1
|
Chan A, Hays M, Sherlock G. The Viral K1 Killer Yeast System: Toxicity, Immunity, and Resistance. Yeast 2025. [PMID: 39853823 DOI: 10.1002/yea.3987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Killer yeasts, such as the K1 killer strain of S. Cerevisiae, express a secreted anti-competitive toxin whose production and propagation require the presence of two vertically-transmitted dsRNA viruses. In sensitive cells lacking killer virus infection, toxin binding to the cell wall results in ion pore formation, disruption of osmotic homeostasis, and cell death. However, the exact mechanism(s) of K1 toxin killing activity, how killer yeasts are immune to their own toxin, and which factors could influence adaptation and resistance to K1 toxin within formerly sensitive populations are still unknown. Here, we describe the state of knowledge about K1 killer toxin, including current models of toxin processing and killing activity, and a summary of known modifiers of K1 toxin immunity and resistance. In addition, we discuss two key signaling pathways, HOG (high osmolarity glycerol) and CWI (cell wall integrity), whose involvement in an adaptive response to K1 killer toxin in sensitive cells has been previously documented but requires further study. As both host-virus and sensitive-killer competition have been documented in killer systems like K1, further characterization of K1 killer yeasts may provide a useful model system for study of both intracellular genetic conflict and counter-adaptation between competing sensitive and killer populations.
Collapse
Affiliation(s)
- Angelina Chan
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Michelle Hays
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Gavin Sherlock
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Yu W, Zhao Z, Zhang Y, Tu Y, He B. AozC, a zn(II) 2Cys 6 transcription factor, negatively regulates salt tolerance in Aspergillus oryzae by controlling fatty acid biosynthesis. Microb Cell Fact 2025; 24:10. [PMID: 39773712 PMCID: PMC11706192 DOI: 10.1186/s12934-024-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND In the soy sauce fermentation industry, Aspergillus oryzae (A. oryzae) plays an essential role and is frequently subjected to high salinity levels, which pose a significant osmotic stress. This environmental challenge necessitates the activation of stress response mechanisms within the fungus. The Zn(II)2Cys6 family of transcription factors, known for their zinc binuclear cluster-containing proteins, are key regulators in fungi, modulating various cellular functions such as stress adaptation and metabolic pathways. RESULTS Overexpression of AozC decreased growth rates in the presence of salt, while its knockdown enhanced growth, the number of spores, and biomass, particularly under conditions of 15% salt concentration, doubling these metrics compared to the wild type. Conversely, the knockdown of AozC via RNA interference significantly enhanced spore density and dry biomass, particularly under 15% salt stress, where these parameters were markedly improved over the wild type strain. Moreover, the overexpression of AozC led to a downregulation of the FAD2 gene, a pivotal enzyme in the biosynthesis of unsaturated fatty acids (UFAs), which are essential for preserving cell membrane fluidity and integrity under saline conditions. Transcriptome profiling further exposed the influence of AozC on the regulation of UFA biosynthesis and the modulation of critical stress response pathways. Notably, the regulatory role of AozC in the mitogen-activated protein kinase (MAPK) signaling and ABC transporters pathways was highlighted, underscoring its significance in cellular osmotic balance and endoplasmic reticulum homeostasis. These findings collectively indicate that AozC functions as a negative regulator of salt tolerance in A. oryzae. CONCLUSION This research suggest that AozC acts as a negative regulator in salt tolerance and modulates fatty acid biosynthesis in response to osmotic stress. These results provide insights into the regulatory mechanisms of stress adaptation in A. oryzae.
Collapse
Affiliation(s)
- Wenbin Yu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Zeying Zhao
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yufei Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China
| | - Yayi Tu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| | - Bin He
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science & Technology Normal University, Nanchang, Jiangxi, 330013, China.
| |
Collapse
|
3
|
Sánchez-Thomas R, Hernández-Garnica M, Granados-Rivas JC, Saavedra E, Peñalosa-Castro I, Rodríguez-Enríquez S, Moreno-Sánchez R. Intertwining of Cellular Osmotic Stress Handling Mechanisms and Heavy Metal Accumulation. Mol Biotechnol 2024:10.1007/s12033-024-01351-y. [PMID: 39690277 DOI: 10.1007/s12033-024-01351-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Osmoregulation mechanisms are engaged in the detoxification and accumulation of heavy metals in plants, microalgae and other microorganisms. The present review paper analyzes osmotic resistance organisms and their heavy metal accumulation mechanisms closely related to osmoregulation. In prokaryotic and eukaryotic microorganisms, such as the green algae-like protist Euglena, osmotic and heavy metal stresses share similar cell responses and mechanisms. Likewise, some plants have developed specific mechanisms associated to water stress induced by salinity, flooding, or drought, which are also activated under heavy metal stress. Thus, synthesis of osmo-metabolites and strategies to maintain stable the intracellular water content under heavy metal exposure induce a state of apparent drought by blocking the water maintenance systems. Heavy metals affect the cellular redox state, triggering signaling pathways for intracellular water maintenance, which are mediated by the concentration of reactive oxygen species. Hence, cellular responses and mechanisms associated with osmotic stress, once fully elucidated, represent new opportunities to improve mechanistic strategies for bioremediation of heavy metal-polluted sites.
Collapse
Affiliation(s)
- Rosina Sánchez-Thomas
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | | | - Juan Carlos Granados-Rivas
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, 14080, Mexico City, Mexico
| | - Ignacio Peñalosa-Castro
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico
| | - Sara Rodríguez-Enríquez
- Carrera de Medico Cirujano, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| | - Rafael Moreno-Sánchez
- Carrera de Biología, Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Ixtacala, Hab Los Reyes Ixtacala Barrio de los Árboles/Barrio de los Héroes, 54090, Tlalnepantla, Mexico.
| |
Collapse
|
4
|
Zhao X, Zong H, Lu X, Zhuge B. Toxicants improve glycerol production in the fermentation of undetoxified hydrolysate by Candida glycerinogenes. Biotechnol Lett 2024; 46:1057-1068. [PMID: 39085486 DOI: 10.1007/s10529-024-03503-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 05/28/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES Toxicants inhibit microbial fermentation and reduce product titres. This work investigated the glycerol production characteristics of Candida glycerinogenes in highly toxic unwashed undetoxified hydrolysate and provided new ideas for high glycerol production from hydrolysates. RESULTS The unwashed hydrolysate contains higher concentrations of toxicants, such as furfural, acetic acid, phenols and NaCl than the washed alkali-treated bagasse hydrolysate. C. glycerinogenes fermented unwashed undetoxified hydrolysate yielded 36.1 g/L glycerol, 15.8% higher than the washed hydrolysate, suggesting that the toxicants stimulated glycerol synthesis. qRT-PCR analysis showed that toxicants of unwashed undetoxified hydrolysates greatly up-regulated the transcript levels of the genes GPD1, HXT4 and MSN4 et al. Overexpressing the above genes increased glycerol production by 27.9% to 46.1 g/L. And it was further increased by 8.8% to 50.1 g/L in a 5 L bioreactor. CONCLUSIONS This result proves that toxicants in lignocellulosic hydrolysates can increase the titre of microbial glycerol production.
Collapse
Affiliation(s)
- Xiaohong Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Lab of Industrial Microorganism & Research and Design Center for Polyols, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Giner-Llorca M, Ropero-Pérez C, Garrigues S, Thomson DD, Bignell EM, Manzanares P, Marcos JF. Dynamics of interaction and internalisation of the antifungal protein PeAfpA into Penicillium digitatum morphotypes. Int J Biol Macromol 2024; 282:136980. [PMID: 39471922 DOI: 10.1016/j.ijbiomac.2024.136980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
Antifungal proteins (AFPs) as the highly active PeAfpA from Penicillium expansum or PdAfpB from Penicillium digitatum exert promising antifungal activity, but their mode of action is not fully understood. We characterised the interaction of PeAfpA against P. digitatum, comparing it to the less active PdAfpB. Despite similar effect on conidia germination, PeAfpA did not induce a burst of reactive oxygen species as PdAfpB. Live-cell fluorescence microscopy revealed complex dynamics of interaction and internalisation of both proteins with distinct P. digitatum morphotypes (quiescent conidia, swollen conidia, germlings and hyphae). Labelled PeAfpA co-localised at the cell wall of quiescent conidia, where its localisation was punctate and not uniformly distributed. This pattern changed during germination to a uniform distribution with increased intensity. Conidia from mutants of genes involved in melanin biosynthesis (pksP/alb1 or arp2) showed an altered distribution of PeAfpA but later mimicked the wild type trend of changes during germination. In swollen conidia and germlings, PeAfpA remained attached to the cell wall. In hyphae, PeAfpA was internalised through the growing hyphal tip after binding to the cell wall, in a non-endocytic but energy-dependent process that caused vacuolisation, which preceded cell death. These results may help the development of biofungicides based on AFPs.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Carolina Ropero-Pérez
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Sandra Garrigues
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Darren D Thomson
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Elaine M Bignell
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, Spain..
| |
Collapse
|
6
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
7
|
Chen P, Li Y, Long Q, Zuo T, Zhang Z, Guo J, Xu D, Li K, Liu S, Li S, Yin J, Chang L, Kukic P, Liddell M, Tulum L, Carmichael P, Peng S, Li J, Zhang Q, Xu P. The phosphoproteome is a first responder in tiered cellular adaptation to chemical stress followed by proteomics and transcriptomics alteration. CHEMOSPHERE 2023; 344:140329. [PMID: 37783352 DOI: 10.1016/j.chemosphere.2023.140329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
Next-generation risk assessment (NGRA) for environmental chemicals involves a weight of evidence (WoE) framework integrating a suite of new approach methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Among existing NAMs, the omic-based technologies are of particular importance based on the premise that any apical endpoint change indicative of impaired health must be underpinned by some alterations at the omics level, such as transcriptome, proteome, metabolome, epigenome and genome. Transcriptomic assay plays a leading role in providing relatively conservative PoDs compared with apical endpoints. However, it is unclear whether and how parameters measured with other omics techniques predict the cellular response to chemical perturbations, especially at exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in safety decisions made using targeted and transcriptomics assays. In the present study, we conducted multi-omics studies of transcriptomics, proteomics and phosphoproteomics on two prototype compounds, coumarin and 2,4-dichlorophenoxyacetic acid (2,4-D), with multiple chemical concentrations and time points, to understand the sensitivity of the three omics techniques in response to chemically-induced changes in HepG2. We demonstrated that, phosphoproteomics alterations occur not only earlier in time, but also more sensitive to lower concentrations than proteomics and transcriptomics when the HepG2 cells were exposed to various chemical treatments. The phosphoproteomics changes appear to approach maximum when the transcriptomics alterations begin to initiate. Therefore, it is proximal to the very early effects induced by chemical exposure. We concluded that phosphoproteomics can be utilized to provide a more complete coverage of chemical-induced cellular alteration and supplement transcriptomics-based health safety decision making.
