1
|
Gerke V, Gavins FNE, Geisow M, Grewal T, Jaiswal JK, Nylandsted J, Rescher U. Annexins-a family of proteins with distinctive tastes for cell signaling and membrane dynamics. Nat Commun 2024; 15:1574. [PMID: 38383560 PMCID: PMC10882027 DOI: 10.1038/s41467-024-45954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Annexins are cytosolic proteins with conserved three-dimensional structures that bind acidic phospholipids in cellular membranes at elevated Ca2+ levels. Through this they act as Ca2+-regulated membrane binding modules that organize membrane lipids, facilitating cellular membrane transport but also displaying extracellular activities. Recent discoveries highlight annexins as sensors and regulators of cellular and organismal stress, controlling inflammatory reactions in mammals, environmental stress in plants, and cellular responses to plasma membrane rupture. Here, we describe the role of annexins as Ca2+-regulated membrane binding modules that sense and respond to cellular stress and share our view on future research directions in the field.
Collapse
Affiliation(s)
- Volker Gerke
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| | - Felicity N E Gavins
- Department of Life Sciences, Centre for Inflammation Research and Translational Medicine (CIRTM), Brunel University London, Uxbridge, UK
| | - Michael Geisow
- The National Institute for Medical Research, Mill Hill, London, UK
- Delta Biotechnology Ltd, Nottingham, UK
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jyoti K Jaiswal
- Center for Genetic Medicine Research, Children's National Research Institute, Children's National Research and Innovation Campus, Washington, DC, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Jesper Nylandsted
- Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
- Department of Molecular Medicine, University of Southern Denmark, J.B. Winsløws Vej 21-25, Odense, Denmark
| | - Ursula Rescher
- Research Group Cellular Biochemistry, Institute of Molecular Virology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Strasse 56, Münster, Germany.
| |
Collapse
|
2
|
The Ca 2+- and phospholipid-binding protein Annexin A2 is able to increase and decrease plasma membrane order. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183810. [PMID: 34699769 DOI: 10.1016/j.bbamem.2021.183810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 01/13/2023]
Abstract
Annexin A2 (AnxA2) is a calcium- and phospholipid-binding protein that plays roles in cellular processes involving membrane and cytoskeleton dynamics and is able to associate to several partner proteins. However, the principal molecular partners of AnxA2 are negatively charged phospholipids such as phosphatidylserine and phosphatidyl-inositol-(4,5)-phosphate. Herein we have studied different aspects of membrane lipid rearrangements induced by AnxA2 membrane binding. X-ray diffraction data revealed that AnxA2 has the property to stabilize lamellar structures and to block the formation of highly curved lipid phases (inverted hexagonal phase, HII). By using pyrene-labelled cholesterol and the environmental probe di-4-ANEPPDHQ, we observed that in model membranes, AnxA2 is able to modify both, cholesterol distribution and lipid compaction. In epithelial cells, we observed that AnxA2 localizes to membranes of different lipid order. The protein binding to membranes resulted in both, increases and/or decreases in membrane order depending on the cellular membrane regions. Overall, AnxA2 showed the capacity to modulate plasma membrane properties by inducing lipid redistribution that may lead to an increase in order or disorder of the membranes.
Collapse
|
3
|
Berg Klenow M, Iversen C, Wendelboe Lund F, Mularski A, Busk Heitmann AS, Dias C, Nylandsted J, Simonsen AC. Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane-Membrane Interfaces. Biochemistry 2021; 60:1248-1259. [PMID: 33861586 DOI: 10.1021/acs.biochem.1c00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2, respectively) are structurally similar and bind to negatively charged phosphatidylserine (PS) to induce membrane cross-linking and to promote fusion, which are both essential processes that occur during membrane repair. The degree of annexin accumulation and the annexin mobility at cross-linked membranes are important aspects of ANXA1 and ANXA2 function in repair. Here, we quantify ANXA1- and ANXA2-induced membrane cross-linking between giant unilamellar vesicles (GUVs). Time-lapse measurements show that ANXA1 and ANXA2 can induce membrane cross-linking on a time scale compatible with PMR. Cross-linked membrane-membrane interfaces between the GUVs persist in time without fusion, and quantification of confocal microscopy images demonstrates that ANXA1, ANXA2, and, to a lesser extent, PS lipids accumulate at the double membrane interface. Fluorescence recovery after photobleaching shows that the annexins are fully immobilized at the double membrane interface, whereas PS lipids display a 75% decrease in mobility. In addition, the complete immobilization of annexins between two membranes indicates a high degree of network formation between annexins, suggesting that membrane cross-linking is mainly driven by protein-protein interactions.
Collapse
Affiliation(s)
- Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Christoffer Iversen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
4
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
5
|
López-Rodríguez JC, Martínez-Carmona FJ, Rodríguez-Crespo I, Lizarbe MA, Turnay J. Molecular dissection of the membrane aggregation mechanisms induced by monomeric annexin A2. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:863-873. [DOI: 10.1016/j.bbamcr.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/15/2023]
|
6
|
Hakobyan D, Gerke V, Heuer A. Modeling of annexin A2-Membrane interactions by molecular dynamics simulations. PLoS One 2017; 12:e0185440. [PMID: 28937994 PMCID: PMC5609761 DOI: 10.1371/journal.pone.0185440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/12/2017] [Indexed: 01/18/2023] Open
Abstract
The annexins are a family of Ca2+-regulated phospholipid binding proteins that are involved in membrane domain organization and membrane trafficking. Although they are widely studied and crystal structures are available for several soluble annexins their mode of membrane association has never been studied at the molecular level. Here we obtained molecular information on the annexin-membrane interaction that could serve as paradigm for the peripheral membrane association of cytosolic proteins by Molecular Dynamics simulations. We analyzed systems containing the monomeric annexin A2 (AnxA2), a membrane with negatively charged phosphatidylserine (POPS) lipids as well as Ca2+ ions. On the atomic level we identify the AnxA2 orientations and the respective residues which display the strongest interaction with Ca2+ ions and the membrane. The simulation results fully agree with earlier experimental findings concerning the positioning of bound Ca2+ ions. Furthermore, we identify for the first time a significant interaction between lysine residues of the protein and POPS lipids that occurs independently of Ca2+ suggesting that AnxA2-membrane interactions can also occur in a low Ca2+ environment. Finally, by varying Ca2+ concentrations and lipid composition in our simulations we observe a calcium-induced negative curvature of the membrane as well as an AnxA2-induced lipid ordering.
