1
|
Ganesan I, Busto JV, Pfanner N, Wiedemann N. Biogenesis of mitochondrial β-barrel membrane proteins. FEBS Open Bio 2024; 14:1595-1609. [PMID: 39343721 PMCID: PMC11452307 DOI: 10.1002/2211-5463.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
β-barrel membrane proteins in the mitochondrial outer membrane are crucial for mediating the metabolite exchange between the cytosol and the mitochondrial intermembrane space. In addition, the β-barrel membrane protein subunit Tom40 of the translocase of the outer membrane (TOM) is essential for the import of the vast majority of mitochondrial proteins encoded in the nucleus. The sorting and assembly machinery (SAM) in the outer membrane is required for the membrane insertion of mitochondrial β-barrel proteins. The core subunit Sam50, which has been conserved from bacteria to humans, is itself a β-barrel protein. The β-strands of β-barrel precursor proteins are assembled at the Sam50 lateral gate forming a Sam50-preprotein hybrid barrel. The assembled precursor β-barrel is finally released into the outer mitochondrial membrane by displacement of the nascent β-barrel, termed the β-barrel switching mechanism. SAM forms supercomplexes with TOM and forms a mitochondrial outer-to-inner membrane contact site with the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. SAM shares subunits with the ER-mitochondria encounter structure (ERMES), which forms a membrane contact site between the mitochondrial outer membrane and the endoplasmic reticulum. Therefore, β-barrel membrane protein biogenesis is closely connected to general mitochondrial protein and lipid biogenesis and plays a central role in mitochondrial maintenance.
Collapse
Affiliation(s)
- Iniyan Ganesan
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Jon V. Busto
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of MedicineUniversity of FreiburgGermany
- CIBSS Centre for Integrative Biological Signalling StudiesUniversity of FreiburgGermany
- BIOSS Centre for Biological Signalling StudiesUniversity of FreiburgGermany
| |
Collapse
|
2
|
Guillerm U, Sučec I, Schanda P. Generation of TIM chaperone substrate complexes. Methods Enzymol 2024; 707:391-422. [PMID: 39488384 DOI: 10.1016/bs.mie.2024.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Holdase chaperones are essential in the mitochondrial membrane-protein biogenesis as they stabilize preproteins and keep them in an import-competent state as they travel through the aqueous cytosol and intermembrane space. The small TIM chaperones of the mitochondrial intermembrane space function within a fine balance of client promiscuity and high affinity binding, while being also able to release their client proteins without significant energy barrier to the downstream insertases/translocases. The tendency of the preproteins to aggregate and the dynamic nature of the preprotein-chaperone complexes makes the preparation of these complexes challenging. Here we present two optimized methods for complex formation of highly hydrophobic precursor proteins and chaperones: a pull-down approach and an in-vitro translation strategy. In the former, attaching the client protein to an affinity resin keeps the individual client protein copies apart from each other and decreases the client self-aggregation probability, thereby favouring complex formation. In the latter approach, a purified chaperone, added to the cell-free protein synthesis, captures the nascent precursor protein. The choice of method will depend on the desired client-chaperone complex amount, or the need for specific labeling scheme.
Collapse
Affiliation(s)
- Undina Guillerm
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Iva Sučec
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Paul Schanda
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
3
|
Quiñones LS, Gonzalez FS, Darden C, Khan M, Tripathi A, Smith JT, Davis J, Misra S, Chaudhuri M. Unique Interactions of the Small Translocases of the Mitochondrial Inner Membrane (Tims) in Trypanosoma brucei. Int J Mol Sci 2024; 25:1415. [PMID: 38338692 PMCID: PMC10855554 DOI: 10.3390/ijms25031415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infectious agent for African trypanosomiasis, Trypanosoma brucei, possesses a unique and essential translocase of the mitochondrial inner membrane, known as the TbTIM17 complex. TbTim17 associates with six small TbTims (TbTim9, TbTim10, TbTim11, TbTim12, TbTim13, and TbTim8/13). However, the interaction patterns of these smaller TbTims with each other and TbTim17 are not clear. Through yeast two-hybrid (Y2H) and co-immunoprecipitation analyses, we demonstrate that all six small TbTims interact with each other. Stronger interactions were found among TbTim8/13, TbTim9, and TbTim10. However, TbTim10 shows weaker associations with TbTim13, which has a stronger connection with TbTim17. Each of the small TbTims also interacts strongly with the C-terminal region of TbTim17. RNAi studies indicated that among all small TbTims, TbTim13 is most crucial for maintaining the steady-state levels of the TbTIM17 complex. Further analysis of the small TbTim complexes by size exclusion chromatography revealed that each small TbTim, except for TbTim13, is present in ~70 kDa complexes, possibly existing in heterohexameric forms. In contrast, TbTim13 is primarily present in the larger complex (>800 kDa) and co-fractionates with TbTim17. Altogether, our results demonstrate that, relative to other eukaryotes, the architecture and function of the small TbTim complexes are specific to T. brucei.
Collapse
Affiliation(s)
- Linda S. Quiñones
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Fidel Soto Gonzalez
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Chauncey Darden
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Muhammad Khan
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Anuj Tripathi
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| | - Joseph T. Smith
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience, and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (C.D.); (J.D.)
| | - Smita Misra
- Department of Biomedical Science, School of Graduate Studies, Meharry Medical College, Nashville, TN 37208, USA;
| | - Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; (L.S.Q.); (F.S.G.); (M.K.); (A.T.)
| |
Collapse
|
4
|
Anderson AJ, Crameri JJ, Ang C, Malcolm TR, Kang Y, Baker MJ, Palmer CS, Sharpe AJ, Formosa LE, Ganio K, Baker MJ, McDevitt CA, Ryan MT, Maher MJ, Stojanovski D. Human Tim8a, Tim8b and Tim13 are auxiliary assembly factors of mature Complex IV. EMBO Rep 2023; 24:e56430. [PMID: 37272231 PMCID: PMC10398661 DOI: 10.15252/embr.202256430] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Human Tim8a and Tim8b are paralogous intermembrane space proteins of the small TIM chaperone family. Yeast small TIMs function in the trafficking of proteins to the outer and inner mitochondrial membranes. This putative import function for hTim8a and hTim8b has been challenged in human models, but their precise molecular function(s) remains undefined. Likewise, the necessity for human cells to encode two Tim8 proteins and whether any potential redundancy exists is unclear. We demonstrate that hTim8a and hTim8b function in the assembly of cytochrome c oxidase (Complex IV). Using affinity enrichment mass spectrometry, we define the interaction network of hTim8a, hTim8b and hTim13, identifying subunits and assembly factors of the Complex IV COX2 module. hTim8-deficient cells have a COX2 and COX3 module defect and exhibit an accumulation of the Complex IV S2 subcomplex. These data suggest that hTim8a and hTim8b function in assembly of Complex IV via interactions with intermediate-assembly subcomplexes. We propose that hTim8-hTim13 complexes are auxiliary assembly factors involved in the formation of the Complex IV S3 subcomplex during assembly of mature Complex IV.