Collapse
Affiliation(s)
- Peiru Chen
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; Guizhou Provincial People's Hospital, Affiliated Hospital of Guizhou University, Guiyang, 550002, China
| | - Qi Long
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Tao Zuo
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Zhenpeng Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Jiabin Guo
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Danyang Xu
- Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaixuan Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Shu Liu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Suzhen Li
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China
| | - Jian Yin
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Lei Chang
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China
| | - Predrag Kukic
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Mark Liddell
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Liz Tulum
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Paul Carmichael
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Shuangqing Peng
- Evaluation and Research Centre for Toxicology, Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing, 100071, China
| | - Jin Li
- Unilever Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, USA, GA, 30322.
| | - Ping Xu
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Proteome Research Center, Institute of Lifeomics, Beijing, 102206, China; Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Baoding, 071002, China; Department of Biomedicine, Medical College, Guizhou University, Guiyang, 550025, China; School of Basic Medicine, Anhui Medical University, Hefei, 230032, China; Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
8
|
Albillos‐Arenal S, Minebois R, Querol A, Barrio E. Understanding the role of GRE3 in the erythritol biosynthesis pathway in Saccharomyces uvarum and its implication in osmoregulation and redox homeostasis. Microb Biotechnol 2023; 16:1858-1871. [PMID: 37449952 PMCID: PMC10443344 DOI: 10.1111/1751-7915.14313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/10/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023] Open
Abstract
Erythritol is produced in yeasts via the reduction of erythrose into erythritol by erythrose reductases (ERs). However, the genes codifying for the ERs involved in this reaction have not been described in any Saccharomyces species yet. In our laboratory, we recently showed that, during alcoholic fermentation, erythritol is differentially produced by Saccharomyces cerevisiae and S. uvarum species, the latter being the largest producer. In this study, by using BLAST analysis and phylogenetic approaches the genes GRE3, GCY1, YPR1, ARA1 and YJR096W were identified as putative ERs in Saccharomyces cerevisiae Then, these genes were knocked out in our S. uvarum strain (BMV58) with higher erythritol biosynthesis compared to control S. cerevisiae wine strain, to evaluate their impact on erythritol synthesis and global metabolism. Among the mutants, the single deletion of GRE3 markedly impacts erythritol production, although ΔYPR1ΔGCY1ΔGRE3 was the combination that most decreased erythritol synthesis. Consistent with the increased production of fermentative by-products involved in redox balance in the Saccharomyces uvarum strain BMV58, erythritol synthesis increases at higher sugar concentrations, hinting it might be a response to osmotic stress. However, the expression of GRE3 in the S. uvarum strain was found to peak just before the start of the stationary phase, being consistent with the observation that erythritol increases at the start of the stationary phase, when there is low sugar in the medium and nitrogen sources are depleted. This suggests that GRE3 plays its primary function to help the yeast cells to maintain the redox balance during the last phases of fermentation.
Collapse
Affiliation(s)
| | - Romain Minebois
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSICPaternaSpain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSICPaternaSpain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA‐CSICPaternaSpain
- Departament de GenèticaUniversitat de ValènciaValènciaSpain
| |
Collapse
|
9
|
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023; 9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Genetically engineering microorganisms to produce chemicals has changed the industrialized world. The budding yeast Saccharomyces cerevisiae is frequently used in industry due to its genetic tractability and unique metabolic capabilities. S. cerevisiae has been engineered to produce novel compounds from diverse sugars found in lignocellulosic biomass, including pentose sugars, like xylose, not recognized by the organism. Engineering high flux toward novel compounds has proved to be more challenging than anticipated since simply introducing pathway components is often not enough. Several studies show that the rewiring of upstream signaling is required to direct products toward pathways of interest, but doing so can diminish stress tolerance, which is important in industrial conditions. As an example of these challenges, we reviewed S. cerevisiae engineering efforts, enabling anaerobic xylose fermentation as a model system and showcasing the regulatory interplay's controlling growth, metabolism, and stress defense. Enabling xylose fermentation in S. cerevisiae requires the introduction of several key metabolic enzymes but also regulatory rewiring of three signaling pathways at the intersection of the growth and stress defense responses: the RAS/PKA, Snf1, and high osmolarity glycerol (HOG) pathways. The current studies reviewed here suggest the modulation of global signaling pathways should be adopted into biorefinery microbial engineering pipelines to increase efficient product yields.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
10
|
Wang Y, Liu F, Pei J, Yan H, Wang Y. The AwHog1 Transcription Factor Influences the Osmotic Stress Response, Mycelium Growth, OTA Production, and Pathogenicity in Aspergillus westerdijkiae fc-1. Toxins (Basel) 2023; 15:432. [PMID: 37505700 PMCID: PMC10467130 DOI: 10.3390/toxins15070432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Aspergillus westerdijkiae, known as the major ochratoxin A (OTA) producer, usually occurs on agricultural crops, fruits, and dry-cured meats. Microorganisms produce OTA to adapt to the high osmotic pressure environment that is generated during food processing and storage. To investigate the relationship between OTA biosynthesis and the high osmolarity glycerol (HOG) pathway, the transcription factor AwHog1 gene in A. westerdijkiae was functionally characterised by means of a loss-of-function mutant. Our findings demonstrated that the growth and OTA production of a mutant lacking AwHog1 decreased significantly and was more sensitive to high osmotic media. The ΔAwHog1 mutant displayed a lower growth rate and a 73.16% reduction in OTA production in the wheat medium compared to the wild type. After three days of culture, the growth rate of the ΔAwHog1 mutant in medium with 60 g/L NaCl and 150 g/L glucose was slowed down 19.57% and 13.21%, respectively. Additionally, the expression of OTA biosynthesis genes was significantly reduced by the deletion of the AwHog1 gene. The infection ability of the ΔAwHog1 mutant was decreased, and the scab diameter of the pear was 6% smaller than that of the wild type. These data revealed that transcription factor AwHog1 plays a key role in the osmotic response, growth, OTA production, and pathogenicity in A. westerdijkiae.
Collapse
Affiliation(s)
- Yufei Wang
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| | - Fei Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Haidian District, Beijing 100193, China;
| | - Jingying Pei
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| | - Hao Yan
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Binjiang District, Hangzhou 310051, China
| | - Yan Wang
- College of Food Science and Technology, Zhejiang University of Technology, No. 18 Chaowang Road, Gongshu District, Hangzhou 310014, China; (Y.W.); (J.P.)
| |
Collapse
|
11
|
Alves V, Araújo GR, Frases S. Off-label treatments as potential accelerators in the search for the ideal antifungal treatment of cryptococcosis. Future Microbiol 2023; 18:127-135. [PMID: 36688321 DOI: 10.2217/fmb-2022-0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptococcosis is an opportunistic mycosis that mainly affects immunosuppressed patients. The treatment is a combination of three antifungal agents: amphotericin B, 5-flucytosine and fluconazole. However, these drugs have many disadvantages, such as high nephrotoxicity, marketing bans in some countries and fungal resistance. One of the solutions to find possible new drugs is pharmacological repositioning. This work presents repositioned drugs as an alternative for new antifungal therapies for cryptococcosis. All the studies here were performed in vitro or in animal models, except for sertraline, which reached phase III in humans. There is still no pharmacological repositioning approval for cryptococcosis in humans, though this review shows the potential of repurposing as a rapid approach to finding new agents to treat cryptococcosis.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Glauber Rs Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| |
Collapse
|
12
|
The regulatory mechanism of the yeast osmoresponse under different glucose concentrations. iScience 2022; 26:105809. [PMID: 36636353 PMCID: PMC9830198 DOI: 10.1016/j.isci.2022.105809] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cells constantly respond to environmental changes by modulating gene expression programs. These responses may demand substantial costs and, thus, affect cell growth. Understanding the regulation of these processes represents a key question in biology and biotechnology. Here, we studied the responses to osmotic stress in glucose-limited environments. By analyzing seventeen osmotic stress-induced genes and stress-activated protein kinase Hog1, we found that cells exhibited stronger osmotic gene expression response and larger integral of Hog1 nuclear localization during adaptation to osmotic stress under glucose-limited conditions than under glucose-rich conditions. We proposed and verified that in glucose-limited environment, glycolysis intermediates (representing "reserve flux") were limited, which required cells to express more glycerol-production enzymes for stress adaptation. Consequently, the regulatory mechanism of osmoresponse was derived in the presence and absence of such reserve flux. Further experiments suggested that this reserve flux-dependent stress-defense strategy may be a general principle under nutrient-limited environments.