Collapse
Affiliation(s)
- Davit Hakobyan
- Institute of Physical Chemistry, University of Muenster, Muenster, Germany.,Center for Multiscale Theory and Computation (CMTC), University of Muenster, Muenster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Center of Molecular Biology of Inflammation (ZMBE), University of Muenster, Muenster, Germany
| | - Andreas Heuer
- Institute of Physical Chemistry, University of Muenster, Muenster, Germany.,Center for Multiscale Theory and Computation (CMTC), University of Muenster, Muenster, Germany
| |
Collapse
|
7
|
Liu Y, Myrvang HK, Dekker LV. Annexin A2 complexes with S100 proteins: structure, function and pharmacological manipulation. Br J Pharmacol 2014; 172:1664-76. [PMID: 25303710 PMCID: PMC4376447 DOI: 10.1111/bph.12978] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/16/2014] [Accepted: 10/05/2014] [Indexed: 12/13/2022] Open
Abstract
Annexin A2 (AnxA2) was originally identified as a substrate of the pp60v-src oncoprotein in transformed chicken embryonic fibroblasts. It is an abundant protein that associates with biological membranes as well as the actin cytoskeleton, and has been implicated in intracellular vesicle fusion, the organization of membrane domains, lipid rafts and membrane-cytoskeleton contacts. In addition to an intracellular role, AnxA2 has been reported to participate in processes localized to the cell surface including extracellular protease regulation and cell-cell interactions. There are many reports showing that AnxA2 is differentially expressed between normal and malignant tissue and potentially involved in tumour progression. An important aspect of AnxA2 function relates to its interaction with small Ca2+-dependent adaptor proteins called S100 proteins, which is the topic of this review. The interaction between AnxA2 and S100A10 has been very well characterized historically; more recently, other S100 proteins have been shown to interact with AnxA2 as well. The biochemical evidence for the occurrence of these protein interactions will be discussed, as well as their function. Recent studies aiming to generate inhibitors of S100 protein interactions will be described and the potential of these inhibitors to further our understanding of AnxA2 S100 protein interactions will be discussed.
Collapse
Affiliation(s)
- Yidong Liu
- School of Pharmacy, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
8
|
Cañas F, Simonin L, Couturaud F, Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res 2014; 135:226-30. [PMID: 25533130 DOI: 10.1016/j.thromres.2014.11.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/29/2014] [Accepted: 11/01/2014] [Indexed: 01/20/2023]
Abstract
Antiphospholipid syndrome (APS) is an autoimmune disease characterized by arterial, venous or small-vessel thrombotic events, and recurrent miscarriages or fetal loss. APS diagnosis is based on the repeated detection of anti-phospholipid (PL) antibodies (Ab), typically associated with anti-β2 glycoprotein I (β2GPI)-Ab. Recent studies suggest that anti-β2GPI Ab activity involves a protein complex including β2GPI and annexin A2 (ANXA2). Anti-ANXA2 Ab recognizes this complex, and these Ab can effectively promote thrombosis by inhibiting plasmin generation, and by activating endothelial cells. Therefore, anti-ANXA2 Ab represent a new biomarker, which can be detected in up to 25% of APS patients. Moreover, anti-ANXA2 Ab have been detected, in thrombotic associated diseases including pre-eclampsia, in other autoimmune diseases, and in cancer.
Collapse
Affiliation(s)
- Felipe Cañas
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Center for Autoimmune Diseases Research (CREA) School of Medicine and Health Sciences Universidad del Rosario, Bogotá, Colombia
| | - Laurent Simonin
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France; Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Francis Couturaud
- Department of Internal Medicine, Brest University Medical School Hospital, Cavale Blanche, Brest, France
| | - Yves Renaudineau
- INSERM ESPRI, ERI29/EA2216 Immunology, Pathology and Immunotherapy, Labex IGO, SFR ScinBios, Réseau canaux ioniques et Réseau épigénétique du Cancéropôle Grand Ouest, European University of Brittany, Brest, France; Laboratory of Immunology and Immunotherapy, Brest University Medical School Hospital, Morvan, Brest, France.
| |
Collapse
|
9
|
Drücker P, Pejic M, Galla HJ, Gerke V. Lipid segregation and membrane budding induced by the peripheral membrane binding protein annexin A2. J Biol Chem 2013; 288:24764-76. [PMID: 23861394 DOI: 10.1074/jbc.m113.474023] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The formation of dynamic membrane microdomains is an important phenomenon in many signal transduction and membrane trafficking events. It is driven by intrinsic properties of membrane lipids and integral as well as membrane-associated proteins. Here we analyzed the ability of one peripherally associated membrane protein, annexin A2 (AnxA2), to induce the formation of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2)-rich domains in giant unilamellar vesicles (GUVs) of complex lipid composition. AnxA2 is a cytosolic protein that can bind PI(4,5)P2 and other acidic phospholipids in a Ca(2+)-dependent manner and that has been implicated in cellular membrane dynamics in endocytosis and exocytosis. We show that AnxA2 binding to GUVs induces lipid phase separation and the recruitment of PI(4,5)P2, cholesterol and glycosphingolipids into larger clusters. This property is observed for the full-length monomeric protein, a mutant derivative comprising the C-terminal protein core domain and for AnxA2 residing in a heterotetrameric complex with its intracellular binding partner S100A10. All AnxA2 derivatives inducing PI(4,5)P2 clustering are also capable of forming interconnections between PI(4,5)P2-rich microdomains of adjacent GUVs. Furthermore, they can induce membrane indentations rich in PI(4,5)P2 and inward budding of these membrane domains into the lumen of GUVs. This inward vesiculation is specific for AnxA2 and not shared with other PI(4,5)P2-binding proteins such as the pleckstrin homology (PH) domain of phospholipase Cδ1. Together our results indicate that annexins such as AnxA2 can efficiently induce membrane deformations after lipid segregation, a mechanism possibly underlying annexin functions in membrane trafficking.
