1
|
Corner TP, Teo RZR, Wu Y, Salah E, Nakashima Y, Fiorini G, Tumber A, Brasnett A, Holt-Martyn JP, Figg WD, Zhang X, Brewitz L, Schofield CJ. Structure-guided optimisation of N-hydroxythiazole-derived inhibitors of factor inhibiting hypoxia-inducible factor-α. Chem Sci 2023; 14:12098-12120. [PMID: 37969593 PMCID: PMC10631261 DOI: 10.1039/d3sc04253g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023] Open
Abstract
The human 2-oxoglutarate (2OG)- and Fe(ii)-dependent oxygenases factor inhibiting hypoxia-inducible factor-α (FIH) and HIF-α prolyl residue hydroxylases 1-3 (PHD1-3) regulate the response to hypoxia in humans via catalysing hydroxylation of the α-subunits of the hypoxia-inducible factors (HIFs). Small-molecule PHD inhibitors are used for anaemia treatment; by contrast, few selective inhibitors of FIH have been reported, despite their potential to regulate the hypoxic response, either alone or in combination with PHD inhibition. We report molecular, biophysical, and cellular evidence that the N-hydroxythiazole scaffold, reported to inhibit PHD2, is a useful broad spectrum 2OG oxygenase inhibitor scaffold, the inhibition potential of which can be tuned to achieve selective FIH inhibition. Structure-guided optimisation resulted in the discovery of N-hydroxythiazole derivatives that manifest substantially improved selectivity for FIH inhibition over PHD2 and other 2OG oxygenases, including Jumonji-C domain-containing protein 5 (∼25-fold), aspartate/asparagine-β-hydroxylase (>100-fold) and histone Nε-lysine demethylase 4A (>300-fold). The optimised N-hydroxythiazole-based FIH inhibitors modulate the expression of FIH-dependent HIF target genes and, consistent with reports that FIH regulates cellular metabolism, suppressed lipid accumulation in adipocytes. Crystallographic studies reveal that the N-hydroxythiazole derivatives compete with both 2OG and the substrate for binding to the FIH active site. Derivatisation of the N-hydroxythiazole scaffold has the potential to afford selective inhibitors for 2OG oxygenases other than FIH.
Collapse
Affiliation(s)
- Thomas P Corner
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Ryan Z R Teo
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Eidarus Salah
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama 2630-Sugitani 930-0194 Toyama Japan
| | - Giorgia Fiorini
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Anthony Tumber
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Amelia Brasnett
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - James P Holt-Martyn
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - William D Figg
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization and Department of Chemistry, China Pharmaceutical University Nanjing 211198 China
| | - Lennart Brewitz
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford 12 Mansfield Road OX1 3TA Oxford United Kingdom
| |
Collapse
|
2
|
Genetically engineered magnetic nanocages for cancer magneto-catalytic theranostics. Nat Commun 2020; 11:5421. [PMID: 33110072 PMCID: PMC7591490 DOI: 10.1038/s41467-020-19061-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The clinical applications of magnetic hyperthermia therapy (MHT) have been largely hindered by the poor magnetic-to-thermal conversion efficiency of MHT agents. Herein, we develop a facile and efficient strategy for engineering encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) via a green biomineralization procedure. We demonstrate that eMIONs have excellent magnetic saturation and remnant magnetization properties, featuring superior magnetic-to-thermal conversion efficiency with an ultrahigh specific absorption rate of 2390 W/g to overcome the critical issues of MHT. We also show that eMIONs act as a nanozyme and have enhanced catalase-like activity in the presence of an alternative magnetic field, leading to tumor angiogenesis inhibition with a corresponding sharp decrease in the expression of HIF-1α. The inherent excellent magnetic-heat capability, coupled with catalysis-triggered tumor suppression, allows eMIONs to provide an MRI-guided magneto-catalytic combination therapy, which may open up a new avenue for bench-to-bed translational research of MHT. The clinical application of magnetic hyperthermia therapy (MHT) is limited by the poor magnetic-to-thermal conversion efficiency of MHT agents. Here, the authors develop encapsulin-produced magnetic iron oxide nanocomposites (eMIONs) with excellent magnetic-heat capability and catalysis-triggered tumor suppression ability to overcome the critical issues of MHT.
Collapse
|
3
|
Choi H, Hardy AP, Leissing TM, Chowdhury R, Nakashima Y, Ge W, Markoulides M, Scotti JS, Gerken PA, Thorbjornsrud H, Kang D, Hong S, Lee J, McDonough MA, Park H, Schofield CJ. A human protein hydroxylase that accepts D-residues. Commun Chem 2020; 3:52. [PMID: 36703414 PMCID: PMC9814778 DOI: 10.1038/s42004-020-0290-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/12/2020] [Indexed: 01/29/2023] Open
Abstract
Factor inhibiting hypoxia-inducible factor (FIH) is a 2-oxoglutarate-dependent protein hydroxylase that catalyses C3 hydroxylations of protein residues. We report FIH can accept (D)- and (L)-residues for hydroxylation. The substrate selectivity of FIH differs for (D) and (L) epimers, e.g., (D)- but not (L)-allylglycine, and conversely (L)- but not (D)-aspartate, undergo monohydroxylation, in the tested sequence context. The (L)-Leu-containing substrate undergoes FIH-catalysed monohydroxylation, whereas (D)-Leu unexpectedly undergoes dihydroxylation. Crystallographic, mass spectrometric, and DFT studies provide insights into the selectivity of FIH towards (L)- and (D)-residues. The results of this work expand the potential range of known substrates hydroxylated by isolated FIH and imply that it will be possible to generate FIH variants with altered selectivities.
Collapse
Affiliation(s)
- Hwanho Choi
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.,Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea
| | - Adam P Hardy
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Thomas M Leissing
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Rasheduzzaman Chowdhury
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Yu Nakashima
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Ge
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Marios Markoulides
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - John S Scotti
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Philip A Gerken
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Helen Thorbjornsrud
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Dahye Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Michael A McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK
| | - Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 209 Neungdong-ro, Kwangjin-gu, Seoul, 05006, Korea.
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12, Mansfield Road, Oxford, OX1 3TA, UK.
| |
Collapse
|
4
|
Hampton-Smith RJ, Davenport BA, Nagarajan Y, Peet DJ. The conservation and functionality of the oxygen-sensing enzyme Factor Inhibiting HIF (FIH) in non-vertebrates. PLoS One 2019; 14:e0216134. [PMID: 31034531 PMCID: PMC6488082 DOI: 10.1371/journal.pone.0216134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Abstract
The asparaginyl hydroxylase, Factor Inhibiting HIF (FIH), is a cellular dioxygenase. Originally identified as oxygen sensor in the cellular response to hypoxia, where FIH acts as a repressor of the hypoxia inducible transcription factor alpha (HIF-α) proteins through asparaginyl hydroxylation, FIH also hydroxylates many proteins that contain ankyrin repeat domains (ARDs). Given FIH's promiscuity and the unclear functional effects of ARD hydroxylation, the biological relevance of HIF-α and ARD hydroxylation remains uncertain. Here, we have employed evolutionary and enzymatic analyses of FIH, and both HIF-α and ARD-containing substrates, in a broad range of metazoa to better understand their conservation and functional importance. Utilising Tribolium castaneum and Acropora millepora, we provide evidence that FIH from both species are able to hydroxylate HIF-α proteins, supporting conservation of this function beyond vertebrates. We further demonstrate that T. castaneum and A. millepora FIH homologs can also hydroxylate specific ARD proteins. Significantly, FIH is also conserved in several species with inefficiently-targeted or absent HIF, supporting the hypothesis of important HIF-independent functions for FIH. Overall, these data show that while oxygen-dependent HIF-α hydroxylation by FIH is highly conserved in many species, HIF-independent roles for FIH have evolved in others.
Collapse
Affiliation(s)
| | - Briony A. Davenport
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yagnesh Nagarajan
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Daniel J. Peet
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| |
Collapse
|
5
|
Oxygen sensor FIH inhibits HACE1-dependent ubiquitination of Rac1 to enhance metastatic potential in breast cancer cells. Oncogene 2019; 38:3651-3666. [PMID: 30659265 DOI: 10.1038/s41388-019-0676-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/06/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Oxygen is an indispensable element for cell survival and maintenance. Eukaryotic cells are equipped with a series of signaling pathways that cope with hypoxia. The dioxygenase factor inhibiting HIF (FIH) is an oxygen sensor that regulates the transcriptional activity of hypoxia-inducible factor (HIF) through asparaginyl hydroxylation. Given that HACE1 was detected as an FIH-interacting protein in a previous proteomics study, we tested whether the E3 ubiquitin ligase HACE1 is a substrate for FIH. FIH interacted with HACE1, in cells and in vitro, and was determined to hydroxylate HACE1 at the N191 residue within the ankyrin repeat domain. Hydroxylation disrupted the physical association between HACE1 and its representative target, Rac1. Under hypoxic conditions, HACE1 is less hydroxylated due to the inactivation of FIH, and subsequently functions to ubiquitinate the active form of Rac1, leading to the proteasomal degradation of Rac1. Since Rac1 stimulates cell movement, HACE1 inhibits cell migration and invasion in breast cancer by removing active Rac1. Such an effect of HACE1 is reinforced under hypoxia because HACE1 escapes from FIH-mediated hydroxylation. In clinical datasets, HACE1 downregulation is associated with poor outcomes in patients with breast cancer. Taken together, FIH is likely to act as an oxygen sensor that determines oxygen-dependent cancer progression.