Collapse
|
13
|
Roik A, Reverter M, Pogoreutz C. A roadmap to understanding diversity and function of coral reef-associated fungi. FEMS Microbiol Rev 2022; 46:fuac028. [PMID: 35746877 PMCID: PMC9629503 DOI: 10.1093/femsre/fuac028] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 01/09/2023] Open
Abstract
Tropical coral reefs are hotspots of marine productivity, owing to the association of reef-building corals with endosymbiotic algae and metabolically diverse bacterial communities. However, the functional importance of fungi, well-known for their contribution to shaping terrestrial ecosystems and global nutrient cycles, remains underexplored on coral reefs. We here conceptualize how fungal functional traits may have facilitated the spread, diversification, and ecological adaptation of marine fungi on coral reefs. We propose that functions of reef-associated fungi may be diverse and go beyond their hitherto described roles of pathogens and bioeroders, including but not limited to reef-scale biogeochemical cycles and the structuring of coral-associated and environmental microbiomes via chemical mediation. Recent technological and conceptual advances will allow the elucidation of the physiological, ecological, and chemical contributions of understudied marine fungi to coral holobiont and reef ecosystem functioning and health and may help provide an outlook for reef management actions.
Collapse
Affiliation(s)
- Anna Roik
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Miriam Reverter
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, 26046, Germany
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, United Kingdom
| | - Claudia Pogoreutz
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
14
|
de Nadal E, Posas F. OUP accepted manuscript. FEMS Yeast Res 2022; 22:6543702. [PMID: 35254447 PMCID: PMC8953452 DOI: 10.1093/femsyr/foac013] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Eulàlia de Nadal
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| | - Francesc Posas
- Corresponding author: Institute for Research in Biomedicine (IRB Barcelona) Parc Científic de Barcelona c/ Baldiri Reixac, 10. 08028 Barcelona - Spain. E-mail:
| |
Collapse
|
15
|
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021; 22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022] Open
Abstract
Extension of the substrate range is among one of the metabolic engineering goals for microorganisms used in biotechnological processes because it enables the use of a wide range of raw materials as substrates. One of the most prominent examples is the engineering of baker's yeast Saccharomyces cerevisiae for the utilization of d-xylose, a five-carbon sugar found in high abundance in lignocellulosic biomass and a key substrate to achieve good process economy in chemical production from renewable and non-edible plant feedstocks. Despite many excellent engineering strategies that have allowed recombinant S. cerevisiae to ferment d-xylose to ethanol at high yields, the consumption rate of d-xylose is still significantly lower than that of its preferred sugar d-glucose. In mixed d-glucose/d-xylose cultivations, d-xylose is only utilized after d-glucose depletion, which leads to prolonged process times and added costs. Due to this limitation, the response on d-xylose in the native sugar signaling pathways has emerged as a promising next-level engineering target. Here we review the current status of the knowledge of the response of S. cerevisiae signaling pathways to d-xylose. To do this, we first summarize the response of the native sensing and signaling pathways in S. cerevisiae to d-glucose (the preferred sugar of the yeast). Using the d-glucose case as a point of reference, we then proceed to discuss the known signaling response to d-xylose in S. cerevisiae and current attempts of improving the response by signaling engineering using native targets and synthetic (non-native) regulatory circuits.
Collapse
Affiliation(s)
- Daniel P. Brink
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Celina Borgström
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- BioZone Centre for Applied Bioscience and Bioengineering, Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | - Viktor C. Persson
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| | - Karen Ofuji Osiro
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
- Genetics and Biotechnology Laboratory, Embrapa Agroenergy, Brasília 70770-901, DF, Brazil
| | - Marie F. Gorwa-Grauslund
- Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (C.B.); (V.C.P.); (K.O.O.)
| |
Collapse
|
16
|
Jagtap SS, Bedekar AA, Singh V, Jin YS, Rao CV. Metabolic engineering of the oleaginous yeast Yarrowia lipolytica PO1f for production of erythritol from glycerol. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:188. [PMID: 34563235 PMCID: PMC8466642 DOI: 10.1186/s13068-021-02039-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/11/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Sugar alcohols are widely used as low-calorie sweeteners in the food and pharmaceutical industries. They can also be transformed into platform chemicals. Yarrowia lipolytica, an oleaginous yeast, is a promising host for producing many sugar alcohols. In this work, we tested whether heterologous expression of a recently identified sugar alcohol phosphatase (PYP) from Saccharomyces cerevisiae would increase sugar alcohol production in Y. lipolytica. RESULTS Y. lipolytica was found natively to produce erythritol, mannitol, and arabitol during growth on glucose, fructose, mannose, and glycerol. Osmotic stress is known to increase sugar alcohol production, and was found to significantly increase erythritol production during growth on glycerol. To better understand erythritol production from glycerol, since it was the most promising sugar alcohol, we measured the expression of key genes and intracellular metabolites. Osmotic stress increased the expression of several key genes in the glycerol catabolic pathway and the pentose phosphate pathway. Analysis of intracellular metabolites revealed that amino acids, sugar alcohols, and polyamines are produced at higher levels in response to osmotic stress. Heterologous overexpression of the sugar alcohol phosphatase increased erythritol production and glycerol utilization in Y. lipolytica. We further increased erythritol production by increasing the expression of native glycerol kinase (GK), and transketolase (TKL). This strain was able to produce 27.5 ± 0.7 g/L erythritol from glycerol during batch growth and 58.8 ± 1.68 g/L erythritol during fed-batch growth in shake-flasks experiments. In addition, the glycerol utilization was increased by 2.5-fold. We were also able to demonstrate that this strain efficiently produces erythritol from crude glycerol, a major byproduct of the biodiesel production. CONCLUSIONS We demonstrated the application of a promising enzyme for increasing erythritol production in Y. lipolytica. We were further able to boost production by combining the expression of this enzyme with other approaches known to increase erythritol production in Y. lipolytica. This suggest that this new enzyme provides an orthogonal route for boosting production and can be stacked with existing designs known to increase sugar alcohol production in yeast such as Y. lipolytica. Collectively, this work establishes a new route for increasing sugar alcohol production and further develops Y. lipolytica as a promising host for erythritol production from cheap substrates such as glycerol.
Collapse
Affiliation(s)
- Sujit Sadashiv Jagtap
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashwini Ashok Bedekar
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Vijay Singh
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yong-Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Food Science and Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
17
|
Li X, Wang Y, Li G, Liu Q, Pereira R, Chen Y, Nielsen J. Metabolic network remodelling enhances yeast’s fitness on xylose using aerobic glycolysis. Nat Catal 2021. [DOI: 10.1038/s41929-021-00670-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Pallapati AR, Sirigiri SD, Jain S, Ratnala V, Roy I. Lysine245 plays a crucial role in stability and function of glycerol 3-phosphate dehydrogenase (Gpd1) in Saccharomyces cerevisiae. J Cell Biochem 2021; 122:1726-1736. [PMID: 34369003 DOI: 10.1002/jcb.30125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/10/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
Glycerol 3-phosphate dehydrogenase (Gpd1 isoform) catalyzes the rate limiting step of glycerol synthesis and is a critical component of the osmo-responsive machinery in yeast. The three-dimensional structure of the enzyme is similar to the enzyme from many other organisms, including humans. A recent study with the human enzyme has proposed K120 (K152 in yeast) to be in the correct orientation for catalysis; K204 (K245 in yeast) is out of plane and is not a participant in the catalytic cycle. The current work was carried out to establish the role of K245 in the catalytic cycle of yeast Gpd1. K245A mutant was found to possess lower catalytic activity. Osmotically stressed cells expressing Gpd1 (K245A) showed no change in intracellular glycerol as compared with wild-type cells which showed ~60% increase. Fluorescence microscopy, native polyacrylamide gel electrophoresis (PAGE) analysis, fluorescence spectroscopy, and Thioflavin T spectrofluorimetry showed a relatively unstable, aggregation- and degradation-prone conformation for the mutant. In silico studies showed an aggregation "hotspot" around K245. This study establishes the requirement of K245 for conformational stability and functional adaptation of Gpd1 in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Anusha R Pallapati
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Sri D Sirigiri
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Vamsi Ratnala
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Punjab, India
| |
Collapse
|
19
|
Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 2020; 184:545-559.e22. [PMID: 33357446 PMCID: PMC7836100 DOI: 10.1016/j.cell.2020.12.021] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/21/2020] [Accepted: 12/11/2020] [Indexed: 02/02/2023]
Abstract
Biological processes are regulated by intermolecular interactions and chemical modifications that do not affect protein levels, thus escaping detection in classical proteomic screens. We demonstrate here that a global protein structural readout based on limited proteolysis-mass spectrometry (LiP-MS) detects many such functional alterations, simultaneously and in situ, in bacteria undergoing nutrient adaptation and in yeast responding to acute stress. The structural readout, visualized as structural barcodes, captured enzyme activity changes, phosphorylation, protein aggregation, and complex formation, with the resolution of individual regulated functional sites such as binding and active sites. Comparison with prior knowledge, including other ‘omics data, showed that LiP-MS detects many known functional alterations within well-studied pathways. It suggested distinct metabolite-protein interactions and enabled identification of a fructose-1,6-bisphosphate-based regulatory mechanism of glucose uptake in E. coli. The structural readout dramatically increases classical proteomics coverage, generates mechanistic hypotheses, and paves the way for in situ structural systems biology. Dynamic structural proteomic screens detect functional changes at high resolution Detect enzyme activity, phosphorylation, and molecular interactions in situ Generate new molecular hypotheses and increase functional proteomics coverage Enabled discovery of a regulatory mechanism of glucose uptake in E. coli
Collapse
|
20
|
Contribution of the mitogen-activated protein kinase Hog1 to the halotolerance of the marine yeast Debaryomyces hansenii. Curr Genet 2020; 66:1135-1153. [PMID: 32719935 DOI: 10.1007/s00294-020-01099-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 10/23/2022]
Abstract
Halotolerant species are adapted to dealing continually with hyperosmotic environments, having evolved strategies that are uncommon in other organisms. The HOG pathway is the master system that regulates the cellular adaptation under these conditions; nevertheless, apart from the importance of Debaryomyces hansenii as an organism representative of the halotolerant class, its HOG1 pathway has been poorly studied, due to the difficulty of applying conventional recombinant DNA technology. Here we describe for the first time the phenotypic characterisation of a null HOG1 mutant of D. hansenii. Dhhog1Δ strain was found moderately resistant to 1 M NaCl and sensitive to higher concentrations. Under hyperosmotic shock, DhHog1 fully upregulated transcription of DhSTL1 and partially upregulated that of DhGPD1. High osmotic stress lead to long-term inner glycerol accumulation that was partially dependent on DhHog1. These observations indicated that the HOG pathway is required for survival under high external osmolarity but dispensable under low and mid-osmotic conditions. It was also found that DhHog1 can regulate response to alkali stress during hyperosmotic conditions and that it plays a role in oxidative and endoplasmic reticulum stress. Taken together, these results provide new insight into the contribution of this MAPK in halotolerance of this yeast.
