1
|
Alexandrino AV, Barcelos MP, Federico LB, da Silva TG, Cavalca LB, de Moraes CHA, Ferreira H, Taft CA, Behlau F, de Paula Silva CHT, Novo-Mansur MTM. GDP-mannose pyrophosphorylase is an efficient target in Xanthomonas citri for citrus canker control. Microbiol Spectr 2024; 12:e0367323. [PMID: 38722158 PMCID: PMC11237706 DOI: 10.1128/spectrum.03673-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/20/2024] [Indexed: 06/06/2024] Open
Abstract
Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.
Collapse
Affiliation(s)
- André Vessoni Alexandrino
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo Bruno Federico
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamiris Garcia da Silva
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | - Lúcia Bonci Cavalca
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Carlos Henrique Alves de Moraes
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Henrique Ferreira
- Departamento de Bioquímica e Microbiologia, Instituto de Biociências, UNESP, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | | | - Franklin Behlau
- Departamento de Pesquisa e Desenvolvimento, Fundo de Defesa da Citricultura, Fundecitrus, Araraquara, São Paulo, Brazil
| | | | - Maria Teresa Marques Novo-Mansur
- Laboratório de Bioquímica e Biologia Molecular Aplicada (LBBMA), Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Biotecnologia (PPGBiotec), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
- Programa de Pós-Graduação em Genética Evolutiva e Biologia Molecular (PPGGEv), Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
2
|
Heidari S, Hajjaran H, Mohebali M, Akhoundi B, Gharechahi J. Recognition of Immunoreactive Proteins in Leishmania infantum Amastigote-Like and Promastigote Using Sera of Visceral Leishmaniasis Patients: a Preliminary Study. Acta Parasitol 2024; 69:533-540. [PMID: 38227109 DOI: 10.1007/s11686-023-00764-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 11/22/2023] [Indexed: 01/17/2024]
Abstract
PURPOSE Visceral leishmaniasis (VL) is a systemic and parasitic disease that is usually fatal if left untreated. VL is endemic in different parts of Iran and is caused mainly by Leishmania infantum. This study aimed to recognition immunoreactive proteins in amastigote-like and promastigote stages of L. infantum (Iranian strain) by antibodies present in the sera of VL patients. METHODS Total protein extract from amastigote-like and promastigote cells was separated by two-dimensional electrophoresis (2DE). To detect the immunoreactive proteins, 2DE immunoblotting method was performed using different pools of VL patients' sera. RESULTS Approximately 390 and 430 protein spots could be separated in 2DE profiles of L. infantum amastigote-like and promastigote stages, respectively. In immunoblotting method, approximately 295 and 135 immunoreactive proteins of amastigotes-like reacted with high antibody titer serum pool and low antibody titer serum pool, respectively. Approximately 120 and 85 immunoreactive proteins of promastigote extract were recognized using the high antibody titer sera pool and low antibody titer sera, respectively. CONCLUSION The present study has recognized a number of antigenic diversity proteins based on the molecular weight and pH in amastigote-like and promastigote stages of L. infantum. These results provide us a new concept for further analysis development in the field of diagnosis biomarkers and vaccine targets.
Collapse
Affiliation(s)
- Soudabeh Heidari
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran.
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
- Center for Research of Endemic Parasites of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Akhoundi
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, P. O. Box: 1417613151, Tehran, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
An insight into differential protein abundance throughout Leishmania donovani promastigote growth and differentiation. Int Microbiol 2023; 26:25-42. [PMID: 35930160 PMCID: PMC9362617 DOI: 10.1007/s10123-022-00259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/01/2022] [Accepted: 06/07/2022] [Indexed: 01/06/2023]
Abstract
Leishmania donovani causes anthroponotic visceral leishmaniasis, responsible for about 50,000 annual deaths worldwide. Current therapies have considerable side effects. Drug resistance has been reported and no vaccine is available nowadays. The development of undifferentiated promastigotes in the sand fly vector's gut leads to the promastigote form that is highly infective to the mammalian host. Fully differentiated promastigotes play a crucial role in the initial stages of mammalian host infection before internalization in the host phagocytic cell. Therefore, the study of protein levels in the promastigote stage is relevant for disease control, and proteomics analysis is an ideal source of vaccine candidate discovery. This study aims to get insight into the protein levels during the differentiation process of promastigotes by 2DE-MALDI-TOF/TOF. This partial proteome analysis has led to the identification of 75 proteins increased in at least one of the L. donovani promastigote differentiation and growth phases. This study has revealed the differential abundance of said proteins during growth and differentiation. According to previous studies, some are directly involved in parasite survival or are immunostimulatory. The parasite survival-related proteins are ascorbate peroxidase; cystathionine β synthase; an elongation factor 1β paralog; elongation factor 2; endoribonuclease L-PSP; an iron superoxide dismutase paralog; GDP-mannose pyrophosphorylase; several heat shock proteins-HSP70, HSP83-17, mHSP70-rel, HSP110; methylthioadenosine phosphorylase; two thiol-dependent reductase 1 paralogs; transitional endoplasmic reticulum ATPase; and the AhpC thioredoxin paralog. The confirmed immunostimulatory proteins are the heat shock proteins, enolase, and protein kinase C receptor analog. The potential immunostimulatory molecules according to findings in patogenic bacteria are fructose-1,6-diphophate aldolase, dihydrolipoamide acetyltransferase, isocitrate dehydrogenase, pyruvate dehydrogenase E1α and E1β subunits, and triosephosphate isomerase. These proteins may become disease control candidates through future intra-vector control methods or vaccines.
Collapse
|
4
|
Li H, Ji T, Sun Q, Chen Y, Xu W, Huang C. Structural insights into selective inhibition of leishmanial GDP-mannose pyrophosphorylase. Cell Discov 2022; 8:83. [PMID: 36038534 PMCID: PMC9424295 DOI: 10.1038/s41421-022-00424-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Hang Li
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Tuo Ji
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qi Sun
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China
| | - Yao Chen
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Weiya Xu
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Chengdong Huang
- Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
5
|
Mao W, Lazar N, van Tilbeurgh H, Loiseau PM, Pomel S. Minor Impact of A258D Mutation on Biochemical and Enzymatic Properties of Leishmania infantum GDP-Mannose Pyrophosphorylase. Microorganisms 2022; 10:microorganisms10020231. [PMID: 35208687 PMCID: PMC8877407 DOI: 10.3390/microorganisms10020231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/17/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Leishmaniasis, a vector-borne disease caused by the protozoan parasite from the genus Leishmania, is endemic to tropical and subtropical areas. Few treatments are available against leishmaniasis, with all presenting issues of toxicity, resistance, and/or cost. In this context, the development of new antileishmanial drugs is urgently needed. GDP-mannose pyrophosphorylase (GDP-MP), an enzyme involved in the mannosylation pathway, has been described to constitute an attractive therapeutic target for the development of specific antileishmanial agents. Methods: In this work, we produced, purified, and analyzed the enzymatic properties of the recombinant L. infantum GDP-MP (LiGDP-MP), a single leishmanial GDP-MP that presents mutation of an aspartate instead of an alanine at position 258, which is also the single residue difference with the homolog in L. donovani: LdGDP-MP. Results: The purified LiGDP-MP displayed high substrate and cofactor specificities, a sequential random mechanism of reaction, and the following kinetic constants: Vm at 0.6 µM·min−1, Km from 15–18 µM, kcat from 12.5–13 min−1, and kcat/Km at around 0.8 min−1µM−1. Conclusions: These results show that LiGDP-MP has similar biochemical and enzymatic properties to LdGDP-MP. Further studies are needed to determine the advantage for L. infantum of the A258D residue change in GDP-MP.
Collapse
Affiliation(s)
- Wei Mao
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; (W.M.); (P.M.L.)
| | - Noureddine Lazar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (N.L.); (H.v.T.)
| | - Herman van Tilbeurgh
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France; (N.L.); (H.v.T.)
| | - Philippe M. Loiseau
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; (W.M.); (P.M.L.)
| | - Sébastien Pomel
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France; (W.M.); (P.M.L.)
- Correspondence:
| |
Collapse
|
6
|
Taj A, Jia L, Sha S, Wang C, Ullah H, Haris M, Ma X, Ma Y. Functional analysis and enzyme characterization of Mannose-1-phosphate guanylyl transferase (ManB) from Mycobacterium tuberculosis. Res Microbiol 2021; 173:103884. [PMID: 34644596 DOI: 10.1016/j.resmic.2021.103884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Mycobacterium tuberculosis cell wall consist variety of mannose containing glycoconjugates including lipomannan (LM) and lipoarabinomannan (LAM). These lipoglycans are involved in cell wall integrity and play role in virulence of M. tuberculosis by modulating host immune response. GDP-mannose, required for the synthesis of lipoglycans, is catalyzed by enzyme Mannose-1-phosphate guanylyl transferase (ManB). The enzyme with similar function has been studied in variety of species of prokaryotes and eukaryotes. However, biological role of ManB and its enzymatic activity remains uncharacterized in M. tuberculosis. In present study, we elucidated the role of enzyme by constructing manB knockdown strain of M. tuberculosis H37Ra. The manB knockdown decreased the cell growth and also effected the morphology of M. tuberculosis by altering the permeability of cell membrane. These findings provide the understanding on ManB function and suggesting that ManB could be the potential target for novel anti-tuberculosis drug. Furthermore, we also characterized ManB enzyme by establishing 96 well plate colorimetric assay and determined the kinetic properties including initial velocity, optimum temperature, optimum pH and other kinetic parameters. Our established assay will be helpful for further high throughput screening of potential inhibitors against ManB.