Collapse
|
6
|
Wang Y, Zhong S, Schofield CJ, Ratcliffe PJ, Lu X. Nuclear entry and export of FIH are mediated by HIF1α and exportin1, respectively. J Cell Sci 2018; 131:jcs219782. [PMID: 30333145 PMCID: PMC6250434 DOI: 10.1242/jcs.219782] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
Hypoxia plays a crucial role at cellular and physiological levels in all animals. The responses to chronic hypoxia are, at least substantially, orchestrated by activation of the hypoxia inducible transcription factors (HIFs), whose stability and subsequent transcriptional activation are regulated by HIF hydroxylases. Factor inhibiting HIF (FIH), initially isolated as a HIFα interacting protein following a yeast two-hybrid screen, is an asparaginyl hydroxylase that negatively regulates transcriptional activation by HIF. This study aimed to define the mechanisms that govern transitions of FIH between the nucleus and cytoplasm. We report that FIH accumulates in the nucleus within a short time window during hypoxia treatment. We provide evidence, based on the application of genetic interventions and small molecule inhibition of the HIF hydroxylases, that the nuclear localization of FIH is governed by two opposing processes: nuclear entry by 'coupling' with HIF1α for importin β1-mediated nuclear import and active export via a Leptomycin B-sensitive exportin1-dependent pathway.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Yihua Wang
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Shan Zhong
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| | - Christopher J Schofield
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Peter J Ratcliffe
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, United Kingdom
| | - Xin Lu
- Ludwig Institute for Cancer Research Ltd., Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
7
|
Chen H, Li J, Liang S, Lin B, Peng Q, Zhao P, Cui J, Rao Y. Effect of hypoxia-inducible factor-1/vascular endothelial growth factor signaling pathway on spinal cord injury in rats. Exp Ther Med 2017; 13:861-866. [PMID: 28450910 PMCID: PMC5403438 DOI: 10.3892/etm.2017.4049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/04/2016] [Indexed: 11/10/2022] Open
Abstract
The aim of the present study was to evaluate the expression of vascular endothelial growth factor (VEGF) and hypoxia inducible factor-1 (HIF-1), and to investigate the role of the HIF-1/VEGF signaling pathway following spinal cord injury (SCI). A total of 90 12-week-old Sprague Dawley rats were randomly divided into the following three groups: Sham group (operation without SCI); control group (SCI without ML228 treatment); and treatment group (SCI receiving ML228 treatment). ML228 was administered as it is an activator of HIF-1α. The control and treatment groups were subjected to spinal cord hemisection and motor activity was evaluated using the Basso, Beattie and Bresnahan (BBB) scoring system. Expression of HIF-1α and VEGF in each injured spinal cord section was assessed using immunohistochemistry. Prior to SCI, there were no significant differences in the BBB score among the three groups (P>0.05). However, one day after the operation, the BBB score of the sham group was significantly higher than that of the other two groups (P<0.05) and the BBB scores of the control and treatment groups did not differ significantly (P>0.05). BBB scores 3 and 7 days following surgery were significantly higher in the sham group than the other two groups (P<0.05) and the BBB scores of the treatment group were significantly higher than those of the control group (P<0.05). The expression of HIF-1α and VEGF proteins in all groups were measured 1, 3 and 7 days after the operation, and it was observed that their expression was higher in the treatment group than in the control group (P<0.05). Therefore, the results of the current study suggest that ML228 may effectively activate the HIF-1α/VEGF signaling pathway to promote the expression of HIF-1α and VEGF proteins within the injured segment of the spinal cord, which promotes neural functional recovery following SCI in rats. Therefore, treatment with ML228 may be developed as a novel therapeutic strategy to treat SCI.
Collapse
Affiliation(s)
- Hailong Chen
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Junjie Li
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Shuhan Liang
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Bin Lin
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Qi Peng
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Peng Zhao
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Jiawei Cui
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| | - Yaojian Rao
- Department of Spine Surgery, Luoyang Orthopedic Hospital of Henan, Luoyang, Henan 471002, P.R. China
| |
Collapse
|
8
|
Ankyrin Repeat Proteins of Orf Virus Influence the Cellular Hypoxia Response Pathway. J Virol 2016; 91:JVI.01430-16. [PMID: 27795413 DOI: 10.1128/jvi.01430-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 11/20/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is a transcriptional activator with a central role in regulating cellular responses to hypoxia. It is also emerging as a major target for viral manipulation of the cellular environment. Under normoxic conditions, HIF is tightly suppressed by the activity of oxygen-dependent prolyl and asparaginyl hydroxylases. The asparaginyl hydroxylase active against HIF, factor inhibiting HIF (FIH), has also been shown to hydroxylate some ankyrin repeat (ANK) proteins. Using bioinformatic analysis, we identified the five ANK proteins of the parapoxvirus orf virus (ORFV) as potential substrates of FIH. Consistent with this prediction, coimmunoprecipitation of FIH was detected with each of the ORFV ANK proteins, and for one representative ORFV ANK protein, the interaction was shown to be dependent on the ANK domain. Immunofluorescence studies revealed colocalization of FIH and the viral ANK proteins. In addition, mass spectrometry confirmed that three of the five ORFV ANK proteins are efficiently hydroxylated by FIH in vitro While FIH levels were unaffected by ORFV infection, transient expression of each of the ORFV ANK proteins resulted in derepression of HIF-1α activity in reporter gene assays. Furthermore, ORFV-infected cells showed upregulated HIF target gene expression. Our data suggest that sequestration of FIH by ORFV ANK proteins leads to derepression of HIF activity. These findings reveal a previously unknown mechanism of viral activation of HIF that may extend to other members of the poxvirus family. IMPORTANCE The protein-protein binding motif formed from multiple repeats of the ankyrin motif is common among chordopoxviruses. However, information on the roles of these poxviral ankyrin repeat (ANK) proteins remains limited. Our data indicate that the parapoxvirus orf virus (ORFV) is able to upregulate hypoxia-inducible factor (HIF) target gene expression. This response is mediated by the viral ANK proteins, which sequester the HIF regulator FIH (factor inhibiting HIF). This is the first demonstration of any viral protein interacting directly with FIH. Our data reveal a new mechanism by which viruses reprogram HIF, a master regulator of cellular metabolism, and also show a new role for the ANK family of poxvirus proteins.
Collapse
|
9
|
Elks PM, Renshaw SA, Meijer AH, Walmsley SR, van Eeden FJ. Exploring the HIFs, buts and maybes of hypoxia signalling in disease: lessons from zebrafish models. Dis Model Mech 2016; 8:1349-60. [PMID: 26512123 PMCID: PMC4631790 DOI: 10.1242/dmm.021865] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A low level of tissue oxygen (hypoxia) is a physiological feature of a wide range of diseases, from cancer to infection. Cellular hypoxia is sensed by oxygen-sensitive hydroxylase enzymes, which regulate the protein stability of hypoxia-inducible factor α (HIF-α) transcription factors. When stabilised, HIF-α binds with its cofactors to HIF-responsive elements (HREs) in the promoters of target genes to coordinate a wide-ranging transcriptional programme in response to the hypoxic environment. This year marks the 20th anniversary of the discovery of the HIF-1α transcription factor, and in recent years the HIF-mediated hypoxia response is being increasingly recognised as an important process in determining the outcome of diseases such as cancer, inflammatory disease and bacterial infections. Animal models have shed light on the roles of HIF in disease and have uncovered intricate control mechanisms that involve multiple cell types, observations that might have been missed in simpler in vitro systems. These findings highlight the need for new whole-organism models of disease to elucidate these complex regulatory mechanisms. In this Review, we discuss recent advances in our understanding of hypoxia and HIFs in disease that have emerged from studies of zebrafish disease models. Findings from such models identify HIF as an integral player in the disease processes. They also highlight HIF pathway components and their targets as potential therapeutic targets against conditions that range from cancers to infectious disease. Summary: Hypoxia signalling, mediated by HIF, is a crucial pathway in many disease processes. Here, we review current knowledge of HIF signalling and disease, focusing on recent findings from zebrafish models.
Collapse
Affiliation(s)
- Philip M Elks
- Department of Infection and Immunity, Medical School, The University of Sheffield, Sheffield, S10 2RX, UK The Bateson Centre, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- Department of Infection and Immunity, Medical School, The University of Sheffield, Sheffield, S10 2RX, UK The Bateson Centre, The University of Sheffield, Sheffield, S10 2TN, UK
| | - Annemarie H Meijer
- Institute of Biology, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah R Walmsley
- MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | |
Collapse
|
10
|
Depping R, Jelkmann W, Kosyna FK. Nuclear-cytoplasmatic shuttling of proteins in control of cellular oxygen sensing. J Mol Med (Berl) 2015; 93:599-608. [PMID: 25809665 DOI: 10.1007/s00109-015-1276-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/04/2015] [Accepted: 03/11/2015] [Indexed: 12/11/2022]
Abstract
In order to pass through the nuclear pore complex, proteins larger than ∼40 kDa require specific nuclear transport receptors. Defects in nuclear-cytoplasmatic transport affect fundamental processes such as development, inflammation and oxygen sensing. The transcriptional response to O2 deficiency is controlled by hypoxia-inducible factors (HIFs). These are heterodimeric transcription factors of each ∼100-120 kDa proteins, consisting of one out of three different O2-labile α subunits (primarily HIF-1α) and a more constitutive 1β subunit. In the presence of O2, the α subunits are hydroxylated by specific prolyl-4-hydroxylase domain proteins (PHD1, PHD2, and PHD3) and an asparaginyl hydroxylase (factor inhibiting HIF-1, FIH-1). The prolyl hydroxylation causes recognition by von Hippel-Lindau tumor suppressor protein (pVHL), ubiquitination, and proteasomal degradation. The activity of the oxygen sensing machinery depends on dynamic intracellular trafficking. Nuclear import of HIF-1α and HIF-1β is mainly mediated by importins α and β (α/β). HIF-1α can shuttle between nucleus and cytoplasm, while HIF-1β is permanently inside the nucleus. pVHL is localized to both compartments. Nuclear import of PHD1 relies on a nuclear localization signal (NLS) and uses the classical import pathway involving importin α/β receptors. PHD2 shows an atypical NLS, and its nuclear import does not occur via the classical pathway. PHD2-mediated hydroxylation of HIF-1α occurs predominantly in the cell nucleus. Nuclear export of PHD2 involves a nuclear export signal (NES) in the N-terminus and depends on the export receptor chromosome region maintenance 1 (CRM1). Nuclear import of PHD3 is mediated by importin α/β receptors and depends on a non-classical NLS. Specific modification of the nuclear translocation of the three PHD isoforms could provide a promising strategy for the development of new therapeutic substances to tackle major diseases.
