1
|
Gundu C, Arruri VK, Yadav P, Navik U, Kumar A, Amalkar VS, Vikram A, Gaddam RR. Dynamin-Independent Mechanisms of Endocytosis and Receptor Trafficking. Cells 2022; 11:cells11162557. [PMID: 36010634 PMCID: PMC9406725 DOI: 10.3390/cells11162557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 11/16/2022] Open
Abstract
Endocytosis is a fundamental mechanism by which cells perform housekeeping functions. It occurs via a variety of mechanisms and involves many regulatory proteins. The GTPase dynamin acts as a “molecular scissor” to form endocytic vesicles and is a critical regulator among the proteins involved in endocytosis. Some GTPases (e.g., Cdc42, arf6, RhoA), membrane proteins (e.g., flotillins, tetraspanins), and secondary messengers (e.g., calcium) mediate dynamin-independent endocytosis. These pathways may be convergent, as multiple pathways exist in a single cell. However, what determines the specific path of endocytosis is complex and challenging to comprehend. This review summarizes the mechanisms of dynamin-independent endocytosis, the involvement of microRNAs, and factors that contribute to the cellular decision about the specific route of endocytosis.
Collapse
Affiliation(s)
- Chayanika Gundu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, Telangana, India
| | - Vijay Kumar Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53792, USA
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata 700054, West Bengal, India
| | - Veda Sudhir Amalkar
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ajit Vikram
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Correspondence:
| |
Collapse
|
2
|
Huang A, Binmahfouz L, Hancock DP, Anderson PH, Ward DT, Conigrave AD. Calcium-Sensing Receptors Control CYP27B1-Luciferase Expression: Transcriptional and Posttranscriptional Mechanisms. J Endocr Soc 2021; 5:bvab057. [PMID: 34337274 PMCID: PMC8317635 DOI: 10.1210/jendso/bvab057] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Indexed: 12/19/2022] Open
Abstract
25-hydroxyvitamin D 1α-hydroxylase (encoded by CYP27B1), which catalyzes the synthesis of 1,25-dihydroxyvitamin D3, is subject to negative or positive modulation by extracellular Ca2+ (Ca2+o) depending on the tissue. However, the Ca2+ sensors and underlying mechanisms are unidentified. We tested whether calcium-sensing receptors (CaSRs) mediate Ca2+o-dependent control of 1α-hydroxylase using HEK-293 cells stably expressing the CaSR (HEK-CaSR cells). In HEK-CaSR cells, but not control HEK-293 cells, cotransfected with reporter genes for CYP27B1-Photinus pyralis (firefly) luciferase and control Renilla luciferase, an increase in Ca2+o from 0.5mM to 3.0mM induced a 2- to 3-fold increase in firefly luciferase activity as well as mRNA and protein levels. Surprisingly, firefly luciferase was specifically suppressed at Ca2+o ≥ 5.0mM, demonstrating biphasic Ca2+o control. Both phases were mediated by CaSRs as revealed by positive and negative modulators. However, Ca2+o induced simple monotonic increases in firefly luciferase and endogenous CYP27B1 mRNA levels, indicating that the inhibitory effect of high Ca2+o was posttranscriptional. Studies with inhibitors and the CaSR C-terminal mutant T888A identified roles for protein kinase C (PKC), phosphorylation of T888, and extracellular regulated protein kinase (ERK)1/2 in high Ca2+o-dependent suppression of firefly luciferase. Blockade of both PKC and ERK1/2 abolished Ca2+o-stimulated firefly luciferase, demonstrating that either PKC or ERK1/2 is sufficient to stimulate the CYP27B1 promoter. A key CCAAT box (−74 bp to −68 bp), which is regulated downstream of PKC and ERK1/2, was required for both basal transcription and Ca2+o-mediated transcriptional upregulation. The CaSR mediates Ca2+o-dependent transcriptional upregulation of 1α-hydroxylase and an additional CaSR-mediated mechanism is identified by which Ca2+o can promote luciferase and possibly 1α-hydroxylase breakdown.
Collapse
Affiliation(s)
- Alice Huang
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Lenah Binmahfouz
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Dale P Hancock
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| | - Paul H Anderson
- Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, SA, 5001, Australia
| | - Donald T Ward
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Arthur D Conigrave
- School of Life and Environmental Sciences, Charles Perkins Centre (D17), University of Sydney, NSW 2006Australia
| |
Collapse
|
3
|
Zearalenone Induces Endothelial Cell Apoptosis through Activation of a Cytosolic Ca 2+/ERK1/2/p53/Caspase 3 Signaling Pathway. Toxins (Basel) 2021; 13:toxins13030187. [PMID: 33806711 PMCID: PMC8001463 DOI: 10.3390/toxins13030187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022] Open
Abstract
Zearalenone (ZEN) is a mycotoxin that has been reported to damage various types of cells/tissues, yet its effects on endothelial cells (ECs) have never been investigated. Therefore, this study investigates the potential effects of ZEN using bovine aortic ECs (BAECs). In this study, we found that ZEN induced apoptosis of BAECs through increased cleavage of caspase 3 and poly ADP-ribose polymerase (PARP). ZEN also increased phosphorylation of ERK1/2 and p53, and treatment with the ERK1/2 or p53 inhibitor reversed ZEN-induced EC apoptosis. Transfection of BAECs with small interfering RNA against ERK1/2 or p53 revealed ERK1/2 as an upstream target of p53 in ZEN-stimulated apoptosis. ZEN increased the production of reactive oxygen species (ROS), yet treatment with the antioxidant did not prevent EC apoptosis. Similarly, blocking of estrogen receptors by specific inhibitors also did not prevent ZEN-induced apoptosis. Finally, chelation of cytosolic calcium (Ca2+) using BAPTA-AM or inhibition of endoplasmic reticulum (ER) Ca2+ channel using 2-APB reversed ZEN-induced EC apoptosis, but not by inhibiting ER stress using 4-PBA. Together, our findings demonstrate that ZEN induces EC apoptosis through an ERK1/2/p53/caspase 3 signaling pathway activated by Ca2+ release from the ER, and this pathway is independent of ROS production and estrogen receptor activation.
Collapse
|
4
|
Moon JE, Yang HY, Wee G, ParK SH, Ko CW. A cell function study on calcium regulation of a novel calcium-sensing receptor mutation (p.Tyr825Phe). Ann Pediatr Endocrinol Metab 2021; 26:24-30. [PMID: 32871647 PMCID: PMC8026336 DOI: 10.6065/apem.2040022.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
PURPOSE Autosomal dominant hypocalcemia with hypercalciuria is a genetic disease characterized by hypoparathyroidism with hypercalciuria. We discovered a novel variant (p.Tyr825Phe[Y825F]) of the CASR gene in a neonate with congenital hypoparathyroidism and hypercalciuria and conducted a cell function study to determine whether the CASR-Y825F variant was pathogenic. METHODS To perform a functional study on CaSR-Y825F, we constructed expression vectors expressing wild-type (WT) CASR and CASR-Y825F. After transfection of each expression vector into HEK293 cells, we examined alterations in intracellular signaling. Mitogen-activated protein kinase (MAPK) signaling activity of HEK293 cells expressing CASR-WT or CASR-Y825F was determined. Changes in intracellular calcium ions ([Ca2+]i) by extracellular calcium ion ([Ca2+]e) stimulation were quantitatively compared and analyzed. RESULTS Cells expressing CASR-Y825F showed elevated of MAPK signaling (phospho-ERK [pERK], phospho-JNK [pJNK], phospho-p38 [pp38]) and increased [Ca2+]i levels at low [Ca2+]e stimulation compared with cells expressing CASR-WT. Additionally, [Ca2+]i levels in HEK293 cells expression CASR-WT and CASR-Y825F were determined at 340 nm/380 nm wavelength ratios using Fura-2 AM. At [Ca2+]e concentrations of 2.5 mM and 3 mM, the ratios of CASR-Y825F cells were higher (2.6 and 3.5, respectively) than those of CASR-WT cells (1.04 and 1.40, respectively). CONCLUSION This cell function study proved that the CASR-Y825F expressed in HEK293 cells elevated MAPK signaling (pERK, pJNK, pp38) and increased [Ca2+]i to induce hypocalcemia.