Collapse
Affiliation(s)
- Ayaz Taj
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Liqiu Jia
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Chao Wang
- College of Pharmacy, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Hayan Ullah
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Muhammad Haris
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Xiaochi Ma
- College of Pharmacy, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China; Department of Microbiology, Dalian Medical University, 9 W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
7
|
Yi Y, Liu L, Zhou W, Peng D, Han R, Yu N. Characterization of GMPP from Dendrobium huoshanense yielding GDP-D-mannose. Open Life Sci 2021; 16:102-107. [PMID: 33817303 PMCID: PMC7988358 DOI: 10.1515/biol-2021-0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/10/2023] Open
Abstract
Dendrobium huoshanense has been used for centuries in China and its polysaccharides are the main active components in treating loss of body fluids resulting from fever and asthenic symptoms. However, the biosynthetic pathway of polysaccharides in D. huoshanense remains to be elucidated. In this study, we obtained a guanosine diphosphate (GDP)-mannose pyrophosphorylase (DhGMPP) from D. huoshanense and characterized its function to catalyze the conversion of α-D-mannose-phosphate to GDP-D-mannose involved in the production of polysaccharides. DhGMPP, with the open reading frame of 1,245 bp, was isolated from RNA-Seq data of D. huoshanense. Phylogenetic analysis as well as sequence characterization suggested its involvement in the biosynthesis of GDP-D-mannose. In vitro enzyme assay demonstrated that GMPP encoded a pyrophosphorylase that converted α-D-mannose-phosphate and GTP into GDP-D-mannose. Identification of DhGMPP could provide more insights into the mechanism concerning polysaccharide biosynthesis in D. huoshanense and be utilized for enhancing polysaccharide accumulation through metabolic engineering.
Collapse
Affiliation(s)
- Yuqi Yi
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Lulu Liu
- Department of Research and Development, Shanghai Zenith Pharmaceutical Technology Co. Ltd.; Shanghai 201199, China
| | - Wenyan Zhou
- Department of Research and Development, Hefei Yifan Biopharmaceutical Co. Ltd.; Hefei 230061, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Rongchun Han
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, No. 1, Qianjiang Road, Yaohai District, Hefei 230012, China
| |
Collapse
|
8
|
Alkyl-Resorcinol Derivatives as Inhibitors of GDP-Mannose Pyrophosphorylase with Antileishmanial Activities. Molecules 2021; 26:molecules26061551. [PMID: 33799883 PMCID: PMC7999366 DOI: 10.3390/molecules26061551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmaniasis is a vector-borne disease caused by the protozoan parasite Leishmania found in tropical and sub-tropical areas, affecting 12 million people around the world. Only few treatments are available against this disease and all of them present issues of toxicity and/or resistance. In this context, the development of new antileishmanial drugs specifically directed against a therapeutic target appears to be a promising strategy. The GDP-Mannose Pyrophosphorylase (GDP-MP) has been previously shown to be an attractive therapeutic target in Leishmania. In this study, a chemical library of 5000 compounds was screened on both L. infantum (LiGDP-MP) and human (hGDP-MP) GDP-MPs. From this screening, oncostemonol D was found to be active on both GDP-MPs at the micromolar level. Ten alkyl-resorcinol derivatives, of which oncostemonols E and J (2 and 3) were described for the first time from nature, were then evaluated on both enzymes as well as on L. infantum axenic and intramacrophage amastigotes. From this evaluation, compounds 1 and 3 inhibited both GDP-MPs at the micromolar level, and compound 9 displayed a three-times lower IC50 on LiGDP-MP, at 11 µM, than on hGDP-MP. As they displayed mild activities on the parasite, these compounds need to be further pharmacomodulated in order to improve their affinity and specificity to the target as well as their antileishmanial activity.
Collapse
|
9
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
10
|
Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis 2019; 13:e0007152. [PMID: 30845223 PMCID: PMC6405045 DOI: 10.1371/journal.pntd.0007152] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/11/2019] [Indexed: 02/01/2023] Open
Abstract
Diffuse cutaneous leishmaniasis (DCL) is a rare form of leishmaniasis where parasites grow uncontrolled in diffuse lesions across the skin. Meta-transcriptomic analysis of biopsies from DCL patients infected with Leishmania amazonensis demonstrated an infiltration of atypical B cells producing a surprising preponderance of the IgG4 isotype. DCL lesions contained minimal CD8+ T cell transcripts and no evidence of persistent TH2 responses. Whereas localized disease exhibited activated (so-called M1) macrophage presence, transcripts in DCL suggested a regulatory macrophage (R-Mϕ) phenotype with higher levels of ABCB5, DCSTAMP, SPP1, SLAMF9, PPARG, MMPs, and TM4SF19. The high levels of parasite transcripts in DCL and the remarkable uniformity among patients afforded a unique opportunity to study parasite gene expression in this disease. Patterns of parasite gene expression in DCL more closely resembled in vitro parasite growth in resting macrophages, in the absence of T cells. In contrast, parasite gene expression in LCL revealed 336 parasite genes that were differently upregulated, relative to DCL and in vitro macrophage growth, and these transcripts may represent transcripts that are produced by the parasite in response to host immune pressure.
Collapse
Affiliation(s)
- Stephen M. Christensen
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Wagner L. Tafuri
- Departamento de Patologia Geral, Universidade Federal de Minas Geras, Belo Horizonte, Brazil
| | - Fernando T. Silveira
- Evandro Chagas Institute, Tropical Medicine Nucleus, Federal University of Pará, Belém, PA Brazil
| | - David M. Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| |
Collapse
|
11
|
Gupta R, Hogan CJ, Perugini MA, Soares da Costa TP. Characterization of recombinant dihydrodipicolinate synthase from the bread wheat Triticum aestivum. PLANTA 2018; 248:381-391. [PMID: 29744651 DOI: 10.1007/s00425-018-2894-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/14/2018] [Indexed: 06/08/2023]
Abstract
Recombinant wheat DHDPS was produced for the first time in milligram quantities and shown to be an enzymatically active tetramer in solution using analytical ultracentrifugation and small angle X-ray scattering. Wheat is an important cereal crop with an extensive role in global food supply. Given our rapidly growing population, strategies to increase the nutritional value and production of bread wheat are of major significance in agricultural science to satisfy our dietary requirements. Lysine is one of the most limiting essential amino acids in wheat, thus, a thorough understanding of lysine biosynthesis is of upmost importance to improve its nutritional value. Dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7) catalyzes the first committed step in the lysine biosynthesis pathway of plants. Here, we report for the first time the expression and purification of recombinant DHDPS from the bread wheat Triticum aestivum (Ta-DHDPS). The optimized protocol yielded 36 mg of > 98% pure recombinant Ta-DHDPS per liter of culture. Enzyme kinetic studies demonstrate that the recombinant Ta-DHDPS has a KM (pyruvate) of 0.45 mM, KM (l-aspartate-4-semialdehyde) of 0.07 mM, kcat of 56 s-1, and is inhibited by lysine (IC 50 LYS of 0.033 mM), which agree well with previous studies using labor-intensive purification from wheat suspension cultures. We subsequently employed circular dichroism spectroscopy, analytical ultracentrifugation and small angle X-ray scattering to show that the recombinant enzyme is folded with 60% α/β structure and exists as a 7.5 S tetrameric species with a Rg of 33 Å and Dmax of 118 Å. This study is the first to report the biophysical properties of the recombinant Ta-DHDPS in aqueous solution and offers an excellent platform for future studies aimed at improving nutritional value and primary production of bread wheat.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Campbell J Hogan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Gupta R, Soares da Costa TP, Faou P, Dogovski C, Perugini MA. Comparison of untagged and his-tagged dihydrodipicolinate synthase from the enteric pathogen Vibrio cholerae. Protein Expr Purif 2018; 145:85-93. [PMID: 29337198 DOI: 10.1016/j.pep.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/10/2018] [Indexed: 02/03/2023]
Abstract
Given the emergence of multi drug resistant Vibrio cholerae strains, there is an urgent need to characterize new anti-cholera targets. One such target is the enzyme dihydrodipicolinate synthase (DHDPS; EC 4.3.3.7), which catalyzes the first committed step in the diaminopimelate pathway. This pathway is responsible for the production of two key metabolites in bacteria and plants, namely meso-2,6-diaminopimelate and L-lysine. Here, we report the cloning, expression and purification of untagged and His-tagged recombinant DHDPS from V. cholerae (Vc-DHDPS) and provide comparative structural and kinetic analyses. Structural studies employing circular dichroism spectroscopy and analytical ultracentrifugation demonstrate that the recombinant enzymes are folded and exist as dimers in solution. Kinetic analyses of untagged and His-tagged Vc-DHDPS show that the enzymes are functional with specific activities of 75.6 U/mg and 112 U/mg, KM (pyruvate) of 0.14 mM and 0.15 mM, KM (L-aspartate-4-semialdehyde) of 0.08 mM and 0.09 mM, and kcat of 34 and 46 s-1, respectively. These results demonstrate there are no significant changes in the structure and function of Vc-DHDPS upon the addition of an N-terminal His tag and, hence, the tagged recombinant product is suitable for future studies, including screening for new inhibitors as potential anti-cholera agents. Additionally, a polyclonal antibody raised against untagged Vc-DHDPS is validated for specifically detecting recombinant and native forms of the enzyme.