Collapse
Affiliation(s)
- Reinhard Depping
- Institute of Physiology, Centre for Structural and Cell Biology in Medicine, University of Lübeck, Lübeck, Germany,
| | | | | |
Collapse
|
11
|
Gong H, Rehman J, Tang H, Wary K, Mittal M, Chaturvedi P, Zhao YY, Komarova YA, Vogel SM, Malik AB. HIF2α signaling inhibits adherens junctional disruption in acute lung injury. J Clin Invest 2015; 125:652-64. [PMID: 25574837 DOI: 10.1172/jci77701] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/25/2014] [Indexed: 12/23/2022] Open
Abstract
Vascular endothelial barrier dysfunction underlies diseases such as acute respiratory distress syndrome (ARDS), characterized by edema and inflammatory cell infiltration. The transcription factor HIF2α is highly expressed in vascular endothelial cells (ECs) and may regulate endothelial barrier function. Here, we analyzed promoter sequences of genes encoding proteins that regulate adherens junction (AJ) integrity and determined that vascular endothelial protein tyrosine phosphatase (VE-PTP) is a HIF2α target. HIF2α-induced VE-PTP expression enhanced dephosphorylation of VE-cadherin, which reduced VE-cadherin endocytosis and thereby augmented AJ integrity and endothelial barrier function. Mice harboring an EC-specific deletion of Hif2a exhibited decreased VE-PTP expression and increased VE-cadherin phosphorylation, resulting in defective AJs. Mice lacking HIF2α in ECs had increased lung vascular permeability and water content, both of which were further exacerbated by endotoxin-mediated injury. Treatment of these mice with Fg4497, a prolyl hydroxylase domain 2 (PHD2) inhibitor, activated HIF2α-mediated transcription in a hypoxia-independent manner. HIF2α activation increased VE-PTP expression, decreased VE-cadherin phosphorylation, promoted AJ integrity, and prevented the loss of endothelial barrier function. These findings demonstrate that HIF2α enhances endothelial barrier integrity, in part through VE-PTP expression and the resultant VE-cadherin dephosphorylation-mediated assembly of AJs. Moreover, activation of HIF2α/VE-PTP signaling via PHD2 inhibition has the potential to prevent the formation of leaky vessels and edema in inflammatory diseases such as ARDS.
Collapse
|
12
|
Hangasky JA, Ivison GT, Knapp MJ. Substrate positioning by Gln(239) stimulates turnover in factor inhibiting HIF, an αKG-dependent hydroxylase. Biochemistry 2014; 53:5750-8. [PMID: 25119663 PMCID: PMC4165446 DOI: 10.1021/bi500703s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Nonheme Fe(II)/αKG-dependent
oxygenases catalyze diverse
reactions, typically inserting an O atom from O2 into a
C–H bond. Although the key to their catalytic cycle is the
fact that binding and positioning of primary substrate precede O2 activation, the means by which substrate binding stimulates
turnover is not well understood. Factor Inhibiting HIF (FIH) is a
Fe(II)/αKG-dependent oxygenase that acts as a cellular oxygen
sensor in humans by hydroxylating the target residue Asn803, found in the C-terminal transactivation domain (CTAD) of hypoxia
inducible factor-1. FIH-Gln239 makes two hydrogen bonds
with CTAD-Asn803, positioning this target residue over
the Fe(II). We hypothesized the positioning of the side chain of CTAD-Asn803 by FIH-Gln239 was critical for stimulating O2 activation and subsequent substrate hydroxylation. The steady-state
characterization of five FIH-Gln239 variants (Ala, Asn,
Glu, His, and Leu) tested the role of hydrogen bonding potential and
sterics near the target residue. Each variant exhibited a 20–1200-fold
decrease in kcat and kcat/KM(CTAD), but no change
in KM(CTAD), indicating that the step
after CTAD binding was affected by point mutation. Uncoupled O2 activation was prominent in these variants, as shown by large
coupling ratios (C = [succinate]/[CTAD-OH] = 3–5)
for each of the FIH-Gln239 → X variants. The coupling
ratios decreased in D2O, indicating an isotope-sensitive
inactivation for variants, not observed in the wild type. The data
presented indicate that the proper positioning of CTAD-Asn803 by FIH-Gln239 is necessary to suppress uncoupled turnover
and to support substrate hydroxylation, suggesting substrate positioning
may be crucial for directing O2 reactivity within the broader
class of αKG hydroxylases.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts at Amherst , Amherst, Massachusetts 01003, United States
| | | | | |
Collapse
|
13
|
Wang E, Zhang C, Polavaram N, Liu F, Wu G, Schroeder MA, Lau JS, Mukhopadhyay D, Jiang SW, O'Neill BP, Datta K, Li J. The role of factor inhibiting HIF (FIH-1) in inhibiting HIF-1 transcriptional activity in glioblastoma multiforme. PLoS One 2014; 9:e86102. [PMID: 24465898 PMCID: PMC3900478 DOI: 10.1371/journal.pone.0086102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/04/2013] [Indexed: 01/13/2023] Open
Abstract
Glioblastoma multiforme (GBM) accounts for about 38% of primary brain tumors in the United States. GBM is characterized by extensive angiogenesis induced by vascular growth factors and cytokines. The transcription of these growth factors and cytokines is regulated by the Hypoxia-Inducible-Factor-1(HIF-1), which is a key regulator mediating the cellular response to hypoxia. It is known that Factor Inhibiting HIF-1, or FIH-1, is also involved in the cellular response to hypoxia and has the capability to physically interact with HIF-1 and block its transcriptional activity under normoxic conditions. Delineation of the regulatory role of FIH-1 will help us to better understand the molecular mechanism responsible for tumor growth and progression and may lead to the design of new therapies targeting cellular pathways in response to hypoxia. Previous studies have shown that the chromosomal region of 10q24 containing the FIH-1 gene is often deleted in GBM, suggesting a role for the FIH-1 in GBM tumorigenesis and progression. In the current study, we found that FIH-1 is able to inhibit HIF-mediated transcription of GLUT1 and VEGF-A, even under hypoxic conditions in human glioblastoma cells. FIH-1 has been found to be more potent in inhibiting HIF function than PTEN. This observation points to the possibility that deletion of 10q23-24 and loss or decreased expression of FIH-1 gene may lead to a constitutive activation of HIF-1 activity, an alteration of HIF-1 targets such as GLUT-1 and VEGF-A, and may contribute to the survival of cancer cells in hypoxia and the development of hypervascularization observed in GBM. Therefore FIH-1 can be potential therapeutic target for the treatment of GBM patients with poor prognosis.
Collapse
Affiliation(s)
- Enfeng Wang
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Chunyang Zhang
- Department of Neuro-Surgery, the First Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Navatha Polavaram
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Fengming Liu
- Department of Research and Development, Guangxi Medicinal Botanical Institute, Nanning, Guangxi, China
| | - Gang Wu
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Mark A. Schroeder
- Department of Radiation Oncology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Julie S. Lau
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Shi-Wen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
| | - Brian Patrick O'Neill
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Rochester, Minnesota, United States of America
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (KD); (JL)
| | - Jinping Li
- Department of Biomedical Science, Mercer University School of Medicine, Savannah, Georgia, United States of America
- Department of Obstetrics and Gynecology, Memorial Health Hospital, Savannah, Georgia, United States of America
- * E-mail: (KD); (JL)
| |
Collapse
|
14
|
Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathog 2013; 9:e1003789. [PMID: 24367256 PMCID: PMC3868520 DOI: 10.1371/journal.ppat.1003789] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis is a current major world-health problem, exacerbated by the causative pathogen, Mycobacterium tuberculosis (Mtb), becoming increasingly resistant to conventional antibiotic treatment. Mtb is able to counteract the bactericidal mechanisms of leukocytes to survive intracellularly and develop a niche permissive for proliferation and dissemination. Understanding of the pathogenesis of mycobacterial infections such as tuberculosis (TB) remains limited, especially for early infection and for reactivation of latent infection. Signaling via hypoxia inducible factor α (HIF-α) transcription factors has previously been implicated in leukocyte activation and host defence. We have previously shown that hypoxic signaling via stabilization of Hif-1α prolongs the functionality of leukocytes in the innate immune response to injury. We sought to manipulate Hif-α signaling in a well-established Mycobacterium marinum (Mm) zebrafish model of TB to investigate effects on the host's ability to combat mycobacterial infection. Stabilization of host Hif-1α, both pharmacologically and genetically, at early stages of Mm infection was able to reduce the bacterial burden of infected larvae. Increasing Hif-1α signaling enhanced levels of reactive nitrogen species (RNS) in neutrophils prior to infection and was able to reduce larval mycobacterial burden. Conversely, decreasing Hif-2α signaling enhanced RNS levels and reduced bacterial burden, demonstrating that Hif-1α and Hif-2α have opposing effects on host susceptibility to mycobacterial infection. The antimicrobial effect of Hif-1α stabilization, and Hif-2α reduction, were demonstrated to be dependent on inducible nitric oxide synthase (iNOS) signaling at early stages of infection. Our findings indicate that induction of leukocyte iNOS by stabilizing Hif-1α, or reducing Hif-2α, aids the host during early stages of Mm infection. Stabilization of Hif-1α therefore represents a potential target for therapeutic intervention against tuberculosis. Tuberculosis is a mycobacterial disease that was a major cause of death until the discovery of antibiotics in the mid-twentieth century. However, TB is once again on the rise, with the emergence of strains that are multi-drug resistant. Mycobacteria are specialists in evading immune cell killing and use host immune cells as a niche in which they can proliferate and survive latently, until subsequent re-activation and spreading causing life-threatening disease. Pharmaceutical reprogramming of the immune system to kill intracellular mycobacteria would represent a therapeutic strategy, effective against currently untreatable strains and less susceptible to drug resistance. Here we use an in vivo zebrafish model of TB to show that manipulation of the host genetic pathway responsible for detecting low oxygen levels (hypoxia) causes a decrease in mycobacterial infection. This antimicrobial effect was due to a priming of immune cells with increased levels of nitric oxide, a molecule that is used by immune cells to kill bacteria. Here we show in vivo manipulation of a host-signaling pathway aids the host in combatting mycobacteria infection, identifying hypoxic signaling as a potential target for future therapeutics against TB.
Collapse
|
15
|
Janke K, Brockmeier U, Kuhlmann K, Eisenacher M, Nolde J, Meyer HE, Mairbäurl H, Metzen E. Factor inhibiting HIF-1 (FIH-1) modulates protein interactions of apoptosis-stimulating p53 binding protein 2 (ASPP2). J Cell Sci 2013; 126:2629-40. [PMID: 23606740 DOI: 10.1242/jcs.117564] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The asparaginyl hydroxylase factor inhibiting HIF-1 (FIH-1) is an important suppressor of hypoxia-inducible factor (HIF) activity. In addition to HIF-α, FIH-1 was previously shown to hydroxylate other substrates within a highly conserved protein interaction domain, termed the ankyrin repeat domain (ARD). However, to date, the biological role of FIH-1-dependent ARD hydroxylation could not be clarified for any ARD-containing substrate. The apoptosis-stimulating p53-binding protein (ASPP) family members were initially identified as highly conserved regulators of the tumour suppressor p53. In addition, ASPP2 was shown to be important for the regulation of cell polarity through interaction with partitioning defective 3 homolog (Par-3). Using mass spectrometry we identified ASPP2 as a new substrate of FIH-1 but inhibitory ASPP (iASPP) was not hydroxylated. We demonstrated that ASPP2 asparagine 986 (N986) is a single hydroxylation site located within the ARD. ASPP2 protein levels and stability were not affected by depletion or inhibition of FIH-1. However, FIH-1 depletion did lead to impaired binding of Par-3 to ASPP2 while the interaction between ASPP2 and p53, apoptosis and proliferation of the cancer cells were not affected. Depletion of FIH-1 and incubation with the hydroxylase inhibitor dimethyloxalylglycine (DMOG) resulted in relocation of ASPP2 from cell-cell contacts to the cytosol. Our data thus demonstrate that protein interactions of ARD-containing substrates can be modified by FIH-1-dependent hydroxylation. The large cellular pool of ARD-containing proteins suggests that FIH-1 can affect a broad range of cellular functions and signalling pathways under certain conditions, for example, in response to severe hypoxia.