Collapse
Affiliation(s)
- Jung Eun Moon
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Hee-Young Yang
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Gabbine Wee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu, Korea
| | - Suk-Hyun ParK
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Cheol Woo Ko
- Department of Pediatrics, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea,Address for correspondence: Cheol Woo Ko Department of Pediatric Endocrinology, Kyungpook National University Children's Hospital, 807, Hoguk-ro, Buk-gu, Daegu 41404, Korea
| |
Collapse
|
5
|
Yang LK, Hou ZS, Tao YX. Biased signaling in naturally occurring mutations of G protein-coupled receptors associated with diverse human diseases. Biochim Biophys Acta Mol Basis Dis 2021; 1867:165973. [PMID: 32949766 PMCID: PMC7722056 DOI: 10.1016/j.bbadis.2020.165973] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) play critical roles in transmitting a variety of extracellular signals into the cells and regulate diverse physiological functions. Naturally occurring mutations that result in dysfunctions of GPCRs have been known as the causes of numerous diseases. Significant progresses have been made in elucidating the pathophysiology of diseases caused by mutations. The multiple intracellular signaling pathways, such as G protein-dependent and β-arrestin-dependent signaling, in conjunction with recent advances on biased agonism, have broadened the view on the molecular mechanism of disease pathogenesis. This review aims to briefly discuss biased agonism of GPCRs (biased ligands and biased receptors), summarize the naturally occurring GPCR mutations that cause biased signaling, and propose the potential pathophysiological relevance of biased mutant GPCRs associated with various endocrine diseases.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zhi-Shuai Hou
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
6
|
Sensing Extracellular Calcium - An Insight into the Structure and Function of the Calcium-Sensing Receptor (CaSR). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:1031-1063. [PMID: 31646544 DOI: 10.1007/978-3-030-12457-1_41] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor that plays a key role in calcium homeostasis, by sensing free calcium levels in blood and regulating parathyroid hormone secretion in response. The CaSR is highly expressed in parathyroid gland and kidney where its role is well characterised, but also in other tissues where its function remains to be determined. The CaSR can be activated by a variety of endogenous ligands, as well as by synthetic modulators such as Cinacalcet, used in the clinic to treat secondary hyperparathyroidism in patients with chronic kidney disease. The CaSR couples to multiple G proteins, in a tissue-specific manner, activating several signalling pathways and thus regulating diverse intracellular events. The multifaceted nature of this receptor makes it a valuable therapeutic target for calciotropic and non-calciotropic diseases. It is therefore essential to understand the complexity behind the pharmacology, trafficking, and signalling characteristics of this receptor. This review provides an overview of the latest knowledge about the CaSR and discusses future hot topics in this field.
Collapse
|
7
|
King MM, Kayastha BB, Franklin MJ, Patrauchan MA. Calcium Regulation of Bacterial Virulence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:827-855. [PMID: 31646536 DOI: 10.1007/978-3-030-12457-1_33] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium (Ca2+) is a universal signaling ion, whose major informational role shaped the evolution of signaling pathways, enabling cellular communications and responsiveness to both the intracellular and extracellular environments. Elaborate Ca2+ regulatory networks have been well characterized in eukaryotic cells, where Ca2+ regulates a number of essential cellular processes, ranging from cell division, transport and motility, to apoptosis and pathogenesis. However, in bacteria, the knowledge on Ca2+ signaling is still fragmentary. This is complicated by the large variability of environments that bacteria inhabit with diverse levels of Ca2+. Yet another complication arises when bacterial pathogens invade a host and become exposed to different levels of Ca2+ that (1) are tightly regulated by the host, (2) control host defenses including immune responses to bacterial infections, and (3) become impaired during diseases. The invading pathogens evolved to recognize and respond to the host Ca2+, triggering the molecular mechanisms of adhesion, biofilm formation, host cellular damage, and host-defense resistance, processes enabling the development of persistent infections. In this review, we discuss: (1) Ca2+ as a determinant of a host environment for invading bacterial pathogens, (2) the role of Ca2+ in regulating main events of host colonization and bacterial virulence, and (3) the molecular mechanisms of Ca2+ signaling in bacterial pathogens.
Collapse
Affiliation(s)
- Michelle M King
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Biraj B Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Michael J Franklin
- Department of Microbiology and Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
| | - Marianna A Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
8
|
Mos I, Jacobsen SE, Foster SR, Bräuner-Osborne H. Calcium-Sensing Receptor Internalization Isβ-Arrestin–Dependent and Modulated by Allosteric Ligands. Mol Pharmacol 2019; 96:463-474. [DOI: 10.1124/mol.119.116772] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022] Open
|
9
|
Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling. J Neurosci 2019; 39:5842-5860. [PMID: 31123102 DOI: 10.1523/jneurosci.0027-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/12/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Neural circuit development involves the coordinated growth and guidance of axons. During this process, axons encounter many different cues, but how these cues are integrated and translated into growth is poorly understood. In this study, we report that receptor signaling does not follow a linear path but changes dependent on developmental stage and coreceptors involved. Using developing chicken embryos of both sexes, our data show that calcium-sensing receptor (CaSR), a G-protein-coupled receptor important for regulating calcium homeostasis, regulates neurite growth in two distinct ways. First, when signaling in isolation, CaSR promotes growth through the PI3-kinase-Akt pathway. At later developmental stages, CaSR enhances tropomyosin receptor kinase B (TrkB)/BDNF-mediated neurite growth. This enhancement is facilitated through a switch in the signaling cascade downstream of CaSR (i.e., from the PI3-kinase-Akt pathway to activation of GSK3α Tyr279). TrkB and CaSR colocalize within late endosomes, cotraffic and coactivate GSK3, which serves as a shared signaling node for both receptors. Our study provides evidence that two unrelated receptors can integrate their individual signaling cascades toward a nonadditive effect and thus control neurite growth during development.SIGNIFICANCE STATEMENT This work highlights the effect of receptor coactivation and signal integration in a developmental setting. During embryonic development, neurites grow toward their targets guided by cues in the extracellular environment. These cues are sensed by receptors at the surface that trigger intracellular signaling events modulating the cytoskeleton. Emerging evidence suggests that the effects of guidance cues are diversified, therefore expanding the number of responses. Here, we show that two unrelated receptors can change the downstream signaling cascade and regulate neuronal growth through a shared signaling node. In addition to unraveling a novel signaling pathway in neurite growth, this research stresses the importance of receptor coactivation and signal integration during development of the nervous system.
Collapse
|
10
|
Kienitz MC, Niemeyer A, König GM, Kostenis E, Pott L, Rinne A. Biased signaling of Ca 2+-sensing receptors in cardiac myocytes regulates GIRK channel activity. J Mol Cell Cardiol 2019; 130:107-121. [PMID: 30935998 DOI: 10.1016/j.yjmcc.2019.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/06/2019] [Accepted: 03/27/2019] [Indexed: 12/22/2022]
Abstract
Ca2+-sensing receptors (CaSRs) belong to the class C of G protein-coupled receptors and are activated by extracellular Ca2+. CaSRs display biased G protein signaling by coupling to different classes of heterotrimeric G proteins depending on agonist and cell type. In this study we used fluorescent biosensors to directly analyze G protein coupling to CaSRs and downstream signaling in living cells. In HEK 293 cells, CaSRs displayed biased signaling: elevation of extracellular Ca2+ or application of the alternative agonist spermine caused activation of Gi- and Gq-proteins. Adult cardiac myocytes express endogenous CaSRs, which have been implicated in regulating Ca2+ signaling and contractility. Biased signaling of CaSRs has not been investigated in these cells. To evaluate efficiencies of Gi- and Gq-signaling via CaSRs in rat atrial myocytes, we measured G protein-activated K+ (GIRK) channels. Activation of GIRK requires binding of Gβγ subunits released from Gi proteins, whereas Gq-signaling results in inhibition of GIRK channel activity. Stimulation of CaSRs by Ca2+ or spermine failed to directly activate Gi and GIRK channels. When GIRK channels were pre-activated via endogenous M2 receptors, stimulation of CaSRs caused pronounced inhibition of GIRK currents. This effect was specific to CaSR activation: GIRK current inhibition was sensitive to NPS-2143, a negative allosteric modulator of CaSRs, and abrogated by FR900359, a direct inhibitor of Gq. GIRK current inhibition was also sensitive to the PKC inhibitor chelerythrine, suggesting that following activation of CaSR and Gq, GIRK currents are modulated by PKC phosphorylation. We conclude from this data that cardiac CaSRs do not activate Gi and affect GIRK currents preferentially via the Gq/PKC pathway.