Collapse
Affiliation(s)
- Ruchi Gupta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Tatiana P Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Con Dogovski
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matthew A Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| |
Collapse
|
13
|
Soares da Costa TP, Patel M, Desbois S, Gupta R, Faou P, Perugini MA. Identification of a dimeric KDG aldolase from
Agrobacterium tumefaciens. Proteins 2017; 85:2058-2065. [DOI: 10.1002/prot.25359] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/17/2017] [Accepted: 07/24/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Tatiana P. Soares da Costa
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Madhvi Patel
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Sebastien Desbois
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Ruchi Gupta
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Pierre Faou
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| | - Matthew A. Perugini
- Department of Biochemistry and GeneticsLa Trobe Institute for Molecular Science, La Trobe UniversityMelbourne Victoria Australia
| |
Collapse
|
14
|
Biochemical analysis of leishmanial and human GDP-Mannose Pyrophosphorylases and selection of inhibitors as new leads. Sci Rep 2017; 7:751. [PMID: 28389670 PMCID: PMC5429698 DOI: 10.1038/s41598-017-00848-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Leishmaniases are an ensemble of diseases caused by the protozoan parasite of the genus Leishmania. Current antileishmanial treatments are limited and present main issues of toxicity and drug resistance emergence. Therefore, the generation of new inhibitors specifically directed against a leishmanial target is an attractive strategy to expand the chemotherapeutic arsenal. GDP-Mannose Pyrophosphorylase (GDP-MP) is a prominent therapeutic target involved in host-parasite recognition which has been described to be essential for parasite survival. In this work, we produced and purified GDP-MPs from L. mexicana (LmGDP-MP), L. donovani (LdGDP-MP), and human (hGDP-MP), and compared their enzymatic properties. From a rationale design of 100 potential inhibitors, four compounds were identified having a promising and specific inhibitory effect on parasite GDP-MP and antileishmanial activities, one of them exhibits a competitive inhibition on LdGDP-MP and belongs to the 2-substituted quinoline series.
Collapse
|
15
|
Luo S, Cai S, Maxwell S, Yue D, Zhu W, Qiao K, Zhu Z, Zhou L, Xi J, Lu J, Beeson D, Zhao C. Novel mutations in the C-terminal region of GMPPB causing limb-girdle muscular dystrophy overlapping with congenital myasthenic syndrome. Neuromuscul Disord 2017; 27:557-564. [PMID: 28433477 DOI: 10.1016/j.nmd.2017.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/02/2017] [Accepted: 03/07/2017] [Indexed: 10/20/2022]
Abstract
Mutations in the GMPPB gene may underlie both limb girdle muscular dystrophy (LGMD) and congenital myasthenic syndrome (CMS). Forty-one cases have been reported to date and hotspot mutations are emerging in the Caucasian population. Clinical and pathological features of 5 patients with compound heterozygous GMPPB mutations were collected and retrospectively reviewed. In vitro functional analysis was performed to investigate the pathogeneity of GMPPB variants. The patients presented with proximal limb weakness in their first to second decades. Fluctuating muscle weakness, myalgia and calf hypertrophy were the major complaints. Myogenic changes on electromyography and marked attenuation on 3 Hz repetitive nerve stimulation were observed in all patients. Four reported a beneficial response to pyridostigmine. Muscle MRI showed selective involvement in the calf in case 1. Immunolabeling of α-dystroglycan was abnormal for case 1 and case 2. Four novel missense mutations in the C-terminal region of GMPPB were identified, with p.(Arg357His) being present in all the cases. In vitro functional assays demonstrated that these variants did not markedly reduce the amount of GMPPB, but gave rise to an increased propensity for protein aggregation. Increasingly, patients with GMPPB mutations are found to present with an overlapping LGMD/myasthenic syndrome. The mutation spectrum in Chinese patients may differ from that of European populations, with the mutation p.(Arg357His) most frequently found. These mutations may lead to abnormal folding of GMPPB leading to protein aggregates in the cytoplasm rather than an overall loss in protein expression.
Collapse
Affiliation(s)
- Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Shuang Cai
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Susan Maxwell
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Dongyue Yue
- Department of Neurology, Jing'an District Centre Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Kai Qiao
- Department of Clinical Electrophysiology, Institute of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Zhu
- Department of Radiology, Putuo District People's Hospital of Shanghai, Shanghai, China
| | - Lei Zhou
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China; Department of Neurology, Jing'an District Centre Hospital of Shanghai, Shanghai, China.
| |
Collapse
|
16
|
DoGMP1 from Dendrobium officinale contributes to mannose content of water-soluble polysaccharides and plays a role in salt stress response. Sci Rep 2017; 7:41010. [PMID: 28176760 PMCID: PMC5296857 DOI: 10.1038/srep41010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth.
Collapse
|
17
|
Christensen JB, Soares da Costa TP, Faou P, Pearce FG, Panjikar S, Perugini MA. Structure and Function of Cyanobacterial DHDPS and DHDPR. Sci Rep 2016; 6:37111. [PMID: 27845445 PMCID: PMC5109050 DOI: 10.1038/srep37111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 11/21/2022] Open
Abstract
Lysine biosynthesis in bacteria and plants commences with a condensation reaction catalysed by dihydrodipicolinate synthase (DHDPS) followed by a reduction reaction catalysed by dihydrodipicolinate reductase (DHDPR). Interestingly, both DHDPS and DHDPR exist as different oligomeric forms in bacteria and plants. DHDPS is primarily a homotetramer in all species, but the architecture of the tetramer differs across kingdoms. DHDPR also exists as a tetramer in bacteria, but has recently been reported to be dimeric in plants. This study aimed to characterise for the first time the structure and function of DHDPS and DHDPR from cyanobacteria, which is an evolutionary important phylum that evolved at the divergence point between bacteria and plants. We cloned, expressed and purified DHDPS and DHDPR from the cyanobacterium Anabaena variabilis. The recombinant enzymes were shown to be folded by circular dichroism spectroscopy, enzymatically active employing the quantitative DHDPS-DHDPR coupled assay, and form tetramers in solution using analytical ultracentrifugation. Crystal structures of DHDPS and DHDPR from A. variabilis were determined at 1.92 Å and 2.83 Å, respectively, and show that both enzymes adopt the canonical bacterial tetrameric architecture. These studies indicate that the quaternary structure of bacterial and plant DHDPS and DHDPR diverged after cyanobacteria evolved.
Collapse
Affiliation(s)
- Janni B. Christensen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - T. P. Soares da Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Pierre Faou
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Santosh Panjikar
- Australian Synchrotron, Clayton, Victoria 3168, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Matthew A. Perugini
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|
18
|
Increased Abundance of Proteins Involved in Resistance to Oxidative and Nitrosative Stress at the Last Stages of Growth and Development of Leishmania amazonensis Promastigotes Revealed by Proteome Analysis. PLoS One 2016; 11:e0164344. [PMID: 27776144 PMCID: PMC5077082 DOI: 10.1371/journal.pone.0164344] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/23/2016] [Indexed: 12/23/2022] Open
Abstract
Leishmania amazonensis is one of the major etiological agents of the neglected, stigmatizing disease termed american cutaneous leishmaniasis (ACL). ACL is a zoonosis and rodents are the main reservoirs. Most cases of ACL are reported in Brazil, Bolivia, Colombia and Peru. The biological cycle of the parasite is digenetic because sand fly vectors transmit the motile promastigote stage to the mammalian host dermis during blood meal intakes. The amastigote stage survives within phagocytes of the mammalian host. The purpose of this study is detection and identification of changes in protein abundance by 2DE/MALDI-TOF/TOF at the main growth phases of L. amazonensis promastigotes in axenic culture and the differentiation process that takes place simultaneously. The average number of proteins detected per gel is 202 and the non-redundant cumulative number is 339. Of those, 63 are differentially abundant throughout growth and simultaneous differentiation of L. amazonensis promastigotes. The main finding is that certain proteins involved in resistance to nitrosative and oxidative stress are more abundant at the last stages of growth and differentiation of cultured L. amazonensis promastigotes. These proteins are the arginase, a light variant of the tryparedoxin peroxidase, the iron superoxide dismutase, the regulatory subunit of the protein kinase A and a light HSP70 variant. These data taken together with the decrease of the stress-inducible protein 1 levels are additional evidence supporting the previously described pre-adaptative hypothesis, which consists of preparation in advance towards the amastigote stage.
Collapse
|
19
|
Trypanosoma evansi contains two auxiliary enzymes of glycolytic metabolism: Phosphoenolpyruvate carboxykinase and pyruvate phosphate dikinase. Exp Parasitol 2016; 165:7-15. [PMID: 26968775 DOI: 10.1016/j.exppara.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/11/2016] [Accepted: 03/03/2016] [Indexed: 11/22/2022]
Abstract
Trypanosoma evansi is a monomorphic protist that can infect horses and other animal species of economic importance for man. Like the bloodstream form of the closely related species Trypanosoma brucei, T. evansi depends exclusively on glycolysis for its free-energy generation. In T. evansi as in other kinetoplastid organisms, the enzymes of the major part of the glycolytic pathway are present within organelles called glycosomes, which are authentic but specialized peroxisomes. Since T. evansi does not undergo stage-dependent differentiations, it occurs only as bloodstream forms, it has been assumed that the metabolic pattern of this parasite is identical to that of the bloodstream form of T. brucei. However, we report here the presence of two additional enzymes, phosphoenolpyruvate carboxykinase and PPi-dependent pyruvate phosphate dikinase in T. evansi glycosomes. Their colocalization with glycolytic enzymes within the glycosomes of this parasite has not been reported before. Both enzymes can make use of PEP for contributing to the production of ATP within the organelles. The activity of these enzymes in T. evansi glycosomes drastically changes the model assumed for the oxidation of glucose by this parasite.