Collapse
Affiliation(s)
- Kirsten Janke
- Institute of Physiology, Faculty of Medicine, University Duisburg-Essen, 45147 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Yang M, Hardy AP, Chowdhury R, Loik ND, Scotti JS, McCullagh JSO, Claridge TDW, McDonough MA, Ge W, Schofield CJ. Substrate Selectivity Analyses of Factor Inhibiting Hypoxia-Inducible Factor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201208046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Yang M, Hardy AP, Chowdhury R, Loik ND, Scotti JS, McCullagh JSO, Claridge TDW, McDonough MA, Ge W, Schofield CJ. Substrate selectivity analyses of factor inhibiting hypoxia-inducible factor. Angew Chem Int Ed Engl 2013; 52:1700-4. [PMID: 23296631 DOI: 10.1002/anie.201208046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Ming Yang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kawabe S, Yokoyama Y. Role of hypoxia-inducible factor α in response to hypoxia and heat shock in the Pacific oyster Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:106-119. [PMID: 21748344 DOI: 10.1007/s10126-011-9394-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 06/02/2011] [Indexed: 05/31/2023]
Abstract
The Pacific oyster Crassostrea gigas inhabits the intertidal zone and shows tolerance to stress conditions such as hypoxia and heat shock. Although some information is available about the genes expressed in response to hypoxia, little is known about the molecular mechanism of the regulation of their expression in mollusks, including the Pacific oyster. Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of hypoxia-responsive transcription. In this study, we cloned HIF-α from the oyster and investigated its response to unique stress conditions, including air exposure, for the first time in mollusks. The cDNA of oyster Hif-α is 3,182 bp long, of which 2,094 bp encodes a protein of 698 amino acid residues. Northern and Western blot analysis showed that expression of oyster HIF-α mRNA and protein were induced by air exposure, and that expression was induced periodically during air exposure. In addition, induction of Hif-α mRNA increased by a maximum 8.0-fold by heat shock. Under heat shock at 35°C (lethal temperature for the oyster), however, it was induced later than at 30°C. After recovery from hypoxia and/or heat shock, Hif-α mRNA also upregulated. These data suggest that the oyster has a strategy to induce Hif-α mRNA in order to survive hypoxia and heat shock, and that HIF signaling is necessary for recovery from stress.
Collapse
Affiliation(s)
- Shinya Kawabe
- Department of Marine Bioscience, Faculty of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917-0003, Japan
| | | |
Collapse
|
19
|
Wilkins SE, Karttunen S, Hampton-Smith RJ, Murchland I, Chapman-Smith A, Peet DJ. Factor inhibiting HIF (FIH) recognizes distinct molecular features within hypoxia-inducible factor-α (HIF-α) versus ankyrin repeat substrates. J Biol Chem 2012; 287:8769-81. [PMID: 22270367 DOI: 10.1074/jbc.m111.294678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Factor Inhibiting HIF (FIH) catalyzes the β-hydroxylation of asparagine residues in HIF-α transcription factors as well as ankyrin repeat domain (ARD) proteins such as Notch and Gankyrin. Although FIH-mediated hydroxylation of HIF-α is well characterized, ARDs were only recently identified as substrates, and less is known about their recognition and hydroxylation by FIH. We investigated the molecular determinants of FIH substrate recognition, with a focus on differences between HIF and ARD substrates. We show that for ARD proteins, structural context is an important determinant of FIH-recognition, but analyses of chimeric substrate proteins indicate that the ankyrin fold alone is not sufficient to explain the distinct substrate properties of the ARDs compared with HIF. For both substrates the kinetic parameters of hydroxylation are influenced by the amino acids proximal to the target asparagine. Although FIH tolerates a variety of chemically disparate residues proximal to the asparagine, we demonstrate that certain combinations of amino acids are not permissive to hydroxylation. Finally, we characterize a conserved RLL motif in HIF and demonstrate that it mediates a high affinity interaction with FIH in the presence of cell lysate or macromolecular crowding agents. Collectively, our data highlight the importance of residues proximal to the asparagine in determining hydroxylation, and identify additional substrate-specific elements that contribute to distinct properties of HIF and ARD proteins as substrates for FIH. These distinct features are likely to influence FIH substrate choice in vivo and, therefore, have important consequences for HIF regulation.
Collapse
Affiliation(s)
- Sarah E Wilkins
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Pelletier J, Dayan F, Durivault J, Ilc K, Pécou E, Pouysségur J, Mazure NM. The asparaginyl hydroxylase factor-inhibiting HIF is essential for tumor growth through suppression of the p53–p21 axis. Oncogene 2011; 31:2989-3001. [DOI: 10.1038/onc.2011.471] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
21
|
Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 2011; 54:1946-56. [PMID: 21614571 DOI: 10.1007/s00125-011-2191-8] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 04/15/2011] [Indexed: 12/29/2022]
Abstract
Diabetes is frequently associated with hypoxia and is known to impair ischaemia-induced neovascularisation and other forms of adaptive cell and tissue responses to low oxygen levels. Hyperglycaemia appears to be the driving force of such deregulation. Recent data indicate that destabilisation of hypoxia-inducible factor 1 (HIF-1) is most likely the event that transduces hyperglycaemia into the loss of the cellular response to hypoxia in most diabetic complications. HIF-1 is a critical transcription factor involved in oxygen homeostasis that regulates a variety of adaptive responses to hypoxia, including angiogenesis, metabolic reprogramming and survival. Thus, destabilisation of HIF-1 is likely to have a negative impact on cell and tissue adaptation to low oxygen. Indeed, destabilisation of HIF-1 by high glucose levels has serious consequences in various organs and tissues, including myocardial collateralisation, wound healing, renal, neural and retinal function, as a result of poor cell and tissue responses to low oxygen. This review aims to integrate and summarise some of the most recent developments, including new proposed molecular models, on this research topic, particularly in terms of their implications for potential therapeutic approaches for the prevention or treatment of some of the diabetic complications characterised by impaired cellular and tissue responses to hypoxia.
Collapse
Affiliation(s)
- C F Bento
- Centre of Ophthalmology and Vision Sciences (COCV)-IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | | |
Collapse
|
22
|
Biochemical characterization of human HIF hydroxylases using HIF protein substrates that contain all three hydroxylation sites. Biochem J 2011; 436:363-9. [PMID: 21410436 DOI: 10.1042/bj20101201] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The HIF (hypoxia-inducible factor) plays a central regulatory role in oxygen homoeostasis. HIF proteins are regulated by three Fe(II)- and α-KG (α-ketoglutarate)-dependent prolyl hydroxylase enzymes [PHD (prolyl hydroxylase domain) isoenzymes 1-3 or PHD1, PHD2 and PHD3] and one asparaginyl hydroxylase [FIH (factor inhibiting HIF)]. The prolyl hydroxylases control the abundance of HIF through oxygen-dependent hydroxylation of specific proline residues in HIF proteins, triggering subsequent ubiquitination and proteasomal degradation. FIH inhibits the HIF transcription activation through asparagine hydroxylation. Understanding the precise roles and regulation of these four Fe(II)- and α-KG-dependent hydroxylases is of great importance. In the present paper, we report the biochemical characterization of the first HIF protein substrates that contain the CODDD (C-terminal oxygen-dependent degradation domain), the NODDD (N-terminal oxygen-dependent degradation domain) and the CAD (C-terminal transactivation domain). Using LC-MS/MS (liquid chromatography-tandem MS) detection, we show that all three PHD isoenzymes have a strong preference for hydroxylation of the CODDD proline residue over the NODDD proline residue and the preference is observed for both HIF1α and HIF2α protein substrates. In addition, steady-state kinetic analyses show differential substrate selectivity for HIF and α-KG in reference to the three PHD isoforms and FIH.
Collapse
|
23
|
Saban E, Chen YH, Hangasky J, Taabazuing C, Holmes BE, Knapp MJ. The second coordination sphere of FIH controls hydroxylation. Biochemistry 2011; 50:4733-40. [PMID: 21456582 PMCID: PMC3138472 DOI: 10.1021/bi102042t] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The factor inhibiting HIF (FIH) is a proximate oxygen sensor for human cells, hydroxylating Asn(803) within the α-subunit of the hypoxia inducible factor (HIF). FIH is an α-ketoglutatrate (αKG)-dependent, non-heme Fe(II) dioxygenase, in which Fe(II) is coordinated by a (His(2)Asp) facial triad, αKG, and H(2)O. Hydrogen bonding among the facial triad, the HIF-Asn(803) side chain, and various second-sphere residues suggests a functional role for the second coordination sphere in tuning the chemistry of the Fe(II) center. Point mutants of FIH were prepared to test the functional role of the αKG-centered (Asn(205) and Asn(294)) or HIF-Asn(803)-centered (Arg(238) and Gln(239)) second-sphere residues. The second sphere was tested for local effects on priming Fe(II) to react with O(2), oxidative decarboxylation, and substrate positioning. Steady-sate kinetics were used to test for overall catalytic effects; autohydroxylation rates were used to test for priming and positioning, and electronic spectroscopy was used to assess the primary coordination sphere and the electrophilicity of αKG. Asn(205) → Ala and Asn(294) → Ala mutants exhibited diminished rates of steady-state turnover, while minimally affecting autohydroxylation, consistent with impaired oxidative decarboxylation. Blue-shifted metal to ligand charge transfer transitions for (Fe+αKG)FIH indicated that these point mutations destabilized the π* orbitals of αKG, further supporting a slowed rate of oxidative decarboxylation. The Arg(238) → Met mutant exhibited steady-state rates too low to measure and diminished product yields, suggesting impaired substrate positioning or priming; the Arg(238) → Met mutant was capable of O(2) activation for the autohydroxylation reaction. The Gln(239) → Asn mutant exhibited significantly slowed steady-state kinetics and diminished product yields, suggesting impaired substrate positioning or priming. As HIF binding to the Gln(239) → Asn mutant stimulated autohydroxylation, it is more likely that this point mutant simply mispositions the HIF-Asn(803) side chain. This work combines kinetics and spectroscopy to show that these second-sphere hydrogen bonds play roles in promoting oxidative decarboxylation, priming Fe(II) to bind O(2), and positioning HIF-Asn(803).