Collapse
Affiliation(s)
| | - Anne Niemeyer
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Gabriele M König
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Institute of Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Lutz Pott
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Rinne
- Department of Physiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
11
|
Gorvin CM, Frost M, Malinauskas T, Cranston T, Boon H, Siebold C, Jones EY, Hannan FM, Thakker RV. Calcium-sensing receptor residues with loss- and gain-of-function mutations are located in regions of conformational change and cause signalling bias. Hum Mol Genet 2018; 27:3720-3733. [PMID: 30052933 PMCID: PMC6196656 DOI: 10.1093/hmg/ddy263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a homodimeric G-protein-coupled receptor that signals via intracellular calcium (Ca2+i) mobilisation and phosphorylation of extracellular signal-regulated kinase 1/2 (ERK) to regulate extracellular calcium (Ca2+e) homeostasis. The central importance of the CaSR in Ca2+e homeostasis has been demonstrated by the identification of loss- or gain-of-function CaSR mutations that lead to familial hypocalciuric hypercalcaemia (FHH) or autosomal dominant hypocalcaemia (ADH), respectively. However, the mechanisms determining whether the CaSR signals via Ca2+i or ERK have not been established, and we hypothesised that some CaSR residues, which are the site of both loss- and gain-of-function mutations, may act as molecular switches to direct signalling through these pathways. An analysis of CaSR mutations identified in >300 hypercalcaemic and hypocalcaemic probands revealed five 'disease-switch' residues (Gln27, Asn178, Ser657, Ser820 and Thr828) that are affected by FHH and ADH mutations. Functional expression studies using HEK293 cells showed disease-switch residue mutations to commonly display signalling bias. For example, two FHH-associated mutations (p.Asn178Asp and p.Ser820Ala) impaired Ca2+i signalling without altering ERK phosphorylation. In contrast, an ADH-associated p.Ser657Cys mutation uncoupled signalling by leading to increased Ca2+i mobilization while decreasing ERK phosphorylation. Structural analysis of these five CaSR disease-switch residues together with four reported disease-switch residues revealed these residues to be located at conformationally active regions of the CaSR such as the extracellular dimer interface and transmembrane domain. Thus, our findings indicate that disease-switch residues are located at sites critical for CaSR activation and play a role in mediating signalling bias.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
| | - Morten Frost
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
- University of Southern Denmark, Odense C, Denmark
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Treena Cranston
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Hannah Boon
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - E Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford OX3 7LJ, UK
| |
Collapse
|
12
|
Gorvin CM. Insights into calcium-sensing receptor trafficking and biased signalling by studies of calcium homeostasis. J Mol Endocrinol 2018; 61:R1-R12. [PMID: 29599414 DOI: 10.1530/jme-18-0049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 12/18/2022]
Abstract
The calcium-sensing receptor (CASR) is a class C G-protein-coupled receptor (GPCR) that detects extracellular calcium concentrations, and modulates parathyroid hormone secretion and urinary calcium excretion to maintain calcium homeostasis. The CASR utilises multiple heterotrimeric G-proteins to mediate signalling effects including activation of intracellular calcium release; mitogen-activated protein kinase (MAPK) pathways; membrane ruffling; and inhibition of cAMP production. By studying germline mutations in the CASR and proteins within its signalling pathway that cause hyper- and hypocalcaemic disorders, novel mechanisms governing GPCR signalling and trafficking have been elucidated. This review focusses on two recently described pathways that provide novel insights into CASR signalling and trafficking mechanisms. The first, identified by studying a CASR gain-of-function mutation that causes autosomal dominant hypocalcaemia (ADH), demonstrated a structural motif located between the third transmembrane domain and the second extracellular loop of the CASR that mediates biased signalling by activating a novel β-arrestin-mediated G-protein-independent pathway. The second, in which the mechanism by which adaptor protein-2 σ-subunit (AP2σ) mutations cause familial hypocalciuric hypercalcaemia (FHH) was investigated, demonstrated that AP2σ mutations impair CASR internalisation and reduce multiple CASR-mediated signalling pathways. Furthermore, these studies showed that the CASR can signal from the cell surface using multiple G-protein pathways, whilst sustained signalling is mediated only by the Gq/11 pathway. Thus, studies of FHH- and ADH-associated mutations have revealed novel steps by which CASR mediates signalling and compartmental bias, and these pathways could provide new targets for therapies for patients with calcaemic disorders.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, UK
- Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| |
Collapse
|
13
|
Bazúa-Valenti S, Rojas-Vega L, Castañeda-Bueno M, Barrera-Chimal J, Bautista R, Cervantes-Pérez LG, Vázquez N, Plata C, Murillo-de-Ozores AR, González-Mariscal L, Ellison DH, Riccardi D, Bobadilla NA, Gamba G. The Calcium-Sensing Receptor Increases Activity of the Renal NCC through the WNK4-SPAK Pathway. J Am Soc Nephrol 2018; 29:1838-1848. [PMID: 29848507 DOI: 10.1681/asn.2017111155] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/10/2018] [Indexed: 01/07/2023] Open
Abstract
Background Hypercalciuria can result from activation of the basolateral calcium-sensing receptor (CaSR), which in the thick ascending limb of Henle's loop controls Ca2+ excretion and NaCl reabsorption in response to extracellular Ca2+ However, the function of CaSR in the regulation of NaCl reabsorption in the distal convoluted tubule (DCT) is unknown. We hypothesized that CaSR in this location is involved in activating the thiazide-sensitive NaCl cotransporter (NCC) to prevent NaCl loss.Methods We used a combination of in vitro and in vivo models to examine the effects of CaSR on NCC activity. Because the KLHL3-WNK4-SPAK pathway is involved in regulating NaCl reabsorption in the DCT, we assessed the involvement of this pathway as well.Results Thiazide-sensitive 22Na+ uptake assays in Xenopus laevis oocytes revealed that NCC activity increased in a WNK4-dependent manner upon activation of CaSR with Gd3+ In HEK293 cells, treatment with the calcimimetic R-568 stimulated SPAK phosphorylation only in the presence of WNK4. The WNK4 inhibitor WNK463 also prevented this effect. Furthermore, CaSR activation in HEK293 cells led to phosphorylation of KLHL3 and WNK4 and increased WNK4 abundance and activity. Finally, acute oral administration of R-568 in mice led to the phosphorylation of NCC.Conclusions Activation of CaSR can increase NCC activity via the WNK4-SPAK pathway. It is possible that activation of CaSR by Ca2+ in the apical membrane of the DCT increases NaCl reabsorption by NCC, with the consequent, well known decrease of Ca2+ reabsorption, further promoting hypercalciuria.
Collapse
Affiliation(s)
- Silvana Bazúa-Valenti
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorena Rojas-Vega
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - María Castañeda-Bueno
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jonatan Barrera-Chimal
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | - Norma Vázquez
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Consuelo Plata
- Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adrián R Murillo-de-Ozores
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lorenza González-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - David H Ellison
- Department of Medicine, Oregon Health and Science University, Portland, Oregon.,Renal Section, Veterans Administration Portland Health Care System, Portland, Oregon
| | - Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom; and
| | - Norma A Bobadilla
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; .,Department of Nephrology and Mineral Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, Mexico
| |
Collapse
|
14
|
Gorvin CM, Rogers A, Hastoy B, Tarasov AI, Frost M, Sposini S, Inoue A, Whyte MP, Rorsman P, Hanyaloglu AC, Breitwieser GE, Thakker RV. AP2σ Mutations Impair Calcium-Sensing Receptor Trafficking and Signaling, and Show an Endosomal Pathway to Spatially Direct G-Protein Selectivity. Cell Rep 2018; 22:1054-1066. [PMID: 29420171 PMCID: PMC5792449 DOI: 10.1016/j.celrep.2017.12.089] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/29/2022] Open
Abstract
Spatial control of G-protein-coupled receptor (GPCR) signaling, which is used by cells to translate complex information into distinct downstream responses, is achieved by using plasma membrane (PM) and endocytic-derived signaling pathways. The roles of the endomembrane in regulating such pleiotropic signaling via multiple G-protein pathways remain unknown. Here, we investigated the effects of disease-causing mutations of the adaptor protein-2 σ subunit (AP2σ) on signaling by the class C GPCR calcium-sensing receptor (CaSR). These AP2σ mutations increase CaSR PM expression yet paradoxically reduce CaSR signaling. Hypercalcemia-associated AP2σ mutations reduced CaSR signaling via Gαq/11 and Gαi/o pathways. The mutations also delayed CaSR internalization due to prolonged residency time of CaSR in clathrin structures that impaired or abolished endosomal signaling, which was predominantly mediated by Gαq/11. Thus, compartmental bias for CaSR-mediated Gαq/11 endomembrane signaling provides a mechanistic basis for multidimensional GPCR signaling. Disease-causing AP2σ mutants impair Gαq/11 and Gαi/o signaling by CaSR, a class C GPCR AP2σ mutants impair trafficking of the CaSR The CaSR can signal by a sustained endosomal pathway CaSR differentially uses Gαq/11 and Gαi/o for cell-surface and endosomal signaling
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK; Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, UK
| | - Angela Rogers
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Benoit Hastoy
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrei I Tarasov
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Morten Frost
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Silvia Sposini
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Tohoku University, Sendai, Japan; Japan Science and Technology (JST) Agency, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Japan
| | - Michael P Whyte
- Center for Metabolic Bone Disease and Molecular Research, Shriners Hospitals for Children, St. Louis, MO, USA
| | - Patrik Rorsman
- Diabetes Research Laboratory, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Aylin C Hanyaloglu
- Institute of Reproductive and Developmental Biology, Faculty of Medicine, Imperial College London, London, UK
| | - Gerda E Breitwieser
- Geisinger Clinic, Weis Center for Research, Department of Functional and Molecular Genomics, Danville, PA, USA
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Gorvin CM, Hannan FM, Cranston T, Valta H, Makitie O, Schalin-Jantti C, Thakker RV. Cinacalcet Rectifies Hypercalcemia in a Patient With Familial Hypocalciuric Hypercalcemia Type 2 (FHH2) Caused by a Germline Loss-of-Function Gα 11 Mutation. J Bone Miner Res 2018; 33:32-41. [PMID: 28833550 PMCID: PMC5813271 DOI: 10.1002/jbmr.3241] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
Abstract
G-protein subunit α-11 (Gα11 ) couples the calcium-sensing receptor (CaSR) to phospholipase C (PLC)-mediated intracellular calcium (Ca2+i ) and mitogen-activated protein kinase (MAPK) signaling, which in the parathyroid glands and kidneys regulates parathyroid hormone release and urinary calcium excretion, respectively. Heterozygous germline loss-of-function Gα11 mutations cause familial hypocalciuric hypercalcemia type 2 (FHH2), for which effective therapies are currently not available. Here, we report a novel heterozygous Gα11 germline mutation, Phe220Ser, which was associated with hypercalcemia in a family with FHH2. Homology modeling showed the wild-type (WT) Phe220 nonpolar residue to form part of a cluster of hydrophobic residues within a highly conserved cleft region of Gα11 , which binds to and activates PLC; and predicted that substitution of Phe220 with the mutant Ser220 polar hydrophilic residue would disrupt PLC-mediated signaling. In vitro studies involving transient transfection of WT and mutant Gα11 proteins into HEK293 cells, which express the CaSR, showed the mutant Ser220 Gα11 protein to impair CaSR-mediated Ca2+i and extracellular signal-regulated kinase 1/2 (ERK) MAPK signaling, consistent with diminished activation of PLC. Furthermore, engineered mutagenesis studies demonstrated that loss of hydrophobicity within the Gα11 cleft region also impaired signaling by PLC. The loss-of-function associated with the Ser220 Gα11 mutant was rectified by treatment of cells with cinacalcet, which is a CaSR-positive allosteric modulator. Furthermore, in vivo administration of cinacalcet to the proband harboring the Phe220Ser Gα11 mutation, normalized serum ionized calcium concentrations. Thus, our studies, which report a novel Gα11 germline mutation (Phe220Ser) in a family with FHH2, reveal the importance of the Gα11 hydrophobic cleft region for CaSR-mediated activation of PLC, and show that allosteric CaSR modulation can rectify the loss-of-function Phe220Ser mutation and ameliorate the hypercalcemia associated with FHH2. © 2017 The Authors. Journal of Bone and Mineral Research Published by Wiley Periodicals Inc.