Collapse
Affiliation(s)
- Patrick Drücker
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Strasse, D-48149 Muenster, Germany
| | | | | | | |
Collapse
|
10
|
Illien F, Piao HR, Coué M, di Marco C, Ayala-Sanmartin J. Lipid organization regulates annexin A2 Ca2+-sensitivity for membrane bridging and its modulator effects on membrane fluidity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2892-900. [DOI: 10.1016/j.bbamem.2012.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/03/2012] [Accepted: 07/17/2012] [Indexed: 10/28/2022]
|
11
|
Bandorowicz-Pikula J, Wos M, Pikula S. Do annexins participate in lipid messenger mediated intracellular signaling? A question revisited. Mol Membr Biol 2012; 29:229-42. [PMID: 22694075 DOI: 10.3109/09687688.2012.693210] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Annexins are physiologically important proteins that play a role in calcium buffering but also influence membrane structure, participate in Ca²⁺-dependent membrane repair events and in remodelling of the cytoskeleton. Thirty years ago several peptides isolated from lung perfusates, peritoneal leukocytes, neutrophiles and renal cells were proven inhibitory to the activity of phospholipase A₂. Those peptides were found to derive from structurally related proteins: annexins AnxA1 and AnxA2. These findings raised the question whether annexins may participate in regulation of the production of lipid second messengers and, therefore, modulate numerous lipid mediated signaling pathways in the cell. Recent advances in the field of annexins made also with the use of knock-out animal models revealed that these proteins are indeed important constituents of specific signaling pathways. In this review we provide evidence supporting the hypothesis that annexins, as membrane-binding proteins and organizers of the membrane lateral heterogeneity, may participate in lipid mediated signaling pathways by affecting the distribution and activity of lipid metabolizing enzymes (most of the reports point to phospholipase A₂) and of protein kinases regulating activity of these enzymes. Moreover, some experimental data suggest that annexins may directly interact with lipid metabolizing enzymes and, in a calcium-dependent or independent manner, with some of their substrates and products. On the basis of these observations, many investigators suggest that annexins are capable of linking Ca²⁺, redox and lipid signaling to coordinate vital cellular responses to the environmental stimuli.
Collapse
Affiliation(s)
- Joanna Bandorowicz-Pikula
- Laboratory of Cellular Metabolism, Department of Biochemistry, Nencki Institute of Experimental Biology, PL 02-093 Warsaw, Poland.
| | | | | |
Collapse
|
12
|
Domon M, Nasir MN, Matar G, Pikula S, Besson F, Bandorowicz-Pikula J. Annexins as organizers of cholesterol- and sphingomyelin-enriched membrane microdomains in Niemann-Pick type C disease. Cell Mol Life Sci 2012; 69:1773-85. [PMID: 22159585 PMCID: PMC11114673 DOI: 10.1007/s00018-011-0894-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 01/22/2023]
Abstract
Growing evidence suggests that membrane microdomains enriched in cholesterol and sphingomyelin are sites for numerous cellular processes, including signaling, vesicular transport, interaction with pathogens, and viral infection, etc. Recently some members of the annexin family of conserved calcium and membrane-binding proteins have been recognized as cholesterol-interacting molecules and suggested to play a role in the formation, stabilization, and dynamics of membrane microdomains to affect membrane lateral organization and to attract other proteins and signaling molecules onto their territory. Furthermore, annexins were implicated in the interactions between cytosolic and membrane molecules, in the turnover and storage of cholesterol and in various signaling pathways. In this review, we focus on the mechanisms of interaction of annexins with lipid microdomains and the role of annexins in membrane microdomains dynamics including possible participation of the domain-associated forms of annexins in the etiology of human lysosomal storage disease called Niemann-Pick type C disease, related to the abnormal storage of cholesterol in the lysosome-like intracellular compartment. The involvement of annexins and cholesterol/sphingomyelin-enriched membrane microdomains in other pathologies including cardiac dysfunctions, neurodegenerative diseases, obesity, diabetes mellitus, and cancer is likely, but is not supported by substantial experimental observations, and therefore awaits further clarification.
Collapse
Affiliation(s)
- Magdalena Domon
- Laboratory of Lipid Biochemistry, Department of Biochemistry, Nencki Institute of Experimental Biology, 3 Pasteur Street, 02-093, Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
13
|
Sarkar S, Kantara C, Singh P. Clathrin mediates endocytosis of progastrin and activates MAPKs: role of cell surface annexin A2. Am J Physiol Gastrointest Liver Physiol 2012; 302:G712-22. [PMID: 22241862 PMCID: PMC3330782 DOI: 10.1152/ajpgi.00406.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Cell-surface-associated annexin A2 (CS-ANXA2) is a nonconventional "receptor" for progastrin; expression levels of both are elevated in colon cancers, and downregulation of either reduces tumorigenic potential of cells. We recently reported internalization of progastrin in target cells. Here, mechanisms mediating internalization of progastrin were examined. Initially, we confirmed that cell-surface ANXA2 mediates binding and internalization of progastrin in intestinal cells. Progastrin, covalently linked to sepharose beads, failed to activate p38MAPK/ERKs, suggesting internalization of progastrin was required for eliciting biological effects; importantly annexin A2 expression and availability of CS-ANXA2 were required for internalization of progastrin. Clathrin expression and formation of clathrin-coated pits were critically required for endocytotic internalization of progastrin; in the absence of clathrin, progastrin failed to activate p38MAPK/ERKs. Downregulation of caveolin had no effect on binding or internalization of progastrin. We therefore demonstrate for the first time that progastrin binds CS-ANXA2 and is rapidly internalized via clathrin-mediated endocytotic pathway, resulting in activation of MAPKinases. Targeting clathrin-mediated endocytosis of progastrin may thus inhibit previously reported co-carcinogenic/tumorigenic effects of progastrin on intestinal cells.
Collapse
Affiliation(s)
- Shubhashish Sarkar
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Carla Kantara
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| | - Pomila Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
14
|
Scharf B, Clement CC, Wu XX, Morozova K, Zanolini D, Follenzi A, Larocca JN, Levon K, Sutterwala FS, Rand J, Cobelli N, Purdue E, Hajjar KA, Santambrogio L. Annexin A2 binds to endosomes following organelle destabilization by particulate wear debris. Nat Commun 2012; 3:755. [PMID: 22453828 DOI: 10.1038/ncomms1754] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/16/2012] [Indexed: 11/09/2022] Open
Abstract
Endosomal functions are contingent on the integrity of the organelle-limiting membrane, whose disruption induces inflammation and cell death. Here we show that phagocytosis of ultrahigh molecular weight polyethylene particles induces damage to the endosomal-limiting membrane and results in the leakage of cathepsins into the cytosol and NLRP3-inflammasome activation. Annexin A2 recruitment to damaged organelles is shown by two-dimensional DIGE protein profiling, endosomal fractionation, confocal analysis of endogenous and annexin A2-GFP transfected cells, and immunogold labelling. Binding experiments, using fluorescent liposomes, confirms annexin A2 recruitment to endosomes containing phagocytosed polyethylene particles. Finally, an increase in cytosolic cathepsins, NLRP3-inflammasome activation, and IL-1 production is seen in dendritic cells from annexin A2-null mice, following exposure to polyethylene particles. Together, the results indicate a functional role of annexin A2 binding to endosomal membranes following organelle destabilization.