Collapse
Affiliation(s)
- Evren Saban
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Yuan-Han Chen
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| | - John Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | | | - Breanne E. Holmes
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| |
Collapse
|
24
|
Bento CF, Pereira P. Regulation of hypoxia-inducible factor 1 and the loss of the cellular response to hypoxia in diabetes. Diabetologia 2011. [PMID: 21614571 DOI: 10.1007/s00125-001-219-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diabetes is frequently associated with hypoxia and is known to impair ischaemia-induced neovascularisation and other forms of adaptive cell and tissue responses to low oxygen levels. Hyperglycaemia appears to be the driving force of such deregulation. Recent data indicate that destabilisation of hypoxia-inducible factor 1 (HIF-1) is most likely the event that transduces hyperglycaemia into the loss of the cellular response to hypoxia in most diabetic complications. HIF-1 is a critical transcription factor involved in oxygen homeostasis that regulates a variety of adaptive responses to hypoxia, including angiogenesis, metabolic reprogramming and survival. Thus, destabilisation of HIF-1 is likely to have a negative impact on cell and tissue adaptation to low oxygen. Indeed, destabilisation of HIF-1 by high glucose levels has serious consequences in various organs and tissues, including myocardial collateralisation, wound healing, renal, neural and retinal function, as a result of poor cell and tissue responses to low oxygen. This review aims to integrate and summarise some of the most recent developments, including new proposed molecular models, on this research topic, particularly in terms of their implications for potential therapeutic approaches for the prevention or treatment of some of the diabetic complications characterised by impaired cellular and tissue responses to hypoxia.
Collapse
Affiliation(s)
- C F Bento
- Centre of Ophthalmology and Vision Sciences (COCV)-IBILI, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, Celas, 3000-548 Coimbra, Portugal.
| | | |
Collapse
|
25
|
Activation of hypoxia-inducible factor-1α (Hif-1α) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. Blood 2011; 118:712-22. [PMID: 21555741 DOI: 10.1182/blood-2010-12-324186] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The oxygen-sensing transcription factor hypoxia-inducible factor-1α (HIF-1α) plays a critical role in the regulation of myeloid cell function. The mechanisms of regulation are not well understood, nor are the phenotypic consequences of HIF modulation in the context of neutrophilic inflammation. Species conservation across higher metazoans enables the use of the genetically tractable and transparent zebrafish (Danio rerio) embryo to study in vivo resolution of the inflammatory response. Using both a pharmacologic approach known to lead to stabilization of HIF-1α, and selective genetic manipulation of zebrafish HIF-1α homologs, we sought to determine the roles of HIF-1α in inflammation resolution. Both approaches reveal that activated Hif-1α delays resolution of inflammation after tail transection in zebrafish larvae. This delay can be replicated by neutrophil-specific Hif activation and is a consequence of both reduced neutrophil apoptosis and increased retention of neutrophils at the site of tissue injury. Hif-activated neutrophils continue to patrol the injury site during the resolution phase, when neutrophils would normally migrate away. Site-directed mutagenesis of Hif in vivo reveals that hydroxylation of Hif-1α by prolyl hydroxylases critically regulates the Hif pathway in zebrafish neutrophils. Our data demonstrate that Hif-1α regulates neutrophil function in complex ways during inflammation resolution in vivo.
Collapse
|
26
|
Park H, Ko S, Jeon YH. Force field design and molecular dynamics simulations of factor-inhibiting HIF-1 and its complex with known inhibitors: implications for rational inhibitor design. J Mol Graph Model 2010; 29:221-8. [PMID: 20663694 DOI: 10.1016/j.jmgm.2010.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
Abstract
Based on molecular dynamics simulations in aqueous solution, we investigate the dynamic properties of factor-inhibiting HIF-1 (FIH1) and its complexes with the substrate 2-oxoglutarate (2OG) and the two known inhibitors, N-oxalylglycine (NOG) and N-oxalyl-D-phenylalanine (NODP). The results obtained with the newly developed force field parameters for the coordination environment of the active-site ferrous ion show that FIH1 undergoes a significant conformational stabilization with a decrease in motional amplitude upon binding of the substrate or the inhibitors. Two loop structures around the active-site reveal a high flexibility in the resting form of FIH1 with the high B-factor values. These high-amplitude motions of the flexible loops are found to be weakened significantly in the presence of the substrate or a weak inhibitor (NOG), and damped out upon binding of a potent and selective inhibitor (NODP) in the active site. A characteristic feature that discriminates the coordination structures of the active-site ferrous ion in complex with 2OG and NOG in solution from those in the X-ray crystal structures lies in the presence of a structural water molecule from bulk solvent at the sixth coordination position, which leads to the formation of a stable octahedral coordination geometry. However, the approach of such a structural water molecule to the active-site ferrous ion is prohibited in the FIH1-NODP complex, which should be attributed to the formation of hydrophobic contacts between the phenyl ring of the inhibitor and the side chains of Tyr102, Leu186, and Trp296 at the entrance of the active site. This indicates that the D-enantiomeric side-chain phenyl group of NODP should play an essential role in potent and selective inhibition of FIH1.
Collapse
Affiliation(s)
- Hwangseo Park
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-Dong, Kwangjin-Ku, Seoul 143-747, Republic of Korea.
| | | | | |
Collapse
|
27
|
Sakamoto T, Seiki M. Mint3 enhances the activity of hypoxia-inducible factor-1 (HIF-1) in macrophages by suppressing the activity of factor inhibiting HIF-1. J Biol Chem 2009; 284:30350-9. [PMID: 19726677 DOI: 10.1074/jbc.m109.019216] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key transcription factor regulating cellular responses to hypoxia and is composed of alpha and beta subunits. During normoxia, factor inhibiting HIF-1 (FIH-1) inhibits the activity of HIF-1 by preventing HIF-1alpha binding to p300/CBP via modification of the Asn(803) residue. However, it is not known whether FIH-1 activity can be regulated in an oxygen-independent manner. In this study, we survey possible binding proteins to FIH-1 and identify Mint3/APBA3, which has been reported to bind Alzheimer beta-amyloid precursor protein. Purified Mint3 binds FIH-1 and inhibits the ability of FIH-1 to modify HIF-1alpha in vitro. In a reporter assay, the activity of HIF-1alpha is suppressed because of endogenous FIH-1 in HEK293 cells, and expression of Mint3 antagonizes this suppression. Macrophages are known to depend on glycolysis for ATP production because of elevated HIF-1 activity. FIH-1 activity is suppressed in macrophages by Mint3 so as to maintain HIF-1 activity. FIH-1 forms a complex with Mint3, and these two factors co-localize within the perinuclear region. Knockdown of Mint3 expression in macrophages leads to redistribution of FIH-1 to the cytoplasm and decreases glycolysis and ATP production. Thus, Mint3 regulates the FIH-1-HIF-1 pathway, which controls ATP production in macrophages and therefore represents a potential new therapeutic target to regulate macrophage-mediated inflammation.
Collapse
Affiliation(s)
- Takeharu Sakamoto
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | |
Collapse
|
28
|
Wilkins SE, Hyvärinen J, Chicher J, Gorman JJ, Peet DJ, Bilton RL, Koivunen P. Differences in hydroxylation and binding of Notch and HIF-1alpha demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1). Int J Biochem Cell Biol 2009; 41:1563-71. [PMID: 19401150 DOI: 10.1016/j.biocel.2009.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/08/2009] [Accepted: 01/12/2009] [Indexed: 12/23/2022]
Abstract
FIH-1, factor inhibiting hypoxia-inducible factor-1 (HIF-1), regulates oxygen sensing by hydroxylating an asparagine within HIF-alpha. It also hydroxylates asparagines in many proteins containing ankyrin repeats, including Notch1-3, p105 and I?B?. Relative binding affinity and hydroxylation rate are crucial determinants of substrate selection and modification. We determined the contributions of substrate sequence composition and length and of oxygen concentration to the FIH-1-binding and/or hydroxylation of Notch1-4 and compared them with those for HIF-1alpha. We also demonstrated hydroxylation of two asparagines in Notch2 and 3, corresponding to Sites 1 and 2 of Notch1, by mass spectrometry for the first time. Our data demonstrate that substrate length has a much greater influence on FIH-1-dependent hydroxylation of Notch than of HIF-1alpha, predominantly through binding affinity rather than maximal reaction velocity. The K(m) value of FIH-1 for Notch1, < 0.2 microM, is at least 250-fold lower than that of 50 microM for HIF-1alpha. Site 1 of Notch1-3 appeared the preferred site of FIH-1 hydroxylation in these substrates. Interestingly, binding of Notch4 to FIH-1 was observed with an affinity almost 10-fold lower than for Notch1-3, but no hydroxylation was detected. Importantly, we demonstrate that the K(m) of FIH-1 for oxygen at the preferred Site 1 of Notch1-3, 10-19 microM, is an order of magnitude lower than that for Site 2 or HIF-1alpha. Hence, at least during in vitro hydroxylation, Notch is likely to become efficiently hydroxylated by FIH-1 even under relatively severe hypoxic conditions, where HIF-1alpha hydroxylation would be reduced.