Collapse
Affiliation(s)
- Alexander J Anderson
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Jordan J Crameri
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Ching‐Seng Ang
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Tess R Malcolm
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
| | - Yilin Kang
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Megan J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Catherine S Palmer
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Alice J Sharpe
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael J Baker
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and ImmunityThe University of MelbourneParkvilleVicAustralia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery InstituteMonash UniversityClaytonVicAustralia
| | - Megan J Maher
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
- School of ChemistryThe University of MelbourneParkvilleVicAustralia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityBundooraVicAustralia
| | - Diana Stojanovski
- Department of Biochemistry and PharmacologyThe University of MelbourneParkvilleVicAustralia
- The Bio21 Molecular Science and Biotechnology InstituteThe University of MelbourneParkvilleVicAustralia
| |
Collapse
|
5
|
Ouattara N, Chen Z, Huang Y, Chen X, Song P, Xiao Z, Li Q, Guan Y, Li Z, Jiang Y, Xu K, Pan S, Hu Y. Reduced mitochondrial size in hippocampus and psychiatric behavioral changes in the mutant mice with homologous mutation of Timm8a1-I23fs49X. Front Cell Neurosci 2022; 16:972964. [PMID: 36090790 PMCID: PMC9453755 DOI: 10.3389/fncel.2022.972964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/01/2022] [Indexed: 11/20/2022] Open
Abstract
Background Deafness-dystonia-optic neuronopathy (DDON) syndrome, a condition that predominantly affects males, is caused by mutations in translocase of mitochondrial inner membrane 8A (TIMM8A)/deafness dystonia protein 1 (DDP1) gene and characterized by progressive deafness coupled with other neurological abnormalities. In a previous study, we demonstrated the phenotype of male mice carrying the hemizygous mutation of Timm8a1-I23fs49X. In a follow-up to that study, this study aimed to observe the behavioral changes in the female mutant (MUT) mice with homologous mutation of Timm8a1 and to elucidate the underlying mechanism for the behavioral changes. Materials and methods Histological analysis, transmission electron microscopy (EM), Western blotting, hearing measurement by auditory brainstem response (ABR), and behavioral observation were compared between the MUT mice and wild-type (WT) littermates. Results The weight of the female MUT mice was less than that of the WT mice. Among MUT mice, both male and female mice showed hearing impairment, anxiety-like behavior by the elevated plus maze test, and cognitive deficit by the Morris water maze test. Furthermore, the female MUT mice exhibited coordination problems in the balance beam test. Although the general neuronal loss was not found in the hippocampus of the MUT genotype, EM assessment indicated that the mitochondrial size showing as aspect ratio and form factor in the hippocampus of the MUT strain was significantly reduced compared to that in the WT genotype. More importantly, this phenomenon was correlated with the upregulation of translation of mitochondrial fission process protein 1(Mtfp1)/mitochondrial 18 kDa protein (Mtp18), a key fission factor that is a positive regulator of mitochondrial fission and mitochondrial size. Interestingly, significant reductions in the size of the uterus and ovaries were noted in the female MUT mice, which contributed to significantly lower fertility in the MUT mice. Conclusion Together, a homologous mutation in the Timm8a1 gene caused the hearing impairment and psychiatric behavioral changes in the MUT mice; the latter phenotype might be related to a reduction in mitochondrial size regulated by MTP18.
Collapse
Affiliation(s)
- Niemtiah Ouattara
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zirui Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xia Chen
- Department of Clinical Laboratory, Nanhai District People’s Hospital of Foshan, Foshan, China
| | - Pingping Song
- Department of Neurology, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhongju Xiao
- Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qi Li
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqing Guan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ziang Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yawei Jiang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibiao Xu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Suyue Pan,
| | - Yafang Hu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Yafang Hu,
| |
Collapse
|
6
|
Diederichs KA, Pitt AS, Varughese JT, Hackel TN, Buchanan SK, Shaw PL. Mechanistic insights into fungal mitochondrial outer membrane protein biogenesis. Curr Opin Struct Biol 2022; 74:102383. [DOI: 10.1016/j.sbi.2022.102383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/11/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
7
|
Doyle MT, Bernstein HD. Function of the Omp85 Superfamily of Outer Membrane Protein Assembly Factors and Polypeptide Transporters. Annu Rev Microbiol 2022; 76:259-279. [PMID: 35650668 DOI: 10.1146/annurev-micro-033021-023719] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Omp85 protein superfamily is found in the outer membrane (OM) of all gram-negative bacteria and eukaryotic organelles of bacterial origin. Members of the family catalyze both the membrane insertion of β-barrel proteins and the translocation of proteins across the OM. Although the mechanism(s) by which these proteins function is unclear, striking new insights have emerged from recent biochemical and structural studies. In this review we discuss the entire Omp85 superfamily but focus on the function of the best-studied member, BamA, which is an essential and highly conserved component of the bacterial barrel assembly machinery (BAM). Because BamA has multiple functions that overlap with those of other Omp85 proteins, it is likely the prototypical member of the Omp85 superfamily. Furthermore, BamA has become a protein of great interest because of the recent discovery of small-molecule inhibitors that potentially represent an important new class of antibiotics. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew Thomas Doyle
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; ,
| |
Collapse
|
8
|
Hoffmann JJ, Becker T. Crosstalk between Mitochondrial Protein Import and Lipids. Int J Mol Sci 2022; 23:ijms23095274. [PMID: 35563660 PMCID: PMC9101885 DOI: 10.3390/ijms23095274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 12/10/2022] Open
Abstract
Mitochondria import about 1000 precursor proteins from the cytosol. The translocase of the outer membrane (TOM complex) forms the major entry site for precursor proteins. Subsequently, membrane-bound protein translocases sort the precursor proteins into the outer and inner membrane, the intermembrane space, and the matrix. The phospholipid composition of mitochondrial membranes is critical for protein import. Structural and biochemical data revealed that phospholipids affect the stability and activity of mitochondrial protein translocases. Integration of proteins into the target membrane involves rearrangement of phospholipids and distortion of the lipid bilayer. Phospholipids are present in the interface between subunits of protein translocases and affect the dynamic coupling of partner proteins. Phospholipids are required for full activity of the respiratory chain to generate membrane potential, which in turn drives protein import across and into the inner membrane. Finally, outer membrane protein translocases are closely linked to organellar contact sites that mediate lipid trafficking. Altogether, intensive crosstalk between mitochondrial protein import and lipid biogenesis controls mitochondrial biogenesis.
Collapse
|
9
|
Sayyed UMH, Mahalakshmi R. Mitochondrial protein translocation machinery: From TOM structural biogenesis to functional regulation. J Biol Chem 2022; 298:101870. [PMID: 35346689 PMCID: PMC9052162 DOI: 10.1016/j.jbc.2022.101870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/13/2022] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
Collapse
Affiliation(s)
- Ulfat Mohd Hanif Sayyed
- Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India
| | | |
Collapse
|
10
|
Eaglesfield R, Tokatlidis K. Targeting and Insertion of Membrane Proteins in Mitochondria. Front Cell Dev Biol 2022; 9:803205. [PMID: 35004695 PMCID: PMC8740019 DOI: 10.3389/fcell.2021.803205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/09/2021] [Indexed: 01/26/2023] Open
Abstract
Mitochondrial membrane proteins play an essential role in all major mitochondrial functions. The respiratory complexes of the inner membrane are key for the generation of energy. The carrier proteins for the influx/efflux of essential metabolites to/from the matrix. Many other inner membrane proteins play critical roles in the import and processing of nuclear encoded proteins (∼99% of all mitochondrial proteins). The outer membrane provides another lipidic barrier to nuclear-encoded protein translocation and is home to many proteins involved in the import process, maintenance of ionic balance, as well as the assembly of outer membrane components. While many aspects of the import and assembly pathways of mitochondrial membrane proteins have been elucidated, many open questions remain, especially surrounding the assembly of the respiratory complexes where certain highly hydrophobic subunits are encoded by the mitochondrial DNA and synthesised and inserted into the membrane from the matrix side. This review will examine the various assembly pathways for inner and outer mitochondrial membrane proteins while discussing the most recent structural and biochemical data examining the biogenesis process.
Collapse
Affiliation(s)
- Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Scotland, United Kingdom
| |
Collapse
|
11
|
Sučec I, Bersch B, Schanda P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front Mol Biosci 2021; 8:762005. [PMID: 34760928 PMCID: PMC8573040 DOI: 10.3389/fmolb.2021.762005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.
Collapse
Affiliation(s)
- Iva Sučec
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Beate Bersch
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Paul Schanda
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
12
|
Moitra A, Rapaport D. The Biogenesis Process of VDAC - From Early Cytosolic Events to Its Final Membrane Integration. Front Physiol 2021; 12:732742. [PMID: 34456757 PMCID: PMC8388839 DOI: 10.3389/fphys.2021.732742] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Voltage dependent anion-selective channel (VDAC) is the most abundant protein in the mitochondrial outer membrane. It is a membrane embedded β-barrel protein composed of 19 mostly anti-parallel β-strands that form a hydrophilic pore. Similar to the vast majority of mitochondrial proteins, VDAC is encoded by nuclear DNA, and synthesized on cytosolic ribosomes. The protein is then targeted to the mitochondria while being maintained in an import competent conformation by specific cytosolic factors. Recent studies, using yeast cells as a model system, have unearthed the long searched for mitochondrial targeting signal for VDAC and the role of cytosolic chaperones and mitochondrial import machineries in its proper biogenesis. In this review, we summarize our current knowledge regarding the early cytosolic stages of the biogenesis of VDAC molecules, the specific targeting of VDAC to the mitochondrial surface, and the subsequent integration of VDAC into the mitochondrial outer membrane by the TOM and TOB/SAM complexes.