Collapse
Affiliation(s)
- Brian Scharf
- Department of Pathology, Albert Einstein College of Medicine, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Valapala M, Vishwanatha JK. Lipid raft endocytosis and exosomal transport facilitate extracellular trafficking of annexin A2. J Biol Chem 2011; 286:30911-30925. [PMID: 21737841 DOI: 10.1074/jbc.m111.271155] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Annexin A2 (AnxA2), a Ca(2+)-dependent phospholipid-binding protein, is known to associate with the plasma membrane and the endosomal system. Within the plasma membrane, AnxA2 associates in a Ca(2+) dependent manner with cholesterol-rich lipid raft microdomains. Here, we show that the association of AnxA2 with the lipid rafts is influenced not only by intracellular levels of Ca(2+) but also by N-terminal phosphorylation at tyrosine 23. Binding of AnxA2 to the lipid rafts is followed by the transport along the endocytic pathway to be associated with the intralumenal vesicles of the multivesicular endosomes. AnxA2-containing multivesicular endosomes fuse directly with the plasma membrane resulting in the release of the intralumenal vesicles into the extracellular environment, which facilitates the exogenous transfer of AnxA2 from one cell to another. Treatment with Ca(2+) ionophore triggers the association of AnxA2 with the specialized microdomains in the exosomal membrane that possess raft-like characteristics. Phosphorylation at Tyr-23 is also important for the localization of AnxA2 to the exosomal membranes. These results suggest that AnxA2 is trafficked from the plasma membrane rafts and is selectively incorporated into the lumenal membranes of the endosomes to escape the endosomal degradation pathway. The Ca(2+)-dependent exosomal transport constitutes a novel pathway of extracellular transport of AnxA2.
Collapse
Affiliation(s)
| | - Jamboor K Vishwanatha
- Departments of Biomedical Sciences, Fort Worth, Texas 76107; Molecular Biology and Immunology, Fort Worth, Texas 76107; Institute for Cancer Research, University of North Texas Health Science Center, Fort Worth, Texas 76107.
| |
Collapse
|
16
|
Tjalsma H. Identification of biomarkers for colorectal cancer through proteomics-based approaches. Expert Rev Proteomics 2011; 7:879-95. [PMID: 21142889 DOI: 10.1586/epr.10.81] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The early detection of colorectal cancer is one of the great challenges in the battle against this disease. However, owing to its heterogeneous character, single markers are not likely to provide sufficient diagnostic power to be used in colorectal cancer population screens. This review provides an overview of recent studies aimed at the discovery of new diagnostic protein markers through proteomics-based approaches. It indicates that studies that start with the proteomic analysis of tumor tissue or tumor cell lines (near the source) have a high potential to yield novel and colorectal cancer-specific biomarkers. In the next step, the diagnostic accuracy of these candidate markers can be assessed by a targeted ELISA assay using serum from colorectal cancer patients and healthy controls. Instead, direct proteomic analysis of serum yields predominantly secondary markers composed of fragments of abundant serum proteins that may be associated with tumor-associated protease activity, and alternatively, immunoproteomic analysis of the serum antibody repertoire provides a valuable tool to identify the molecular imprint of colorectal cancer-associated antigens directly from patient serum samples. The latter approach also allows a relatively easy translation into targeted assays. Eventually, multimarker assays should be developed to reach a diagnostic accuracy that meets the stringent criteria for colorectal cancer screening at the population level.
Collapse
Affiliation(s)
- Harold Tjalsma
- Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Lamazière A, Maniti O, Wolf C, Lambert O, Chassaing G, Trugnan G, Ayala-Sanmartin J. Lipid domain separation, bilayer thickening and pearling induced by the cell penetrating peptide penetratin. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:2223-30. [DOI: 10.1016/j.bbamem.2009.12.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 12/04/2009] [Accepted: 12/22/2009] [Indexed: 12/17/2022]
|
18
|
Interaction of annexin A6 with cholesterol rich membranes is pH-dependent and mediated by the sterol OH. J Colloid Interface Sci 2010; 346:436-41. [DOI: 10.1016/j.jcis.2010.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/17/2022]
|
19
|
Illien F, Finet S, Lambert O, Ayala-Sanmartin J. Different molecular arrangements of the tetrameric annexin 2 modulate the size and dynamics of membrane aggregation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1790-6. [PMID: 20471359 DOI: 10.1016/j.bbamem.2010.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 12/23/2022]
Abstract
Annexin 2, a member of the annexin family of Ca2+-dependent membrane binding proteins is found in monomeric and heterotetrameric forms and has been involved in different membrane related functions. The heterotetrameric annexin 2 is composed of a dimer of S100A10, a member of the S100 family of Ca2+ binding proteins and two annexin 2 molecules ((Anx2-S100A10)2). Different molecular models including tetramers and octamers in which S100A10 is localized in the centre of the complex with the annexin 2 molecules positioned around S100A10 had been proposed. Herein, the organization of the (Anx2-S100A10)2 complex in conditions in which membranes are able to bridge was studied. We performed Cryo-electron microscopy observations of the tetrameric annexin 2 on the membrane surface, and study the S100A10 accessibility to antibodies by flow "cytometry". We also studied the kinetics and size evolution of vesicle aggregates by dynamic light scattering. The results show that the protein is able to organize in three different arrangements depending on the presence of Ca2+ and pH and that the aggregation is faster in the presence of Ca2+ compared with the aggregation in its absence. In one arrangement the S100A10 molecule is exposed to the solvent allowing its interaction with other proteins. The presented results will serve as a molecular basis to explain some of the functions of the tetrameric annexin 2.