Collapse
Affiliation(s)
- Sarah E Wilkins
- School of Molecular and Biomedical Science and the Australian Research Council Special Research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
| | | | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Couvelard A, Deschamps L, Rebours V, Sauvanet A, Gatter K, Pezzella F, Ruszniewski P, Bedossa P. Overexpression of the oxygen sensors PHD-1, PHD-2, PHD-3, and FIH Is associated with tumor aggressiveness in pancreatic endocrine tumors. Clin Cancer Res 2008; 14:6634-9. [PMID: 18927305 DOI: 10.1158/1078-0432.ccr-07-5258] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Tumor hypoxia is associated with poor prognosis and resistance to treatment. Our aim was to assess the expression of proteins that act as cellular oxygen sensors, directly regulating the hypoxia inducible factor (HIF) pathway, i.e., prolyl hydroxylase domain proteins (PHD)-1, PHD-2, PHD-3, and FIH in pancreatic endocrine tumors (PET). EXPERIMENTAL DESIGN Immunohistochemical expression of these markers was examined in 109 PET included in tissue microarrays and representing various stages of tumorigenesis. The results were correlated with histoprognostic factors including Ki-67 index, presence of a fibrotic focus, and microvascular density (MVD). RESULTS The cytoplasmic and nuclear expressions of the three PHD isoforms were associated, and their expression was significantly higher in aggressive PETS, malignant, with lymph node metastases or with lower MVD. High nuclear expression of the three isoforms highly correlated with HIF-1alpha nuclear expression (P = 0.02, 0.003, and 0.006, respectively). Moreover, high nuclear PHD-1 or PHD-3 expression was associated with a poorer survival (P = 0.01). Cytoplasmic FIH was significantly higher in malignant PETs (P = 0.05) and in PETs with lymph node metastases (P = 0.02), and its expression correlated positively with those of cytoplasmic PHD isoforms (P < 0001). FIH stromal expression was found in 23% of PETs and correlated with higher FIH nuclear expression (P = 0.0004) and poorer disease-free survival (P = 0.0018). CONCLUSION HIF regulatory proteins are highly expressed in PET and their expression is correlated with tumor metastases, tumor recurrence, and prognosis. These molecules that play an important role in the control of hypoxia-induced genes may have a function in the regulation of cellular proliferation and differentiation during endocrine tumorigenesis.
Collapse
Affiliation(s)
- Anne Couvelard
- Department of Pathology, University Paris 7, Clichy, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
An J, Mo D, Liu H, Veena M, Srivatsan E, Massoumi R, Rettig MB. Inactivation of the CYLD deubiquitinase by HPV E6 mediates hypoxia-induced NF-kappaB activation. Cancer Cell 2008; 14:394-407. [PMID: 18977328 PMCID: PMC2651888 DOI: 10.1016/j.ccr.2008.10.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 08/03/2008] [Accepted: 10/07/2008] [Indexed: 11/30/2022]
Abstract
The biochemical mechanisms that underlie hypoxia-induced NF-kappaB activity have remained largely undefined. Here, we find that prolonged hypoxia-induced NF-kappaB activation is restricted to cancer cell lines infected with high-risk human papillomavirus (HPV) serotypes. The HPV-encoded E6 protein is necessary and sufficient for prolonged hypoxia-induced NF-kappaB activation in these systems. The molecular target of E6 in the NF-kappaB pathway is the CYLD lysine 63 (K63) deubiquitinase, a negative regulator of the NF-kappaB pathway. Specifically, hypoxia stimulates E6-mediated ubiquitination and proteasomal degradation of CYLD. Given the established role of NF-kappaB in human carcinogenesis, these findings provide a potential molecular/viral link between hypoxia and the adverse clinical outcomes observed in HPV-associated malignancies.
Collapse
Affiliation(s)
- Jiabin An
- Department of Medicine, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
| | - Deqiong Mo
- Department of Medicine, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
| | - Huiren Liu
- Department of Medicine, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
| | - Mysore Veena
- Department of Surgery, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
| | - Eri Srivatsan
- Department of Surgery, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
| | - Ramin Massoumi
- Department of Laboratory Medicine, Cell and Experimental Pathology, Malmö University Hospital, SE-205 02, Malmö, Sweden
| | - Matthew B. Rettig
- Department of Medicine, VA Greater Los Angeles Healthcare System-West Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, Division of Hematology-Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
- Corresponding author: ; phone: 310-206-2436. fax: 310-268-4508
| |
Collapse
|
32
|
Lee SH, Ryu SE. Monoclonal antibody-based screening assay for factor inhibiting hypoxia-inducible factor inhibitors. ACTA ACUST UNITED AC 2008; 13:494-503. [PMID: 18566480 DOI: 10.1177/1087057108318800] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The factor-inhibiting hypoxia-inducible factor (FIH) hydroxylates the asparagine 803 (Asn803) residue of the hypoxia-inducible factor 1alpha (HIF-1alpha), and the modification abrogates the transcriptional activity of HIF-1alpha. Because FIH is more active on HIF-1alpha than prolyl hydroxylase domain proteins under hypoxic conditions, its inhibitors have potential to be developed as anti-ischemic drugs targeting normal cells stressed by hypoxia. In this study, the authors developed the first monoclonal antibody, SHN-HIF1alpha, specifically to Asn803 hydroxylated HIF-1alpha and a sensitive assay system for FIH inhibitors using the monoclonal antibody (Mab). SHN-HIF1alpha showed 740 times higher affinity to the Asn803 hydroxylated HIF-1alpha peptide than the unmodified one. An enzyme-linked immunosorbent assay-based system using SHN-HIF1alpha displayed at least 30 times more sensitivity than previous methods for screening FIH inhibitors and was easily applicable to develop a high-throughput screening system. SHN-HIF1alpha also showed an Asn803 hydroxylation-dependent specificity to HIF-1alpha in cells. Taken together, the results suggest that it may be used to analyze the in vivo and in vitro activities of FIH inhibitors.
Collapse
Affiliation(s)
- Sang-Hyeup Lee
- Systemic Proteomics Research Center, KRIBB, Yuseong, Daejeon, Korea
| | | |
Collapse
|
33
|
Abstract
Idiopathic erythrocytosis is an uncommon disease, and is defined by an increase in red blood cell mass. The differential diagnosis of erythrocytosis is extensive, and can be divided into primary and secondary forms. Primary erythrocytoses are due to intrinsic defects in erythroid precursor cells and are characterized by low erythropoietin levels. Secondary erythrocytoses are extrinsic to erythroid progenitors and are characterized by either high or inappropriately normal erythropoietin levels. A distinct subset of secondary erythrocytoses are due to genetic mutations in key proteins of the oxygen-sensing pathway. These proteins constitute the core molecular machinery of oxygen-sensing with respect to red blood cell control. Apart from assigning physiologic roles for these proteins, studies of these rare mutations have (i) revealed the exquisite sensitivity of this pathway to genetic perturbations, (ii) highlighted important functional regions of the proteins, and (iii) provided a basis for potentially targeting this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Frank S Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 605 Stellar Chance Labs, 422 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Abstract
The hypoxia-inducible factors (HIFs) are critical for cellular adaptation to limiting oxygen and regulate a wide array of genes when cued by cellular oxygen-sensing mechanisms. HIF is able to direct transcription from either of two transactivation domains, each of which is regulated by distinct mechanisms. The oxygen-dependent asparaginyl hydroxylase factor-inhibiting HIF-1alpha (FIH-1) is a key regulator of the HIF C-terminal transactivation domain, and provides a direct link between oxygen sensation and HIF-mediated transcription. Additionally, there are phosphorylation and nitrosylation events reported to modulate HIF transcriptional activity, as well as numerous transcriptional coactivators and other interacting proteins that together provide cell and tissue specificity of HIF target gene regulation.
Collapse
Affiliation(s)
- K Lisy
- The School of Molecular and Biomedical Science, and the ARC Special research Centre for the Molecular Genetics of Development, University of Adelaide, Adelaide, SA 5005, Australia
| | | |
Collapse
|
35
|
Cook KM, Schofield CJ. Therapeutic Strategies that Target the HIF System. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Yucel MA, Kurnaz IA. An in silico model for HIF-alpha regulation and hypoxia response in tumor cells. Biotechnol Bioeng 2007; 97:588-600. [PMID: 17089387 DOI: 10.1002/bit.21247] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The dependency of the growth and metastasis of tumors on the new blood vessel formation, or angiogenesis, has opened up new potentials to tumor therapy, nevertheless understanding the molecular mechanisms involved in angiogenesis is crucial in the bioengineering of novel anti-angiogenic drugs. The key component in hypoxia sensing in tumor cells is the hypoxia-inducible factor, HIF-1alpha, which is inactivated through proteosome-mediated degradation under normoxic conditions. Two enzymes have been reported to hydroxylate HIF-1alpha, namely prolyl hydroxylase (PH), recruiting the proetasome complex and degrading cytoplasmic HIF-1alpha, and asparaginyl hydroxylase/factor inhibiting HIF-1alpha (FIH-1), downregulating the recruitment of p300 to the promoter, thereby reducing the transcriptional activity of HIF-1alpha. In this study, we have constructed an in silico model of a tumor cell using the GEPASI 3.30 biochemical simulation software (http://www.gepasi.org) and studied the performances of PH and FIH-1 on HIF-1alpha degradation and inactivation, respectively, as monitored by expression of the vascular endothelial growth factor, VEGF, during hypoxia. In our biochemical models, FIH-1 can successfully increase hypoxic transcription of VEGF, however FIH-1 on its own is not sufficient to inactivate HIF-1 completely, leading to background VEGF transcription under normoxic conditions. On the other hand, PH is necessary to increase the hypoxic transcriptional response, and can effectively shut off normoxic transcription. We therefore propose that regulating PH activity can be a primary target for anti-angiogenic bioengineering research.