Collapse
Affiliation(s)
- Caroline M Gorvin
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, UK
| | - Fadil M Hannan
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, UK.,Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, UK
| | - Treena Cranston
- Oxford Molecular Genetics Laboratory, Churchill Hospital, Oxford, UK
| | - Helena Valta
- Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Outi Makitie
- Children's Hospital, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Center, Helsinki, Finland
| | - Camilla Schalin-Jantti
- Division of Endocrinology, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, UK
| |
Collapse
|
16
|
Gonzalez de Valdivia E, Broselid S, Kahn R, Olde B, Leeb-Lundberg LMF. G protein-coupled estrogen receptor 1 (GPER1)/GPR30 increases ERK1/2 activity through PDZ motif-dependent and -independent mechanisms. J Biol Chem 2017; 292:9932-9943. [PMID: 28450397 DOI: 10.1074/jbc.m116.765875] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/25/2017] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor 30 (GPR30), also called G protein-coupled estrogen receptor 1 (GPER1), is thought to play important roles in breast cancer and cardiometabolic regulation, but many questions remain about ligand activation, effector coupling, and subcellular localization. We showed recently that GPR30 interacts through the C-terminal type I PDZ motif with SAP97 and protein kinase A (PKA)-anchoring protein (AKAP) 5, which anchor the receptor in the plasma membrane and mediate an apparently constitutive decrease in cAMP production independently of Gi/o Here, we show that GPR30 also constitutively increases ERK1/2 activity. Removing the receptor PDZ motif or knocking down specifically AKAP5 inhibited the increase, showing that this increase also requires the PDZ interaction. However, the increase was inhibited by pertussis toxin as well as by wortmannin but not by AG1478, indicating that Gi/o and phosphoinositide 3-kinase (PI3K) mediate the increase independently of epidermal growth factor receptor transactivation. FK506 and okadaic acid also inhibited the increase, implying that a protein phosphatase is involved. The proposed GPR30 agonist G-1 also increased ERK1/2 activity, but this increase was only observed at a level of receptor expression below that required for the constitutive increase. Furthermore, deleting the PDZ motif did not inhibit the G-1-stimulated increase. Based on these results, we propose that GPR30 increases ERK1/2 activity via two Gi/o-mediated mechanisms, a PDZ-dependent, apparently constitutive mechanism and a PDZ-independent G-1-stimulated mechanism.
Collapse
Affiliation(s)
| | | | | | - Björn Olde
- Cardiology, Lund University, 22184 Lund, Sweden
| | | |
Collapse
|
17
|
Okita N, Honda Y, Kishimoto N, Liao W, Azumi E, Hashimoto Y, Matsumoto N. Supplementation of Strontium to a Chondrogenic Medium Promotes Chondrogenic Differentiation of Human Dedifferentiated Fat Cells. Tissue Eng Part A 2015; 21:1695-704. [DOI: 10.1089/ten.tea.2014.0282] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Naoya Okita
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Yoshitomo Honda
- Institute of Dental Research, Osaka Dental University, Osaka, Japan
| | | | - Wen Liao
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | - Eiko Azumi
- Department of Orthodontics, Osaka Dental University, Osaka, Japan
| | | | | |
Collapse
|
18
|
Calcium-Sensing Receptor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:127-50. [DOI: 10.1016/bs.pmbts.2015.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Joshi S, Kapur J. N-methyl-D-aspartic acid receptor activation downregulates expression of δ subunit-containing GABAA receptors in cultured hippocampal neurons. Mol Pharmacol 2013; 84:1-11. [PMID: 23585058 PMCID: PMC3684822 DOI: 10.1124/mol.112.084715] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 01/26/2023] Open
Abstract
Neurosteroids are endogenous allosteric modulators of GABAA receptors (GABARs), and they enhance GABAR-mediated inhibition. However, GABARs expressed on hippocampal dentate granule neurons of epileptic animals are modified such that their neurosteroid sensitivity is reduced and δ subunit expression is diminished. We explored the molecular mechanisms triggering this GABAR plasticity. In the cultured hippocampal neurons, treatment with N-methyl-D-aspartic acid (NMDA) (10 μM) for 48 hours reduced the surface expression of δ and α4 subunits but did not increase the expression of γ2 subunits. The tonic current recorded from neurons in NMDA-treated cultures was reduced, and its neurosteroid modulation was also diminished. In contrast, synaptic inhibition and its modulation by neurosteroids were preserved in these neurons. The time course of NMDA's effects on surface and total δ subunit expression was distinct; shorter (6 hours) treatment decreased surface expression, whereas longer treatment reduced both surface and total expression. Dl-2-amino-5-phosphonopentanoic acid (APV) blocked NMDA's effects on δ subunit expression. Chelation of calcium ions by 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) or blockade of extracellular signal-regulated kinase (ERK) 1/2 activation by UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio] butadiene) also prevented the effects of NMDA. Thus, prolonged activation of NMDA receptors in hippocampal neurons reduced GABAR δ subunit expression through Ca(2+) entry and at least in part by ERK1/2 activation.
Collapse
Affiliation(s)
- Suchitra Joshi
- Department of Neurology, Box 800394, University of Virginia-HSC, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
20
|
Breitwieser GE. The calcium sensing receptor life cycle: trafficking, cell surface expression, and degradation. Best Pract Res Clin Endocrinol Metab 2013; 27:303-13. [PMID: 23856261 DOI: 10.1016/j.beem.2013.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The calcium-sensing receptor (CaSR) must function in the chronic presence of agonist, and recent studies suggest that its ability to signal under such conditions depends upon the unique mechanism(s) regulating its cellular trafficking. This chapter will highlight the evidence supporting an intracellular endoplasmic reticulum-localized pool of CaSR that can be mobilized to the plasma membrane by CaSR signaling, leading to agonist-driven insertional signaling (ADIS). I summarize evidence for the role of small GTP binding proteins (Rabs, Sar1 and ARFs), cargo receptors or chaperones (p24A, RAMPs) and interacting proteins (14-3-3 proteins, calmodulin) in anterograde trafficking of CaSR, and discuss the potential signaling specializations arising from CaSR interactions with caveolins or Filamin A/Rho. Finally, I summarize current knowledge about CaSR endocytosis and degradation by both the proteasome and lysosome, and highlight recent studies indicating that defective trafficking of CaSR or interacting protein mutants contributes to pathology in disorders of calcium homeostasis.