Collapse
Affiliation(s)
- Françoise Illien
- CNRS, UMR 7203, Laboratoire des Biomolécules, Groupe N. J. Conté, Paris, France; Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France; Ecole Normale Supérieure, Département de Chimie, Paris France
| | | | | | | |
Collapse
|
20
|
Sztolsztener ME, Strzelecka-Kiliszek A, Pikula S, Tylki-Szymanska A, Bandorowicz-Pikula J. Cholesterol as a factor regulating intracellular localization of annexin A6 in Niemann–Pick type C human skin fibroblasts. Arch Biochem Biophys 2010; 493:221-33. [DOI: 10.1016/j.abb.2009.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/25/2022]
|
21
|
Monastyrskaya K, Babiychuk EB, Draeger A. The annexins: spatial and temporal coordination of signaling events during cellular stress. Cell Mol Life Sci 2009; 66:2623-42. [PMID: 19381436 PMCID: PMC11115530 DOI: 10.1007/s00018-009-0027-1] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 02/09/2009] [Accepted: 03/27/2009] [Indexed: 12/15/2022]
Abstract
Annexins are a family of structurally related, Ca2+-sensitive proteins that bind to negatively charged phospholipids and establish specific interactions with other lipids and lipid microdomains. They are present in all eukaryotic cells and share a common folding motif, the "annexin core", which incorporates Ca2+- and membrane-binding sites. Annexins participate in a variety of intracellular processes, ranging from the regulation of membrane dynamics to cell migration, proliferation, and apoptosis. Here we focus on the role of annexins in cellular signaling during stress. A chronic stress response triggers the activation of different intracellular pathways, resulting in profound changes in Ca2+ and pH homeostasis and the production of lipid second messengers. We review the latest data on how these changes are sensed by the annexins, which have the ability to simultaneously interact with specific lipid and protein moieties at the plasma membrane, contributing to stress adaptation via regulation of various signaling pathways.
Collapse
Affiliation(s)
- Katia Monastyrskaya
- Department of Cell Biology, Institute of Anatomy, University of Bern, 3000 Bern 9, Switzerland.
| | | | | |
Collapse
|
22
|
Abstract
At the cell surface, activation of the epidermal growth factor (EGF) receptor triggers a complex network of signalling events that regulate a variety of cellular processes. For signal termination, the activated EGF receptor is internalised and targeted to lysosomes for degradation. Microdomain localization at the plasma membrane and endocytic transport of the EGFR is important for the formation of compartment-specific signalling complexes and is regulated by scaffolding and targeting proteins. This includes Ca2+-effector proteins, such as calmodulin and annexins (Anx), in particular AnxA1, AnxA2, AnxA6 and as shown recently,AnxA8. Given that these annexins show differences in their expression patterns, subcellular localization and mode of action, they are likely to differentially contribute and cooperate in the fine-tuning of EGFR activity. In support of this hypothesis, current literature suggests these annexins to be involved in different steps that control the endocytic transport and signalling of the EGF receptor. This review summarizes how the coordinated activity of AnxA1, AnxA2, AnxA6 and AnxA8 can contribute to regulate EGF receptor localization and activity.
Collapse
Affiliation(s)
- Thomas Grewal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Sydney, Sydney, Australia.
| | | |
Collapse
|
23
|
Le Drévo MA, Benz N, Kerbiriou M, Giroux-Metges MA, Pennec JP, Trouvé P, Férec C. Annexin A5 increases the cell surface expression and the chloride channel function of the DeltaF508-cystic fibrosis transmembrane regulator. Biochim Biophys Acta Mol Basis Dis 2008; 1782:605-14. [PMID: 18773956 DOI: 10.1016/j.bbadis.2008.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 08/01/2008] [Accepted: 08/04/2008] [Indexed: 11/29/2022]
Abstract
Cystic fibrosis (CF) is caused by a mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In CF, the most common mutant DeltaF508-CFTR is misfolded, is retained in the ER and is rapidly degraded. If conditions could allow DeltaF508-CFTR to reach and to stabilize in the plasma membrane, it could partially correct the CF defect. We have previously shown that annexin V (anxA5) binds to both the normal CFTR and the DeltaF508-CFTR in a Ca(2+)-dependent manner and that it regulates the chloride channel function of Wt-CFTR through its membrane integration. Our aim was to extend this finding to the DeltaF508-CFTR. Because some studies show that thapsigargin (Tg) increases the DeltaF508-CFTR apical expression and induces an increased [Ca(2+)](i) and because anxA5 relocates and binds to the plasma membrane in the presence of Ca(2+), we hypothesized that the Tg effect upon DeltaF508-CFTR function could involve anxA5. Our results show that raised anxA5 expression induces an augmented function of DeltaF508-CFTR due to its increased membrane localization. Furthermore, we show that the Tg effect involves anxA5. Therefore, we suggest that anxA5 is a potential therapeutic target in CF.
Collapse
|
24
|
Nucleoside diphosphate kinase B (NDKB) scaffolds endoplasmic reticulum membranes in vitro. Exp Cell Res 2008; 314:2702-14. [PMID: 18601920 DOI: 10.1016/j.yexcr.2008.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 06/03/2008] [Accepted: 06/05/2008] [Indexed: 12/29/2022]
Abstract
The mechanisms that structure the mammalian endoplasmic reticulum (ER) network are not fully understood. Here we show that salt extraction of semi-intact normal rat kidney (NRK) fibroblasts and subsequent incubation of the extracted cells with ATP resulted in dramatic ER network retraction. Under these conditions, addition of a single protein, Nucleoside Diphosphate Kinase B (NDKB), was sufficient to reverse the retraction and to promote ER network extension. The underlying mechanism of membrane extension involved direct lipid binding, as NDKB bound phosphatidylinositol (PtdIns)(4)P, PtdIns(4,5)P(2) and phosphatidic acid (PA); binding to these anionic lipids required clusters of basic residues on the surface of the NDKB hexamer; and amino acid changes in NDKB that blocked lipid binding also blocked ER network extension. Remarkably, purified NDKB transformed a uniform population of synthetic lipid vesicles into extensive membrane networks, and this also required its phospholipid-binding activity. Altogether these results identify a protein sufficient to scaffold extended membrane networks, and suggest a possible role for NDKB-like proteins, as well as phosphoinositides and/or acidic phospholipids, in modulating ER network morphogenesis.