Collapse
Affiliation(s)
- Anasuya Moitra
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Sensing, signaling and surviving mitochondrial stress. Cell Mol Life Sci 2021; 78:5925-5951. [PMID: 34228161 PMCID: PMC8316193 DOI: 10.1007/s00018-021-03887-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/11/2022]
Abstract
Mitochondrial fidelity is a key determinant of longevity and was found to be perturbed in a multitude of disease contexts ranging from neurodegeneration to heart failure. Tight homeostatic control of the mitochondrial proteome is a crucial aspect of mitochondrial function, which is severely complicated by the evolutionary origin and resulting peculiarities of the organelle. This is, on one hand, reflected by a range of basal quality control factors such as mitochondria-resident chaperones and proteases, that assist in import and folding of precursors as well as removal of aggregated proteins. On the other hand, stress causes the activation of several additional mechanisms that counteract any damage that may threaten mitochondrial function. Countermeasures depend on the location and intensity of the stress and on a range of factors that are equipped to sense and signal the nature of the encountered perturbation. Defective mitochondrial import activates mechanisms that combat the accumulation of precursors in the cytosol and the import pore. To resolve proteotoxic stress in the organelle interior, mitochondria depend on nuclear transcriptional programs, such as the mitochondrial unfolded protein response and the integrated stress response. If organelle damage is too severe, mitochondria signal for their own destruction in a process termed mitophagy, thereby preventing further harm to the mitochondrial network and allowing the cell to salvage their biological building blocks. Here, we provide an overview of how different types and intensities of stress activate distinct pathways aimed at preserving mitochondrial fidelity.
Collapse
|
14
|
Grevel A, Becker T. Porins as helpers in mitochondrial protein translocation. Biol Chem 2021; 401:699-708. [PMID: 31967957 DOI: 10.1515/hsz-2019-0438] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022]
Abstract
Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
15
|
Diederichs KA, Buchanan SK, Botos I. Building Better Barrels - β-barrel Biogenesis and Insertion in Bacteria and Mitochondria. J Mol Biol 2021; 433:166894. [PMID: 33639212 PMCID: PMC8292188 DOI: 10.1016/j.jmb.2021.166894] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/18/2021] [Accepted: 02/18/2021] [Indexed: 01/20/2023]
Abstract
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.
Collapse
Affiliation(s)
- Kathryn A Diederichs
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Istvan Botos
- Laboratory of Molecular Biology, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Chaudhuri M, Darden C, Soto Gonzalez F, Singha UK, Quinones L, Tripathi A. Tim17 Updates: A Comprehensive Review of an Ancient Mitochondrial Protein Translocator. Biomolecules 2020; 10:E1643. [PMID: 33297490 PMCID: PMC7762337 DOI: 10.3390/biom10121643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The translocases of the mitochondrial outer and inner membranes, the TOM and TIMs, import hundreds of nucleus-encoded proteins into mitochondria. TOM and TIMs are multi-subunit protein complexes that work in cooperation with other complexes to import proteins in different sub-mitochondrial destinations. The overall architecture of these protein complexes is conserved among yeast/fungi, animals, and plants. Recent studies have revealed unique characteristics of this machinery, particularly in the eukaryotic supergroup Excavata. Despite multiple differences, homologues of Tim17, an essential component of one of the TIM complexes and a member of the Tim17/Tim22/Tim23 family, have been found in all eukaryotes. Here, we review the structure and function of Tim17 and Tim17-containing protein complexes in different eukaryotes, and then compare them to the single homologue of this protein found in Trypanosoma brucei, a unicellular parasitic protozoan.
Collapse
Affiliation(s)
- Minu Chaudhuri
- Department of Microbiology, Immunology, and Physiology, Meharry Medical College, 1005 Dr. D.B. Todd, Jr., Blvd, Nashville, TN 37208, USA; (C.D.); (F.S.G.); (U.K.S.); (L.Q.); (A.T.)
| | | | | | | | | | | |
Collapse
|
17
|
Sučec I, Wang Y, Dakhlaoui O, Weinhäupl K, Jores T, Costa D, Hessel A, Brennich M, Rapaport D, Lindorff-Larsen K, Bersch B, Schanda P. Structural basis of client specificity in mitochondrial membrane-protein chaperones. SCIENCE ADVANCES 2020; 6:eabd0263. [PMID: 33355130 PMCID: PMC11206218 DOI: 10.1126/sciadv.abd0263] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Chaperones are essential for assisting protein folding and for transferring poorly soluble proteins to their functional locations within cells. Hydrophobic interactions drive promiscuous chaperone-client binding, but our understanding of how additional interactions enable client specificity is sparse. Here, we decipher what determines binding of two chaperones (TIM8·13 and TIM9·10) to different integral membrane proteins, the all-transmembrane mitochondrial carrier Ggc1 and Tim23, which has an additional disordered hydrophilic domain. Combining NMR, SAXS, and molecular dynamics simulations, we determine the structures of Tim23/TIM8·13 and Tim23/TIM9·10 complexes. TIM8·13 uses transient salt bridges to interact with the hydrophilic part of its client, but its interactions to the transmembrane part are weaker than in TIM9·10. Consequently, TIM9·10 outcompetes TIM8·13 in binding hydrophobic clients, while TIM8·13 is tuned to few clients with both hydrophilic and hydrophobic parts. Our study exemplifies how chaperones fine-tune the balance of promiscuity versus specificity.
Collapse
Affiliation(s)
- Iva Sučec
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Yong Wang
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Ons Dakhlaoui
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Katharina Weinhäupl
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France.
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doriane Costa
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France
| | - Martha Brennich
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Beate Bersch
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France.
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044 Grenoble, France.
| |
Collapse
|
18
|
Gupta A, Becker T. Mechanisms and pathways of mitochondrial outer membrane protein biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148323. [PMID: 33035511 DOI: 10.1016/j.bbabio.2020.148323] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/29/2022]
Abstract
Outer membrane proteins integrate mitochondria into the cellular environment. They warrant exchange of small molecules like metabolites and ions, transport proteins into mitochondria, form contact sites to other cellular organelles for lipid exchange, constitute a signaling platform for apoptosis and inflammation and mediate organelle fusion and fission. The outer membrane contains two types of integral membrane proteins. Proteins with a transmembrane β-barrel structure and proteins with a single or multiple α-helical membrane spans. All outer membrane proteins are produced on cytosolic ribosomes and imported into the target organelle. Precursors of β-barrel and α-helical proteins are transported into the outer membrane via distinct import routes. The translocase of the outer membrane (TOM complex) transports β-barrel precursors across the outer membrane and the sorting and assembly machinery (SAM complex) inserts them into the target membrane. The mitochondrial import (MIM) complex constitutes the major integration site for α-helical embedded proteins. The import of some MIM-substrates involves TOM receptors, while others are imported in a TOM-independent manner. Remarkably, TOM, SAM and MIM complexes dynamically interact to import a large set of different proteins and to coordinate their assembly into protein complexes. Thus, protein import into the mitochondrial outer membrane involves a dynamic platform of protein translocases.