Collapse
Affiliation(s)
- Meryem A Yucel
- Bogazici University, Institute of Biomedical Engineering, Bebek, Istanbul, Turkey
| | | |
Collapse
|
37
|
Li J, Wang E, Dutta S, Lau JS, Jiang SW, Datta K, Mukhopadhyay D. Protein kinase C-mediated modulation of FIH-1 expression by the homeodomain protein CDP/Cut/Cux. Mol Cell Biol 2007; 27:7345-53. [PMID: 17682059 PMCID: PMC2168911 DOI: 10.1128/mcb.02201-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Under normoxia, FIH-1 (factor inhibiting HIF-1) inhibits the transcriptional activity of hypoxia-inducible factor (HIF); however, under such conditions, we observed a significant level of HIF activity in renal cell carcinoma (RCC). This phenomenon could be attributed to a decrease in the level of functional FIH that has been identified in our previous work. Nonetheless, the molecular mechanism of FIH regulation in cancer, in particular RCC, was unclear until now. In this communication, we have demonstrated that in RCC, the Cut-like homeodomain protein (CDP/Cut) is involved in FIH transcriptional regulation and is controlled by a specific signaling event involving protein kinase C (PKC) zeta. Furthermore, we have defined a unique CDP/Cut binding site on the FIH promoter. With chromatin immunoprecipitation assays, we show that CDP binds to the FIH-1 promoter in vivo and that this binding is PKC zeta dependent. Moreover, we have also defined a potential phosphorylation site in CDP (serine 987) that modulates FIH expression. CDP/Cut is a transcriptional repressor that decreases FIH-1 expression and subsequently leads to a decrease in the repressor activity of FIH-1. Without this repression, HIF activity increases, allowing for the increased transcription of the genes it regulates, such as the vascular endothelial growth factor and GLUT-1 genes. Both CDP and HIF levels are increased in several cancers and are responsible for the metastatic progression of the tumors. Taken together, our results suggest for the first time a potential connection between CDP and FIH that could lead to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Jinping Li
- Department of Biochemistry and Molecular Biology, Gugg 1401A, Mayo Clinic College of Medicine, 200 First Street SW, Rochester MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ferguson JE, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C. ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol 2007; 27:6407-19. [PMID: 17636018 PMCID: PMC2099627 DOI: 10.1128/mcb.00511-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The molecular mechanisms of endothelial differentiation into a functional vascular network are incompletely understood. To identify novel factors in endothelial development, we used a microarray screen with differentiating embryonic stem (ES) cells that identified the gene for ankyrin repeat and SOCS box protein 4 (ASB4) as the most highly differentially expressed gene in the vascular lineage during early differentiation. Like other SOCS box-containing proteins, ASB4 is the substrate recognition molecule of an elongin B/elongin C/cullin/Roc ubiquitin ligase complex that mediates the ubiquitination and degradation of substrate protein(s). High levels of ASB4 expression in the embryonic vasculature coincide with drastic increases in oxygen tension as placental blood flow is initiated. However, as vessels mature and oxygen levels stabilize, ASB4 expression is quickly downregulated, suggesting that ASB4 may function to modulate an endothelium-specific response to increasing oxygen tension. Consistent with the hypothesis that ASB4 function is regulated by oxygen concentration, ASB4 interacts with the factor inhibiting HIF1alpha (FIH) and is a substrate for FIH-mediated hydroxylation via an oxygen-dependent mechanism. Additionally, overexpression of ASB4 in ES cells promotes differentiation into the vascular lineage in an oxygen-dependent manner. We postulate that hydroxylation of ASB4 in normoxia promotes binding to and degradation of substrate protein(s) to modulate vascular differentiation.
Collapse
Affiliation(s)
- James E Ferguson
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Ozer A, Bruick RK. Non-heme dioxygenases: cellular sensors and regulators jelly rolled into one? Nat Chem Biol 2007; 3:144-53. [PMID: 17301803 DOI: 10.1038/nchembio863] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Members of the Fe(II)- and 2-oxoglutarate-dependent family of dioxygenases have long been known to oxidize several amino acids in various protein targets to facilitate protein folding. However, in recent years investigators have characterized several such hydroxylation modifications that serve a regulatory, rather than structural, purpose. Furthermore, the responsible enzymes seem to function directly as sensors of the cellular environment and metabolic state. For example, a cellular response pathway to low oxygen (hypoxia) is orchestrated through the actions of prolyl and asparaginyl hydroxylases that govern both the oxygen-dependent stability and transcriptional activity of the hypoxia-inducible transcription factor. Recently, a different subfamily of Fe(II)- and 2-oxoglutarate-dependent dioxygenases has been shown to carry out histone demethylation. The discovery of protein regulation via hydroxylation raises the possibility that other Fe(II)- and 2-oxoglutarate-dependent dioxygenases might also serve in a similar capacity.
Collapse
Affiliation(s)
- Abdullah Ozer
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas 75390-9038, USA
| | | |
Collapse
|
40
|
Vissers MCM, Gunningham SP, Morrison MJ, Dachs GU, Currie MJ. Modulation of hypoxia-inducible factor-1 alpha in cultured primary cells by intracellular ascorbate. Free Radic Biol Med 2007; 42:765-72. [PMID: 17320759 DOI: 10.1016/j.freeradbiomed.2006.11.023] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/19/2006] [Accepted: 11/25/2006] [Indexed: 11/29/2022]
Abstract
Control of the transcription factor hypoxia inducible factor (HIF)-1 is mediated by hydroxylation by proline and asparagine hydroxylases. These enzymes require ascorbate for optimal activity, but little attention has been given to the effect of ascorbate on HIF-1 activation. Furthermore, cells in culture are ascorbate deficient. We investigated the effect of intracellular ascorbate on HIF-1alpha protein levels and on HIF-1-mediated gene expression in two human primary cell lines (umbilical vein endothelial cells and skin fibroblasts) and one human cancer cell line (A431 epithelial cells). Under normal culture conditions the cells contained no ascorbate and adding ascorbate to the medium increased intracellular concentrations in a dose-dependent manner. A basal level of HIF-1alpha detected in nonsupplemented cells under normoxic conditions disappeared when 10 microM ascorbate was added to the medium. Induction of HIF-1alpha by hypoxia (1% O(2)) or by CoCl(2) was markedly inhibited by ascorbate and loading with physiological levels resulted in almost complete reversal of HIF-1alpha stabilisation. Gene expression was similarly affected, with VEGF mRNA and GLUT-1 up-regulation being inhibited by ascorbate. Hence intracellular ascorbate is a major regulator of the hypoxic response in normal cells and optimal levels of this vitamin will have a profound effect on HIF-1-regulated processes.
Collapse
Affiliation(s)
- Margret C M Vissers
- Free Radical Research Group, Pathology Department, Christchurch School of Medicine and Health Sciences, Christchurch, New Zealand.
| | | | | | | | | |
Collapse
|
41
|
Linke S, Hampton‐Smith RJ, Peet DJ. Characterization of Ankyrin Repeat–Containing Proteins as Substrates of the Asparaginyl Hydroxylase Factor Inhibiting Hypoxia‐Inducible Transcription Factor. Methods Enzymol 2007; 435:61-85. [DOI: 10.1016/s0076-6879(07)35004-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Cockman ME, Lancaster DE, Stolze IP, Hewitson KS, McDonough MA, Coleman ML, Coles CH, Yu X, Hay RT, Ley SC, Pugh CW, Oldham NJ, Masson N, Schofield CJ, Ratcliffe PJ. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH). Proc Natl Acad Sci U S A 2006; 103:14767-72. [PMID: 17003112 PMCID: PMC1578504 DOI: 10.1073/pnas.0606877103] [Citation(s) in RCA: 231] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Studies on hypoxia-sensitive pathways have revealed a series of Fe(II)-dependent dioxygenases that regulate hypoxia-inducible factor (HIF) by prolyl and asparaginyl hydroxylation. The recognition of these unprecedented signaling processes has led to a search for other substrates of the HIF hydroxylases. Here we show that the human HIF asparaginyl hydroxylase, factor inhibiting HIF (FIH), also efficiently hydroxylates specific asparaginyl (Asn)-residues within proteins of the IkappaB family. After the identification of a series of ankyrin repeat domain (ARD)-containing proteins in a screen for proteins interacting with FIH, the ARDs of p105 (NFKB1) and IkappaBalpha were shown to be efficiently hydroxylated by FIH at specific Asn residues in the hairpin loops linking particular ankyrin repeats. The target Asn residue is highly conserved as part of the ankyrin consensus, and peptides derived from a diverse range of ARD-containing proteins supported FIH enzyme activity. These findings demonstrate that this type of protein hydroxylation is not restricted to HIF and strongly suggest that FIH-dependent ARD hydroxylation is a common occurrence, potentially providing an oxygen-sensitive signal to a diverse range of processes.
Collapse
Affiliation(s)
- Matthew E. Cockman
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - David E. Lancaster
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Ineke P. Stolze
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Kirsty S. Hewitson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Michael A. McDonough
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Mathew L. Coleman
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Charlotte H. Coles
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Xiaohong Yu
- Centre for Ecology and Hydrology, Oxford OX1 3SR, United Kingdom
| | - Ronald T. Hay
- Centre for Interdisciplinary Research, School of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; and
| | - Steven C. Ley
- Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, United Kingdom
| | - Christopher W. Pugh
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Neil J. Oldham
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Norma Masson
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, United Kingdom
| | - Peter J. Ratcliffe
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Oxford OX3 7BN, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
Acker H. The oxygen sensing signal cascade under the influence of reactive oxygen species. Philos Trans R Soc Lond B Biol Sci 2006; 360:2201-10. [PMID: 16321790 PMCID: PMC1569600 DOI: 10.1098/rstb.2005.1760] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Structural and functional integrity of organ function profoundly depends on a regular oxygen and glucose supply. Any disturbance of this supply becomes life threatening and may result in severe loss of organ function. Particular reductions in oxygen availability (hypoxia) caused by respiratory or blood circulation irregularities cannot be tolerated for longer periods due to an insufficient energy supply by anaerobic glycolysis. Complex cellular oxygen sensing systems have evolved to tightly regulate oxygen homeostasis. In response to variations in oxygen partial pressure (PO2), these systems induce adaptive and protective mechanisms to avoid or at least minimize tissue damage. These various responses might be based on a range of oxygen sensing signal cascades including an isoform of the neutrophil NADPH oxidase, different electron carrier units of the mitochondrial chain such as a specialized mitochondrial, low PO2 affinity cytochrome c oxidase (aa3) and a subfamily of 2-oxoglutarate dependent dioxygenases termed HIF (hypoxia inducible factor) prolyl-hydroxylase and HIF asparaginyl hydroxylase called factor-inhibiting HIF (FIH-1). Thus, specific oxygen sensing cascades involving reactive oxygen species as second messengers may by means of their different oxygen sensitivities, cell-specific and subcellular localization help to tailor various adaptive responses according to differences in tissue oxygen availability.
Collapse
Affiliation(s)
- Helmut Acker
- Universität Duisburg-Essen Institut für Physiologie Hufelandstr. 55 IG1, D-452147 Essen/FRG, Germany.
| |
Collapse
|
44
|
Bracken CP, Fedele AO, Linke S, Balrak W, Lisy K, Whitelaw ML, Peet DJ. Cell-specific regulation of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha stabilization and transactivation in a graded oxygen environment. J Biol Chem 2006; 281:22575-85. [PMID: 16760477 DOI: 10.1074/jbc.m600288200] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha are closely related, key transcriptional regulators of the hypoxic response, countering a low oxygen situation with the up-regulation of target genes associated with numerous processes, including vascularization and glycolysis. This involves a dual mechanism of control through both stabilization and transactivation, regulated via prolyl and asparaginyl hydroxylation. Despite high similarity with respect to protein sequence and activation pathway, a growing number of physiological and mechanistic differences between HIF-1alpha and HIF-2alpha are being reported. To further characterize this nonredundancy, the stabilization of endogenous proteins and regulation of the transactivation domains were compared in a graded oxygen environment across a series of cell lines. Although generally similar results were found, interesting and specific differences between the HIF-alpha proteins were observed within certain cell lines, such as rat adrenal PC12s, emphasizing the cell-specific nature of HIF-alpha regulation. We characterize a conserved amino acid substitution between HIF-1alpha and HIF-2alpha that contributes to the intrinsically higher FIH-1-mediated asparaginyl hydroxylation of HIF-1alpha and, hence, lower HIF-1alpha activity. In addition, our data demonstrate that the different cell lines can be classified into two distinct groups: those in which stabilization and transactivation proceed in conjunction (HeLa, 293T, and COS-1) and those cells in which HIF-alpha is stabilized prior to transactivation (PC12, HepG2, and CACO2). Interestingly, the initial stabilization of HIF-alpha prior to transactivation up-regulation predicted from in vitro derived hydroxylation data is only true for a subset of cells.