Collapse
|
20
|
Simple and efficient synthesis of $$5'$$ 5 ′ -aryl- $$5'$$ 5 ′ -deoxyguanosine analogs by azide-alkyne click reaction and their antileishmanial activities. Mol Divers 2016; 20:507-19. [DOI: 10.1007/s11030-015-9652-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/28/2015] [Indexed: 01/06/2023]
|
21
|
Daligaux P, Bernadat G, Tran L, Cavé C, Loiseau PM, Pomel S, Ha-Duong T. Comparative study of structural models of Leishmania donovani and human GDP-mannose pyrophosphorylases. Eur J Med Chem 2015; 107:109-18. [PMID: 26562546 DOI: 10.1016/j.ejmech.2015.10.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/09/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022]
Abstract
Leishmania is the parasite responsible for the neglected disease leishmaniasis. Its virulence and survival require biosynthesis of glycoconjugates, whose guanosine diphospho-d-mannose pyrophosphorylase (GDP-MP) is a key player. However, experimentally resolved structures of this enzyme are still lacking. We herein propose structural models of the GDP-MP from human and Leishmania donovani. Based on a multiple sequences alignment, the models were built with MODELLER and then carefully refined with all atom molecular dynamics simulations in explicit solvent. Their quality was evaluated against several standard criteria, including their ability to bind GDP-mannose assessed by redocking calculations. Special attention was given in this study to interactions of the catalytic site residues with the enzyme substrate and competitive inhibitors, opening the perspective of medicinal chemistry developments.
Collapse
Affiliation(s)
- Pierre Daligaux
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Guillaume Bernadat
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Linh Tran
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Christian Cavé
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Philippe M Loiseau
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Sébastien Pomel
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France
| | - Tâp Ha-Duong
- BioCIS, Université Paris-Sud, CNRS, Université Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
22
|
Belaya K, Rodríguez Cruz PM, Liu WW, Maxwell S, McGowan S, Farrugia ME, Petty R, Walls TJ, Sedghi M, Basiri K, Yue WW, Sarkozy A, Bertoli M, Pitt M, Kennett R, Schaefer A, Bushby K, Parton M, Lochmüller H, Palace J, Muntoni F, Beeson D. Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 2015; 138:2493-504. [PMID: 26133662 PMCID: PMC4547052 DOI: 10.1093/brain/awv185] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/17/2015] [Accepted: 05/04/2015] [Indexed: 01/10/2023] Open
Abstract
Congenital myasthenic syndromes are inherited disorders that arise from impaired signal transmission at the neuromuscular junction. Mutations in at least 20 genes are known to lead to the onset of these conditions. Four of these, ALG2, ALG14, DPAGT1 and GFPT1, are involved in glycosylation. Here we identify a fifth glycosylation gene, GMPPB, where mutations cause congenital myasthenic syndrome. First, we identified recessive mutations in seven cases from five kinships defined as congenital myasthenic syndrome using decrement of compound muscle action potentials on repetitive nerve stimulation on electromyography. The mutations were present through the length of the GMPPB, and segregation, in silico analysis, exon trapping, cell transfection followed by western blots and immunostaining were used to determine pathogenicity. GMPPB congenital myasthenic syndrome cases show clinical features characteristic of congenital myasthenic syndrome subtypes that are due to defective glycosylation, with variable weakness of proximal limb muscle groups while facial and eye muscles are largely spared. However, patients with GMPPB congenital myasthenic syndrome had more prominent myopathic features that were detectable on muscle biopsies, electromyography, muscle magnetic resonance imaging, and through elevated serum creatine kinase levels. Mutations in GMPPB have recently been reported to lead to the onset of muscular dystrophy dystroglycanopathy. Analysis of four additional GMPPB-associated muscular dystrophy dystroglycanopathy cases by electromyography found that a defective neuromuscular junction component is not always present. Thus, we find mutations in GMPPB can lead to a wide spectrum of clinical features where deficit in neuromuscular transmission is the major component in a subset of cases. Clinical recognition of GMPPB-associated congenital myasthenic syndrome may be complicated by the presence of myopathic features, but correct diagnosis is important because affected individuals can respond to appropriate treatments.
Collapse
Affiliation(s)
- Katsiaryna Belaya
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Pedro M Rodríguez Cruz
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Wei Wei Liu
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Susan Maxwell
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Simon McGowan
- 3 Computational Biology Research Group, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Maria E Farrugia
- 4 Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Richard Petty
- 4 Department of Neurology, Institute of Neurological Sciences, Southern General Hospital, Glasgow, UK
| | - Timothy J Walls
- 5 Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Maryam Sedghi
- 6 Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Keivan Basiri
- 7 Neurology Department, Neuroscience Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Wyatt W Yue
- 8 Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK
| | - Anna Sarkozy
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK 10 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Marta Bertoli
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Matthew Pitt
- 11 Department of Clinical Neurophysiology, Great Ormond Street Hospital for children NHS foundation trust, London WC1N 3JH
| | - Robin Kennett
- 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Andrew Schaefer
- 5 Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, NE1 4LP, UK
| | - Kate Bushby
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Matt Parton
- 10 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Hanns Lochmüller
- 9 Institute of Genetic Medicine, John Walton Muscular Dystrophy Research Centre, MRC Centre for Neuromuscular Diseases, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Jacqueline Palace
- 2 Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Francesco Muntoni
- 12 Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - David Beeson
- 1 Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| |
Collapse
|
23
|
Hsiao YT, Lee WP. Reverse engineering gene regulatory networks: coupling an optimization algorithm with a parameter identification technique. BMC Bioinformatics 2014; 15 Suppl 15:S8. [PMID: 25474560 PMCID: PMC4271569 DOI: 10.1186/1471-2105-15-s15-s8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background To infer gene regulatory networks from time series gene profiles, two important tasks that are related to biological systems must be undertaken. One task is to determine a valid network structure that has topological properties that can influence the network dynamics profoundly. The other task is to optimize the network parameters to minimize the accumulated discrepancy between the gene expression data and the values produced by the inferred network model. Though the above two tasks must be conducted simultaneously, most existing work addresses only one of the tasks. Results We propose an iterative approach that couples parameter identification and parameter optimization techniques, to address the two tasks simultaneously during network inference. This approach first identifies the most influential parameters against internal perturbations; this identification is based on sensitivity measurements. Then, a hybrid GA-PSO optimization method infers parameters in accordance with their criticalities. The proposed approach has been applied to several datasets, including subsets of the SOS DNA repair system in E. coli, the Rat central nervous system (CNS), and the protein glycosylation system of yeast S. cerevisiae. The result and analysis show that our approach can infer solutions to satisfy both the requirements of network structure and network behavior. Conclusions Network structure is an important though challenging issue to address in inferring sophisticated networks with biological details. In need of prior structural knowledge, we turn to measure parameter sensitivity instead to account for the network structure in an indirect way. By developing an integrated approach for considering both the network structure and behavior in the inference process, we can successfully infer critical gene interactions as well as valid time expression profiles.
Collapse
|
24
|
Atkinson SC, Hor L, Dogovski C, Dobson RCJ, Perugini MA. Identification of the bona fide DHDPS from a common plant pathogen. Proteins 2014; 82:1869-83. [PMID: 24677246 DOI: 10.1002/prot.24539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 01/06/2014] [Accepted: 02/13/2014] [Indexed: 11/10/2022]
Abstract
Agrobacterium tumefaciens is a Gram-negative soil-borne bacterium that causes Crown Gall disease in many economically important crops. The absence of a suitable chemical treatment means there is a need to discover new anti-Crown Gall agents and also characterize bona fide drug targets. One such target is dihydrodipicolinate synthase (DHDPS), a homo-tetrameric enzyme that catalyzes the committed step in the metabolic pathway yielding meso-diaminopimelate and lysine. Interestingly, there are 10 putative DHDPS genes annotated in the A. tumefaciens genome, including three whose structures have recently been determined (PDB IDs: 3B4U, 2HMC, and 2R8W). However, we show using quantitative enzyme kinetic assays that nine of the 10 dapA gene products, including 3B4U, 2HMC, and 2R8W, lack DHDPS function in vitro. A sequence alignment showed that the product of the dapA7 gene contains all of the conserved residues known to be important for DHDPS catalysis and allostery. This gene was cloned and the recombinant product expressed and purified. Our studies show that the purified enzyme (i) possesses DHDPS enzyme activity, (ii) is allosterically inhibited by lysine, and (iii) adopts the canonical homo-tetrameric structure in both solution and the crystal state. This study describes for the first time the structure, function and allostery of the bona fide DHDPS from A. tumefaciens, which offers insight into the rational design of pesticide agents for combating Crown Gall disease.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, 3086, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, 3010, Australia
| | | | | | | | | |
Collapse
|
25
|
Dogovski C, Gorman MA, Ketaren NE, Praszkier J, Zammit LM, Mertens HD, Bryant G, Yang J, Griffin MDW, Pearce FG, Gerrard JA, Jameson GB, Parker MW, Robins-Browne RM, Perugini MA. From knock-out phenotype to three-dimensional structure of a promising antibiotic target from Streptococcus pneumoniae. PLoS One 2013; 8:e83419. [PMID: 24349508 PMCID: PMC3862839 DOI: 10.1371/journal.pone.0083419] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Given the rise in drug-resistant Streptococcus pneumoniae, there is an urgent need to discover new antimicrobials targeting this pathogen and an equally urgent need to characterize new drug targets. A promising antibiotic target is dihydrodipicolinate synthase (DHDPS), which catalyzes the rate-limiting step in lysine biosynthesis. In this study, we firstly show by gene knock out studies that S. pneumoniae (sp) lacking the DHDPS gene is unable to grow unless supplemented with lysine-rich media. We subsequently set out to characterize the structure, function and stability of the enzyme drug target. Our studies show that sp-DHDPS is folded and active with a k(cat) = 22 s(-1), K(M)(PYR) = 2.55 ± 0.05 mM and K(M)(ASA) = 0.044 ± 0.003 mM. Thermal denaturation experiments demonstrate sp-DHDPS exhibits an apparent melting temperature (T(M)(app)) of 72 °C, which is significantly greater than Escherichia coli DHDPS (Ec-DHDPS) (T(M)(app) = 59 °C). Sedimentation studies show that sp-DHDPS exists in a dimer-tetramer equilibrium with a K(D)(4→2) = 1.7 nM, which is considerably tighter than its E. coli ortholog (K(D)(4→2) = 76 nM). To further characterize the structure of the enzyme and probe its enhanced stability, we solved the high resolution (1.9 Å) crystal structure of sp-DHDPS (PDB ID 3VFL). The enzyme is tetrameric in the crystal state, consistent with biophysical measurements in solution. Although the sp-DHDPS and Ec-DHDPS active sites are almost identical, the tetramerization interface of the s. pneumoniae enzyme is significantly different in composition and has greater buried surface area (800 Å(2)) compared to its E. coli counterpart (500 Å(2)). This larger interface area is consistent with our solution studies demonstrating that sp-DHDPS is considerably more thermally and thermodynamically stable than Ec-DHDPS. Our study describe for the first time the knock-out phenotype, solution properties, stability and crystal structure of DHDPS from S. pneumoniae, a promising antimicrobial target.