Collapse
Affiliation(s)
- Arushi Gupta
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, Medizinische Fakultät, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| |
Collapse
|
19
|
Muñoz-Gómez SA, Snyder SN, Montoya SJ, Wideman JG. Independent accretion of TIM22 complex subunits in the animal and fungal lineages. F1000Res 2020; 9:1060. [PMID: 33014348 PMCID: PMC7523481 DOI: 10.12688/f1000research.25904.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Background: The mitochondrial protein import complexes arose early in eukaryogenesis. Most of the components of the protein import pathways predate the last eukaryotic common ancestor. For example, the carrier-insertase TIM22 complex comprises the widely conserved Tim22 channel core. However, the auxiliary components of fungal and animal TIM22 complexes are exceptions to this ancient conservation. Methods: Using comparative genomics and phylogenetic approaches, we identified precisely when each TIM22 accretion occurred. Results: In animals, we demonstrate that Tim29 and Tim10b arose early in the holozoan lineage. Tim29 predates the metazoan lineage being present in the animal sister lineages, choanoflagellate and filastereans, whereas the erroneously named Tim10b arose from a duplication of Tim9 at the base of metazoans. In fungi, we show that Tim54 has representatives present in every holomycotan lineage including microsporidians and fonticulids, whereas Tim18 and Tim12 appeared much later in fungal evolution. Specifically, Tim18 and Tim12 arose from duplications of Sdh3 and Tim10, respectively, early in the Saccharomycotina. Surprisingly, we show that Tim54 is distantly related to AGK suggesting that AGK and Tim54 are extremely divergent orthologues and the origin of AGK/Tim54 interaction with Tim22 predates the divergence of animals and fungi. Conclusions: We argue that the evolutionary history of the TIM22 complex is best understood as the neutral structural divergence of an otherwise strongly functionally conserved protein complex. This view suggests that many of the differences in structure/subunit composition of multi-protein complexes are non-adaptive. Instead, most of the phylogenetic variation of functionally conserved molecular machines, which have been under stable selective pressures for vast phylogenetic spans, such as the TIM22 complex, is most likely the outcome of the interplay of random genetic drift and mutation pressure.
Collapse
Affiliation(s)
- Sergio A. Muñoz-Gómez
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Shannon N. Snyder
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Samantha J. Montoya
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| | - Jeremy G. Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
20
|
Grevel A, Pfanner N, Becker T. Coupling of import and assembly pathways in mitochondrial protein biogenesis. Biol Chem 2020; 401:117-129. [PMID: 31513529 DOI: 10.1515/hsz-2019-0310] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022]
Abstract
Biogenesis and function of mitochondria depend on the import of about 1000 precursor proteins that are produced on cytosolic ribosomes. The translocase of the outer membrane (TOM) forms the entry gate for most proteins. After passage through the TOM channel, dedicated preprotein translocases sort the precursor proteins into the mitochondrial subcompartments. Many proteins have to be assembled into oligomeric membrane-integrated complexes in order to perform their functions. In this review, we discuss a dual role of mitochondrial preprotein translocases in protein translocation and oligomeric assembly, focusing on the biogenesis of the TOM complex and the respiratory chain. The sorting and assembly machinery (SAM) of the outer mitochondrial membrane forms a dynamic platform for coupling transport and assembly of TOM subunits. The biogenesis of the cytochrome c oxidase of the inner membrane involves a molecular circuit to adjust translation of mitochondrial-encoded core subunits to the availability of nuclear-encoded partner proteins. Thus, mitochondrial protein translocases not only import precursor proteins but can also support their assembly into functional complexes.
Collapse
Affiliation(s)
- Alexander Grevel
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
21
|
|
22
|
Kang Y, Anderson AJ, Jackson TD, Palmer CS, De Souza DP, Fujihara KM, Stait T, Frazier AE, Clemons NJ, Tull D, Thorburn DR, McConville MJ, Ryan MT, Stroud DA, Stojanovski D. Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjærg syndrome. eLife 2019; 8:48828. [PMID: 31682224 PMCID: PMC6861005 DOI: 10.7554/elife.48828] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.
Collapse
Affiliation(s)
- Yilin Kang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Alexander J Anderson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Thomas Daniel Jackson
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Catherine S Palmer
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David P De Souza
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Kenji M Fujihara
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Tegan Stait
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Ann E Frazier
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Nicholas J Clemons
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Deidreia Tull
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - David R Thorburn
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia.,Victorian Clinical Genetic Services, Royal Children's Hospital, Melbourne, Australia
| | - Malcolm J McConville
- Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia.,The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
23
|
Weinhäupl K, Lindau C, Hessel A, Wang Y, Schütze C, Jores T, Melchionda L, Schönfisch B, Kalbacher H, Bersch B, Rapaport D, Brennich M, Lindorff-Larsen K, Wiedemann N, Schanda P. Structural Basis of Membrane Protein Chaperoning through the Mitochondrial Intermembrane Space. Cell 2018; 175:1365-1379.e25. [PMID: 30445040 PMCID: PMC6242696 DOI: 10.1016/j.cell.2018.10.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/16/2018] [Accepted: 10/15/2018] [Indexed: 12/04/2022]
Abstract
The exchange of metabolites between the mitochondrial matrix and the cytosol depends on β-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and β-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and β-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.
Collapse
Affiliation(s)
- Katharina Weinhäupl
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Audrey Hessel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yong Wang
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Conny Schütze
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Laura Melchionda
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Birgit Schönfisch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Beate Bersch
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Martha Brennich
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany.
| | - Paul Schanda
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 71 Avenue des Martyrs, 38000 Grenoble, France.
| |
Collapse
|
24
|
Mitochondrial diseases caused by dysfunctional mitochondrial protein import. Biochem Soc Trans 2018; 46:1225-1238. [PMID: 30287509 DOI: 10.1042/bst20180239] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/20/2018] [Accepted: 08/31/2018] [Indexed: 12/18/2022]
Abstract
Mitochondria are essential organelles which perform complex and varied functions within eukaryotic cells. Maintenance of mitochondrial health and functionality is thus a key cellular priority and relies on the organelle's extensive proteome. The mitochondrial proteome is largely encoded by nuclear genes, and mitochondrial proteins must be sorted to the correct mitochondrial sub-compartment post-translationally. This essential process is carried out by multimeric and dynamic translocation and sorting machineries, which can be found in all four mitochondrial compartments. Interestingly, advances in the diagnosis of genetic disease have revealed that mutations in various components of the human import machinery can cause mitochondrial disease, a heterogenous and often severe collection of disorders associated with energy generation defects and a multisystem presentation often affecting the cardiovascular and nervous systems. Here, we review our current understanding of mitochondrial protein import systems in human cells and the molecular basis of mitochondrial diseases caused by defects in these pathways.
Collapse
|
25
|
Jores T, Lawatscheck J, Beke V, Franz-Wachtel M, Yunoki K, Fitzgerald JC, Macek B, Endo T, Kalbacher H, Buchner J, Rapaport D. Cytosolic Hsp70 and Hsp40 chaperones enable the biogenesis of mitochondrial β-barrel proteins. J Cell Biol 2018; 217:3091-3108. [PMID: 29930205 PMCID: PMC6122992 DOI: 10.1083/jcb.201712029] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 05/04/2018] [Accepted: 05/31/2018] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial β-barrel proteins are imported from the cytosol into the organelle. Jores et al. provide new insights into the early events of this process by describing an array of cytosolic chaperones and cochaperones that associate with newly synthesized β-barrel proteins and assure their optimal biogenesis. Mitochondrial β-barrel proteins are encoded in the nucleus, translated by cytosolic ribosomes, and then imported into the organelle. Recently, a detailed understanding of the intramitochondrial import pathway of β-barrel proteins was obtained. In contrast, it is still completely unclear how newly synthesized β-barrel proteins reach the mitochondrial surface in an import-competent conformation. In this study, we show that cytosolic Hsp70 chaperones and their Hsp40 cochaperones Ydj1 and Sis1 interact with newly synthesized β-barrel proteins. These interactions are highly relevant for proper biogenesis, as inhibiting the activity of the cytosolic Hsp70, preventing its docking to the mitochondrial receptor Tom70, or depleting both Ydj1 and Sis1 resulted in a significant reduction in the import of such substrates into mitochondria. Further experiments demonstrate that the interactions between β-barrel proteins and Hsp70 chaperones and their importance are conserved also in mammalian cells. Collectively, this study outlines a novel mechanism in the early events of the biogenesis of mitochondrial outer membrane β-barrel proteins.