Collapse
Affiliation(s)
- Gerda E Breitwieser
- Weis Center for Research, Geisinger Clinic, 100 N. Academy Avenue, Danville, PA 17822-2604, USA.
| |
Collapse
|
21
|
Čokić VP, Smith RD, Biancotto A, Noguchi CT, Puri RK, Schechter AN. Globin gene expression in correlation with G protein-related genes during erythroid differentiation. BMC Genomics 2013; 14:116. [PMID: 23425329 PMCID: PMC3602204 DOI: 10.1186/1471-2164-14-116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 02/11/2013] [Indexed: 12/22/2022] Open
Abstract
Background The guanine nucleotide binding protein (G protein)-coupled receptors (GPCRs) regulate cell growth, proliferation and differentiation. G proteins are also implicated in erythroid differentiation, and some of them are expressed principally in hematopoietic cells. GPCRs-linked NO/cGMP and p38 MAPK signaling pathways already demonstrated potency for globin gene stimulation. By analyzing erythroid progenitors, derived from hematopoietic cells through in vitro ontogeny, our study intends to determine early markers and signaling pathways of globin gene regulation and their relation to GPCR expression. Results Human hematopoietic CD34+ progenitors are isolated from fetal liver (FL), cord blood (CB), adult bone marrow (BM), peripheral blood (PB) and G-CSF stimulated mobilized PB (mPB), and then differentiated in vitro into erythroid progenitors. We find that growth capacity is most abundant in FL- and CB-derived erythroid cells. The erythroid progenitor cells are sorted as 100% CD71+, but we did not find statistical significance in the variations of CD34, CD36 and GlyA antigens and that confirms similarity in maturation of studied ontogenic periods. During ontogeny, beta-globin gene expression reaches maximum levels in cells of adult blood origin (176 fmol/μg), while gamma-globin gene expression is consistently up-regulated in CB-derived cells (60 fmol/μg). During gamma-globin induction by hydroxycarbamide, we identify stimulated GPCRs (PTGDR, PTGER1) and GPCRs-coupled genes known to be activated via the cAMP/PKA (ADIPOQ), MAPK pathway (JUN) and NO/cGMP (PRPF18) signaling pathways. During ontogeny, GPR45 and ARRDC1 genes have the most prominent expression in FL-derived erythroid progenitor cells, GNL3 and GRP65 genes in CB-derived cells (high gamma-globin gene expression), GPR110 and GNG10 in BM-derived cells, GPR89C and GPR172A in PB-derived cells, and GPR44 and GNAQ genes in mPB-derived cells (high beta-globin gene expression). Conclusions These results demonstrate the concomitant activity of GPCR-coupled genes and related signaling pathways during erythropoietic stimulation of globin genes. In accordance with previous reports, the stimulation of GPCRs supports the postulated connection between cAMP/PKA and NO/cGMP pathways in activation of γ-globin expression, via JUN and p38 MAPK signaling.
Collapse
Affiliation(s)
- Vladan P Čokić
- Laboratory of Experimental Hematology, Institute for Medical Research, University of Belgrade, Dr, Subotica 4, 11129, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
22
|
Calcium sensing receptor signalling in physiology and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1732-44. [PMID: 23267858 DOI: 10.1016/j.bbamcr.2012.12.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 12/13/2022]
Abstract
The calcium sensing receptor (CaSR) is a class C G-protein-coupled receptor that is crucial for the feedback regulation of extracellular free ionised calcium homeostasis. While extracellular calcium (Ca(2+)o) is considered the primary physiological ligand, the CaSR is activated physiologically by a plethora of molecules including polyamines and l-amino acids. Activation of the CaSR by different ligands has the ability to stabilise unique conformations of the receptor, which may lead to preferential coupling of different G proteins; a phenomenon termed 'ligand-biased signalling'. While mutations of the CaSR are currently not linked with any malignancies, altered CaSR expression and function are associated with cancer progression. Interestingly, the CaSR appears to act both as a tumour suppressor and an oncogene, depending on the pathophysiology involved. Reduced expression of the CaSR occurs in both parathyroid and colon cancers, leading to loss of the growth suppressing effect of high Ca(2+)o. On the other hand, activation of the CaSR might facilitate metastasis to bone in breast and prostate cancer. A deeper understanding of the mechanisms driving CaSR signalling in different tissues, aided by a systems biology approach, will be instrumental in developing novel drugs that target the CaSR or its ligands in cancer. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
23
|
Xu Z, Yan L, Ge Y, Zhang Q, Yang N, Zhang M, Zhao Y, Sun P, Gao J, Tao Z, Yang Z. Effect of the calcium sensing receptor on rat bone marrow-derived mesenchymal stem cell proliferation through the ERK1/2 pathway. Mol Biol Rep 2012; 39:7271-9. [PMID: 22314915 DOI: 10.1007/s11033-012-1557-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Accepted: 01/24/2012] [Indexed: 12/17/2022]
Abstract
Migration and proliferation of bone marrowderived mesenchymal stem cells (BMSCs) is critical to treatment of ischemic injury. The calcium sensing receptor (CaSR) has an important role in maintaining systemic calcium homeostasis, which is related to cell proliferation, apoptosis and paracrine signaling. We hypothesize that CaSR may enhance BMSC proliferation. Rat BMSCs were incubated with various calcium concentrations for 48 h in vitro to activate CaSR. To investigate potential mechanisms responsible for growth enhancement by calcium, the rat BMSC cell cycle progression was analyzed by fluorescence-activated cell sorting (FACS), and induction of apoptosis confirmed by cytofluorimetric analysis using propidium iodide and Annexin V-FITC double staining. Since the mitogen-activated protein kinase (MAPK) signaling pathway was one of the most significantly affected by CaSR, MAPK activation was measured by western blotting. Calcium exposure significantly enhanced rat BMSCs proliferation, as well as the proportion of the population in S phase, in a dose-dependent manner, effects which were abolished by NPS2390 (a CaSR antagonist) and U0126 (a MEK1/2 inhibitor). These results demonstrate that CaSR is involved in rat BMSC proliferation, as seen by an increased proliferation index, decreased apoptosis, and ERK1/2 activation, and provide important insight into the cellular and molecular mechanisms by which CaSR affects cell proliferation. A CaSR agonist may prove useful to enhance BMSC survival during transplantation.
Collapse
Affiliation(s)
- Zhihui Xu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Davey AE, Leach K, Valant C, Conigrave AD, Sexton PM, Christopoulos A. Positive and negative allosteric modulators promote biased signaling at the calcium-sensing receptor. Endocrinology 2012; 153:1232-41. [PMID: 22210744 DOI: 10.1210/en.2011-1426] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor whose function can be allosterically modulated in a positive or negative manner by calcimimetics or calcilytics, respectively. Indeed, the second-generation calcimimetic, cinacalcet, has proven clinically useful in the treatment of chronic kidney disease patients with secondary hyperparathyroidism but is not widely used in earlier stages of renal disease due to the potential to predispose such patients to hypocalcaemia and hyperphosphatemia. The development of a biased CaSR ligand that is more selective for specific signaling pathway(s) leading only to beneficial effects may overcome this limitation. The detection of such stimulus-bias at a G protein-coupled receptor requires investigation across multiple signaling pathways and the development of methods to quantify the effects of allosteric ligands on orthosteric ligand affinity and cooperativity at each pathway. In the current study, we determined the effects of the calcimimetics, NPS-R568 or cinacalcet, and the calcilytic, NPS-2143, on Ca(o)(2+)-mediated intracellular Ca(2+) mobilization, ERK1/2 phosphorylation, and plasma membrane ruffling in a stably transfected human embryonic kidney 293-TREx c-myc-CaSR cell line and applied a novel analytical model to quantify these modulator effects. We present quantitative evidence for the generation of stimulus bias by both positive and negative allosteric modulators of the CaSR, manifested as greater allosteric modulation of intracellular Ca(2+) mobilization relative to ERK1/2 phosphorylation, and a higher affinity of the modulators for the state of the CaSR mediating plasma membrane ruffling relative to the other two pathways. Our findings provide the first evidence that an allosteric modulator used in clinical practice exhibits stimulus bias.
Collapse
Affiliation(s)
- Anna E Davey
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
25
|
De Santis T, Casavola V, Reshkin SJ, Guerra L, Ambruosi B, Fiandanese N, Dalbies-Tran R, Goudet G, Dell'Aquila ME. The extracellular calcium-sensing receptor is expressed in the cumulus-oocyte complex in mammals and modulates oocyte meiotic maturation. Reproduction 2009; 138:439-52. [PMID: 19494043 DOI: 10.1530/rep-09-0078] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The extracellular calcium-sensing receptor (CASR) plays an important role in cells involved in calcium (Ca2+) homeostasis by directly sensing changes in the extracellular Ca2+ ion concentration. We previously reported the localization and quantitative expression of CASR protein in human oocytes. In this study, we examined the expression and the functional role of CASR during oocyte meiotic maturation in a large mammal animal model, the horse. As in humans, CASR protein was found to be expressed in equine oocytes and cumulus cells. Western-blot analysis revealed a single 130 kDa band in denuded oocytes and a doublet of 130-120 kDa in cumulus cells. CASR labeling was observed by confocal microscopy in cumulus cells and in oocytes on the plasma membrane and within the cytoplasm at all examined stages of meiosis. Functionally, the CASR allosteric effector NPS R-467, in the presence of 2.92 mM external Ca2+, increased oocyte maturation rate in a dose-dependent manner and its stimulatory effect was attenuated by pre-treatment with the CASR antagonist NPS 2390. NPS R-467 had no effect in suboptimal external Ca2+ (0.5 mM), indicating that it requires higher external Ca2+ to promote oocyte maturation. In oocytes treated with NPS R-467, CASR staining increased at the plasmalemma and was reduced in the cytosol. Moreover, NPS R-467 increased the activity of MAPK, also called ERK, in cumulus cells and oocytes. These results provide evidence of a novel signal transduction pathway modulating oocyte meiotic maturation in mammals in addition to the well-known systemic hormones.