Collapse
Affiliation(s)
- Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Michael A. Gorman
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Natalia E. Ketaren
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - Judy Praszkier
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Leanne M. Zammit
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | | | - Gary Bryant
- School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ji Yang
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Michael D. W. Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Callaghan Innovation, Lower Hutt, New Zealand
| | - Geoffrey B. Jameson
- Centre for Structural Biology, Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Michael W. Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Roy M. Robins-Browne
- Department of Microbiology & Immunology, University of Melbourne, Victoria, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Carss K, Stevens E, Foley A, Cirak S, Riemersma M, Torelli S, Hoischen A, Willer T, van Scherpenzeel M, Moore S, Messina S, Bertini E, Bönnemann C, Abdenur J, Grosmann C, Kesari A, Punetha J, Quinlivan R, Waddell L, Young H, Wraige E, Yau S, Brodd L, Feng L, Sewry C, MacArthur D, North K, Hoffman E, Stemple D, Hurles M, van Bokhoven H, Campbell K, Lefeber D, Lin YY, Muntoni F, Muntoni F. Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α-dystroglycan. Am J Hum Genet 2013; 93:29-41. [PMID: 23768512 DOI: 10.1016/j.ajhg.2013.05.009] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/08/2013] [Accepted: 05/14/2013] [Indexed: 12/26/2022] Open
Abstract
Congenital muscular dystrophies with hypoglycosylation of α-dystroglycan (α-DG) are a heterogeneous group of disorders often associated with brain and eye defects in addition to muscular dystrophy. Causative variants in 14 genes thought to be involved in the glycosylation of α-DG have been identified thus far. Allelic mutations in these genes might also cause milder limb-girdle muscular dystrophy phenotypes. Using a combination of exome and Sanger sequencing in eight unrelated individuals, we present evidence that mutations in guanosine diphosphate mannose (GDP-mannose) pyrophosphorylase B (GMPPB) can result in muscular dystrophy variants with hypoglycosylated α-DG. GMPPB catalyzes the formation of GDP-mannose from GTP and mannose-1-phosphate. GDP-mannose is required for O-mannosylation of proteins, including α-DG, and it is the substrate of cytosolic mannosyltransferases. We found reduced α-DG glycosylation in the muscle biopsies of affected individuals and in available fibroblasts. Overexpression of wild-type GMPPB in fibroblasts from an affected individual partially restored glycosylation of α-DG. Whereas wild-type GMPPB localized to the cytoplasm, five of the identified missense mutations caused formation of aggregates in the cytoplasm or near membrane protrusions. Additionally, knockdown of the GMPPB ortholog in zebrafish caused structural muscle defects with decreased motility, eye abnormalities, and reduced glycosylation of α-DG. Together, these data indicate that GMPPB mutations are responsible for congenital and limb-girdle muscular dystrophies with hypoglycosylation of α-DG.
Collapse
|
27
|
Atkinson SC, Dogovski C, Downton MT, Czabotar PE, Dobson RCJ, Gerrard JA, Wagner J, Perugini MA. Structural, kinetic and computational investigation of Vitis vinifera DHDPS reveals new insight into the mechanism of lysine-mediated allosteric inhibition. PLANT MOLECULAR BIOLOGY 2013; 81:431-446. [PMID: 23354837 DOI: 10.1007/s11103-013-0014-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
Lysine is one of the most limiting amino acids in plants and its biosynthesis is carefully regulated through inhibition of the first committed step in the pathway catalyzed by dihydrodipicolinate synthase (DHDPS). This is mediated via a feedback mechanism involving the binding of lysine to the allosteric cleft of DHDPS. However, the precise allosteric mechanism is yet to be defined. We present a thorough enzyme kinetic and thermodynamic analysis of lysine inhibition of DHDPS from the common grapevine, Vitis vinifera (Vv). Our studies demonstrate that lysine binding is both tight (relative to bacterial DHDPS orthologs) and cooperative. The crystal structure of the enzyme bound to lysine (2.4 Å) identifies the allosteric binding site and clearly shows a conformational change of several residues within the allosteric and active sites. Molecular dynamics simulations comparing the lysine-bound (PDB ID 4HNN) and lysine free (PDB ID 3TUU) structures show that Tyr132, a key catalytic site residue, undergoes significant rotational motion upon lysine binding. This suggests proton relay through the catalytic triad is attenuated in the presence of lysine. Our study reveals for the first time the structural mechanism for allosteric inhibition of DHDPS from the common grapevine.
Collapse
Affiliation(s)
- Sarah C Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Hor L, Dobson RCJ, Downton MT, Wagner J, Hutton CA, Perugini MA. Dimerization of bacterial diaminopimelate epimerase is essential for catalysis. J Biol Chem 2013; 288:9238-48. [PMID: 23426375 DOI: 10.1074/jbc.m113.450148] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Diaminopimelate (DAP) epimerase is involved in the biosynthesis of meso-DAP and lysine, which are important precursors for the synthesis of peptidoglycan, housekeeping proteins, and virulence factors in bacteria. Accordingly, DAP epimerase is a promising antimicrobial target. Previous studies report that DAP epimerase exists as a monomeric enzyme. However, we show using analytical ultracentrifugation, X-ray crystallography, and enzyme kinetic analyses that DAP epimerase from Escherichia coli exists as a functional dimer in solution and the crystal state. Furthermore, the 2.0-Å X-ray crystal structure of the E. coli DAP epimerase dimer shows for the first time that the enzyme exists in an open, active conformation. The importance of dimerization was subsequently probed by using site-directed mutagenesis to generate a monomeric mutant (Y268A). Our studies show that Y268A is catalytically inactive, thus demonstrating that dimerization of DAP epimerase is essential for catalysis. Molecular dynamics simulations indicate that the DAP epimerase monomer is inherently more flexible than the dimer, suggesting that dimerization optimizes protein dynamics to support function. Our findings offer insight into the development of novel antimicrobial agents targeting the dimeric antibiotic target DAP epimerase.
Collapse
Affiliation(s)
- Lilian Hor
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | | |
Collapse
|
29
|
Comparative structure and function analyses of native and his-tagged forms of dihydrodipicolinate reductase from methicillin-resistant Staphylococcus aureus. Protein Expr Purif 2012; 85:66-76. [DOI: 10.1016/j.pep.2012.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 11/22/2022]
|
30
|
Zou L, Zheng RB, Lowary TL. Studies on the substrate specificity of a GDP-mannose pyrophosphorylase from Salmonella enterica. Beilstein J Org Chem 2012; 8:1219-26. [PMID: 23019451 PMCID: PMC3458741 DOI: 10.3762/bjoc.8.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 06/29/2012] [Indexed: 12/30/2022] Open
Abstract
A series of methoxy and deoxy derivatives of mannopyranose-1-phosphate (Manp-1P) were chemically synthesized, and their ability to be converted into the corresponding guanosine diphosphate mannopyranose (GDP-Manp) analogues by a pyrophosphorylase (GDP-ManPP) from Salmonella enterica was studied. Evaluation of methoxy analogues demonstrated that GDP-ManPP is intolerant of bulky substituents at the C-2, C-3, and C-4 positions, in turn suggesting that these positions are buried inside the enzyme active site. Additionally, both the 6-methoxy and 6-deoxy Manp-1P derivatives are good or moderate substrates for GDP-ManPP, thus indicating that the C-6 hydroxy group of the Manp-1P substrate is not required for binding to the enzyme. When taken into consideration with other previously published work, it appears that this enzyme has potential utility for the chemoenzymatic synthesis of GDP-Manp analogues, which are useful probes for studying enzymes that employ this sugar nucleotide as a substrate.