Collapse
Affiliation(s)
- Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jannis Lawatscheck
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Garching, Germany
| | - Viktor Beke
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Kaori Yunoki
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Julia C Fitzgerald
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Johannes Buchner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, Garching, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Divergent Small Tim Homologues Are Associated with TbTim17 and Critical for the Biogenesis of TbTim17 Protein Complexes in Trypanosoma brucei. mSphere 2018; 3:3/3/e00204-18. [PMID: 29925672 PMCID: PMC6010621 DOI: 10.1128/msphere.00204-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/27/2018] [Indexed: 12/18/2022] Open
Abstract
The small Tim proteins belong to a group of mitochondrial intermembrane space chaperones that aid in the import of mitochondrial inner membrane proteins with internal targeting signals. Trypanosoma brucei, the protozoan parasite that causes African trypanosomiasis, possesses multiple small Tim proteins that include homologues of T. brucei Tim9 (TbTim9) and Tim10 (TbTim10) and a unique small Tim that shares homology with both Tim8 and Tim13 (TbTim8/13). Here, we found that these three small TbTims are expressed as soluble mitochondrial intermembrane space proteins. Coimmunoprecipitation and mass spectrometry analysis showed that the small TbTims stably associated with each other and with TbTim17, the major component of the mitochondrial inner membrane translocase in T. brucei Yeast two-hybrid analysis indicated direct interactions among the small TbTims; however, their interaction patterns appeared to be different from those of their counterparts in yeast and humans. Knockdown of the small TbTims reduced cell growth and decreased the steady-state level of TbTim17 and T. brucei ADP/ATP carrier (TbAAC), two polytopic mitochondrial inner membrane proteins. Knockdown of small TbTims also reduced the matured complexes of TbTim17 in mitochondria. Depletion of any of the small TbTims reduced TbTim17 import moderately but greatly hampered the stability of the TbTim17 complexes in T. brucei Altogether, our results revealed that TbTim9, TbTim10, and TbTim8/13 interact with each other, associate with TbTim17, and play a crucial role in the integrity and maintenance of the levels of TbTim17 complexes.IMPORTANCETrypanosoma brucei is the causative agent of African sleeping sickness. The parasite's mitochondrion represents a useful source for potential chemotherapeutic targets. Similarly to yeast and humans, mitochondrial functions depend on the import of proteins that are encoded in the nucleus and made in the cytosol. Even though the machinery involved in this mitochondrial protein import process is becoming clearer in T. brucei, a comprehensive picture of protein complex composition and function is still lacking. In this study, we characterized three T. brucei small Tim proteins, TbTim9, TbTim10, and TbTim8/13. Although the parasite does not have the classical TIM22 complex that imports mitochondrial inner membrane proteins containing internal targeting signals in yeast or humans, we found that these small TbTims associate with TbTim17, the major subunit of the TbTIM complex in T. brucei, and play an essential role in the stability of the TbTim17 complexes. Therefore, these divergent proteins are critical for mitochondrial protein biogenesis in T. brucei.
Collapse
|
27
|
Höhr AIC, Lindau C, Wirth C, Qiu J, Stroud DA, Kutik S, Guiard B, Hunte C, Becker T, Pfanner N, Wiedemann N. Membrane protein insertion through a mitochondrial β-barrel gate. Science 2018; 359:359/6373/eaah6834. [PMID: 29348211 DOI: 10.1126/science.aah6834] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 11/02/2022]
Abstract
The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of β-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of β-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by β-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of β-barrel proteins.
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Caroline Lindau
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christophe Wirth
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - David A Stroud
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Stephan Kutik
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernard Guiard
- Centre de Génétique Moléculaire, CNRS, 91190 Gif-sur-Yvette, France
| | - Carola Hunte
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
28
|
Wenger C, Oeljeklaus S, Warscheid B, Schneider A, Harsman A. A trypanosomal orthologue of an intermembrane space chaperone has a non-canonical function in biogenesis of the single mitochondrial inner membrane protein translocase. PLoS Pathog 2017; 13:e1006550. [PMID: 28827831 PMCID: PMC5584982 DOI: 10.1371/journal.ppat.1006550] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/05/2017] [Accepted: 07/24/2017] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial protein import is essential for Trypanosoma brucei across its life cycle and mediated by membrane-embedded heterooligomeric protein complexes, which mainly consist of trypanosomatid-specific subunits. However, trypanosomes contain orthologues of small Tim chaperones that escort hydrophobic proteins across the intermembrane space. Here we have experimentally analyzed three novel trypanosomal small Tim proteins, one of which contains only an incomplete Cx3C motif. RNAi-mediated ablation of TbERV1 shows that their import, as in other organisms, depends on the MIA pathway. Submitochondrial fractionation combined with immunoprecipitation and BN-PAGE reveals two pools of small Tim proteins: a soluble fraction forming 70 kDa complexes, consistent with hexamers and a second fraction that is tightly associated with the single trypanosomal TIM complex. RNAi-mediated ablation of the three proteins leads to a growth arrest and inhibits the formation of the TIM complex. In line with these findings, the changes in the mitochondrial proteome induced by ablation of one small Tim phenocopy the effects observed after ablation of TbTim17. Thus, the trypanosomal small Tims play an unexpected and essential role in the biogenesis of the single TIM complex, which for one of them is not linked to import of TbTim17.
Collapse
Affiliation(s)
- Christoph Wenger
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 18, Freiburg, Germany
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
- * E-mail:
| | - Anke Harsman
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, Bern, Switzerland
| |
Collapse
|
29
|
Ellenrieder L, Rampelt H, Becker T. Connection of Protein Transport and Organelle Contact Sites in Mitochondria. J Mol Biol 2017; 429:2148-2160. [DOI: 10.1016/j.jmb.2017.05.023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 12/31/2022]
|
30
|
Prasai K. Regulation of mitochondrial structure and function by protein import: A current review. ACTA ACUST UNITED AC 2017; 24:107-122. [PMID: 28400074 DOI: 10.1016/j.pathophys.2017.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/14/2022]
Abstract
By generating the majority of a cell's ATP, mitochondria permit a vast range of reactions necessary for life. Mitochondria also perform other vital functions including biogenesis and assembly of iron-sulfur proteins, maintenance of calcium homeostasis, and activation of apoptosis. Accordingly, mitochondrial dysfunction has been linked with the pathology of many clinical conditions including cancer, type 2 diabetes, cardiomyopathy, and atherosclerosis. The ongoing maintenance of mitochondrial structure and function requires the import of nuclear-encoded proteins and for this reason, mitochondrial protein import is indispensible for cell viability. As mitochondria play central roles in determining if cells live or die, a comprehensive understanding of mitochondrial structure, protein import, and function is necessary for identifying novel drugs that may destroy harmful cells while rescuing or protecting normal ones to preserve tissue integrity. This review summarizes our current knowledge on mitochondrial architecture, mitochondrial protein import, and mitochondrial function. Our current comprehension of how mitochondrial functions maintain cell homeostasis and how cell death occurs as a result of mitochondrial stress are also discussed.
Collapse
Affiliation(s)
- Kanchanjunga Prasai
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA.
| |
Collapse
|
31
|
Abstract
Mitochondria have to import the vast majority of their proteins, which are synthesized as precursors on cytosolic ribosomes. The translocase of the outer membrane (TOM complex) forms the general entry gate for the precursor proteins, which are subsequently sorted by protein machineries into the mitochondrial subcompartments: the outer and inner membrane, the intermembrane space and the mitochondrial matrix. The transport across and into the inner membrane is driven by the membrane potential, which is generated by the respiratory chain. Recent studies revealed that the lipid composition of mitochondrial membranes is important for the biogenesis of mitochondrial proteins. Cardiolipin and phosphatidylethanolamine exhibit unexpectedly specific functions for the activity of distinct protein translocases. Both phospholipids are required for full activity of respiratory chain complexes and thus to maintain the membrane potential for protein import. In addition, cardiolipin is required to maintain structural integrity of mitochondrial protein translocases. Finally, the low sterol content in the mitochondrial outer membrane may contribute to the targeting of some outer membrane proteins with a single α-helical membrane anchor. Altogether, mitochondrial lipids modulate protein import on various levels involving precursor targeting, membrane potential generation, stability and activity of protein translocases.