Collapse
Affiliation(s)
- Teresa De Santis
- Department of Animal Production, University of Bari, 70010 Valenzano, Bari, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Interstitial fibrosis and microvascular disease of the heart in uremia: amelioration by a calcimimetic. J Transl Med 2009; 89:520-30. [PMID: 19188910 DOI: 10.1038/labinvest.2009.7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In patients with chronic renal failure, the heart undergoes remodeling, characterized by hypertrophy, fibrosis, and capillary/myocyte mismatch. In this study, we observed the effects of the calcimimetic agent R-568 on microvascular disease and interstitial fibrosis of the heart. Three-month-old male Sprague-Dawley rats were randomized to subtotal nephrectomy (SNX) or sham operation and subsequently received vehicle or R-568 under two experimental protocols, one for 1 month and the other for 3 months. Echocardiography, capillary length density, volume density of interstitial tissue, and immunohistochemistry and western blots (calcium-sensing receptor, collagen I and III, transforming growth factor (TGF)-beta, mitogen-activated protein kinases, and nitrotyrosine) were assessed. After SNX, weight and wall thickness of the left and the right ventricle were elevated. The ratio of heart to body weight and interventricular septum thickness were not changed by R-568 treatment. The left ventricle fractional shortening (by echocardiography) was lower in SNX; this was ameliorated by R-568. Reduced capillary length density and increased interstitial fibrosis in SNX were improved by R-568, which also reduced the expression of TGF-beta, and collagen I and III. The calcimimetic increased the activation of ERK-1/2, normalized p38 and JNK signaling, and prevented oxidative stress. We conclude that lowering parathyroid hormone with a calcimimetic significantly improves cardiac histology and function but not the left ventricular mass in SNX.
Collapse
|
27
|
van den Hurk MJJ, Cruijsen PMJM, Schoeber JPH, Scheenen WJJM, Roubos EW, Jenks BG. Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells. Gen Comp Endocrinol 2008; 157:156-64. [PMID: 18508053 DOI: 10.1016/j.ygcen.2008.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/28/2008] [Accepted: 04/14/2008] [Indexed: 11/17/2022]
Abstract
The extracellular calcium-sensing receptor (CaR) is expressed in various types of endocrine pituitary cell, but the intracellular mechanism this G protein-coupled receptor uses in these cells is not known. In the present study we investigated possible intracellular signal transduction pathway(s) utilized by the CaR of the endocrine melanotrope cells in the intermediate pituitary lobe of the South African-clawed toad Xenopus laevis. For this purpose, the effects of various pharmacological agents on CaR-evoked secretion of radiolabeled secretory peptides from cultured melanotrope cells were assessed. CaR-evoked secretion, induced by the potent CaR agonist L-phenylalanine (L-Phe), could not be inhibited by cholera toxin, nor by NPC-15437 and PMA, indicating that neither G(s)/PKA nor G(q)/PKC pathways are involved. However, pertussis toxin (G(i/o) protein inhibitor), genistein (inhibitor of PTKs), wortmannin/LY-294002 (PI3-K inhibitor) and U-0126 (inhibitor of extracellular signal-regulated kinase, ERK) all substantially inhibited CaR-evoked secretion, indicating that the Xenopus melanotrope cell possesses a PI3-K/MAPK system that plays some role in CaR-signaling. Since no direct effect of L-Phe on ERK phosphorylation could be shown it is concluded that CaR must act primarily through another, still unknown, signaling pathway in Xenopus melanotropes. Our results indicate that the PI3-K/MAPK system has a facilitating effect on CaR-induced secretion, possibly by sensitizing the CaR.
Collapse
Affiliation(s)
- Maarten J J van den Hurk
- Department of Cellular Animal Physiology, Donders Centre for Neuroscience, EURON European Graduate School for Neuroscience, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
28
|
Wang Y, Zhang HX, Sun YP, Liu ZX, Liu XS, Wang L, Lu SY, Kong H, Liu QL, Li XH, Lu ZY, Chen SJ, Chen Z, Bao SS, Dai W, Wang ZG. Rig-I-/- mice develop colitis associated with downregulation of G alpha i2. Cell Res 2007; 17:858-68. [PMID: 17893708 DOI: 10.1038/cr.2007.81] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RIG-I (retinoid acid-inducible gene-I), a putative RNA helicase with a cytoplasmic caspase-recruitment domain (CARD), was identified as a pattern-recognition receptor (PRR) that mediates antiviral immunity by inducing type I interferon production. To further study the biological function of RIG-I, we generated Rig-I(-/-) mice through homologous recombination, taking a different strategy to the previously reported strategy. Our Rig-I(-/-) mice are viable and fertile. Histological analysis shows that Rig-I(-/-) mice develop a colitis-like phenotype and increased susceptibility to dextran sulfate sodium-induced colitis. Accordingly, the size and number of Peyer's patches dramatically decreased in mutant mice. The peripheral T-cell subsets in mutant mice are characterized by an increase in effector T cells and a decrease in naive T cells, indicating an important role for Rig-I in the regulation of T-cell activation. It was further found that Rig-I deficiency leads to the downregulation of G protein alpha i2 subunit (G alpha i2) in various tissues, including T and B lymphocytes. By contrast, upregulation of Rig-I in NB4 cells that are treated with ATRA is accompanied by elevated G alpha i2 expression. Moreover, G alpha i2 promoter activity is increased in co-transfected NIH3T3 cells in a Rig-I dose-dependent manner. All these findings suggest that Rig-I has crucial roles in the regulation of G alpha i2 expression and T-cell activation. The development of colitis may be, at least in part, associated with downregulation of G alpha i2 and disturbed T-cell homeostasis.
Collapse
Affiliation(s)
- Yi Wang
- Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Parker SL, Parker MS, Sah R, Balasubramaniam A, Sallee FR. Pertussis toxin induces parallel loss of neuropeptide Y Y1 receptor dimers and Gi alpha subunit function in CHO cells. Eur J Pharmacol 2007; 579:13-25. [PMID: 17967449 DOI: 10.1016/j.ejphar.2007.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 08/04/2007] [Accepted: 10/05/2007] [Indexed: 12/20/2022]
Abstract
Treatment with pertussis toxin in addition to a stable inhibition of G(i)alpha subunits of G-proteins also strongly reduced human neuropeptide Y Y(1) receptors expressed in Chinese hamster ovary (CHO) cells. This was reflected in abolition of the inhibition by Y(1) agonists of forskolin-stimulated adenylyl cyclase in intact cells, and of Y(1) agonist stimulation of GTPgammaS binding to particulates from disrupted cells. The loss of both receptor and G(i)alpha subunit function was attenuated by ammonium chloride, an inhibitor of acid proteinases, pointing to a chaperoning co-protection of active pertussis toxin-sensitive Galpha subunits and Y(1) receptors. The surface complement of the Y(1) receptor was changed a little in conditions of approximately 85% decrease of the Y(1) population, but the rate of the Y(1) receptor-linked internalization of agonist peptides was reduced about 70%. The preserved receptor fraction consisted of monomers significantly coupled to G(q)alpha subunits. The persistent pertussis toxin-insensitive internalization of agonists with the Y(1) receptor may reflect a rescue or alternative switching that could be important for cell functioning in neuropeptide Y-rich environments. The results are compatible with a loss, due to G(i)alpha subunit inactivation by the toxin, of a large Y(1) receptor reserve constituted of oligomers associating with heterotrimeric G-proteins.
Collapse
Affiliation(s)
- Steven L Parker
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | |
Collapse
|
30
|
González MI, Susarla BTS, Fournier KM, Sheldon AL, Robinson MB. Constitutive endocytosis and recycling of the neuronal glutamate transporter, excitatory amino acid carrier 1. J Neurochem 2007; 103:1917-31. [PMID: 17868307 DOI: 10.1111/j.1471-4159.2007.04881.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The neuronal glutamate transporter, excitatory amino acid carrier 1 (EAAC1), has a diverse array of physiologic and metabolic functions. There is evidence that there is a relatively large intracellular pool of EAAC1 both in vivo and in vitro, that EAAC1 cycles on and off the plasma membrane, and that EAAC1 cell surface expression can be rapidly regulated by intracellular signals. Despite the possible relevance of EAAC1 trafficking to both physiologic and pathologic processes, the cellular machinery involved has not been defined. In the present study, we found that agents that disrupt clathrin-dependent endocytosis or plasma membrane cholesterol increased steady-state levels of biotinylated EAAC1 in C6 glioma cells and primary neuronal cultures. Acute depletion of cholesterol increased the V(max) for EAAC1-mediated activity and had no effect on Na(+)-dependent glycine transport in the same system. These agents also impaired endocytosis as measured using a reversible biotinylating reagent. Co-expression with dominant-negative variants of dynamin or the clathrin adaptor, epidermal growth factor receptor pathway substrate clone 15, increased the steady-state levels of biotinylated myc-EAAC1. EAAC1 immunoreactivity was found in a subcellular fraction enriched in early endosome antigen 1 (EEA1) isolated by differential centrifugation and partially co-localized with EEA1. Co-expression of a dominant-negative variant of Rab11 (Rab11 S25N) reduced steady-state levels of biotinylated myc-EAAC1 and slowed constitutive delivery of myc-EAAC1 to the plasma membrane. Together, these observations suggest that EAAC1 is constitutively internalized via a clathrin- and dynamin-dependent pathway into early endosomes and that EAAC1 is trafficked back to the cell surface via the endocytic recycling compartment in a Rab11-dependent mechanism. As one defines the machinery required for constitutive trafficking of EAAC1, it may be possible to determine how intracellular signals regulate EAAC1 cell surface expression.