Collapse
|
25
|
Zibouche M, Vincent M, Illien F, Gallay J, Ayala-Sanmartin J. The N-terminal domain of annexin 2 serves as a secondary binding site during membrane bridging. J Biol Chem 2008; 283:22121-7. [PMID: 18508775 DOI: 10.1074/jbc.m801000200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexin A2 (AnxA2) is a Ca(2+)- and acidic phospholipid-binding protein involved in many cellular processes. It undergoes Ca(2+)-mediated membrane bridging at neutral pH and has been demonstrated to be involved in an H(+)-mediated mechanism leading to a novel AnxA2-membrane complex structure. We used fluorescence techniques to characterize this H(+)-dependent mechanism at the molecular level; in particular, the involvement of the AnxA2 N-terminal domain. This domain was labeled at Cys-8 either with acrylodan or pyrene-maleimide fluorescent probes. Steady-state and time-resolved fluorescence analysis for acrylodan and fluorescence quenching by doxyl-labeled phospholipids revealed direct interaction between the N-terminal domain and the membrane. The absence of pyrene excimer suggested that interactions between N termini are not involved in the H(+)-mediated mechanism. These findings differ from those previously observed for the Ca(2+)-mediated mechanism. Protein titration experiments showed that the protein concentration for half-maximal membrane aggregation was twice for Ca(2+)-mediated compared with H(+)-mediated aggregation, suggesting that AnxA2 was able to bridge membranes either as a dimer or as a monomer, respectively. An N-terminally deleted AnxA2 was 2-3 times less efficient than the wild-type protein for H(+)-mediated membrane aggregation. We propose a model of AnxA2-membrane assemblies, highlighting the different roles of the N-terminal domain in the H(+)- and Ca(2+)-mediated membrane bridging mechanisms.
Collapse
|
26
|
Lamazière A, Wolf C, Lambert O, Chassaing G, Trugnan G, Ayala-Sanmartin J. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains. PLoS One 2008; 3:e1938. [PMID: 18398464 PMCID: PMC2276244 DOI: 10.1371/journal.pone.0001938] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Accepted: 02/27/2008] [Indexed: 11/23/2022] Open
Abstract
Background Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, “physical endocytosis”. Methodology/Principal Findings Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in “raft” microdomains versus disordered fluid “non-raft” domains) in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation) are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like) membrane domains. Conclusions/Significance The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we showed that the membrane targets for these molecules are preferentially the fluid membrane domains and that the mechanism involves the induction of membrane negative curvature. Consequences on cellular uptake are discussed.
Collapse
Affiliation(s)
- Antonin Lamazière
- INSERM, UMR538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Claude Wolf
- INSERM, UMR538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Olivier Lambert
- UMR 5248 CBMN, CNRS, Université Bordeaux 1, ENITAB, IECB, Pessac, France
| | | | - Germain Trugnan
- INSERM, UMR538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Jesus Ayala-Sanmartin
- INSERM, UMR538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
- * E-mail:
| |
Collapse
|
27
|
Chander A, Chen XL, Naidu DG. A role for diacylglycerol in annexin A7-mediated fusion of lung lamellar bodies. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1308-18. [PMID: 17765009 PMCID: PMC2100037 DOI: 10.1016/j.bbalip.2007.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 07/03/2007] [Accepted: 07/05/2007] [Indexed: 10/23/2022]
Abstract
Lung surfactant secretion in alveolar type II cells occurs following lamellar body fusion with plasma membrane. Annexin A7 is a Ca2+-dependent membrane-binding protein that is postulated to promote membrane fusion during exocytosis in some cell types including type II cells. Since annexin A7 preferably binds to lamellar body membranes, we postulated that specific lipids could modify the mode of annexin A7 interaction with membranes and its membrane fusion activity. Initial studies with phospholipid vesicles containing phosphatidylserine and other lipids showed that certain lipids affected protein interaction with vesicle membranes as determined by change in protein tryptophan fluorescence, protein interaction with trans membranes, and by protein sensitivity to limited proteolysis. The presence of signaling lipids, diacylglycerol or phosphatidylinositol-4,5-bisphosphate, as minor components also modified the lipid vesicle effect on these characteristics and membrane fusion activity of annexin A7. In vitro incubation of lamellar bodies with diacylglycerol or phosphatidylinositol-4,5-bisphosphate caused their enrichment with either lipid, and increased the annexin A7 and Ca2+-mediated fusion of lamellar bodies. Treatment of isolated lung lamellar bodies with phosphatidylinositol- or phosphatidylcholine phospholipase C to increase diacylglycerol, without or with preincubation with phosphatidylinositol-4,5-bisphosphate, augmented the fusion activity of annexin A7. Thus, increased diacylglycerol in lamellar bodies following cell stimulation with secretagogues may enhance membrane fusion activity of annexin A7.
Collapse
Affiliation(s)
- Avinash Chander
- Division of Neonatology and the Brady Laboratory, Department of Pediatrics, Stony Brook University Medical Center, Stony Brook, NY 11794, USA.
| | | | | |
Collapse
|
28
|
Lamazière A, Burlina F, Wolf C, Chassaing G, Trugnan G, Ayala-Sanmartin J. Non-metabolic membrane tubulation and permeability induced by bioactive peptides. PLoS One 2007; 2:e201. [PMID: 17299584 PMCID: PMC1790702 DOI: 10.1371/journal.pone.0000201] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 01/18/2007] [Indexed: 11/19/2022] Open
Abstract
Background Basic cell-penetrating peptides are potential vectors for therapeutic molecules and display antimicrobial activity. The peptide-membrane contact is the first step of the sequential processes leading to peptide internalization and cell activity. However, the molecular mechanisms involved in peptide-membrane interaction are not well understood and are frequently controversial. Herein, we compared the membrane activities of six basic peptides with different size, charge density and amphipaticity: Two cell-penetrating peptides (penetratin and R9), three amphipathic peptides and the neuromodulator substance P. Methodology/Principal Findings Experiments of X ray diffraction, video-microscopy of giant vesicles, fluorescence spectroscopy, turbidimetry and calcein leakage from large vesicles are reported. Permeability and toxicity experiments were performed on cultured cells. The peptides showed differences in bilayer thickness perturbations, vesicles aggregation and local bending properties which form lipidic tubular structures. These structures invade the vesicle lumen in the absence of exogenous energy. Conclusions/Significance We showed that the degree of membrane permeabilization with amphipathic peptides is dependent on both peptide size and hydrophobic nature of the residues. We propose a model for peptide-induced membrane perturbations that explains the differences in peptide membrane activities and suggests the existence of a facilitated “physical endocytosis,” which represents a new pathway for peptide cellular internalization.