Collapse
|
32
|
Jores T, Klinger A, Groß LE, Kawano S, Flinner N, Duchardt-Ferner E, Wöhnert J, Kalbacher H, Endo T, Schleiff E, Rapaport D. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat Commun 2016; 7:12036. [PMID: 27345737 PMCID: PMC4931251 DOI: 10.1038/ncomms12036] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 05/24/2016] [Indexed: 01/15/2023] Open
Abstract
Mitochondrial β-barrel proteins are synthesized on cytosolic ribosomes and must be specifically targeted to the organelle before their integration into the mitochondrial outer membrane. The signal that assures such precise targeting and its recognition by the organelle remained obscure. In the present study we show that a specialized β-hairpin motif is this long searched for signal. We demonstrate that a synthetic β-hairpin peptide competes with the import of mitochondrial β-barrel proteins and that proteins harbouring a β-hairpin peptide fused to passenger domains are targeted to mitochondria. Furthermore, a β-hairpin motif from mitochondrial proteins targets chloroplast β-barrel proteins to mitochondria. The mitochondrial targeting depends on the hydrophobicity of the β-hairpin motif. Finally, this motif interacts with the mitochondrial import receptor Tom20. Collectively, we reveal that β-barrel proteins are targeted to mitochondria by a dedicated β-hairpin element, and this motif is recognized at the organelle surface by the outer membrane translocase. Mitochondrial β-barrel proteins are synthesized in the cytosol before being targeted to the organelle. Here, Jores et al. show that a specialized hydrophobic β-hairpin motif is the previously undefined targeting sequence and is recognized by the mitochondrial outer membrane translocase.
Collapse
Affiliation(s)
- Tobias Jores
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Anna Klinger
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Lucia E Groß
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Nadine Flinner
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Enrico Schleiff
- Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.,Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.,Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tuebingen, Hoppe-Seyler-Str. 4, 72076 Tuebingen, Germany
| |
Collapse
|
33
|
Wenz LS, Ellenrieder L, Qiu J, Bohnert M, Zufall N, van der Laan M, Pfanner N, Wiedemann N, Becker T. Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J Cell Biol 2015; 210:1047-54. [PMID: 26416958 PMCID: PMC4586741 DOI: 10.1083/jcb.201504119] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Sam37 promotes biogenesis of mitochondrial proteins by linking outer membrane translocases into a supercomplex Biogenesis of mitochondrial β-barrel proteins requires two preprotein translocases, the general translocase of the outer membrane (TOM) and the sorting and assembly machinery (SAM). TOM and SAM form a supercomplex that promotes transfer of β-barrel precursors. The SAM core complex contains the channel protein Sam50, which cooperates with Sam35 in precursor recognition, and the peripheral membrane protein Sam37. The molecular function of Sam37 has been unknown. We report that Sam37 is crucial for formation of the TOM–SAM supercomplex. Sam37 interacts with the receptor domain of Tom22 on the cytosolic side of the mitochondrial outer membrane and links TOM and SAM complexes. Sam37 thus promotes efficient transfer of β-barrel precursors to the SAM complex. We conclude that Sam37 functions as a coupling factor of the translocase supercomplex of the mitochondrial outer membrane.
Collapse
Affiliation(s)
- Lena-Sophie Wenz
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lars Ellenrieder
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Jian Qiu
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Maria Bohnert
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Martin van der Laan
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nikolaus Pfanner
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
34
|
Schuler MH, Di Bartolomeo F, Böttinger L, Horvath SE, Wenz LS, Daum G, Becker T. Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial β-barrel proteins. J Biol Chem 2015; 290:26523-32. [PMID: 26385920 DOI: 10.1074/jbc.m115.687921] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Two protein translocases drive the import of β-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the β-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of β-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of β-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of β-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial β-barrel biogenesis.
Collapse
Affiliation(s)
- Max-Hinderk Schuler
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Lena Böttinger
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Susanne E Horvath
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Lena-Sophie Wenz
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Günther Daum
- Institute for Biochemistry, Graz University of Technology, NaWi Graz, A-8010 Graz, Austria,
| | - Thomas Becker
- From the Institute for Biochemistry and Molecular Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
35
|
Lew RR, Giblon RE, Lorenti MSH. The phenotype of a phospholipase C (plc-1) mutant in a filamentous fungus, Neurospora crassa. Fungal Genet Biol 2015. [PMID: 26212074 DOI: 10.1016/j.fgb.2015.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the filamentous fungus Neurospora crassa, phospholipase C may play a role in hyphal extension at the growing tips as part of a growth-sensing mechanism that activates calcium release from internal stores to mediate continued expansion of the hyphal tip. One candidate for a tip-localized phospholipase C is PLC-1. We characterized morphology and growth characteristics of a knockout mutant (KO plc-1) and a RIP mutated strain (RIP plc-1) (missense mutations and a nonsense mutation render the gene product non-functional). Growth and hyphal cytology of wildtype and KO plc-1 were similar, but the RIP plc-1 mutant grew slower and exhibited abnormal membrane structures at the hyphal tip, imaged using the fluorescence dye FM4-64. To test for causes of the slower growth of the RIP plc-1 mutant, we examined its physiological poise compared to wildtype and the KO plc-1 mutant. The electrical properties of all three strains and the electrogenic contribution of the plasma membrane H(+)-ATPase (identified by cyanide inhibition) were the same. Responses to high osmolarity were also similar. However, the RIP plc-1 mutant had a significantly lower turgor, a possible cause of its slower growth. While growth of all three strains was inhibited by the phospholipase C inhibitor 3-nitrocoumarin, the RIP plc-1 mutant did not exhibit hyphal bursting after addition of the inhibitor, observed in both wildtype and the KO plc-1 mutant. Although the plc-1 gene is not obligatory for tip growth, the phenotype of the RIP plc-1 mutant - abnormal tip cytology, lower turgor and resistance to inhibitor-induced hyphal bursting - suggest it does play a role in tip growth. The expression of a dysfunctional plc-1 gene may cause a shift to alternative mechanism(s) of growth sensing in hyphal extension.
Collapse
Affiliation(s)
- Roger R Lew
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rachel E Giblon
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Miranda S H Lorenti
- York University, Biology Department, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
36
|
Abstract
The vast majority of outer membrane (OM) proteins in Gram-negative bacteria belongs to the class of membrane-embedded β-barrel proteins. Besides Gram-negative bacteria, the presence of β-barrel proteins is restricted to the OM of the eukaryotic organelles mitochondria and chloroplasts that were derived from prokaryotic ancestors. The assembly of these proteins into the corresponding OM is in each case facilitated by a dedicated protein complex that contains a highly conserved central β-barrel protein termed BamA/YaeT/Omp85 in Gram-negative bacteria and Tob55/Sam50 in mitochondria. However, little is known about the exact mechanism by which these complexes mediate the integration of β-barrel precursors into the lipid bilayer. Interestingly, previous studies showed that during evolution, these complexes retained the ability to functionally assemble β-barrel proteins from different origins. In this review we summarize the current knowledge on the biogenesis pathway of β-barrel proteins in Gram-negative bacteria, mitochondria and chloroplasts and focus on the commonalities and divergences that evolved between the different β-barrel assembly machineries.
Collapse
Affiliation(s)
- Thomas Ulrich
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
37
|
Höhr AIC, Straub SP, Warscheid B, Becker T, Wiedemann N. Assembly of β-barrel proteins in the mitochondrial outer membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:74-88. [PMID: 25305573 DOI: 10.1016/j.bbamcr.2014.10.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/25/2014] [Accepted: 10/01/2014] [Indexed: 12/15/2022]
Abstract
Mitochondria evolved through endosymbiosis of a Gram-negative progenitor with a host cell to generate eukaryotes. Therefore, the outer membrane of mitochondria and Gram-negative bacteria contain pore proteins with β-barrel topology. After synthesis in the cytosol, β-barrel precursor proteins are first transported into the mitochondrial intermembrane space. Folding and membrane integration of β-barrel proteins depend on the mitochondrial sorting and assembly machinery (SAM) located in the outer membrane, which is related to the β-barrel assembly machinery (BAM) in bacteria. The SAM complex recognizes β-barrel proteins by a β-signal in the C-terminal β-strand that is required to initiate β-barrel protein insertion into the outer membrane. In addition, the SAM complex is crucial to form membrane contacts with the inner mitochondrial membrane by interacting with the mitochondrial contact site and cristae organizing system (MICOS) and shares a subunit with the endoplasmic reticulum-mitochondria encounter structure (ERMES) that links the outer mitochondrial membrane to the endoplasmic reticulum (ER).