Collapse
|
21
|
Vázquez-Ibarra A, Rodríguez-Martínez G, Guerrero-Serrano G, Kawasaki L, Ongay-Larios L, Coria R. Negative feedback-loop mechanisms regulating HOG- and pheromone-MAPK signaling in yeast. Curr Genet 2020; 66:867-880. [PMID: 32564133 DOI: 10.1007/s00294-020-01089-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/28/2022]
Abstract
The pheromone response and the high osmolarity glycerol (HOG) pathways are considered the prototypical MAPK signaling systems. They are the best-understood pathways in eukaryotic cells, yet they continue to provide insights in how cells relate with the environment. These systems are subjected to tight regulatory circuits to prevent hyperactivation in length and intensity. Failure to do this may be a matter of life or death specially for unicellular organisms such as Saccharomyces cerevisiae. The signaling pathways are fine-tuned by positive and negative feedback loops exerted by pivotal control elements that allow precise responses to specific stimuli, despite the fact that some elements of the systems are common to different signaling pathways. Here we describe the experimentally proven negative feedback loops that modulate the pheromone response and the HOG pathways. As described in this review, MAP kinases are central mechanistic components of these feedback loops. They have the capacity to modulate basal signaling activity, a fast extranuclear response, and a longer-lasting transcriptional process.
Collapse
Affiliation(s)
- Araceli Vázquez-Ibarra
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | | | - Laura Kawasaki
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México
| | - Roberto Coria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, México City, México.
| |
Collapse
|
22
|
Leech CM, Flynn MJ, Arsenault HE, Ou J, Liu H, Zhu LJ, Benanti JA. The coordinate actions of calcineurin and Hog1 mediate the stress response through multiple nodes of the cell cycle network. PLoS Genet 2020; 16:e1008600. [PMID: 32343701 PMCID: PMC7209309 DOI: 10.1371/journal.pgen.1008600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/08/2020] [Accepted: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Upon exposure to environmental stressors, cells transiently arrest the cell cycle while they adapt and restore homeostasis. A challenge for all cells is to distinguish between stress signals and coordinate the appropriate adaptive response with cell cycle arrest. Here we investigate the role of the phosphatase calcineurin (CN) in the stress response and demonstrate that CN activates the Hog1/p38 pathway in both yeast and human cells. In yeast, the MAPK Hog1 is transiently activated in response to several well-studied osmostressors. We show that when a stressor simultaneously activates CN and Hog1, CN disrupts Hog1-stimulated negative feedback to prolong Hog1 activation and the period of cell cycle arrest. Regulation of Hog1 by CN also contributes to inactivation of multiple cell cycle-regulatory transcription factors (TFs) and the decreased expression of cell cycle-regulated genes. CN-dependent downregulation of G1/S genes is dependent upon Hog1 activation, whereas CN inactivates G2/M TFs through a combination of Hog1-dependent and -independent mechanisms. These findings demonstrate that CN and Hog1 act in a coordinated manner to inhibit multiple nodes of the cell cycle-regulatory network. Our results suggest that crosstalk between CN and stress-activated MAPKs helps cells tailor their adaptive responses to specific stressors. In order to survive exposure to environmental stress, cells transiently arrest the cell division cycle while they adapt to the stress. Several kinases and phosphatases are known to control stress adaptation programs, but the extent to which these signaling pathways work together to tune the stress response is not well understood. This study investigates the role of the phosphatase calcineurin in the stress response and shows that calcineurin inhibits the cell cycle in part by stimulating the activity of the Hog1/p-38 stress-activated MAPK in both yeast and human cells. Crosstalk between stress response pathways may help cells mount specific responses to diverse stressors and to survive changes in their environment.
Collapse
Affiliation(s)
- Cassandra M. Leech
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Mackenzie J. Flynn
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heather E. Arsenault
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Haibo Liu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Lihua Julie Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Bioinformatics and Integrative Biology, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jennifer A. Benanti
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
23
|
Liu Y, Shao YR, Li XY, Wang ZM, Yang LR, Zhang YZ, Wu MB, Yao JM. Analysis of nicotine-induced metabolic changes in Blakeslea trispora by GC-MS. J Zhejiang Univ Sci B 2020; 21:172-177. [PMID: 32115914 PMCID: PMC7076348 DOI: 10.1631/jzus.b1900459] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/07/2019] [Indexed: 11/11/2022]
Abstract
Blakeslea trispora is a natural source of carotenoids, including β-carotene and lycopene, which have industrial applications. Therefore, classical selective breeding techniques have been applied to generate strains with increased productivity, and microencapsulated β-carotene preparation has been used in food industry (Li et al., 2019). In B. trispora, lycopene is synthesized via the mevalonate pathway (Venkateshwaran et al., 2015). Lycopene cyclase, which is one of the key enzymes in this pathway, is a bifunctional enzyme that can catalyze the cyclization of lycopene to produce β-carotene and exhibit phytoene synthase activity (He et al., 2017).
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - You-ran Shao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiang-yu Li
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Zhi-ming Wang
- CABIO Bioengineering (Wuhan) Co. Ltd., Wuhan 436070, China
| | - Li-rong Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu-zhou Zhang
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Mian-bin Wu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Zhejiang Key Laboratory of Antifungal Drugs, Taizhou 318000, China
| | - Jian-ming Yao
- Biotechnology Center, Institute of Plasma Physics and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
24
|
Liu Y, Li XY, Lu SH, Yu C, Zhang YZ, Wang ZM, Yao JM. Comparative Metabolic Responses Induced by Pyridine and Imidazole in Blakeslea trispora. Front Bioeng Biotechnol 2019; 7:347. [PMID: 31824936 PMCID: PMC6886401 DOI: 10.3389/fbioe.2019.00347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Lycopene cyclase needs to be inhibited by the blockers like pyridine or imidazole in the lycopene accumulation of Blakeslea trispora. This work investigated how pyridine and imidazole impacted the basal metabolism of B. trispora, the results helped us understand how they could affect the lycopene production and application, and see the metabolic risks from different inhibitors. In this study, the highest yield of lycopene with pyridine was obtained at 176 mg/L without amino acids supplement, and got more lycopene at 237 mg/L adding tyrosine, lysine, proline all together as 0.01 mol/L each in fermented broth. GC-MS and Principal Component Analysis (PCA) were used to find that amino acids, fatty acids, organic acids including phosphoric acid, carbon source and imidazole derivatives played the most important roles in lycopene fermentation with imidazole, differently, fatty acids, carbon source, and pyridine derivatives were more significant in the pyridine process and it was remarkable that the residual of both blockers' derivatives would bring the potential risks on applications of lycopene products. Predominantly, durene met 0.35 mg/g DCW with imidazole and piperidine formaldehyde attained 0.24 mg/g DCW with pyridine after the end of lycopene fermentations.
Collapse
Affiliation(s)
- Yang Liu
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China.,CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Xiang-Yu Li
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Shu-Huan Lu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Chao Yu
- CABIO Biotech (Wuhan) Co. Ltd., Wuhan, China
| | - Yu-Zhou Zhang
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| | | | - Jian-Ming Yao
- Biotechnology Center, Institute of Plasma Physics, and Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China.,University of Science and Technology of China, Hefei, China
| |
Collapse
|
25
|
Day AM, Quinn J. Stress-Activated Protein Kinases in Human Fungal Pathogens. Front Cell Infect Microbiol 2019; 9:261. [PMID: 31380304 PMCID: PMC6652806 DOI: 10.3389/fcimb.2019.00261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/04/2019] [Indexed: 11/28/2022] Open
Abstract
The ability of fungal pathogens to survive hostile environments within the host depends on rapid and robust stress responses. Stress-activated protein kinase (SAPK) pathways are conserved MAPK signaling modules that promote stress adaptation in all eukaryotic cells, including pathogenic fungi. Activation of the SAPK occurs via the dual phosphorylation of conserved threonine and tyrosine residues within a TGY motif located in the catalytic domain. This induces the activation and nuclear accumulation of the kinase and the phosphorylation of diverse substrates, thus eliciting appropriate cellular responses. The Hog1 SAPK has been extensively characterized in the model yeast Saccharomyces cerevisiae. Here, we use this a platform from which to compare SAPK signaling mechanisms in three major fungal pathogens of humans, Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. Despite the conservation of SAPK pathways within these pathogenic fungi, evidence is emerging that their role and regulation has significantly diverged. However, consistent with stress adaptation being a common virulence trait, SAPK pathways are important pathogenicity determinants in all these major human pathogens. Thus, the development of drugs which target fungal SAPKs has the exciting potential to generate broad-acting antifungal treatments.