Collapse
Affiliation(s)
- Antonin Lamazière
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Fabienne Burlina
- UMR Centre National de la Recherche Scientifique (CNRS) 7613, Université Pierre et Marie Curie, Paris, France
| | - Claude Wolf
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Gérard Chassaing
- UMR Centre National de la Recherche Scientifique (CNRS) 7613, Université Pierre et Marie Curie, Paris, France
| | - Germain Trugnan
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
| | - Jesus Ayala-Sanmartin
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMR 538, CHU Saint Antoine, Paris, France
- Université Pierre et Marie Curie, CHU Saint Antoine, Paris, France
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Fischer T, Lu L, Haigler HT, Langen R. Annexin B12 is a sensor of membrane curvature and undergoes major curvature-dependent structural changes. J Biol Chem 2007; 282:9996-10004. [PMID: 17267400 DOI: 10.1074/jbc.m611180200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The regulation of membrane curvature plays an important role in many membrane trafficking and fusion events. Recent studies have begun to identify some of the proteins involved in controlling and sensing the curvature of cellular membranes. A mechanistic understanding of these processes is limited, however, as structural information for the membrane-bound forms of these proteins is scarce. Here, we employed a combination of biochemical and biophysical approaches to study the interaction of annexin B12 with membranes of different curvatures. We observed selective and Ca(2+)-independent binding of annexin B12 to negatively charged vesicles that were either highly curved or that contained lipids with negative intrinsic curvature. This novel curvature-dependent membrane interaction induced major structural rearrangements in the protein and resulted in a backbone fold that was different from that of the well characterized Ca(2+)-dependent membrane-bound form of annexin B12. Following curvature-dependent membrane interaction, the protein retained a predominantly alpha-helical structure but EPR spectroscopy studies of nitroxide side chains placed at selected sites on annexin B12 showed that the protein underwent inside-out refolding that brought previously buried hydrophobic residues into contact with the membrane. These structural changes were reminiscent of those previously observed following Ca(2+)-independent interaction of annexins with membranes at mildly acidic pH, yet they occurred at neutral pH in the presence of curved membranes. The present data demonstrate that annexin B12 is a sensor of membrane curvature and that membrane curvature can trigger large scale conformational changes. We speculate that membrane curvature could be a physiological signal that induces the previously reported Ca(2+)-independent membrane interaction of annexins in vivo.
Collapse
Affiliation(s)
- Torsten Fischer
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033
| | - Lucy Lu
- Department of Physiology and Biophysics, University of California, Irvine, California 92697
| | - Harry T Haigler
- Department of Physiology and Biophysics, University of California, Irvine, California 92697.
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033.
| |
Collapse
|
30
|
Tjalsma H, Pluk W, van den Heuvel LP, Peters WHM, Roelofs R, Swinkels DW. Proteomic inventory of "anchorless" proteins on the colon adenocarcinoma cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1607-17. [PMID: 17030026 DOI: 10.1016/j.bbapap.2006.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 09/01/2006] [Accepted: 09/01/2006] [Indexed: 11/23/2022]
Abstract
Surface proteins play important pathophysiological roles in health and disease, and accumulating proteomics-based studies suggest that several "non-membrane" proteins are sorted to the cell surface by unconventional mechanisms. Importantly, these proteins may comprise attractive therapeutic targets and novel disease markers for colon cancer. To perform a proteomics-based inventory of these so-called "anchorless" surface proteins, intact colon adenocarcinoma SW480 cells were labeled with membrane-impermeable biotin after which only soluble biotinylated proteins were isolated and identified by nanoLC-MS/MS. Computer-assisted analysis predicted that only 9 of the 97 identified surface-exposed proteins have predicted secretory signal peptides, whereas 2 other proteins have a putative transmembrane segment. Of the 9 proteins with putative signal peptides, 1 was predicted to be retained at the cell surface by a GPI-anchor, whereas 5 other proteins contained an ER-retention motif (KDEL) that should prevent them from being sorted to the cell surface. The remaining 86 soluble "surface" proteins lack known export signals and the possibility that these proteins are candidate substrates of non-classical transporters or exported by unconventional mechanisms is discussed. Alternatively, the large number of "intracellular" and ER-resident proteins may imply that biotinylation approaches are not only specific for surface proteins, but also biased against a certain subset of non-surface proteins. This underscores the importance of post-proteomic verification of proteomics-based inventories on surface-exposed proteins, which eventually should reveal to which extent non-classical export and retention mechanisms contribute to the sorting of "anchorless" proteins to the surface of colon tumor cells.
Collapse
Affiliation(s)
- Harold Tjalsma
- Department of Clinical Chemistry, 441, Radboud University Nijmegen-Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Béduneau A, Saulnier P, Anton N, Hindré F, Passirani C, Rajerison H, Noiret N, Benoit JP. Pegylated Nanocapsules Produced by an Organic Solvent-Free Method: Evaluation of their Stealth Properties. Pharm Res 2006; 23:2190-9. [PMID: 16952009 DOI: 10.1007/s11095-006-9061-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/10/2006] [Indexed: 10/24/2022]
Abstract
PURPOSE To develop from an original process, a novel generation of stealth lipidic nanocapsules in order to improve the lipophilic drug delivery in accessible sites. MATERIALS AND METHODS Nanocapsules covered by PEG1500 stearate were obtained by a low energy emulsification method. Conductivity measurements and ternary diagram were performed to describe the formulation mechanism. Hemolytic dosage CH50 and pharmacokinetic study in rats have been achieved in order to study the stealth properties of nanocapsules. RESULTS Transition from an O/W emulsion to a w/O/W emulsion was necessary to produce PEG1500 stearate nanocapsules. Interestingly nanocapsules with a size around 26 nm and a polydispersity index inferior to 0.1 were obtained. The CH50 test has revealed a very weak complement consumption in the presence of such nanocapsules. Moreover, after intravenous injection into rats, PEG1500 stearate nanocapsules exhibited long circulating properties. The experimental data support the concept of steric repulsion of the surface towards proteins, displayed by nanocapsules covered with PEG1500 stearate. These in vivo results were in agreement with the PEG1500 density calculated at the nanocarrier surface. CONCLUSIONS Injectable drug carriers have been developed. Their long-circulating properties could confer them a strong potential for lipophilic drug targeting.