Collapse
Affiliation(s)
- Cameron P Bracken
- School of Molecular and Biomedical Science, University of Adelaide, South Australia
| | | | | | | | | | | | | |
Collapse
|
45
|
Bi X, Lin Q, Foo TW, Joshi S, You T, Shen HM, Ong CN, Cheah PY, Eu KW, Hew CL. Proteomic Analysis of Colorectal Cancer Reveals Alterations in Metabolic Pathways. Mol Cell Proteomics 2006; 5:1119-30. [PMID: 16554294 DOI: 10.1074/mcp.m500432-mcp200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Colorectal cancer is the second leading killer cancer worldwide and presently the most common cancer among males in Singapore. The study aimed to detect changes of protein profiles associated with the process of colorectal tumorigenesis to identify specific protein markers for early colorectal cancer detection and diagnosis or as potential therapeutic targets. Seven pairs of colorectal cancer tissues and adjacent normal mucosa were examined by two-dimensional gel electrophoresis at basic pH range (pH 7-10). Intensity changes of 34 spots were detected with statistical significance. 16 of the 34 spots were identified by MALDI-TOF/TOF tandem mass spectrometry. Changes in protein expression levels revealed a significantly enhanced glycolytic pathway (Warburg effect), a decreased gluconeogenesis, a suppressed glucuronic acid pathway, and an impaired tricarboxylic acid cycle. Observed changes in protein abundance were verified by two-dimensional DIGE. These changes reveal an underlying mechanism of colorectal tumorigenesis in which the roles of impaired tricarboxylic acid cycle and the Warburg effect may be critical.
Collapse
Affiliation(s)
- Xuezhi Bi
- Department of Biological Sciences, National University of Singapore, Singapore 117543
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Locke D, Koreen IV, Harris AL. Isoelectric points and post-translational modifications of connexin26 and connexin32. FASEB J 2006; 20:1221-3. [PMID: 16645047 DOI: 10.1096/fj.05-5309fje] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The isoelectric points of the gap junction proteins connexin26 (Cx26) and connexin32 (Cx32) were determined by isoelectric focusing in free fluids. The isoelectric points were significantly more acidic than predicted from amino acid sequences and different from each other, allowing homomeric channels to be resolved separately. The isoelectric points of the homomeric channels bracketed the isoelectric points of heteromeric Cx26/Cx32 channels. For heteromeric channels, Cx26 and Cx32 were found in overlapping, pH-focused fractions, indicating quaternary structure was retained. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to identify post-translational modifications of Cx26 and Cx32 cytoplasmic domains, including the first reported post-translational modifications of Cx26. Suspected modifications were hydroxylation and/or phosphorylation near the amino terminus of both connexins, gamma-carboxyglutamate residues in the cytoplasmic loop of both connexins, phosphorylation in the carboxyl-terminal domain of Cx32, and palmitoylation at the carboxyl-terminus of Cx32. These modifications contribute to the measured acidic isoelectric points of Cx26 and Cx32, whereas their low molecular masses would not appreciably change connexin SDS-PAGE mobility. Most of these modifications have not previously been identified for connexins and may be instrumental in guiding and understanding novel aspects of channel trafficking and molecular mechanisms of channel regulation.
Collapse
Affiliation(s)
- Darren Locke
- Department of Pharmacology and Physiology, New Jersey Medical School, 185 South Orange Ave., University of Medicine and Dentistry of New Jersey, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|
47
|
Law SHW, Wu RSS, Ng PKS, Yu RMK, Kong RYC. Cloning and expression analysis of two distinct HIF-alpha isoforms--gcHIF-1alpha and gcHIF-4alpha--from the hypoxia-tolerant grass carp, Ctenopharyngodon idellus. BMC Mol Biol 2006; 7:15. [PMID: 16623959 PMCID: PMC1473195 DOI: 10.1186/1471-2199-7-15] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Accepted: 04/20/2006] [Indexed: 01/22/2023] Open
Abstract
Background Hypoxia-inducible factors (HIFs) are involved in adaptive and survival responses to hypoxic stress in mammals. In fish, very little is known about the functions of HIFs. Results We have cloned and characterized two distinct HIF-alpha cDNAs – gcHIF-1alpha and gcHIF-4alpha – from the hypoxia-tolerant grass carp. The deduced gcHIF-1alpha protein is highly similar to the HIF-1alphas (57–68%) from various vertebrate species, while gcHIF-4alpha is a novel isoform, and shows an equivalent degree of amino acid identity (41–47%) to the HIF-1alpha, HIF-2alpha and HIF-3alpha proteins so far described. Parsimony analysis indicated that gcHIF-4alpha is most closely related to the HIF-3alpha proteins. Northern blot analysis showed that mRNA levels of gcHIF-1alpha and gcHIF-4alpha differ substantially under normoxic and hypoxic conditions, while Western blot studies demonstrated that the endogenous protein levels for both gcHIF-1alpha and gcHIF-4alpha are similarly responsive to hypoxia. Our findings suggest that both gcHIF-1alpha and gcHIF-4alpha are differentially regulated at the transcriptional and translational levels. HRE-luciferase reporter assays show that both proteins function as transcription activators and play distinct roles in modulating the hypoxic response in grass carp. Conclusion There are at least two distinct HIF-alpha isoforms – gcHIF-1alpha and gcHIF-4alpha – in the hypoxia-tolerant grass carp, which are differentially expressed and regulated in different fish organs in response to hypoxic stress. Overall, the results suggest that unique molecular mechanisms operate through these two HIF-alpha isoforms, which underpin the hypoxic response in the hypoxia-tolerant grass carp.
Collapse
Affiliation(s)
- Sheran HW Law
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Rudolf SS Wu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Coastal Pollution and Conservation, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Patrick KS Ng
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Richard MK Yu
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Coastal Pollution and Conservation, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| | - Richard YC Kong
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
- Centre for Coastal Pollution and Conservation, City University of Hong Kong, Kowloon Tong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
48
|
Dann CE, Bruick RK. Dioxygenases as O2-dependent regulators of the hypoxic response pathway. Biochem Biophys Res Commun 2005; 338:639-47. [PMID: 16140259 DOI: 10.1016/j.bbrc.2005.08.140] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Accepted: 08/19/2005] [Indexed: 11/28/2022]
Abstract
A ubiquitous pathway by which mammalian cells sense and respond to changes in oxygen availability relies upon the hypoxic induction of a transcription factor, HIF. HIF in turn activates the expression of an assemblage of genes promoting compensatory shifts in the capacity for anaerobic metabolism, O2 delivery, and other adaptive processes. The stability and activity of HIF are each regulated as a function of O2. Both mechanisms are directly mediated by posttranslational modification of this transcription factor: hydroxylation of proline and asparagine residues, respectively. These modifications are performed by members of the Fe(II)- and 2-oxoglutarate-dependent dioxygenase family whose activities are directly and indirectly dependent on cellular O2 levels. As such, these oxygenases fill a role as environmental and metabolic sensors, a paradigm that may extend to other biological pathways.
Collapse
Affiliation(s)
- Charles E Dann
- Department of Biochemistry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, USA
| | | |
Collapse
|
49
|
Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 2005; 338:617-26. [PMID: 16139242 DOI: 10.1016/j.bbrc.2005.08.111] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/15/2005] [Indexed: 11/28/2022]
Abstract
Analysis of oxygen sensitive pathways that regulate the hypoxia inducible factor (HIF) transcriptional system has revealed a novel role for oxygenases in signalling hypoxia. The enzymes, which catalyse hydroxylation of specific prolyl and asparaginyl residues in the regulatory HIF-alpha subunits, belong to the superfamily of non-haem Fe(II)-dependent oxygenases that use the citric acid cycle intermediate 2-oxoglutarate (2OG) as a co-substrate. We review biochemical and physiological data that demonstrate a central role for these oxygenases in integrating multiple signals that coordinate cellular responses to hypoxia.
Collapse
Affiliation(s)
- Christopher J Schofield
- Oxford Centre for Molecular Sciences, Department of Chemistry, Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
50
|
De Biase A, Knoblach SM, Di Giovanni S, Fan C, Molon A, Hoffman EP, Faden AI. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics 2005; 22:368-81. [PMID: 15942019 DOI: 10.1152/physiolgenomics.00081.2005] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Changes in gene expression contribute to pathophysiological alterations following spinal cord injury (SCI). We examined gene expression over time (4 h, 24 h, 7 days) at the impact site, as well as rostral and caudal regions, following mild, moderate, or severe contusion SCI in rats. High-density oligonucleotide microarrays were used that included approximately 27,000 genes/ESTs (Affymetrix RG-U34; A, B and C arrays), together with multiple analyses (MAS 5.0, dChip). Alterations after mild injury were relatively rapid (4 and 24 h), whereas they were delayed and prolonged after severe injury (24 h and 7 days). The number and magnitude of gene expression changes were greatest at the injury site after moderate injury and increased in rostral and caudal regions as a function of injury severity. Sham surgery resulted in expression changes that were similar to mild injury, suggesting the importance of using time-linked surgical controls as well as naive animals for these kinds of studies. Expression of many genes and ESTs was altered; these were classified functionally based on ontology. Overall representation of these functional classes varied with distance from the site of injury and injury severity, as did the individual genes that contributed to each functional class. Different clustering approaches were used to identify changes in neuronal-specific genes and several transcription factors that have not previously been associated with SCI. This study represents the most comprehensive evaluation of gene expression changes after SCI to date. The results underscore the power of microarray approaches to reveal global genomic responses as well as changes in particular gene clusters and/or families that may be important in the secondary injury cascade.
Collapse
Affiliation(s)
- Andrea De Biase
- Children's National Medical Center, Center for Genetic Medicine, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | | | | | | | | | | | | |
Collapse
|