Collapse
Affiliation(s)
- Alexandra I C Höhr
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Sebastian P Straub
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany; Abteilung Biochemie und Funktionelle Proteomik, Institut für Biologie II, Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany
| | - Nils Wiedemann
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, Universität Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
38
|
Herrmann JM, Riemer J. Three approaches to one problem: protein folding in the periplasm, the endoplasmic reticulum, and the intermembrane space. Antioxid Redox Signal 2014; 21:438-56. [PMID: 24483706 DOI: 10.1089/ars.2014.5841] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE The bacterial periplasm, the endoplasmic reticulum (ER), and the intermembrane space (IMS) of mitochondria contain dedicated machineries for the incorporation of disulfide bonds into polypeptides, which cooperate with chaperones, proteases, and assembly factors during protein biogenesis. RECENT ADVANCES The mitochondrial disulfide relay was identified only very recently. The current knowledge of the protein folding machinery of the IMS will be described in detail in this review and compared with the "more established" systems of the periplasm and the ER. CRITICAL ISSUES While the disulfide relays of all three compartments adhere to the same principle, the specific designs and functions of these systems differ considerably. In particular, the cooperation with other folding systems makes the situation in each compartment unique. FUTURE DIRECTIONS The biochemical properties of the oxidation machineries are relatively well understood. However, it still remains largely unclear as to how the quality control systems of "oxidizing" compartments orchestrate the activities of oxidoreductases, chaperones, proteases, and signaling molecules to ensure protein homeostasis.
Collapse
Affiliation(s)
- Johannes M Herrmann
- 1 Department of Cell Biology, University of Kaiserslautern , Kaiserslautern, Germany
| | | |
Collapse
|
39
|
Lackey SWK, Taylor RD, Go NE, Wong A, Sherman EL, Nargang FE. Evidence supporting the 19 β-strand model for Tom40 from cysteine scanning and protease site accessibility studies. J Biol Chem 2014; 289:21640-50. [PMID: 24947507 DOI: 10.1074/jbc.m114.578765] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Most proteins found in mitochondria are translated in the cytosol and enter the organelle via the TOM complex (translocase of the outer mitochondrial membrane). Tom40 is the pore forming component of the complex. Although the three-dimensional structure of Tom40 has not been determined, the structure of porin, a related protein, has been shown to be a β-barrel containing 19 membrane spanning β-strands and an N-terminal α-helical region. The evolutionary relationship between the two proteins has allowed modeling of Tom40 into a similar structure by several laboratories. However, it has been suggested that the 19-strand porin structure does not represent the native form of the protein. If true, modeling of Tom40 based on the porin structure would also be invalid. We have used substituted cysteine accessibility mapping to identify several potential β-strands in the Tom40 protein in isolated mitochondria. These data, together with protease accessibility studies, support the 19 β-strand model for Tom40 with the C-terminal end of the protein localized to the intermembrane space.
Collapse
Affiliation(s)
- Sebastian W K Lackey
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Rebecca D Taylor
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Nancy E Go
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Annie Wong
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - E Laura Sherman
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Frank E Nargang
- From the Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
40
|
Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie 2014; 100:3-17. [DOI: 10.1016/j.biochi.2013.11.018] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Accepted: 11/24/2013] [Indexed: 11/20/2022]
|
41
|
Lee J, Kim DH, Hwang I. Specific targeting of proteins to outer envelope membranes of endosymbiotic organelles, chloroplasts, and mitochondria. FRONTIERS IN PLANT SCIENCE 2014; 5:173. [PMID: 24808904 PMCID: PMC4010795 DOI: 10.3389/fpls.2014.00173] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/10/2014] [Indexed: 05/21/2023]
Abstract
Chloroplasts and mitochondria are endosymbiotic organelles thought to be derived from endosymbiotic bacteria. In present-day eukaryotic cells, these two organelles play pivotal roles in photosynthesis and ATP production. In addition to these major activities, numerous reactions, and cellular processes that are crucial for normal cellular functions occur in chloroplasts and mitochondria. To function properly, these organelles constantly communicate with the surrounding cellular compartments. This communication includes the import of proteins, the exchange of metabolites and ions, and interactions with other organelles, all of which heavily depend on membrane proteins localized to the outer envelope membranes. Therefore, correct and efficient targeting of these membrane proteins, which are encoded by the nuclear genome and translated in the cytosol, is critically important for organellar function. In this review, we summarize the current knowledge of the mechanisms of protein targeting to the outer membranes of mitochondria and chloroplasts in two different directions, as well as targeting signals and cytosolic factors.
Collapse
Affiliation(s)
- Junho Lee
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Dae Heon Kim
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
| | - Inhwan Hwang
- Cellular Systems Biology, Department of Life Sciences, Pohang University of Science and TechnologyPohang, South Korea
- Division of Integrative Biosciences and Bioengineering, Pohang University of Science and TechnologyPohang, South Korea
- *Correspondence: Inhwan Hwang, Cellular Systems Biology, Department of Life Sciences and Division of Integrative Biosciences and Bioengineering, Pohang University of Science and Technology, Hyojadong, Nam-Gu, Pohang 790-784, South Korea e-mail:
| |
Collapse
|
42
|
Qiu J, Wenz LS, Zerbes RM, Oeljeklaus S, Bohnert M, Stroud DA, Wirth C, Ellenrieder L, Thornton N, Kutik S, Wiese S, Schulze-Specking A, Zufall N, Chacinska A, Guiard B, Hunte C, Warscheid B, van der Laan M, Pfanner N, Wiedemann N, Becker T. Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 2013; 154:596-608. [PMID: 23911324 DOI: 10.1016/j.cell.2013.06.033] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/13/2013] [Accepted: 06/19/2013] [Indexed: 11/17/2022]
Abstract
The mitochondrial outer membrane harbors two protein translocases that are essential for cell viability: the translocase of the outer mitochondrial membrane (TOM) and the sorting and assembly machinery (SAM). The precursors of β-barrel proteins use both translocases-TOM for import to the intermembrane space and SAM for export into the outer membrane. It is unknown if the translocases cooperate and where the β-barrel of newly imported proteins is formed. We established a position-specific assay for monitoring β-barrel formation in vivo and in organello and demonstrated that the β-barrel was formed and membrane inserted while the precursor was bound to SAM. β-barrel formation was inhibited by SAM mutants and, unexpectedly, by mutants of the central import receptor, Tom22. We show that the cytosolic domain of Tom22 links TOM and SAM into a supercomplex, facilitating precursor transfer on the intermembrane space side. Our study reveals receptor-mediated coupling of import and export translocases as a means of precursor channeling.
Collapse
Affiliation(s)
- Jian Qiu
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
The Taz1p transacylase is imported and sorted into the outer mitochondrial membrane via a membrane anchor domain. EUKARYOTIC CELL 2013; 12:1600-8. [PMID: 24078306 DOI: 10.1128/ec.00237-13] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mutations in the mitochondrial transacylase tafazzin, Taz1p, in Saccharomyces cerevisiae cause Barth syndrome, a disease of defective cardiolipin remodeling. Taz1p is an interfacial membrane protein that localizes to both the outer and inner membranes, lining the intermembrane space. Pathogenic point mutations in Taz1p that alter import and membrane insertion result in accumulation of monolysocardiolipin. In this study, we used yeast as a model to investigate the biogenesis of Taz1p. We show that to achieve this unique topology in mitochondria, Taz1p follows a novel import pathway in which it crosses the outer membrane via the translocase of the outer membrane and then uses the Tim9p-Tim10p complex of the intermembrane space to insert into the mitochondrial outer membrane. Taz1p is then transported to membranes of an intermediate density to reach a location in the inner membrane. Moreover, a pathogenic mutation within the membrane anchor (V224R) alters Taz1p import so that it bypasses the Tim9p-Tim10p complex and interacts with the translocase of the inner membrane, TIM23, to reach the matrix. Critical targeting information for Taz1p resides in the membrane anchor and flanking sequences, which are often mutated in Barth syndrome patients. These studies suggest that altering the mitochondrial import pathway of Taz1p may be important in understanding the molecular basis of Barth syndrome.