Collapse
Affiliation(s)
- Alison M Day
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Janet Quinn
- Faculty of Medicine, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
26
|
Janschitz M, Romanov N, Varnavides G, Hollenstein DM, Gérecová G, Ammerer G, Hartl M, Reiter W. Novel interconnections of HOG signaling revealed by combined use of two proteomic software packages. Cell Commun Signal 2019; 17:66. [PMID: 31208443 PMCID: PMC6572760 DOI: 10.1186/s12964-019-0381-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
Modern quantitative mass spectrometry (MS)-based proteomics enables researchers to unravel signaling networks by monitoring proteome-wide cellular responses to different stimuli. MS-based analysis of signaling systems usually requires an integration of multiple quantitative MS experiments, which remains challenging, given that the overlap between these datasets is not necessarily comprehensive. In a previous study we analyzed the impact of the yeast mitogen-activated protein kinase (MAPK) Hog1 on the hyperosmotic stress-affected phosphorylome. Using a combination of a series of hyperosmotic stress and kinase inhibition experiments, we identified a broad range of direct and indirect substrates of the MAPK. Here we re-evaluate this extensive MS dataset and demonstrate that a combined analysis based on two software packages, MaxQuant and Proteome Discoverer, increases the coverage of Hog1-target proteins by 30%. Using protein-protein proximity assays we show that the majority of new targets gained by this analysis are indeed Hog1-interactors. Additionally, kinetic profiles indicate differential trends of Hog1-dependent versus Hog1-independent phosphorylation sites. Our findings highlight a previously unrecognized interconnection between Hog1 signaling and the RAM signaling network, as well as sphingolipid homeostasis.
Collapse
Affiliation(s)
- Marion Janschitz
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Children’s Cancer Research Institute, St. Anna Kinderspital, Vienna, Austria
| | - Natalie Romanov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Current Address: Department of Molecular Sociology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Gina Varnavides
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | | | - Gabriela Gérecová
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Gustav Ammerer
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
| | - Markus Hartl
- Department of Biochemistry, Max F. Perutz Laboratories, Vienna BioCenter, Vienna, Austria
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Wolfgang Reiter
- Mass Spectrometry Facility, Max F. Perutz Laboratories, University of Vienna, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
27
|
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019; 14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Lignocellulosic biomass offers a sustainable source for biofuel production that does not compete with food-based cropping systems. Importantly, two critical bottlenecks prevent economic adoption: many industrially relevant microorganisms cannot ferment pentose sugars prevalent in lignocellulosic medium, leaving a significant amount of carbon unutilized. Furthermore, chemical biomass pretreatment required to release fermentable sugars generates a variety of toxins, which inhibit microbial growth and metabolism, specifically limiting pentose utilization in engineered strains. Here we dissected genetic determinants of anaerobic xylose fermentation and stress tolerance in chemically pretreated corn stover biomass, called hydrolysate. We previously revealed that loss-of-function mutations in the stress-responsive MAP kinase HOG1 and negative regulator of the RAS/Protein Kinase A (PKA) pathway, IRA2, enhances anaerobic xylose fermentation. However, these mutations likely reduce cells' ability to tolerate the toxins present in lignocellulosic hydrolysate, making the strain especially vulnerable to it. We tested the contributions of Hog1 and PKA signaling via IRA2 or PKA negative regulatory subunit BCY1 to metabolism, growth, and stress tolerance in corn stover hydrolysate and laboratory medium with mixed sugars. We found mutations causing upregulated PKA activity increase growth rate and glucose consumption in various media but do not have a specific impact on xylose fermentation. In contrast, mutation of HOG1 specifically increased xylose usage. We hypothesized improving stress tolerance would enhance the rate of xylose consumption in hydrolysate. Surprisingly, increasing stress tolerance did not augment xylose fermentation in lignocellulosic medium in this strain background, suggesting other mechanisms besides cellular stress limit this strain's ability for anaerobic xylose fermentation in hydrolysate.
Collapse
Affiliation(s)
- Ellen R. Wagner
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
| | - Nicholas M. Riley
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison WI United States of America
- Morgridge Institute for Research, Madison, WI United States of America
| | - Audrey P. Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin–Madison, Madison, WI United States of America
- Genome Center of Wisconsin, University of Wisconsin–Madison, Madison, WI United States of America
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, WI United States of America
| |
Collapse
|
28
|
Watcharawipas A, Watanabe D, Takagi H. Sodium Acetate Responses in Saccharomyces cerevisiae and the Ubiquitin Ligase Rsp5. Front Microbiol 2018; 9:2495. [PMID: 30459728 PMCID: PMC6232821 DOI: 10.3389/fmicb.2018.02495] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/28/2018] [Indexed: 12/31/2022] Open
Abstract
Recent studies have revealed the feasibility of sodium acetate as a potentially novel inhibitor/stressor relevant to the fermentation from neutralized lignocellulosic hydrolysates. This mini-review focuses on the toxicity of sodium acetate, which is composed of both sodium and acetate ions, and on the involved cellular responses that it elicits, particularly via the high-osmolarity glycerol (HOG) pathway, the Rim101 pathway, the P-type ATPase sodium pumps Ena1/2/5, and the ubiquitin ligase Rsp5 with its adaptors. Increased understanding of cellular responses to sodium acetate would improve our understanding of how cells respond not only to different stimuli but also to composite stresses induced by multiple components (e.g., sodium and acetate) simultaneously. Moreover, unraveling the characteristics of specific stresses under industrially related conditions and the cellular responses evoked by these stresses would be a key factor in the industrial yeast strain engineering toward the increased productivity of not only bioethanol but also advanced biofuels and valuable chemicals that will be in demand in the coming era of bio-based industry.
Collapse
Affiliation(s)
- Akaraphol Watcharawipas
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Daisuke Watanabe
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
29
|
Zhang Q, Li J, Middleton A, Bhattacharya S, Conolly RB. Bridging the Data Gap From in vitro Toxicity Testing to Chemical Safety Assessment Through Computational Modeling. Front Public Health 2018; 6:261. [PMID: 30255008 PMCID: PMC6141783 DOI: 10.3389/fpubh.2018.00261] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022] Open
Abstract
Chemical toxicity testing is moving steadily toward a human cell and organoid-based in vitro approach for reasons including scientific relevancy, efficiency, cost, and ethical rightfulness. Inferring human health risk from chemical exposure based on in vitro testing data is a challenging task, facing various data gaps along the way. This review identifies these gaps and makes a case for the in silico approach of computational dose-response and extrapolation modeling to address many of the challenges. Mathematical models that can mechanistically describe chemical toxicokinetics (TK) and toxicodynamics (TD), for both in vitro and in vivo conditions, are the founding pieces in this regard. Identifying toxicity pathways and in vitro point of departure (PoD) associated with adverse health outcomes requires an understanding of the molecular key events in the interacting transcriptome, proteome, and metabolome. Such an understanding will in turn help determine the sets of sensitive biomarkers to be measured in vitro and the scope of toxicity pathways to be modeled in silico. In vitro data reporting both pathway perturbation and chemical biokinetics in the culture medium serve to calibrate the toxicity pathway and virtual tissue models, which can then help predict PoDs in response to chemical dosimetry experienced by cells in vivo. Two types of in vitro to in vivo extrapolation (IVIVE) are needed. (1) For toxic effects involving systemic regulations, such as endocrine disruption, organism-level adverse outcome pathway (AOP) models are needed to extrapolate in vitro toxicity pathway perturbation to in vivo PoD. (2) Physiologically-based toxicokinetic (PBTK) modeling is needed to extrapolate in vitro PoD dose metrics into external doses for expected exposure scenarios. Linked PBTK and TD models can explore the parameter space to recapitulate human population variability in response to chemical insults. While challenges remain for applying these modeling tools to support in vitro toxicity testing, they open the door toward population-stratified and personalized risk assessment.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - Jin Li
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Alistair Middleton
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, United Kingdom
| | - Sudin Bhattacharya
- Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| | - Rory B Conolly
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, United States Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
30
|
Abstract
Candida stellata is an imperfect yeast of the genus Candida that belongs to the order Saccharomycetales, while phylum Ascomycota. C. stellata was isolated originally from a must overripe in Germany but is widespread in natural and artificial habitats. C. stellata is a yeast with a taxonomic history characterized by numerous changes; it is either a heterogeneous species or easily confused with other yeast species that colonize the same substrates. The strain DBVPG 3827, frequently used to investigate the oenological properties of C. stellata, was recently renamed as Starmerella bombicola, which can be easily confused with C. zemplinina or related species like C. lactis-condensi. Strains of C. stellata have been used in the processing of foods and feeds for thousands of years. This species, which is commonly isolated from grape must, has been found to be competitive and persistent in fermentation in both white and red wine in various wine regions of the world and tolerates a concentration of at least 9% (v/v) ethanol. Although these yeasts can produce spoilage, several studies have been conducted to characterize C. stellata for their ability to produce desirable metabolites for wine flavor, such as acetate esters, or for the presence of enzymatic activities that enhance wine aroma, such as β-glucosidase. This microorganism could also possess many interesting technological properties that could be applied in food processing. Exo and endoglucosidases and polygalactosidase of C. stellata are important in the degradation of β-glucans produced by Botrytis cinerea. In traditional balsamic vinegar production, C. stellata shapes the aromatic profile of traditional vinegar, producing ethanol from fructose and high concentrations of glycerol, succinic acid, ethyl acetate, and acetoin. Chemical characterization of exocellular polysaccharides produced by non-Saccharomyces yeasts revealed them to essentially be mannoproteins with high mannose contents, ranging from 73–74% for Starmerella bombicola. Numerous studies have clearly proven that these macromolecules make multiple positive contributions to wine quality. Recent studies on C. stellata strains in wines made by co-fermentation with Saccharomyces cerevisiae have found that the aroma attributes of the individual strains were apparent when the inoculation protocol permitted the growth and activity of both yeasts. The exploitation of the diversity of biochemical and sensory properties of non-Saccharomyces yeast could be of interest for obtaining new products.