Collapse
Affiliation(s)
- Marco I González
- Departments of Pediatrics and Pharmacology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
31
|
Makita N, Sato J, Manaka K, Shoji Y, Oishi A, Hashimoto M, Fujita T, Iiri T. An acquired hypocalciuric hypercalcemia autoantibody induces allosteric transition among active human Ca-sensing receptor conformations. Proc Natl Acad Sci U S A 2007; 104:5443-8. [PMID: 17372216 PMCID: PMC1838439 DOI: 10.1073/pnas.0701290104] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The seven-spanning calcium-sensing receptor (CaSR) activates multiple G proteins including Gq and Gi, and thereby activates a variety of second messengers and inhibits parathyroid hormone (PTH) secretion. However, the exact signaling mechanisms underlying the functional activity of CaSR are not yet fully understood. The heterozygous inactivation of CaSR or its inhibition by antibody blocking results in either familial hypocalciuric hypercalcemia or acquired hypocalciuric hypercalcemia (AHH), respectively. Here, we report the identification of a unique CaSR autoantibody in an AHH patient. Paradoxically, we find that this autoantibody potentiates the Ca(2+)/Gq-dependent accumulation of inositol phosphates by slightly shifting the dose dependence curve of the Ca(2+) mediated activation of phosphatidylinositol turnover to the left, whereas it inhibits the Ca(2+)/Gi-dependent phosphorylation of ERK1/2 in HEK293 cells stably expressing human CaSR. Treatment of these same cells with a calcimimetic, NPS-R-568, augments the CaSR response to Ca(2+), increasing phosphatidylinositol turnover and ERK1/2 phosphorylation, and overcoming the autoantibody effects. Our observations thus indicate that a calcium-stimulated CaSR primed by a specific autoantibody adopts a unique conformation that activates Gq but not Gi. Our findings also suggest that CaSR signaling may act via both Gq and Gi to inhibit PTH secretion. This is the first report of a disease-related autoantibody that functions as an allosteric modulator and maintains G protein-coupled receptors (GPCRs) in a unique active conformation with its agonist. We thus speculate that physiological modulators may exist that enable an agonist to specifically activate only one signaling pathway via a GPCR that activates multiple signaling pathways.
Collapse
Affiliation(s)
- Noriko Makita
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Junichiro Sato
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Katsunori Manaka
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuki Shoji
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Atsuro Oishi
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Makiko Hashimoto
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Toshiro Fujita
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Taroh Iiri
- Department of Endocrinology and Nephrology, University of Tokyo School of Medicine 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Huang Y, Breitwieser GE. Rescue of Calcium-sensing Receptor Mutants by Allosteric Modulators Reveals a Conformational Checkpoint in Receptor Biogenesis. J Biol Chem 2007; 282:9517-9525. [PMID: 17284438 DOI: 10.1074/jbc.m609045200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-sensing receptor (CaR), a member of G protein-coupled receptor family C, regulates systemic calcium homeostasis by activating G(q)- and G(i)-linked signaling in the parathyroid, kidney, and intestine. CaR is ubiquitinated by the E3 ligase dorfin and degraded via the endoplasmic reticulum-associated degradation pathway (Huang, Y., Niwa, J., Sobue, G., and Breitwieser, G. E. (2006) J. Biol. Chem. 281, 11610-11617). Here we provide evidence for a conformational or functional checkpoint in CaR biogenesis using two complementary approaches. First we characterized the sensitivity of loss- or gain-of-function CaR mutants to proteasome inhibition by MG132. The stabilization of loss-of-function mutants and insensitivity of gain-of-function mutants to MG132 suggests that receptor sensitivity to calcium influences susceptibility to proteasomal degradation. Second, we used the allosteric activator NPS R-568 and antagonist NPS 2143 to promote the active and inactive conformations of wild type CaR, respectively. Overnight culture in NPS R-568 increased expression of CaR, whereas NPS 2143 had the opposite effect. NPS R-568 and NPS 2143 differentially regulated maturation and cell surface expression of wild type CaR, directly affecting maximal signaling responses. NPS R-568 rescued expression of loss-of-function CaR mutants, increasing plasma membrane expression and ERK1/2 phosphorylation in response to 5 mM Ca(2+). Disorders of calcium homeostasis caused by CaR mutations may therefore result from altered receptor biogenesis independent of receptor function, i.e. a protein folding disorder. The allosteric modulators NPS R-568 and NPS 2143 not only alter CaR sensitivity to calcium and hence signaling but also modulate receptor expression.
Collapse
Affiliation(s)
- Ying Huang
- Department of Biology, Syracuse University, Syracuse, New York 13244; Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania 17822
| | | |
Collapse
|
33
|
Liao J, Schneider A, Datta NS, McCauley LK. Extracellular calcium as a candidate mediator of prostate cancer skeletal metastasis. Cancer Res 2006; 66:9065-73. [PMID: 16982748 DOI: 10.1158/0008-5472.can-06-0317] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prostate cancer almost exclusively metastasizes to skeletal sites, indicating that the bone provides a favorable microenvironment for its localization and progression. A natural yet understudied factor in bone that could facilitate tumor localization is elevated extracellular calcium ([Ca2+]o). The present study found that elevated [Ca2+]o (2.5 mmol/L) enhanced proliferation of skeletal metastatic prostate cell lines (PC-3 and C4-2B), but not the nonskeletal metastatic, epithelial-derived prostate cell line LNCaP. The proliferative effect of elevated [Ca2+]o was associated with higher expression of the calcium-sensing receptor (CaSR), a heterotrimeric G-protein-coupled receptor that is the predominant cell-surface sensor for [Ca2+]o. Knockdown of the CaSR via RNA interference reduced cell proliferation in vitro and metastatic progression in vivo. CaSR signaling in PC-3 cells was evaluated by measuring the elevated [Ca2+]o-dependent inhibition of cyclic AMP accumulation, induced by either prostaglandin E2 or forskolin. Elevated [Ca2+]o stabilized expression of cyclin D1, a protein required for cell cycle transition. Furthermore, elevated [Ca2+]o triggered activation of the Akt signaling pathway and enhanced PC-3 cell attachment. Both pertussis toxin (a G-protein inhibitor) and LY294002 (an inhibitor of Akt signaling) reduced cell attachment. These data suggest that elevated [Ca2+]o following increased bone remodeling could facilitate metastatic localization of prostate cancer via the CaSR and the Akt signaling pathway. Taken together, [Ca2+]o is a candidate mediator of prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Jinhui Liao
- Department of Periodontics and Oral Medicine, School of Dentistry, and Department of Pathology, Medical School, University of Michigan, Ann Arbor, Michigan 48109-1078, USA
| | | | | | | |
Collapse
|
34
|
Abstract
A constant extracellular Ca2+ concentration is required for numerous physiological functions at tissue and cellular levels. This suggests that minor changes in Ca2+ will be corrected by appropriate homeostatic systems. The system regulating Ca2+ homeostasis involves several organs and hormones. The former are mainly the kidneys, skeleton, intestine and the parathyroid glands. The latter comprise, amongst others, the parathyroid hormone, vitamin D and calcitonin. Progress has recently been made in the identification and characterisation of Ca2+ transport proteins CaT1 and ECaC and this has provided new insights into the molecular mechanisms of Ca2+ transport in cells. The G-protein coupled calcium-sensing receptor, responsible for the exquisite ability of the parathyroid gland to respond to small changes in serum Ca2+ concentration was discovered about a decade ago. Research has focussed on the molecular mechanisms determining the serum levels of 1,25(OH)2D3, and on the transcriptional activity of the vitamin D receptor. The aim of recent work has been to elucidate the mechanisms and the intracellular signalling pathways by which parathyroid hormone, vitamin D and calcitonin affect Ca2+ homeostasis. This article summarises recent advances in the understanding and the molecular basis of physiological Ca2+ homeostasis.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Chemical Pathology, Newham University Hospital, London, UK.
| |
Collapse
|
35
|
Davies SL, Gibbons CE, Vizard T, Ward DT. Ca2+-sensing receptor induces Rho kinase-mediated actin stress fiber assembly and altered cell morphology, but not in response to aromatic amino acids. Am J Physiol Cell Physiol 2006; 290:C1543-51. [PMID: 16407414 DOI: 10.1152/ajpcell.00482.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Ca2+-sensing receptor (CaR) is a pleiotropic, type III G protein-coupled receptor (GPCR) that associates functionally with the cytoskeletal protein filamin. To investigate the effect of CaR signaling on the cytoskeleton, human embryonic kidney (HEK)-293 cells stably transfected with CaR (CaR-HEK) were incubated with CaR agonists in serum-free medium for up to 3 h. Addition of the calcimimetic NPS R-467 or exposure to high extracellular Ca2+ or Mg2+ levels elicited actin stress fiber assembly and process retraction in otherwise stellate cells. These responses were ablated by cotreatment with the calcilytic NPS 89636 and were absent in vector-transfected HEK-293 cells. Cotreatment with the Rho kinase inhibitors Y-27632 and H1152 attenuated the CaR-induced morphological change but not intracellular Ca2+ (Cai2+) mobilization or ERK activation, although transfection with a dominant-negative RhoA-binding protein also inhibited calcimimetic-induced actin stress fiber assembly. CaR effects on morphology were unaffected by inhibition of Gq/11 or Gi/o signaling, epidermal growth factor receptor, or the metalloproteinases. In contrast, CaR-induced cytoskeletal changes were not induced by the aromatic amino acids, treatments that also failed to potentiate CaR-induced ERK activation despite inducing Cai2+ mobilization. Together, these data establish that CaR can elicit Rho-mediated changes in stress fiber assembly and cell morphology, which could contribute to the receptor's physiological actions. In addition, this study provides further evidence that aromatic amino acids elicit differential signaling from other CaR agonists.
