis and other major cell death subroutines (e.g. necrosis, autophagic cell death) is an area of intense research in cancer therapy. Signaling molecules modulating the induction of different cell death pathways can become useful targets to induce or increase photokilling in cancer cells harboring defects in apoptotic pathways, which is a crucial step in carcinogenesis and therapy resistance. This review highlights recent developments aimed at deciphering the molecular interplay between cell death pathways as well as their possible therapeutic exploitation in photosensitized cells.
Collapse
Affiliation(s)
- Esther Buytaert
- Department of Molecular and Cell Biology, Faculty of Medicine, Catholic University of Leuven, Campus Gasthuisberg, Herestraat 49, B-3000, Leuven Belgium
| | | | | |
Collapse
|
39
|
Separovic D, Hanada K, Maitah MYA, Nagy B, Hang I, Tainsky MA, Kraniak JM, Bielawski J. Sphingomyelin synthase 1 suppresses ceramide production and apoptosis post-photodamage. Biochem Biophys Res Commun 2007; 358:196-202. [PMID: 17467659 PMCID: PMC2701614 DOI: 10.1016/j.bbrc.2007.04.095] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2007] [Accepted: 04/14/2007] [Indexed: 10/23/2022]
Abstract
The role of sphingomyelin synthase 1 (SMS1), the Golgi membrane isoform of the enzyme, in ceramide metabolism and apoptosis after photodamage with the photosensitizer Pc 4 (PDT) is unclear. In the present study, using electrospray ionization/double mass spectrometry, we show that in Jurkat cells overexpressing SMS1, increases in ceramides were lower than in empty-vector transfectants post-PDT. Similarly, the responses of dihydroceramides and dihydrosphingosine, precursors of ceramide in the de novo synthetic pathway, were attenuated in SMS1-overexpressor after photodamage, suggesting the involvement of the de novo pathway. Overexpression of SMS1 was associated with differential regulation of sphingomyelin levels, as well as with the reduced inhibition of the enzyme post-treatment. Concomitant with the suppressed ceramide response, PDT-induced DEVDase activation was substantially reduced in SMS1-overexpressors. The data show that overexpression of SMS1 is associated with suppressed ceramide response and apoptotic resistance after photodamage.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Fundamental and Applied Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dolgachev V, Thomas M, Berlin A, Lukacs NW. Stem cell factor-mediated activation pathways promote murine eosinophil CCL6 production and survival. J Leukoc Biol 2007; 81:1111-9. [PMID: 17234680 DOI: 10.1189/jlb.0906595] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Eosinophil activation during allergic diseases has a detrimental role in the generation of pathophysiologic responses. Stem cell factor (SCF) has recently shown an inflammatory, gene-activating role on eosinophils and contributes to the generation of pathophysiologic changes in the airways during allergic responses. The data in the present study outline the signal transduction events that are induced by SCF in eosinophils and further demonstrate that MEK-mediated signaling pathways are crucial for SCF-induced CCL6 chemokine activation and eosinophil survival. SCF-mediated eosinophil activation was demonstrated to include PI-3K activation as well as MEK/MAPK phosphorylation pathways. Subsequent analysis of CCL6 gene activation and production induced by SCF in the presence or absence of rather specific inhibitors for certain pathways demonstrated that the MEK/MAPK pathway but not the PI-3K pathway was crucial for the SCF-induced CCL6 gene activation. These same signaling pathways were shown to initiate antiapoptotic events and promote eosinophil survival, including up-regulation of BCL2 and BCL3. Altogether, SCF appears to be a potent eosinophil activation and survival factor.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Pathology, University of Michigan Medical School, 109 Zina Pitcher Place, Room 4618, Ann Arbor, MI 48109-2200, USA.
| | | | | | | |
Collapse
|
41
|
Curfman CL, Kirkland K, Merrill AH. Recent anticancer agents targeting sphingolipid pathways. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.8.1129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Stylli SS, Kaye AH. Photodynamic therapy of cerebral glioma – A review Part I – A biological basis. J Clin Neurosci 2006; 13:615-25. [PMID: 16554159 DOI: 10.1016/j.jocn.2005.11.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 11/27/2005] [Indexed: 11/16/2022]
Abstract
Photodynamic therapy (PDT) has been investigated extensively in the laboratory for decades, and for over 25 years in the clinical environment, establishing it as a useful adjuvant to standard treatments for many cancers. A combination of both photochemical and photobiological processes occur that lead to the eventual selective destruction of the tumour cells. It is a potentially valuable adjuvant therapy that can be used in conjunction with other conventional therapies for the treatment of cerebral glioma. PDT has undergone extensive laboratory studies and clinical trials with a variety of photosensitizers (PS) and tumour models of cerebral glioma. Many environmental and genetically based factors influence the outcome of the PDT response. The biological basis of PDT is discussed with reference to laboratory and preclinical studies.