Collapse
|
44
|
Horvath SE, Daum G. Lipids of mitochondria. Prog Lipid Res 2013; 52:590-614. [PMID: 24007978 DOI: 10.1016/j.plipres.2013.07.002] [Citation(s) in RCA: 621] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023]
Abstract
A unique organelle for studying membrane biochemistry is the mitochondrion whose functionality depends on a coordinated supply of proteins and lipids. Mitochondria are capable of synthesizing several lipids autonomously such as phosphatidylglycerol, cardiolipin and in part phosphatidylethanolamine, phosphatidic acid and CDP-diacylglycerol. Other mitochondrial membrane lipids such as phosphatidylcholine, phosphatidylserine, phosphatidylinositol, sterols and sphingolipids have to be imported. The mitochondrial lipid composition, the biosynthesis and the import of mitochondrial lipids as well as the regulation of these processes will be main issues of this review article. Furthermore, interactions of lipids and mitochondrial proteins which are highly important for various mitochondrial processes will be discussed. Malfunction or loss of enzymes involved in mitochondrial phospholipid biosynthesis lead to dysfunction of cell respiration, affect the assembly and stability of the mitochondrial protein import machinery and cause abnormal mitochondrial morphology or even lethality. Molecular aspects of these processes as well as diseases related to defects in the formation of mitochondrial membranes will be described.
Collapse
Affiliation(s)
- Susanne E Horvath
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, A-8010 Graz, Austria
| | | |
Collapse
|
45
|
Hewitt VL, Gabriel K, Traven A. The ins and outs of the intermembrane space: diverse mechanisms and evolutionary rewiring of mitochondrial protein import routes. Biochim Biophys Acta Gen Subj 2013; 1840:1246-53. [PMID: 23994494 DOI: 10.1016/j.bbagen.2013.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 08/09/2013] [Accepted: 08/20/2013] [Indexed: 11/24/2022]
Abstract
BACKGROUND Mitochondrial biogenesis is an essential process in all eukaryotes. Import of proteins from the cytosol into mitochondria is a key step in organelle biogenesis. Recent evidence suggests that a given mitochondrial protein does not take the same import route in all organisms, suggesting that pathways of mitochondrial protein import can be rewired through evolution. Examples of this process so far involve proteins destined to the mitochondrial intermembrane space (IMS). SCOPE OF REVIEW Here we review the components, substrates and energy sources of the known mechanisms of protein import into the IMS. We discuss evolutionary rewiring of the IMS import routes, focusing on the example of the lactate utilisation enzyme cytochrome b2 (Cyb2) in the model yeast Saccharomyces cerevisiae and the human fungal pathogen Candida albicans. MAJOR CONCLUSIONS There are multiple import pathways used for protein entry into the IMS and they form a network capable of importing a diverse range of substrates. These pathways have been rewired, possibly in response to environmental pressures, such as those found in the niches in the human body inhabited by C. albicans. GENERAL SIGNIFICANCE We propose that evolutionary rewiring of mitochondrial import pathways can adjust the metabolic fitness of a given species to their environmental niche. This article is part of a Special Issue entitled Frontiers of Mitochondrial.
Collapse
Affiliation(s)
- Victoria L Hewitt
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Kipros Gabriel
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Building 77, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
46
|
Becker T, Horvath SE, Böttinger L, Gebert N, Daum G, Pfanner N. Role of phosphatidylethanolamine in the biogenesis of mitochondrial outer membrane proteins. J Biol Chem 2013; 288:16451-16459. [PMID: 23625917 PMCID: PMC3675581 DOI: 10.1074/jbc.m112.442392] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/19/2013] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial outer membrane contains proteinaceous machineries for the import and assembly of proteins, including TOM (translocase of the outer membrane) and SAM (sorting and assembly machinery). It has been shown that the dimeric phospholipid cardiolipin is required for the stability of TOM and SAM complexes and thus for the efficient import and assembly of β-barrel proteins and some α-helical proteins of the outer membrane. Here, we report that mitochondria deficient in phosphatidylethanolamine (PE), the second non-bilayer-forming phospholipid, are impaired in the biogenesis of β-barrel proteins, but not of α-helical outer membrane proteins. The stability of TOM and SAM complexes is not disturbed by the lack of PE. By dissecting the import steps of β-barrel proteins, we show that an early import stage involving translocation through the TOM complex is affected. In PE-depleted mitochondria, the TOM complex binds precursor proteins with reduced efficiency. We conclude that PE is required for the proper function of the TOM complex.
Collapse
Affiliation(s)
- Thomas Becker
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany
| | - Susanne E Horvath
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Institut für Biochemie, Technische Universität Graz, A-8010 Graz, Austria
| | - Lena Böttinger
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; Fakultät für Biologie, Universität Freiburg, 79104 Freiburg, Germany
| | - Natalia Gebert
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany
| | - Günther Daum
- Institut für Biochemie, Technische Universität Graz, A-8010 Graz, Austria.
| | - Nikolaus Pfanner
- Institut für Biochemie und Molekularbiologie, ZBMZ, 79104 Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, 79104 Freiburg, Germany.
| |
Collapse
|
47
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
48
|
Lionaki E, Tavernarakis N. Oxidative stress and mitochondrial protein quality control in aging. J Proteomics 2013; 92:181-94. [PMID: 23563202 DOI: 10.1016/j.jprot.2013.03.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/22/2013] [Accepted: 03/25/2013] [Indexed: 12/17/2022]
Abstract
Mitochondrial protein quality control incorporates an elaborate network of chaperones and proteases that survey the organelle for misfolded or unfolded proteins and toxic aggregates. Repair of misfolded or aggregated protein and proteolytic removal of irreversibly damaged proteins are carried out by the mitochondrial protein quality control system. Initial maturation and folding of the nuclear or mitochondrial-encoded mitochondrial proteins are mediated by processing peptidases and chaperones that interact with the protein translocation machinery. Mitochondrial proteins are subjected to cumulative oxidative damage. Thus, impairment of quality control processes may cause mitochondrial dysfunction. Aging has been associated with a marked decline in the effectiveness of mitochondrial protein quality control. Here, we present an overview of the chaperones and proteases involved in the initial folding and maturation of new, incoming precursor molecules, and the subsequent repair and removal of oxidized aggregated proteins. In addition, we highlight the link between mitochondrial protein quality control mechanisms and the aging process. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 71110, Crete, Greece
| | | |
Collapse
|
49
|
Wrobel L, Trojanowska A, Sztolsztener ME, Chacinska A. Mitochondrial protein import: Mia40 facilitates Tim22 translocation into the inner membrane of mitochondria. Mol Biol Cell 2013; 24:543-54. [PMID: 23283984 PMCID: PMC3583659 DOI: 10.1091/mbc.e12-09-0649] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The MIA pathway governs the localization and oxidative folding of intermembrane space proteins. This study reports that the MIA pathway is involved in the transport of mitochondrial inner membrane protein Tim22, thereby broadening the known functions of MIA to the biogenesis of inner membrane proteins. The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria.
Collapse
Affiliation(s)
- Lidia Wrobel
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | | | | | | |
Collapse
|
50
|
Kulawiak B, Höpker J, Gebert M, Guiard B, Wiedemann N, Gebert N. The mitochondrial protein import machinery has multiple connections to the respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:612-26. [PMID: 23274250 DOI: 10.1016/j.bbabio.2012.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/12/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The mitochondrial inner membrane harbors the complexes of the respiratory chain and protein translocases required for the import of mitochondrial precursor proteins. These complexes are functionally interdependent, as the import of respiratory chain precursor proteins across and into the inner membrane requires the membrane potential. Vice versa the membrane potential is generated by the proton pumping complexes of the respiratory chain. Besides this basic codependency four different systems for protein import, processing and assembly show further connections to the respiratory chain. The mitochondrial intermembrane space import and assembly machinery oxidizes cysteine residues within the imported precursor proteins and is able to donate the liberated electrons to the respiratory chain. The presequence translocase of the inner membrane physically interacts with the respiratory chain. The mitochondrial processing peptidase is homologous to respiratory chain subunits and the carrier translocase of the inner membrane even shares a subunit with the respiratory chain. In this review we will summarize the import of mitochondrial precursor proteins and highlight these special links between the mitochondrial protein import machinery and the respiratory chain. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Institut für Biochemie und Molekularbiologie, ZBMZ, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|