Collapse
Affiliation(s)
- Sarah L Davies
- The Univ. of Manchester, Faculty of Life Sciences, Core Technology Facility, 46 Grafton St., Manchester, M13 9NT, UK
| | | | | | | |
Collapse
|
36
|
Tfelt-Hansen J, Hansen JL, Smajilovic S, Terwilliger EF, Haunso S, Sheikh SP. Calcium receptor is functionally expressed in rat neonatal ventricular cardiomyocytes. Am J Physiol Heart Circ Physiol 2006; 290:H1165-71. [PMID: 16243911 DOI: 10.1152/ajpheart.00821.2005] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both intra- and extracellular calcium play multiple roles in the physiology and pathophysiology of cardiomyocytes, especially in stimulus-contraction coupling. The intracellular calcium level is closely controlled through the concerted actions of calcium channels, exchangers, and pumps; however, the expression and function(s) of the so-called calcium-sensing receptor (CaR) in the heart remain less well characterized. The CaR is a seven-transmembrane receptor, which, in response to noncovalent binding of extracellular calcium, activates intracellular effectors, including G proteins and extracellular signal-regulated kinases (ERK1/2). We have shown that cultured neonatal cardiomyocytes express the CaR messenger RNA and the CaR protein. Furthermore, increasing concentrations of extracellular calcium and a type II CaR activator “calcimimetic” caused inositol phosphate (IP) accumulation, downregulated tritiated thymidine incorporation, and supported ERK1/2 phosphorylation, suggesting that the CaR protein is functionally active. Interestingly, the calcimimetic induced a more rapid ERK1/2 phosphorylation than calcium and left-shifted the IP concentration-response curve for extracellular calcium, supporting the hypothesis that CaR is functionally expressed in cardiac myocytes. This notion was underscored by studies using a virus containing a dominant-negative CaR construct, because this protein blunted the calcium-induced IP response. In conclusion, we have shown that the CaR is functionally expressed in neonatal ventricular cardiomyocytes and that the receptor activates second messenger pathways, including IP and ERK, and decreases DNA synthesis. A specific calcium-sensing receptor on cardiac myocytes could play a role in regulating cardiac development, function, and homeostasis.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Laboratory of Molecular Cardiology, Department of Cardiology, Copenhagen University Hospital, Rigshospitaket, Denmark.
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
In this issue of Molecular Pharmacology, Mukhopadhyay and Howlett present evidence for ligand-selective conformations of the CB1 cannabinoid receptor with differential coupling to G proteins. Ligand-directed signaling to different cellular effector pathways extends drug selectivity beyond that afforded by differential affinity for different receptor subtypes. The challenge for pharmacologists of the future will be not only to identify ligand-selective receptor conformations but also to develop an understanding of the relationships between those conformations, cell function, and ultimately therapeutics. As we learn more about ligand-selective receptor conformations, it should be possible to develop response-selective drugs that maximize therapeutic efficacy and minimize unwanted effects.
Collapse
Affiliation(s)
- William P Clarke
- Department of Pharmacology, MS #7764, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
38
|
Nickolls SA, Fleck B, Hoare SRJ, Maki RA. Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists: evidence for ligand-specific conformational states. J Pharmacol Exp Ther 2005; 313:1281-8. [PMID: 15743921 DOI: 10.1124/jpet.105.083337] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Agonists of the melanocortin 4 (MC4) receptor have potential pharmaceutical benefit in the treatment of obesity and sexual dysfunction. In this study, we have compared the ability of a number of peptide and nonpeptide agonists to activate a FLAG-tagged human MC4 (FMC4) receptor, as measured by both cAMP accumulation and calcium mobilization using a fluorometric imaging plate reader (FLIPR). In addition, we have analyzed the ability of these agonists to cause receptor internalization, as measured by fluorescence-activated cell sorting analysis. The endogenous agonist alpha-melanocortin-stimulating hormone (alpha-MSH) increased cAMP accumulation, calcium mobilization, and receptor internalization in a dose-dependent manner in human embryonic kidney 293 cells expressing the FMC4 receptor. The activity of the other agonists varied considerably in these assays, and overall, the potency and intrinsic activity of the agonists in the cAMP accumulation assays did not correlate with their potency or intrinsic activity in either the FLIPR or receptor internalization assays. Agonists could be clearly separated into two functional classes based on their structure. Peptide agonists beta-MSH, des-acetyl-alpha-MSH, and [Nle(4), D-Phe(7)]-alpha-melanocortin-stimulating hormone exhibited 80 to 112% of the maximal alpha-MSH response in cAMP accumulation and 62 to 96% in FLIPR assays and were able to cause 75 to 118% of receptor internalization induced by alpha-MSH. Conversely, although the nonpeptide agonists exhibited 73 to 149% of the alpha-MSH response in the cAMP accumulation assays, they were significantly impaired in the FLIPR (7-40%) and receptor internalization (-5-38%) assays. These findings demonstrate an important difference in activation and internalization of the MC4 receptor by nonpeptide versus peptide agonists and provides evidence of agonist-specific conformational states.
Collapse
|
39
|
Zhang M, Breitwieser GE. High Affinity Interaction with Filamin A Protects against Calcium-sensing Receptor Degradation. J Biol Chem 2005; 280:11140-6. [PMID: 15657061 DOI: 10.1074/jbc.m412242200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium-sensing receptors (CaR) regulate cell proliferation, differentiation, and apoptosis through the MAPK pathway. MAPK pathway activation requires the cytoskeletal scaffold protein filamin A. Here we examine the interactions of CaR with filamin A in HEK-293 and M2 or A7 melanoma cells to determine how interactions with filamin A facilitate signaling. Filamin A interacts with CaR through two predicted beta-strands from residues 962 to 981; interactions between filamin A and CaR are greatly enhanced by exposure to 5 mM Ca2+. Truncations or deletions (from 972 to 997 or 962 to 981) of the CaR carboxyl terminus eliminate high affinity interactions with filamin A, but CaR-mediated MAPK pathway activation still occurs. CaR-mediated ERK phosphorylation can be localized to a predicted alpha-helix proximal to the membrane, which has been shown to be important for G protein-mediated signaling (residues 868-879). In M2 cells (-filamin A), CaR expression levels are very low; cotransfection of CaR with filamin A increases total cellular CaR and increases plasma membrane localization of CaR, facilitating CaR signaling to the MAPK pathway; similar results were obtained in HEK-293 cells. Interaction with filamin A increases cellular CaR by preventing CaR degradation, thereby facilitating CaR signaling. In addition, filamin A facilitates signaling to the MAPK pathway even by CaR truncations or deletion mutants that cannot engage in high affinity interactions with filamin A, suggesting the targeting of critical signaling proteins to CaR.
Collapse
Affiliation(s)
- Mingliang Zhang
- Department of Biology, Syracuse University, Syracuse, New York 13244, USA
| | | |
Collapse
|
40
|
Abstract
The elucidation of the structure and function of the Ca2+(o)-sensing receptor (CaR) has provided important insights into the normal control of Ca2+(o) homeostasis, particularly the key role of the receptor in kidney and parathyroid. Further studies are needed to define more clearly the homeostatic role of the CaR in additional tissues, both those that are involved and those that are uninvolved in systemic Ca2+(o) homeostasis. The availability of the cloned CaR has also permitted documentation of the molecular basis of inherited disorders of Ca2+(o) sensing, including those in which the receptor is less and or more sensitive than normal to Ca2+(o). Antibodies to the CaR that either activate it or inactivate it produce syndromes resembling the corresponding genetic diseases. Expression of the receptor is abnormally low in 1 degree and 2 degrees hyperparathyroidism, which could contribute to the defective Ca2+(o) sensing in these conditions. The recent discovery of calcimimetics, which sensitize the CaR to Ca2+(o), has provided what will likely be an effective medical therapy for the secondary/tertiary hyperparathyroidism of end stage renal failure as well as for 1 degree hyperparathyroidism.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|