Collapse
Affiliation(s)
- Lu Zou
- Alberta Glycomics Centre and Department of Chemistry, The University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | |
Collapse
|
31
|
Bandini G, Mariño K, Güther MLS, Wernimont AK, Kuettel S, Qiu W, Afzal S, Kelner A, Hui R, Ferguson MAJ. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol Microbiol 2012; 85:513-34. [PMID: 22676716 PMCID: PMC3465800 DOI: 10.1111/j.1365-2958.2012.08124.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The enzymes phosphomannomutase (PMM), phospho-N-acetylglucosamine mutase (PAGM) and phosphoglucomutase (PGM) reversibly catalyse the transfer of phosphate between the C6 and C1 hydroxyl groups of mannose, N-acetylglucosamine and glucose respectively. Although genes for a candidate PMM and a PAGM enzymes have been found in the Trypanosoma brucei genome, there is, surprisingly, no candidate gene for PGM. The TbPMM and TbPAGM genes were cloned and expressed in Escherichia coli and the TbPMM enzyme was crystallized and its structure solved at 1.85 Å resolution. Antibodies to the recombinant proteins localized endogenous TbPMM to glycosomes in the bloodstream form of the parasite, while TbPAGM localized to both the cytosol and glycosomes. Both recombinant enzymes were able to interconvert glucose-phosphates, as well as acting on their own definitive substrates. Analysis of sugar nucleotide levels in parasites with TbPMM or TbPAGM knocked down by RNA interference (RNAi) suggests that, in vivo, PGM activity is catalysed by both enzymes. This is the first example in any organism of PGM activity being completely replaced in this way and it explains why, uniquely, T. brucei has been able to lose its PGM gene. The RNAi data for TbPMM also showed that this is an essential gene for parasite growth.
Collapse
Affiliation(s)
- Giulia Bandini
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Atkinson SC, Dogovski C, Downton MT, Pearce FG, Reboul CF, Buckle AM, Gerrard JA, Dobson RCJ, Wagner J, Perugini MA. Crystal, solution and in silico structural studies of dihydrodipicolinate synthase from the common grapevine. PLoS One 2012; 7:e38318. [PMID: 22761676 PMCID: PMC3382604 DOI: 10.1371/journal.pone.0038318] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Accepted: 05/08/2012] [Indexed: 11/22/2022] Open
Abstract
Dihydrodipicolinate synthase (DHDPS) catalyzes the rate limiting step in lysine biosynthesis in bacteria and plants. The structure of DHDPS has been determined from several bacterial species and shown in most cases to form a homotetramer or dimer of dimers. However, only one plant DHDPS structure has been determined to date from the wild tobacco species, Nicotiana sylvestris (Blickling et al. (1997) J. Mol. Biol. 274, 608-621). Whilst N. sylvestris DHDPS also forms a homotetramer, the plant enzyme adopts a 'back-to-back' dimer of dimers compared to the 'head-to-head' architecture observed for bacterial DHDPS tetramers. This raises the question of whether the alternative quaternary architecture observed for N. sylvestris DHDPS is common to all plant DHDPS enzymes. Here, we describe the structure of DHDPS from the grapevine plant, Vitis vinifera, and show using analytical ultracentrifugation, small-angle X-ray scattering and X-ray crystallography that V. vinifera DHDPS forms a 'back-to-back' homotetramer, consistent with N. sylvestris DHDPS. This study is the first to demonstrate using both crystal and solution state measurements that DHDPS from the grapevine plant adopts an alternative tetrameric architecture to the bacterial form, which is important for optimizing protein dynamics as suggested by molecular dynamics simulations reported in this study.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Con Dogovski
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| | - Matthew T. Downton
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - F. Grant Pearce
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Cyril F. Reboul
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- ARC Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Clayton, Victoria, Australia
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Juliet A. Gerrard
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Renwick C. J. Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Wagner
- IBM Research Collaboratory for Life Sciences-Melbourne, Victorian Life Sciences Computation Initiative, Carlton, Australia
| | - Matthew A. Perugini
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria, Australia
| |
Collapse
|
33
|
Kuettel S, Wadum MCT, Güther MLS, Mariño K, Riemer C, Ferguson MAJ. The de novo and salvage pathways of GDP-mannose biosynthesis are both sufficient for the growth of bloodstream-form Trypanosoma brucei. Mol Microbiol 2012; 84:340-51. [PMID: 22375793 PMCID: PMC3412276 DOI: 10.1111/j.1365-2958.2012.08026.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2012] [Indexed: 11/28/2022]
Abstract
The sugar nucleotide GDP-mannose is essential for Trypanosoma brucei. Phosphomannose isomerase occupies a key position on the de novo pathway to GDP-mannose from glucose, just before intersection with the salvage pathway from free mannose. We identified the parasite phosphomannose isomerase gene, confirmed that it encodes phosphomannose isomerase activity and localized the endogenous enzyme to the glycosome. We also created a bloodstream-form conditional null mutant of phosphomannose isomerase to assess the relative roles of the de novo and salvage pathways of GDP-mannose biosynthesis. Phosphomannose isomerase was found to be essential for parasite growth. However, supplementation of the medium with low concentrations of mannose, including that found in human plasma, relieved this dependence. Therefore, we do not consider phosphomannose isomerase to be a viable drug target. We further established culture conditions where we can control glucose and mannose concentrations and perform steady-state [U-(13) C]-D-glucose labelling. Analysis of the isotopic sugar composition of the parasites variant surface glycoprotein synthesized in cells incubated in 5 mM [U-(13) C]-D-glucose in the presence and absence of unlabelled mannose showed that, under physiological conditions, about 80% of GDP-mannose synthesis comes from the de novo pathway and 20% from the salvage pathway.
Collapse
Affiliation(s)
- Sabine Kuettel
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Majken C T Wadum
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Maria Lucia S Güther
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | | | - Carolin Riemer
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of DundeeDundee DD1 5EH, Scotland, UK
| |
Collapse
|
34
|
Coelho VTS, Oliveira JS, Valadares DG, Chávez-Fumagalli MA, Duarte MC, Lage PS, Soto M, Santoro MM, Tavares CAP, Fernandes AP, Coelho EAF. Identification of proteins in promastigote and amastigote-like Leishmania using an immunoproteomic approach. PLoS Negl Trop Dis 2012; 6:e1430. [PMID: 22272364 PMCID: PMC3260309 DOI: 10.1371/journal.pntd.0001430] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 10/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The present study aims to identify antigens in protein extracts of promastigote and amastigote-like Leishmania (Leishmania) chagasi syn. L. (L.) infantum recognized by antibodies present in the sera of dogs with asymptomatic and symptomatic visceral leishmaniasis (VL). METHODOLOGY/PRINCIPAL FINDINGS Proteins recognized by sera samples were separated by two-dimensional electrophoresis (2DE) and identified by mass spectrometry. A total of 550 spots were observed in the 2DE gels, and approximately 104 proteins were identified. Several stage-specific proteins could be identified by either or both classes of sera, including, as expected, previously known proteins identified as diagnosis, virulence factors, drug targets, or vaccine candidates. Three, seven, and five hypothetical proteins could be identified in promastigote antigenic extracts; while two, eleven, and three hypothetical proteins could be identified in amastigote-like antigenic extracts by asymptomatic and symptomatic sera, as well as a combination of both, respectively. CONCLUSIONS/SIGNIFICANCE The present study represents a significant contribution not only in identifying stage-specific L. infantum molecules, but also in revealing the expression of a large number of hypothetical proteins. Moreover, when combined, the identified proteins constitute a significant source of information for the improvement of diagnostic tools and/or vaccine development to VL.
Collapse
Affiliation(s)
- Vinicio T. S. Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Diogo G. Valadares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A. Chávez-Fumagalli
- Programa de Pós-Graduação em Medicina Molecular, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mariana C. Duarte
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paula S. Lage
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
| | - Manuel Soto
- Centro de Biología Molecular Severo Ochoa, CSIC, UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marcelo M. Santoro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos A. P. Tavares
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo A. F. Coelho
- Departamento de Patologia Clínica, Coltec, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- Programa de Pós-Graduação em Ciências Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, Belo Horizonte, Minas Gerais, Brazil
- * E-mail:
| |
Collapse
|
35
|
Ogungbe IV, Singh M, Setzer WN. Antileishmanial Natural Products from Plants. BIOACTIVE NATURAL PRODUCTS 2012. [DOI: 10.1016/b978-0-444-53836-9.00027-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Kempinski CF, Haffar R, Barth C. Toward the mechanism of NH(4) (+) sensitivity mediated by Arabidopsis GDP-mannose pyrophosphorylase. PLANT, CELL & ENVIRONMENT 2011; 34:847-58. [PMID: 21332510 DOI: 10.1111/j.1365-3040.2011.02290.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The ascorbic acid (AA)-deficient Arabidopsis thaliana mutant vtc1-1, which is defective in GDP-mannose pyrophosphorylase (GMPase), exhibits conditional hypersensitivity to ammonium (NH(4) (+) ), a phenomenon that is independent of AA deficiency. As GMPase is important for GDP-mannose biosynthesis, a nucleotide sugar necessary for protein N-glycosylation, it has been thought that GDP-mannose deficiency is responsible for the growth defect in vtc1-1 in the presence of NH(4) (+) . Therefore, the motivation for this work was to elucidate the growth and developmental processes that are affected in vtc1-1 in the presence of NH(4) (+) and to determine whether GDP-mannose deficiency generally causes NH(4) (+) sensitivity. Furthermore, as NH(4) (+) may alter cytosolic pH, we investigated the responses of vtc1-1 to pH changes in the presence and absence of NH(4) (+) . Using qRT-PCR and staining procedures, we demonstrate that defective N-glycosylation in vtc1-1 contributes to cell wall, membrane and cell cycle defects, resulting in root growth inhibition in the presence of NH(4) (+) . However, by using mutants acting upstream of vtc1-1 and contributing to GDP-mannose biosynthesis, we show that GDP-mannose deficiency does not generally lead to and is not the primary cause of NH(4) (+) sensitivity. Instead, our data suggest that GMPase responds to pH alterations in the presence of NH(4) (+) .