Collapse
|
31
|
MacGilvray ME, Shishkova E, Chasman D, Place M, Gitter A, Coon JJ, Gasch AP. Network inference reveals novel connections in pathways regulating growth and defense in the yeast salt response. PLoS Comput Biol 2018; 13:e1006088. [PMID: 29738528 PMCID: PMC5940180 DOI: 10.1371/journal.pcbi.1006088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/13/2018] [Indexed: 11/18/2022] Open
Abstract
Cells respond to stressful conditions by coordinating a complex, multi-faceted response that spans many levels of physiology. Much of the response is coordinated by changes in protein phosphorylation. Although the regulators of transcriptome changes during stress are well characterized in Saccharomyces cerevisiae, the upstream regulatory network controlling protein phosphorylation is less well dissected. Here, we developed a computational approach to infer the signaling network that regulates phosphorylation changes in response to salt stress. We developed an approach to link predicted regulators to groups of likely co-regulated phospho-peptides responding to stress, thereby creating new edges in a background protein interaction network. We then use integer linear programming (ILP) to integrate wild type and mutant phospho-proteomic data and predict the network controlling stress-activated phospho-proteomic changes. The network we inferred predicted new regulatory connections between stress-activated and growth-regulating pathways and suggested mechanisms coordinating metabolism, cell-cycle progression, and growth during stress. We confirmed several network predictions with co-immunoprecipitations coupled with mass-spectrometry protein identification and mutant phospho-proteomic analysis. Results show that the cAMP-phosphodiesterase Pde2 physically interacts with many stress-regulated transcription factors targeted by PKA, and that reduced phosphorylation of those factors during stress requires the Rck2 kinase that we show physically interacts with Pde2. Together, our work shows how a high-quality computational network model can facilitate discovery of new pathway interactions during osmotic stress. Cells sense and respond to stressful environments by utilizing complex signaling networks that integrate diverse signals to coordinate a multi-faceted physiological response. Much of this response is controlled by post-translational protein phosphorylation. Although many regulators that mediate changes in protein phosphorylation are known, how these regulators inter-connect in a single regulatory network that can transmit cellular signals is not known. It is also unclear how regulators that promote growth and regulators that activate the stress response interconnect to reorganize resource allocation during stress. Here, we developed an integrated experimental and computational workflow to infer the signaling network that regulates phosphorylation changes during osmotic stress in the budding yeast Saccharomyces cerevisiae. The workflow integrates data measuring protein phosphorylation changes in response to osmotic stress with known physical interactions between yeast proteins from large-scale datasets, along with other information about how regulators recognize their targets. The resulting network suggested new signaling connections between regulators and pathways, including those involved in regulating growth and defense, and predicted new regulators involved in stress defense. Our work highlights the power of using network inference to deliver new insight on how cells coordinate a diverse adaptive strategy to stress.
Collapse
Affiliation(s)
- Matthew E. MacGilvray
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Evgenia Shishkova
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
| | - Deborah Chasman
- Wisconsin Institute for Discovery, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Michael Place
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anthony Gitter
- Department of Biostatistics and Medical Informatics, University of Wisconsin -Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
| | - Joshua J. Coon
- Department of Biomolecular Chemistry, University of Wisconsin—Madison, Madison, WI, United States of America
- Morgridge Institute for Research, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- Genome Center of Wisconsin, Madison, WI, United States of America
| | - Audrey P. Gasch
- Laboratory of Genetics, University of Wisconsin—Madison, Madison, WI, United States of America
- Department of Chemistry, University of Wisconsin -Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
32
|
Boyce KJ, De Souza DP, Dayalan S, Pasricha S, Tull D, McConville MJ, Andrianopoulos A. Talaromyces marneffei simA Encodes a Fungal Cytochrome P450 Essential for Survival in Macrophages. mSphere 2018; 3:e00056-18. [PMID: 29577082 PMCID: PMC5863032 DOI: 10.1128/msphere.00056-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/23/2018] [Indexed: 11/20/2022] Open
Abstract
Fungi are adept at occupying specific environmental niches and often exploit numerous secondary metabolites generated by the cytochrome P450 (CYP) monoxygenases. This report describes the characterization of a yeast-specific CYP encoded by simA ("survival in macrophages"). Deletion of simA does not affect yeast growth at 37°C in vitro but is essential for yeast cell production during macrophage infection. The ΔsimA strain exhibits reduced conidial germination and intracellular growth of yeast in macrophages, suggesting that the enzymatic product of SimA is required for normal fungal growth in vivo. Intracellular ΔsimA yeast cells exhibit cell wall defects, and metabolomic and chemical sensitivity data suggest that SimA may promote chitin synthesis or deposition in vitro. In vivo, ΔsimA yeast cells subsequently lyse and are degraded, suggesting that SimA may increase resistance to and/or suppress host cell biocidal effectors. The results suggest that simA synthesizes a secondary metabolite that allows T. marneffei to occupy the specific intracellular environmental niche within the macrophage. IMPORTANCE This study in a dimorphic fungal pathogen uncovered a role for a yeast-specific cytochrome P450 (CYP)-encoding gene in the ability of T. marneffei to grow as yeast cells within the host macrophages. This report will inspire further research into the role of CYPs and secondary metabolite synthesis during fungal pathogenic growth.
Collapse
Affiliation(s)
- Kylie J. Boyce
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - David P. De Souza
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Shivani Pasricha
- School of Biosciences, The University of Melbourne, Melbourne, Australia
| | - Dedreia Tull
- Metabolomics Australia, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Melbourne, Australia
| | | |
Collapse
|
33
|
Stojanovski K, Ferrar T, Benisty H, Uschner F, Delgado J, Jimenez J, Solé C, de Nadal E, Klipp E, Posas F, Serrano L, Kiel C. Interaction Dynamics Determine Signaling and Output Pathway Responses. Cell Rep 2017; 19:136-149. [PMID: 28380353 DOI: 10.1016/j.celrep.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/27/2016] [Accepted: 03/08/2017] [Indexed: 12/28/2022] Open
Abstract
The understanding of interaction dynamics in signaling pathways can shed light on pathway architecture and provide insights into targets for intervention. Here, we explored the relevance of kinetic rate constants of a key upstream osmosensor in the yeast high-osmolarity glycerol-mitogen-activated protein kinase (HOG-MAPK) pathway to signaling output responses. We created mutant pairs of the Sln1-Ypd1 complex interface that caused major compensating changes in the association (kon) and dissociation (koff) rate constants (kinetic perturbations) but only moderate changes in the overall complex affinity (Kd). Yeast cells carrying a Sln1-Ypd1 mutant pair with moderate increases in kon and koff displayed a lower threshold of HOG pathway activation than wild-type cells. Mutants with higher kon and koff rates gave rise to higher basal signaling and gene expression but impaired osmoadaptation. Thus, the kon and koff rates of the components in the Sln1 osmosensor determine proper signaling dynamics and osmoadaptation.
Collapse
Affiliation(s)
- Klement Stojanovski
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Hannah Benisty
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Friedemann Uschner
- Theoretical Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Javier Delgado
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Javier Jimenez
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Carme Solé
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Eulalia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Edda Klipp
- Theoretical Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| | - Christina Kiel
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
34
|
Day AM, Herrero-de-Dios CM, MacCallum DM, Brown AJP, Quinn J. Stress-induced nuclear accumulation is dispensable for Hog1-dependent gene expression and virulence in a fungal pathogen. Sci Rep 2017; 7:14340. [PMID: 29085028 PMCID: PMC5662626 DOI: 10.1038/s41598-017-14756-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/09/2017] [Indexed: 11/11/2022] Open
Abstract
Stress-activated protein kinase (SAPK) pathways are evolutionarily conserved eukaryotic signalling modules that are essential for the virulence of human pathogenic fungi. The Hog1 SAPK in Candida albicans is robustly phosphorylated in response to a number of host-imposed stresses, and is essential for virulence. The current dogma is that stress-induced phosphorylation activates the SAPK, and promotes its nuclear accumulation that is necessary for the expression of SAPK-dependent stress-protective genes. Here we challenge this dogma. C. albicans strains were constructed in which Hog1 was either tethered to the plasma membrane or constitutively nuclear. Strikingly, tethering Hog1 to the plasma membrane did not abrogate stress resistance or stress-induced gene expression. Furthermore, preventing the nuclear accumulation of Hog1 had no impact on C. albicans virulence in two distinct models of systemic infection. However, tethering Hog1 to the plasma membrane did impact on signal fidelity, and on the magnitude and kinetics of the stress-induced phosphorylation of this SAPK. Taken together, these findings challenge the dogma that nuclear accumulation of SAPKs is a pre-requisite for SAPK-dependent gene expression, and reveal that stress-induced nuclear accumulation of Hog1 is dispensable for the virulence of a major human fungal pathogen.
Collapse
Affiliation(s)
- Alison M Day
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carmen M Herrero-de-Dios
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Donna M MacCallum
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- MRC Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Aberdeen, AB25 2ZD, UK
| | - Janet Quinn
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
35
|
Liu KH, Ding XW, Narsing Rao MP, Zhang B, Zhang YG, Liu FH, Liu BB, Xiao M, Li WJ. Morphological and Transcriptomic Analysis Reveals the Osmoadaptive Response of Endophytic Fungus Aspergillus montevidensis ZYD4 to High Salt Stress. Front Microbiol 2017; 8:1789. [PMID: 28983284 PMCID: PMC5613514 DOI: 10.3389/fmicb.2017.01789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 09/05/2017] [Indexed: 11/13/2022] Open
Abstract
Halophilic fungi have evolved unique osmoadaptive strategies, enabling them to thrive in hypersaline habitats. Here, we conduct morphological and transcriptomic response of endophytic fungus (Aspergillus montevidensis ZYD4) in both the presence and absence of salt stress. Under salt stress, the colony morphology of the A. montevidensis ZYD4 changed drastically and exhibited decreased colony pigmentation. Extensive conidiophores development was observed under salt stress; conidiophores rarely developed in the absence of salt stress. Under salt stress, yellow cleistothecium formation was inhibited, while glycerol and compatible sugars continued to accumulate. Among differentially expressed unigenes (DEGs), 733 of them were up-regulated while 1,619 unigenes were down-regulated. We discovered that genes involved in the accumulation of glycerol, the storage of compatible sugars, organic acids, pigment production, and asexual sporulation were differentially regulated under salt stress. These results provide further understanding of the molecular basis of osmoadaptive mechanisms of halophilic endophytic fungi.