Collapse
Affiliation(s)
- Stanley S Stylli
- Department of Neurosurgery, 5th Floor Clinical Sciences Building, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3052, Australia.
| | | |
Collapse
|
43
|
Separovic D, Wang S, Awad Maitah MY, Hanada K, Kessel D. Ceramide response post-photodamage is absent after treatment with HA14-1. Biochem Biophys Res Commun 2006; 345:803-8. [PMID: 16701558 PMCID: PMC2972543 DOI: 10.1016/j.bbrc.2006.04.131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 04/24/2006] [Indexed: 12/14/2022]
Abstract
The oxidative stress induced by photodynamic therapy using the phthalocyanine Pc 4 (PDT) can lead to apoptosis, and is accompanied by photodamage to Bcl-2 and accumulation of de novo ceramide. Similar to PDT, the oxidative stress inducer and Bcl-2 inhibitor HA14-1 triggers apoptosis. To test the specificity of the ceramide response, Jurkat cells were exposed to an equitoxic dose of HA14-1. Unlike PDT, HA14-1 did not induce accumulation of de novo ceramide, although levels of sphingomyelin, phosphatidylserine and phosphatidylethanolamine were below control values after either treatment. In contrast to PDT, (i) the transient inhibition of serine palmitoyltransferase induced by HA14-1 was associated with the initial decrease in de novo ceramide, and (ii) HA14-1-initiated inhibition of sphingomyelin synthase and glucosylceramide synthase did not result in accumulation of de novo ceramide. These results show that the ceramide response to PDT is not induced by another pro-apoptotic stimulus, and may be unique to PDT as described here.
Collapse
Affiliation(s)
- Duska Separovic
- Department of Fundamental and Applied Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
44
|
Lépine S, Le Stunff H, Lakatos B, Sulpice JC, Giraud F. ATP-induced apoptosis of thymocytes is mediated by activation of P2 X 7 receptor and involves de novo ceramide synthesis and mitochondria. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1761:73-82. [PMID: 16325464 DOI: 10.1016/j.bbalip.2005.10.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 10/03/2005] [Accepted: 10/05/2005] [Indexed: 11/26/2022]
Abstract
Thymocytes were reported to undergo apoptosis in the presence of extracellular ATP through the activation of the purinergic receptors P2 X 1R, P2 X 7R or both. We investigated the identity of the P2 X R and the signaling pathways involved in ATP-mediated apoptosis. Apoptosis elicited by ATP was prevented by inhibition of P2 X 7R, or in thymocytes bearing a mutated P2 X 7R, and reproduced with a P2 X 7R agonist, but not with a P2 X 1R agonist. Stimulation of thymocytes with either ATP or a P2 X 7R agonist was found to stimulate a late de novo ceramide synthesis and mitochondrial alterations. Inhibition of either processes attenuated apoptosis. Interestingly, stimulation with either ATP or a P2 X 1R agonist induced an early ceramide accumulation and a weak caspases-3/7 activation that did not lead to apoptosis. In conclusion, de novo ceramide generation and mitochondrial alterations, both resulting from P2 X 7R activation, were implicated in ATP-induced thymocyte apoptosis.
Collapse
Affiliation(s)
- S Lépine
- Biomembranes et Messagers Cellulaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8619, Université Paris XI-Orsay, France
| | | | | | | | | |
Collapse
|
45
|
Saito M, Saito M, Cooper TB, Vadasz C. Ethanol-Induced Changes in the Content of Triglycerides, Ceramides, and Glucosylceramides in Cultured Neurons. Alcohol Clin Exp Res 2005; 29:1374-83. [PMID: 16131844 DOI: 10.1097/01.alc.0000175011.22307.61] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Ethanol induces apoptosis in cultured neurons. To assess the involvement of sphingolipids and neutral lipids in the apoptotic process, ethanol-induced alterations in lipid content and metabolism were examined by using primary cultured rat cerebellar granule neurons (CGNs), human neuroblastoma SK-N-SH cells, and mouse neuroblastoma Neuro2a cells. Ethanol treatment conditions that induced apoptosis in CGNs and SK-N-SH cells but not in Neuro2a cells were used for these experiments. METHODS Cultured neurons were treated with and without 100 mM ethanol for one to three days, and the amounts of cellular sphingolipids [ceramide, glucosylceramide (GlcCer), and sphingomyelin] and neutral lipids [cholesterol, triglyceride (TG), and cholesterol ester (ChE)] were analyzed by high-performance thin-layer chromatography, using a Coomassie brilliant blue staining method. The incorporation of [C] acetate into each lipid fraction was measured in CGNs treated with and without ethanol. Also, the effect of delipidated serum, sterols, myriocin (a serine-palmitoyltransferase inhibitor), and desipramine (an acid sphingomyelinase inhibitor) on ethanol-induced lipid changes was studied by using Neuro2a cells. RESULTS The most prominent change common to CGN, SK-N-SH, and Neuro2a cells was ethanol-induced TG accumulation. Higher incorporation of radioactivity into TG was also observed in ethanol-treated cultures when cellular lipids were metabolically labeled with [C] acetate in CGNs. In addition, ethanol elevated ceramide levels in all these neurons. However, ethanol induced decreases in GlcCer along with the reduction of cell viability in SK-N-SH cells and CGNs, whereas it increased GlcCer in Neuro2a cells that remained viable. Myriocin, which reduced ceramide levels, attenuated ethanol-induced cell death in SK-N-SH cells. Ethanol-induced accumulation of TG was sterol-independent, whereas changes in ceramide and GlcCer were affected in Neuro2a cells by the presence of sterols in the medium. Staurosporine, which induced cell death in SK-N-SH cells, increased levels of TG, ChE, and ceramides and reduced the level of GlcCer. CONCLUSIONS The results showing that ethanol induces accumulation of TG and ceramide in cultured neurons suggest that ethanol enhances lipogenesis and/or reduces fatty acid degradation in neurons, as previously observed in other cell types. Further, ethanol-induced changes in lipid metabolism, specifically those of ceramide and GlcCer, may be related to the ethanol-induced apoptotic pathway.