Collapse
Affiliation(s)
- Chase F Kempinski
- Department of Biology, West Virginia University, 5228 Life Sciences Building, 53 Campus Drive, Morgantown, West Virginia 26506-6057, USA
| | | | | |
Collapse
|
37
|
Characterization, localization, essentiality, and high-resolution crystal structure of glucosamine 6-phosphate N-acetyltransferase from Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:985-97. [PMID: 21531872 DOI: 10.1128/ec.05025-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A gene predicted to encode Trypanosoma brucei glucosamine 6-phosphate N-acetyltransferase (TbGNA1; EC 2.3.1.4) was cloned and expressed in Escherichia coli. The recombinant protein was enzymatically active, and its high-resolution crystal structure was obtained at 1.86 Å. Endogenous TbGNA1 protein was localized to the peroxisome-like microbody, the glycosome. A bloodstream-form T. brucei GNA1 conditional null mutant was constructed and shown to be unable to sustain growth in vitro under nonpermissive conditions, demonstrating that there are no metabolic or nutritional routes to UDP-GlcNAc other than via GlcNAc-6-phosphate. Analysis of the protein glycosylation phenotype of the TbGNA1 mutant under nonpermissive conditions revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite and that the glycosylation profile of the principal parasite surface coat component, the variant surface glycoprotein (VSG), was modified. The significance of results and the potential of TbGNA1 as a novel drug target for African sleeping sickness are discussed.
Collapse
|
38
|
Chandra S, Ruhela D, Deb A, Vishwakarma RA. Glycobiology of theLeishmaniaparasite and emerging targets for antileishmanial drug discovery. Expert Opin Ther Targets 2010; 14:739-57. [DOI: 10.1517/14728222.2010.495125] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Inhibitors of Leishmania GDP-mannose pyrophosphorylase identified by high-throughput screening of small-molecule chemical library. Antimicrob Agents Chemother 2010; 54:1712-9. [PMID: 20160053 DOI: 10.1128/aac.01634-09] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current treatment for leishmaniasis is based on chemotherapy, which relies on a handful of drugs with serious limitations, such as high cost, toxicity, and a lack of efficacy in regions of endemicity. Therefore, the development of new, effective, and affordable antileishmanial drugs is a global health priority. Leishmania synthesizes a range of mannose-rich glycoconjugates that are essential for parasite virulence and survival. A prerequisite for glycoconjugate biosynthesis is the conversion of monosaccharides to the activated mannose donor, GDP-mannose, the product of a reaction catalyzed by GDP-mannose pyrophosphorylase (GDP-MP). The deletion of the gene encoding GDP-MP in Leishmania led to a total loss of virulence, indicating that the enzyme is an ideal drug target. We developed a phosphate sensor-based high-throughput screening assay to quantify the activity of GDP-MP and screened a library containing approximately 80,000 lead-like compounds for GDP-MP inhibitors. On the basis of their GDP-MP inhibitory properties and chemical structures, the activities of 20 compounds which were not toxic to mammalian cells were tested against ex vivo amastigotes and in macrophage amastigote assays. The most potent compound identified in the primary screen (compound 3), a quinoline derivative, demonstrated dose-dependent activity in both assays (50% inhibitory concentration = 21.9 microM in the macrophage assay) and was shown to be nontoxic to human fibroblasts. In order to elucidate signs of an early structure-activity relationship (SAR) for this class of compounds, we obtained and tested analogues of compound 3 and undertook limited medicinal chemistry optimization, which included the use of a number of SAR probes of the piperazinyl aryl substituent of compound 3. We have identified novel candidate compounds for the design and synthesis of antileishmanial therapeutics.
Collapse
|
40
|
GDP-mannose pyrophosphorylase is essential in the bloodstream form of Trypanosoma brucei. Biochem J 2010; 425:603-14. [PMID: 19919534 DOI: 10.1042/bj20090896] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A putative GDP-Man PP (guanidine diphosphomannose pyrophosphorylase) gene from Trypanosoma brucei (TbGDP-Man PP) was identified in the genome and subsequently cloned, sequenced and recombinantly expressed, and shown to be a catalytically active dimer. Kinetic analysis revealed a Vmax of 0.34 mumol/min per mg of protein and Km values of 67 muM and 12 muM for GTP and mannose 1-phosphate respectively. Further kinetic studies showed GDP-Man was a potent product feedback inhibitor. RNAi (RNA interference) of the cytosolic TbGDP-Man PP showed that mRNA levels were reduced to ~20% of wild-type levels, causing the cells to die after 3-4 days, demonstrating that TbGDP-Man PP is essential in the bloodstream form of T. brucei and thus a potential drug target. The RNAi-induced parasites have a greatly reduced capability to form GDP-Man, leading ultimately to a reduction in their ability to synthesize their essential GPI (glycosylphosphatidylinositol) anchors. The RNAi-induced parasites also showed aberrant N-glycosylation of their major cell-surface glycoprotein, variant surface glycoprotein, with loss of the high-mannose Man9GlcNAc2 N-glycosylation at Asn428 and formation of complex N-glycans at Asn263.
Collapse
|
41
|
Mizanur RM, Pohl NLB. Phosphomannose isomerase/GDP-mannose pyrophosphorylase from Pyrococcus furiosus: a thermostable biocatalyst for the synthesis of guanidinediphosphate-activated and mannose-containing sugar nucleotides. Org Biomol Chem 2009; 7:2135-9. [PMID: 19421452 DOI: 10.1039/b822794b] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we present an analysis of the chemical function of a recombinant bifunctional phosphomannose isomerase/GDP-mannose pyrophosphorylase (manC) from Pyrococcus furiosus DSM 3638 and its use in the synthesis of guanidinediphospho-hexoses and a range of nucleotidediphospho-mannoses. This enzyme is unusually promiscuous in both its nucleotide triphosphate (NTP) and sugar-1-phosphate acceptance. It accepts all five naturally occurring NTPs (ATP, CTP, GTP, dTTP and UTP) and a range of sugar-1-phosphates (glucose-, mannose-, galactose-, glucosamine-, N-acetylglucosamine- and fucose-1-phosphate). A truncated GDP-mannose pyrophosphorylase domain of the whole length enzyme showed almost 100-fold less sugar nucleotidyltransferase activity with only GTP and mannose 1-phosphate as substrates. The temperature stability and inherently broad substrate tolerance of this archaeal enzyme make it an effective reagent for the rapid chemoenzymatic synthesis of a range of natural and unnatural sugar nucleotides that are challenging to make by chemical means alone.
Collapse
Affiliation(s)
- Rahman M Mizanur
- Department of Chemistry and Plant Sciences Institute, Gilman Hall, Iowa State University, Ames, Iowa 50011-3111, USA
| | | |
Collapse
|
42
|
Marchesan S, Macmillan D. Chemoenzymatic synthesis of GDP-azidodeoxymannoses: non-radioactive probes for mannosyltransferase activity. Chem Commun (Camb) 2008:4321-3. [PMID: 18802557 DOI: 10.1039/b807016d] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
GDP-2-, 3-, 4- or 6-azidomannoses can be successfully prepared from the corresponding azidomannose-1-phosphates and GTP using the enzyme GDP-Mannosepyrophosphorylase (GDP-ManPP) from Salmonella enterica and may serve as useful probes for mannosyltransferase activity.
Collapse
Affiliation(s)
- Silvia Marchesan
- Department of Chemistry, University College London, 20 Gordon Street, London, UK WC1H 0AJ
| | | |
Collapse
|
43
|
Brown PH, Balbo A, Schuck P. Characterizing protein-protein interactions by sedimentation velocity analytical ultracentrifugation. CURRENT PROTOCOLS IN IMMUNOLOGY 2008; Chapter 18:18.15.1-18.15.39. [PMID: 18491296 DOI: 10.1002/0471142735.im1815s81] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit introduces the basic principles and practice of sedimentation velocity analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, multi-protein complexes, binding stoichiometry, and the determination of association constants. The analytical tools described include sedimentation coefficient and molar mass distributions, multi-signal sedimentation coefficient distributions, Gilbert-Jenkins theory, different forms of isotherms, and global Lamm equation modeling. Concepts for the experimental design are discussed, and a detailed step-by-step protocol guiding the reader through the experiment and the data analysis is available as an Internet resource.
Collapse
Affiliation(s)
| | - Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | - Peter Schuck
- National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
44
|
Stokes MJ, Güther MLS, Turnock DC, Prescott AR, Martin KL, Alphey MS, Ferguson MAJ. The synthesis of UDP-N-acetylglucosamine is essential for bloodstream form trypanosoma brucei in vitro and in vivo and UDP-N-acetylglucosamine starvation reveals a hierarchy in parasite protein glycosylation. J Biol Chem 2008; 283:16147-61. [PMID: 18381290 PMCID: PMC2414269 DOI: 10.1074/jbc.m709581200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A gene encoding Trypanosoma brucei UDP-N-acetylglucosamine pyrophosphorylase was identified, and the recombinant protein was shown to have enzymatic activity. The parasite enzyme is unusual in having a strict substrate specificity for N-acetylglucosamine 1-phosphate and in being located inside a peroxisome-like microbody, the glycosome. A bloodstream form T. brucei conditional null mutant was constructed and shown to be unable to sustain growth in vitro or in vivo under nonpermissive conditions, demonstrating that there are no alternative metabolic or nutritional routes to UDP-N-acetylglucosamine and providing a genetic validation for the enzyme as a potential drug target. The conditional null mutant was also used to investigate the effects of N-acetylglucosamine starvation in the parasite. After 48 h under nonpermissive conditions, about 24 h before cell lysis, the status of parasite glycoprotein glycosylation was assessed. Under these conditions, UDP-N-acetylglucosamine levels were less than 5% of wild type. Lectin blotting and fluorescence microscopy with tomato lectin revealed that poly-N-acetyllactosamine structures were greatly reduced in the parasite. The principal parasite surface coat component, the variant surface glycoprotein, was also analyzed. Endoglycosidase digestions and mass spectrometry showed that, under UDP-N-acetylglucosamine starvation, the variant surface glycoprotein was specifically underglycosylated at its C-terminal Asn-428 N-glycosylation site. The significance of this finding, with respect to the hierarchy of site-specific N-glycosylation in T. brucei, is discussed.