Collapse
Affiliation(s)
- Kai-Hui Liu
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Xiao-Wei Ding
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Manik Prabhu Narsing Rao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Bo Zhang
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Yong-Gui Zhang
- School of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Fei-Hu Liu
- School of Life Sciences, Yunnan UniversityKunming, China
| | - Bing-Bing Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Min Xiao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen UniversityGuangzhou, China.,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of SciencesÜrűmqi, China
| |
Collapse
|
36
|
Chen Y, Nielsen J. Flux control through protein phosphorylation in yeast. FEMS Yeast Res 2017; 16:fow096. [PMID: 27797916 DOI: 10.1093/femsyr/fow096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 01/26/2023] Open
Abstract
Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast Saccharomyces cerevisiae, a widely used cell factory and model organism, is reported to show frequent phosphorylation events in metabolism. Studying protein phosphorylation in S. cerevisiae allows for gaining new insight into the function of regulatory networks, which may enable improved metabolic engineering as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies and computational approaches are imperative to expand the current knowledge of protein phosphorylation in S. cerevisiae.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.,Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kgs. Lyngby, Denmark
| |
Collapse
|
37
|
Romanov N, Hollenstein DM, Janschitz M, Ammerer G, Anrather D, Reiter W. Identifying protein kinase-specific effectors of the osmostress response in yeast. Sci Signal 2017; 10:10/469/eaag2435. [PMID: 28270554 DOI: 10.1126/scisignal.aag2435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Saccharomyces cerevisiae reacts to increased external osmolarity by modifying many cellular processes. Adaptive signaling relies primarily on the high-osmolarity glycerol (HOG) pathway, which is closely related to the mammalian p38 mitogen-activated protein kinase (MAPK) pathway in core architecture. To identify target proteins of the MAPK Hog1, we designed a mass spectrometry-based high-throughput experiment to measure the impact of Hog1 activation or inhibition on the Scerevisiae phosphoproteome. In addition, we analyzed how deletion of RCK2, which encodes a known effector protein kinase target of Hog1, modulated osmotic stress-induced phosphorylation. Our results not only provide an overview of the diversity of cellular functions that are directly and indirectly affected by the activity of the HOG pathway but also enabled an assessment of the Hog1-independent events that occur under osmotic stress conditions. We extended the number of putative Hog1 direct targets by analyzing the modulation of motifs consisting of serine or threonine followed by a proline (S/T-P motif) and subsequently validated these with an in vivo interaction assay. Rck2 appears to act as a central hub for many Hog1-mediated secondary phosphorylation events. This study clarifies many of the direct and indirect effects of HOG signaling and its stress-adaptive functions.
Collapse
Affiliation(s)
- Natalie Romanov
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - David Maria Hollenstein
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Marion Janschitz
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Gustav Ammerer
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Dorothea Anrather
- Mass Spectrometry Facility, Max F. Perutz Laboratories, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Wolfgang Reiter
- Department for Biochemistry, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| |
Collapse
|
38
|
Atay O, Skotheim JM. Spatial and temporal signal processing and decision making by MAPK pathways. J Cell Biol 2017; 216:317-330. [PMID: 28043970 PMCID: PMC5294789 DOI: 10.1083/jcb.201609124] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/25/2016] [Accepted: 12/12/2016] [Indexed: 01/14/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) pathways are conserved from yeast to man and regulate a variety of cellular processes, including proliferation and differentiation. Recent developments show how MAPK pathways perform exquisite spatial and temporal signal processing and underscores the importance of studying the dynamics of signaling pathways to understand their physiological response. The importance of dynamic mechanisms that process input signals into graded downstream responses has been demonstrated in the pheromone-induced and osmotic stress-induced MAPK pathways in yeast and in the mammalian extracellular signal-regulated kinase MAPK pathway. Particularly, recent studies in the yeast pheromone response have shown how positive feedback generates switches, negative feedback enables gradient detection, and coherent feedforward regulation underlies cellular memory. More generally, a new wave of quantitative single-cell studies has begun to elucidate how signaling dynamics determine cell physiology and represents a paradigm shift from descriptive to predictive biology.
Collapse
Affiliation(s)
- Oguzhan Atay
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
39
|
Chaves AF, Castilho DG, Navarro MV, Oliveira AK, Serrano SM, Tashima AK, Batista WL. Phosphosite-specific regulation of the oxidative-stress response of Paracoccidioides brasiliensis: a shotgun phosphoproteomic analysis. Microbes Infect 2017; 19:34-46. [DOI: 10.1016/j.micinf.2016.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/14/2016] [Accepted: 08/15/2016] [Indexed: 01/23/2023]
|
40
|
Gonzalez R, Morales P, Tronchoni J, Cordero-Bueso G, Vaudano E, Quirós M, Novo M, Torres-Pérez R, Valero E. New Genes Involved in Osmotic Stress Tolerance in Saccharomyces cerevisiae. Front Microbiol 2016; 7:1545. [PMID: 27733850 PMCID: PMC5039201 DOI: 10.3389/fmicb.2016.01545] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 09/15/2016] [Indexed: 01/17/2023] Open
Abstract
Adaptation to changes in osmolarity is fundamental for the survival of living cells, and has implications in food and industrial biotechnology. It has been extensively studied in the yeast Saccharomyces cerevisiae, where the Hog1 stress activated protein kinase was discovered about 20 years ago. Hog1 is the core of the intracellular signaling pathway that governs the adaptive response to osmotic stress in this species. The main endpoint of this program is synthesis and intracellular retention of glycerol, as a compatible osmolyte. Despite many details of the signaling pathways and yeast responses to osmotic challenges have already been described, genome-wide approaches are contributing to refine our knowledge of yeast adaptation to hypertonic media. In this work, we used a quantitative fitness analysis approach in order to deepen our understanding of the interplay between yeast cells and the osmotic environment. Genetic requirements for proper growth under osmotic stress showed both common and specific features when hypertonic conditions were induced by either glucose or sorbitol. Tolerance to high-glucose content requires mitochondrial function, while defective protein targeting to peroxisome, GID-complex function (involved in negative regulation of gluconeogenesis), or chromatin dynamics, result in poor survival to sorbitol-induced osmotic stress. On the other side, the competitive disadvantage of yeast strains defective in the endomembrane system is relieved by hypertonic conditions. This finding points to the Golgi-endosome system as one of the main cell components negatively affected by hyperosmolarity. Most of the biological processes highlighted in this analysis had not been previously related to osmotic stress but are probably relevant in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Ramon Gonzalez
- Instituto de Ciencias de la Vid y del Vino - Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Pilar Morales
- Instituto de Ciencias de la Vid y del Vino - Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Jordi Tronchoni
- Instituto de Ciencias de la Vid y del Vino - Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Gustavo Cordero-Bueso
- Departamento de Biomedicina, Biotecnología y Salud Pública, Universidad de Cádiz Cádiz, Spain
| | - Enrico Vaudano
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria-Centro di Ricerca per l'Enologia Asti, Italy
| | | | - Maite Novo
- Departamento de Bioquímica y Biotecnología, Universitat Rovira i Virgili Tarragona, Spain
| | - Rafael Torres-Pérez
- Instituto de Ciencias de la Vid y del Vino - Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja Logroño, Spain
| | - Eva Valero
- Departamento de Biología Molecular e Ingeniería Bioquímica, Universidad Pablo de Olavide Sevilla, Spain
| |
Collapse
|
41
|
Zhang Q, Bhattacharya S, Pi J, Clewell RA, Carmichael PL, Andersen ME. Adaptive Posttranslational Control in Cellular Stress Response Pathways and Its Relationship to Toxicity Testing and Safety Assessment. Toxicol Sci 2016; 147:302-16. [PMID: 26408567 DOI: 10.1093/toxsci/kfv130] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Although transcriptional induction of stress genes constitutes a major cellular defense program against a variety of stressors, posttranslational control directly regulating the activities of preexisting stress proteins provides a faster-acting alternative response. We propose that posttranslational control is a general adaptive mechanism operating in many stress pathways. Here with the aid of computational models, we first show that posttranslational control fulfills two roles: (1) handling small, transient stresses quickly and (2) stabilizing the negative feedback transcriptional network. We then review the posttranslational control pathways for major stress responses-oxidative stress, metal stress, hyperosmotic stress, DNA damage, heat shock, and hypoxia. Posttranslational regulation of stress protein activities occurs by reversible covalent modifications, allosteric or non-allosteric enzymatic regulations, and physically induced protein structural changes. Acting in feedback or feedforward networks, posttranslational control may establish a threshold level of cellular stress. Sub-threshold stresses are handled adequately by posttranslational control without invoking gene transcription. With supra-threshold stress levels, cellular homeostasis cannot be maintained and transcriptional induction of stress genes and other gene programs, eg, those regulating cell metabolism, proliferation, and apoptosis, takes place. The loss of homeostasis with consequent changes in cellular function may lead to adverse cellular outcomes. Overall, posttranslational and transcriptional control pathways constitute a stratified cellular defense system, handling stresses coherently across time and intensity. As cell-based assays become a focus for chemical testing anchored on toxicity pathways, examination of proteomic and metabolomic changes as a result of posttranslational control occurring in the absence of transcriptomic alterations deserves more attention.