Collapse
Affiliation(s)
- Mariko Saito
- Laboratory of Neurobehavior Genetics and the Division of Analytical Psychopharmacology, The Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | |
Collapse
|
46
|
Dolgachev V, Oberley LW, Huang TT, Kraniak JM, Tainsky MA, Hanada K, Separovic D. A role for manganese superoxide dismutase in apoptosis after photosensitization. Biochem Biophys Res Commun 2005; 332:411-7. [PMID: 15894290 DOI: 10.1016/j.bbrc.2005.04.141] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2005] [Accepted: 04/26/2005] [Indexed: 11/23/2022]
Abstract
The oxidative stress triggered by photodynamic therapy (PDT) involves generation of cytotoxic reactive oxygen species, including superoxide radical, accumulation of de novo-generated ceramide, and induction of apoptosis. Since PDT with the photosensitizer phthalocyanine Pc 4 induces mitochondrial damage and the superoxide scavenger manganese superoxide dismutase (MnSOD) is localized to mitochondria, here we tested genetically the role of MnSOD in apoptosis and ceramide accumulation after photosensitization with Pc 4. Jurkat cells overexpressing wild-type MnSOD were protected from Pc 4-PDT-initiated apoptosis, but not from increased ceramide response to Pc 4-PDT. In Jurkat cells overexpressing mutant MnSOD, however, DEVDase activation and ceramide formation were promoted post-Pc 4-PDT. Similarly, in MnSOD-null cells, Pc 4-PDT-induced apoptosis, as well as ceramide accumulation, were enhanced compared to their normal counterparts. The data show that MnSOD affects sensitivity of cells to Pc 4-PDT-initiated apoptosis, and partly ceramide accumulation, suggesting that the processes are superoxide-mediated.
Collapse
Affiliation(s)
- Vladislav Dolgachev
- Department of Fundamental and Applied Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Almeida RD, Manadas BJ, Carvalho AP, Duarte CB. Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta Rev Cancer 2004; 1704:59-86. [PMID: 15363861 DOI: 10.1016/j.bbcan.2004.05.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 05/26/2004] [Accepted: 05/28/2004] [Indexed: 12/28/2022]
Abstract
In photodynamic therapy (PDT) a sensitizer, light and oxygen are used to induce death of tumor cells and in the treatment of certain noncancerous conditions. Cell death in PDT may occur by apoptosis or by necrosis, depending on the sensitizer, on the PDT dose and on the cell genotype. Some sensitizers that have been used in PDT are accumulated in the mitochondria, and this may explain their efficiency in inducing apoptotic cell death, both in vitro and in vivo. In this review we will focus on the events that characterize apoptotic death in PDT and on the intracellular signaling events that are set in motion in photosensitized cells. Activation of phospholipases, changes in ceramide metabolism, a rise in the cytosolic free Ca2+ concentration, stimulation of nitric oxide synthase (NOS), changes in protein phosphorylation and alterations in the activity of transcription factors and on gene expression have all been observed in PDT-treated cells. Although many of these metabolic reactions contribute to the demise process, some of them may antagonize cell death. Understanding the signaling mechanisms in PDT may provide means to modulate the PDT effects at the molecular level and potentiate its antitumor effectiveness.
Collapse
Affiliation(s)
- Ramiro D Almeida
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, Coimbra, 3004-517 Portugal
| | | | | | | |
Collapse
|