Collapse
Affiliation(s)
- Matthew J Stokes
- Division of Biological Chemistry and Drug Discovery, The Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
45
|
Handman E, Kedzierski L, Uboldi AD, Goding JW. Fishing for anti-leishmania drugs: principles and problems. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:48-60. [PMID: 18365658 DOI: 10.1007/978-0-387-77570-8_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
To date, there are no vaccines against any of the major parasitic diseases including leishmaniasis, and chemotherapy is the main weapon in our arsenal. Current drugs are toxic and expensive, and are losing their effectiveness due to parasite resistance. The availability of the genome sequence of two species of Leishmania, Leishmania major and Leishmania infantum, as well as that of Trypanosoma brucei and Trypanosoma cruzi should provide a cornucopia of potential new drug targets. Their exploitation will require a multi-disciplinary approach that includes protein structure and function and high throughput screening of random and directed chemical libraries, followed by in vivo testing in animals and humans. We outline the opportunities that are made possible by recent technologies, and potential problems that need to be overcome.
Collapse
Affiliation(s)
- Emanuela Handman
- Walter and Eliza Hall Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
46
|
Balbo A, Brown PH, Braswell EH, Schuck P. Measuring protein-protein interactions by equilibrium sedimentation. CURRENT PROTOCOLS IN IMMUNOLOGY 2007; Chapter 18:18.8.1-18.8.28. [PMID: 18432990 DOI: 10.1002/0471142735.im1808s79] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This unit describes basic principles and practice of sedimentation equilibrium analytical ultracentrifugation for the study of reversible protein interactions, such as the characterization of self-association, heterogeneous association, and binding stoichiometry, as well as the determination of association constants. Advanced tools such as mass conservation analysis, multiwavelength analysis, and global analysis are introduced and discussed in the context of the experimental design. A detailed protocol guiding the investigator through the experimental steps and the data analysis is available as an internet resource.
Collapse
Affiliation(s)
- Andrea Balbo
- National Institutes of Health, Bethesda, Maryland
| | | | | | | |
Collapse
|
47
|
Turnock DC, Izquierdo L, Ferguson MAJ. The de novo synthesis of GDP-fucose is essential for flagellar adhesion and cell growth in Trypanosoma brucei. J Biol Chem 2007; 282:28853-28863. [PMID: 17640865 DOI: 10.1074/jbc.m704742200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The protozoan parasite Trypanosoma brucei causes human African sleeping sickness in sub-Saharan Africa. The parasite makes several essential glycoproteins, which has led to the investigation of the sugar nucleotides and glycosyltransferases required to synthesize these structures. Fucose is a common sugar in glycoconjugates from many organisms; however, the sugar nucleotide donor GDP-fucose was only recently detected in T. brucei, and the importance of fucose metabolism in this organism is not known. In this paper, we identified the genes encoding functional GDP-fucose biosynthesis enzymes in T. brucei and created conditional null mutants of TbGMD, the gene encoding the first enzyme in the pathway from GDP-mannose to GDP-fucose, in both bloodstream form and procyclic form parasites. Under nonpermissive conditions, both life cycle forms of the parasite became depleted in GDP-fucose and suffered growth arrest, demonstrating that fucose metabolism is essential to both life cycle stages. In procyclic form parasites, flagellar detachment from the cell body was also observed under nonpermissive conditions, suggesting that fucose plays a significant role in flagellar adhesion. Fluorescence microscopy of epitope-tagged TbGMD revealed that this enzyme is localized in glycosomes, despite the absence of PTS-1 or PTS-2 target sequences.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Luis Izquierdo
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom
| | - Michael A J Ferguson
- Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee DD15EH, United Kingdom.
| |
Collapse
|
48
|
Turnock DC, Ferguson MAJ. Sugar nucleotide pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. EUKARYOTIC CELL 2007; 6:1450-63. [PMID: 17557881 PMCID: PMC1951125 DOI: 10.1128/ec.00175-07] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The cell surface glycoconjugates of trypanosomatid parasites are intimately involved in parasite survival, infectivity, and virulence in their insect vectors and mammalian hosts. Although there is a considerable body of work describing their structure, biosynthesis, and function, little is known about the sugar nucleotide pools that fuel their biosynthesis. In order to identify and quantify parasite sugar nucleotides, we developed an analytical method based on liquid chromatography-electrospray ionization-tandem mass spectrometry using multiple reaction monitoring. This method was applied to the bloodstream and procyclic forms of Trypanosoma brucei, the epimastigote form of T. cruzi, and the promastigote form of Leishmania major. Five sugar nucleotides, GDP-alpha-d-mannose, UDP-alpha-d-N-acetylglucosamine, UDP-alpha-d-glucose, UDP-alpha-galactopyranose, and GDP-beta-l-fucose, were common to all three species; one, UDP-alpha-d-galactofuranose, was common to T. cruzi and L. major; three, UDP-beta-l-rhamnopyranose, UDP-alpha-d-xylose, and UDP-alpha-d-glucuronic acid, were found only in T. cruzi; and one, GDP-alpha-d-arabinopyranose, was found only in L. major. The estimated demands for each monosaccharide suggest that sugar nucleotide pools are turned over at very different rates, from seconds to hours. The sugar nucleotide survey, together with a review of the literature, was used to define the routes to these important metabolites and to annotate relevant genes in the trypanosomatid genomes.
Collapse
Affiliation(s)
- Daniel C Turnock
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, Scotland, United Kingdom
| | | |
Collapse
|
49
|
Kedzierski L, Malby RL, Smith BJ, Perugini MA, Hodder AN, Ilg T, Colman PM, Handman E. Structure of Leishmania mexicana Phosphomannomutase Highlights Similarities with Human Isoforms. J Mol Biol 2006; 363:215-27. [PMID: 16963079 DOI: 10.1016/j.jmb.2006.08.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 08/04/2006] [Accepted: 08/10/2006] [Indexed: 11/18/2022]
Abstract
Phosphomannomutase (PMM) catalyses the conversion of mannose-6-phosphate to mannose-1-phosphate, an essential step in mannose activation and the biosynthesis of glycoconjugates in all eukaryotes. Deletion of PMM from Leishmania mexicana results in loss of virulence, suggesting that PMM is a promising drug target for the development of anti-leishmanial inhibitors. We report the crystallization and structure determination to 2.1 A of L. mexicana PMM alone and in complex with glucose-1,6-bisphosphate to 2.9 A. PMM is a member of the haloacid dehalogenase (HAD) family, but has a novel dimeric structure and a distinct cap domain of unique topology. Although the structure is novel within the HAD family, the leishmanial enzyme shows a high degree of similarity with its human isoforms. We have generated L. major PMM knockouts, which are avirulent. We expressed the human pmm2 gene in the Leishmania PMM knockout, but despite the similarity between Leishmania and human PMM, expression of the human gene did not restore virulence. Similarities in the structure of the parasite enzyme and its human isoforms suggest that the development of parasite-selective inhibitors will not be an easy task.
Collapse
Affiliation(s)
- Lukasz Kedzierski
- Infection and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Brobey RKB, Soong L. Leishmania species: evidence for transglutaminase activity and its role in parasite proliferation. Exp Parasitol 2006; 114:94-102. [PMID: 16620812 DOI: 10.1016/j.exppara.2006.02.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/18/2006] [Accepted: 02/20/2006] [Indexed: 11/15/2022]
Abstract
Albeit transglutaminase (TGase) activity has been reported to play crucial physiological roles in several organisms including parasites; however, there was no previous report(s) whether Leishmania parasites exhibit this activity. We demonstrate herein that TGase is functionally active in Leishmania parasites by using labeled polyamine that becomes conjugated into protein substrates. The parasite enzyme was about 2- to 4-fold more abundant in Old World species than in New World ones. In L. amazonensis, comparable TGase activity was found in both promastigotes and amastigotes. TGase activity in either parasite stage was optimal at the basic pH, but the enzyme in amastigote lysates was more stable at higher temperatures (37-55 degrees C) than that in promastigote lysates. Leishmania TGase differs from mouse macrophage (M Phi) TGase in two ways: (1) the parasite enzyme is Ca(2+)-independent, whereas the mammalian TGase depends on the cation for activity, and (2) major protein substrates for L. amazonensis TGase were found within the 50-75 kDa region, while those for the M Phi TGase were located within 37-50 kDa. The potential contribution of TGase-catalyzed reactions in promastigote proliferation was supported by findings that standard inhibitors of TGase [e.g., monodansylcadaverine (MDC), cystamine (CS), and iodoacetamide (IodoA)], but not didansylcadaverine (DDC), a close analogue of MDC, had a profound dose-dependent inhibition on parasite growth. Myo-inositol-1-phosphate synthase and leishmanolysin (gp63) were identified as possible endogenous substrates for L. amazonensis TGase, implying a role for TGase in parasite growth, development, and survival.
Collapse
Affiliation(s)
- Reynolds K B Brobey
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | | |
Collapse
|