Collapse
Affiliation(s)
- Qiang Zhang
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Sudin Bhattacharya
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Jingbo Pi
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Rebecca A Clewell
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Paul L Carmichael
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| | - Melvin E Andersen
- *Institute for Chemical Safety Sciences, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709; School of Public Health, China Medical University, Shenyang, China; and Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, UK
| |
Collapse
|
42
|
Siddiqui R, Lakhundi S, Iqbal J, Khan NA. Effect of non-steroidal anti-inflammatory drugs on biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Exp Parasitol 2016; 168:45-50. [PMID: 27381503 DOI: 10.1016/j.exppara.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Non-steroidal anti-inflammatory drug, Diclofenac, targeting COX have shown promise in the treatment of Acanthamoeba keratitis, but the underlying mechanisms remain unknown. Using various NSAIDs, Diclofenac sodium, Indomethacin, and Acetaminophen, here we determined the effects of NSAIDs on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Using amoebicidal assays, the results revealed that Diclofenac sodium, and Indomethacin affected growth of A. castellanii. In contrast, none of the compounds tested had any effect on the viability of A. castellanii. Importantly, all NSAIDs tested abolished A. castellanii encystation. This is a significant finding as the ability of amoebae to transform into the dormant cyst form presents a significant challenge in the successful treatment of infection. The NSAIDs inhibit production of cyclo-oxegenase, which regulates the synthesis of prostaglandins suggesting that cyclooxygenases (COX-1 and COX-2) and prostaglandins play significant role(s) in Acanthamoeba biology. As NSAIDs are routinely used in the clinical practice, these findings may help design improved preventative strategies and/or of therapeutic value to improve prognosis, when used in combination with other anti-amoebic drugs.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Sahreena Lakhundi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, USA
| | - Naveed Ahmed Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia.
| |
Collapse
|
43
|
Kim J, Oh J, Sung GH. MAP Kinase Hog1 Regulates Metabolic Changes Induced by Hyperosmotic Stress. Front Microbiol 2016; 7:732. [PMID: 27242748 PMCID: PMC4870262 DOI: 10.3389/fmicb.2016.00732] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jiyoung Kim
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong UniversityIncheon, Korea; Institute of Life Science and Biotechnology, Sungkyunkwan UniversitySuwon, Korea
| | - Junsang Oh
- College of Pharmacy, Chung-Ang University Seoul, Korea
| | - Gi-Ho Sung
- Institute for Bio-Medical Convergence, International St. Mary's Hospital and College of Medicine, Catholic Kwandong University Incheon, Korea
| |
Collapse
|
44
|
Delayed Turnover of Unphosphorylated Ssk1 during Carbon Stress Activates the Yeast Hog1 Map Kinase Pathway. PLoS One 2015; 10:e0137199. [PMID: 26340004 PMCID: PMC4560374 DOI: 10.1371/journal.pone.0137199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022] Open
Abstract
In Saccharomyces cerevisiae, the Hog1 mitogen-activated protein kinase (MAPK) pathway coordinates the adaptation to osmotic stress and was recently reported to respond to acute changes in glucose levels. Similarly as in osmotic stress, glucose starvation leads to a transient accumulation of Hog1 in the nucleus. However, the kinetics and the mechanism of Hog1 activation are different for these stress conditions. During osmotic shock the activation of Hog1 can be transduced by either the Sho1 or the Sln1/Ypd1/Ssk1 branch. During glucose starvation the phosphorylation of Hog1 is slower and is completely dependent on Ssk1, but independent of Sho1. To characterize the mechanism of activation of Hog1 during carbon stress, we examined the turnover of Ssk1 protein levels upon glucose starvation in the presence of cycloheximide and monitored protein levels by western blotting. Our data demonstrate that unphosphorylated Ssk1 was quickly degraded during exponential growth and after osmotic stress but remained remarkably stable during glucose limitation. We conclude that glucose starvation induces a delay in the turnover of unphosphorylated Ssk1, which is sufficient to activate the Hog1 MAPK pathway. Although unphosphorylated Ssk1 is known to be degraded by the proteasome, its stabilization is apparently not due to changes in cellular localization or decrease in ubiquitination levels during glucose limitation.
Collapse
|
45
|
Jacob S, Foster AJ, Yemelin A, Thines E. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Fungal Biol 2015; 119:580-94. [DOI: 10.1016/j.funbio.2015.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/20/2015] [Accepted: 03/04/2015] [Indexed: 01/22/2023]
|
46
|
Kumar MN, Verslues PE. Stress physiology functions of the Arabidopsis histidine kinase cytokinin receptors. PHYSIOLOGIA PLANTARUM 2015; 154:369-80. [PMID: 25263537 DOI: 10.1111/ppl.12290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 08/13/2014] [Accepted: 09/05/2014] [Indexed: 05/07/2023]
Abstract
Cytokinin signaling has complex effects on abiotic stress responses that remain to be fully elucidated. The Arabidopsis histidine kinases (AHKs), AHK2, AHK3 and CRE1 (cytokinin response1/AHK4) are the principle cytokinin receptors of Arabidopsis. Using a set of ahk mutants, we found dramatic differences in response to low water potential and salt stress among the AHKs. ahk3-3 mutants had increased root elongation after transfer to low water potential media. Conversely ahk2-2 was hypersensitive to salt stress in terms of root growth and fresh weight and accumulated higher than wild-type levels of proline specifically under salt stress. Strongly reduced proline accumulation in ahk double mutants after low water potential treatment indicated a more general role of cytokinin signaling in proline metabolism. Reduced P5CS1 (Δ(1) -pyrroline-5-carboxylate synthetase1) gene expression may have contributed to this reduced proline accumulation. Low water potential phenotypes of ahk mutants were not caused by altered abscisic acid (ABA) accumulation as all ahk mutants had wild-type ABA levels, despite the observation that ahk double mutants had reduced NCED3 (9-cis-epoxycartenoid dioxygenase3) expression when exposed to low water potential. No difference in osmoregulatory solute accumulation was detected in any of the ahk mutants indicating that they do not affect drought responsive osmotic adjustment. Overall, our examination of ahk mutants found specific phenotypes associated with AHK2 and AHK3 as well as a general function of cytokinin signaling in proline accumulation and low water potential induction of P5CS1 and NCED3 expression. These results show the stress physiology function of AHKs at a new level of detail.
Collapse
Affiliation(s)
- M Nagaraj Kumar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Paul E Verslues
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
47
|
Kumar V, Hart AJ, Wimalasena TT, Tucker GA, Greetham D. Expression of RCK2 MAPKAP (MAPK-activated protein kinase) rescues yeast cells sensitivity to osmotic stress. Microb Cell Fact 2015; 14:85. [PMID: 26062605 PMCID: PMC4464721 DOI: 10.1186/s12934-015-0276-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 11/20/2022] Open
Abstract
Background Saccharomyces cerevisiae is the micro-organism of choice for the conversion of fermentable sugars during beverage or bioethanol fermentations. These fermentations are characterised by high osmotic stress on a yeast cell, with selected brewing fermentations beginning at 20–25% fermentable sugars and bioethanol fermentations at 13% fermentable sugars. Results RCK2 encodes for a MAPKAP (MAPK-activated protein kinase) enzyme and was identified on a locus by QTL analysis in yeast cells under osmotic stress, RCK2 expression was placed under a tetracycline regulatable vector and rescued glucose, sorbitol or glycerol induced osmotic stress in an rck2 null strain. A strain overexpressing RCK2 had significantly faster fermentation rates when compared with the empty vector control strain. Conclusions Presence of RCK2 increased rates of glucose utilisation (~40 g glucose in first 8 h) during a 15% glucose fermentation and concurrent production of ethanol when compared with empty vector controls. Tolerance to osmotic stress using the tetracycline regulatable vectors could be turned off with the addition of tetracycline returning a rck2 null strain back to osmotic sensitivity. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0276-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- V Kumar
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, LE12 5RD, UK.
| | - A J Hart
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, LE12 5RD, UK.
| | - T T Wimalasena
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, LE12 5RD, UK. .,Kingston Research Ltd, SaltEnd Chemicals Park, Hull, UK.
| | - G A Tucker
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, LE12 5RD, UK.
| | - D Greetham
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Nottingham, LE12 5RD, UK.
| |
Collapse
|
48
|
Tripodi F, Nicastro R, Reghellin V, Coccetti P. Post-translational modifications on yeast carbon metabolism: Regulatory mechanisms beyond transcriptional control. Biochim Biophys Acta Gen Subj 2015; 1850:620-7. [DOI: 10.1016/j.bbagen.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
|
49
|
Vanacloig-Pedros E, Bets-Plasencia C, Pascual-Ahuir A, Proft M. Coordinated gene regulation in the initial phase of salt stress adaptation. J Biol Chem 2015; 290:10163-75. [PMID: 25745106 DOI: 10.1074/jbc.m115.637264] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Indexed: 01/24/2023] Open
Abstract
Stress triggers complex transcriptional responses, which include both gene activation and repression. We used time-resolved reporter assays in living yeast cells to gain insights into the coordination of positive and negative control of gene expression upon salt stress. We found that the repression of "housekeeping" genes coincides with the transient activation of defense genes and that the timing of this expression pattern depends on the severity of the stress. Moreover, we identified mutants that caused an alteration in the kinetics of this transcriptional control. Loss of function of the vacuolar H(+)-ATPase (vma1) or a defect in the biosynthesis of the osmolyte glycerol (gpd1) caused a prolonged repression of housekeeping genes and a delay in gene activation at inducible loci. Both mutants have a defect in the relocation of RNA polymerase II complexes at stress defense genes. Accordingly salt-activated transcription is delayed and less efficient upon partially respiratory growth conditions in which glycerol production is significantly reduced. Furthermore, the loss of Hog1 MAP kinase function aggravates the loss of RNA polymerase II from housekeeping loci, which apparently do not accumulate at inducible genes. Additionally the Def1 RNA polymerase II degradation factor, but not a high pool of nuclear polymerase II complexes, is needed for efficient stress-induced gene activation. The data presented here indicate that the finely tuned transcriptional control upon salt stress is dependent on physiological functions of the cell, such as the intracellular ion balance, the protective accumulation of osmolyte molecules, and the RNA polymerase II turnover.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- the Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Carolina Bets-Plasencia
- the Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Amparo Pascual-Ahuir
- the Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Markus Proft
- From the Department of Mechanisms of Plant Stress Responses, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, and
| |
Collapse
|
50
|
An integrated view on a eukaryotic osmoregulation system. Curr Genet 2015; 61:373-82. [DOI: 10.1007/s00294-015-0475-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/18/2015] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|