Collapse
|
32
|
Singh P, Wu H, Clark C, Owlia A. Annexin II binds progastrin and gastrin-like peptides, and mediates growth factor effects of autocrine and exogenous gastrins on colon cancer and intestinal epithelial cells. Oncogene 2006; 26:425-40. [PMID: 16832341 DOI: 10.1038/sj.onc.1209798] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We and others have reported the presence of novel progastrin (PG)/gastrin receptors on normal and cancerous intestinal cells. We had earlier reported the presence of 33-36 kDa gastrin-binding proteins on cellular membranes of colon cancer cells. The goal of the current study was to identify the protein(s) in the 33-36 kDa band, and analyse its functional significance. A carbodiimide crosslinker was used for crosslinking radio-labeled gastrins to membrane proteins from gastrin/PG responsive cell lines. Native membrane proteins, crosslinked to the ligand, were solubulized and enriched by >1000-fold, and analysed by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. The peptide masses were researched against the NCBInr database using the ProFound search engine. Annexin II (ANX II) was identified, and confirmed by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry. As HCT-116 cells express autocrine PG, the in situ association of PG with ANX II was demonstrated in pulldown assays. Direct binding of PG with ANX II was confirmed in an in vitro binding assay. In order to confirm a functional importance of these observations, sense and anti-sense (AS) ANX II RNA-expressing clones of intestinal epithelial (IEC-18) and human colon cancer (HCT-116) cell lines were generated. AS clones demonstrated a significant loss in the growth response to exogenous (IEC-18) and autocrine (HCT-116) PG. We have thus discovered that membrane-associated ANX II binds PG/gastrins, and partially mediates growth factor effects of the peptides.
Collapse
Affiliation(s)
- P Singh
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, TX 77555-1043, USA.
| | | | | | | |
Collapse
|
33
|
Blencowe A, Hayes W. Development and application of diazirines in biological and synthetic macromolecular systems. SOFT MATTER 2005; 1:178-205. [PMID: 32646075 DOI: 10.1039/b501989c] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many different reagents and methodologies have been utilised for the modification of synthetic and biological macromolecular systems. In addition, an area of intense research at present is the construction of hybrid biosynthetic polymers, comprised of biologically active species immobilised or complexed with synthetic polymers. One of the most useful and widely applicable techniques available for functionalisation of macromolecular systems involves indiscriminate carbene insertion processes. The highly reactive and non-specific nature of carbenes has enabled a multitude of macromolecular structures to be functionalised without the need for specialised reagents or additives. The use of diazirines as stable carbene precursors has increased dramatically over the past twenty years and these reagents are fast becoming the most popular photophors for photoaffinity labelling and biological applications in which covalent modification of macromolecular structures is the basis to understanding structure-activity relationships. This review reports the synthesis and application of a diverse range of diazirines in macromolecular systems.
Collapse
Affiliation(s)
- Anton Blencowe
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| | - Wayne Hayes
- School of Chemistry, The University of Reading, Whiteknights, Reading, Berkshire, UKRG6 6AD.
| |
Collapse
|
34
|
Kwon M, Yoon CS, Jeong W, Rhee SG, Waisman DM. Annexin A2-S100A10 heterotetramer, a novel substrate of thioredoxin. J Biol Chem 2005; 280:23584-92. [PMID: 15849182 DOI: 10.1074/jbc.m504325200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The binding of plasminogen activators and plasminogen to the cell surface results in the rapid generation of the serine protease plasmin. Plasmin is further degraded by an autoproteolytic reaction, resulting in the release of an angiostatin, A61 (Lys78-Lys468). Previously, we demonstrated that the annexin A2-S100A10 heterotetramer (AIIt) stimulates the release of A61 from plasmin by promoting the autoproteolytic cleavage of the Lys468-Gly469 bond and reduction of the plasmin Cys462-Cys541 disulfide (Kwon, M., Caplan, J. F., Filipenko, N. R., Choi, K. S., Fitzpatrick, S. L., Zhang, L., and Waisman, D. M. (2002) J. Biol. Chem. 277, 10903-10911). Mechanistically, it was unclear if AIIt promoted a conformational change in plasmin, resulting in contortion of the plasmin disulfide, or directly reduced the plasmin disulfide. In the present study, we show that AIIt thiols are oxidized during the reduction of plasmin disulfides, establishing that AIIt directly participates in the reduction reaction. Incubation of HT1080 cells with plasminogen resulted in the rapid loss of thiol-specific labeling of AIIt by 3-(N-maleimidopropionyl)biocytin. The plasminogen-dependent oxidation of AIIt could be attenuated by thioredoxin. Thioredoxin reductase catalyzed the transfer of electrons from NADPH to the oxidized thioredoxin, thus completing the flow of electrons from NADPH to AIIt. Therefore, we identify AIIt as a substrate of the thioredoxin system and propose a new model for the role of AIIt in the redox-dependent processing of plasminogen and generation of an angiostatin at the cell surface.
Collapse
Affiliation(s)
- Mijung Kwon
- Cancer Biology Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
35
|
Golczak M, Kirilenko A, Bandorowicz-Pikula J, Desbat B, Pikula S. Structure of human annexin a6 at the air-water interface and in a membrane-bound state. Biophys J 2005; 87:1215-26. [PMID: 15298924 PMCID: PMC1304460 DOI: 10.1529/biophysj.103.038240] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We postulate the existence of a pH-sensitive domain in annexin A6 (AnxA6), on the basis of our observation of pH-dependent conformational and orientation changes of this protein and its N- (AnxA6a) and C-terminal (AnxA6b) halves in the presence of lipids. Brewster angle microscopy shows that AnxA6, AnxA6a, and AnxA6b in the absence of lipids accumulate at the air-water interface and form a stable, homogeneous layer at pH below 6.0. Under these conditions polarization modulation IR absorption spectroscopy reveals significant conformational changes of AnxA6a whereas AnxA6b preserves its alpha-helical structure. The orientation of protein alpha-helices is parallel with respect to the interface. In the presence of lipids, polarization modulation IR reflection absorption spectroscopy experiments suggest that AnxA6a incorporates into the lipid/air interface, whereas AnxA6b is adsorbed under the lipid monolayer. In this case AnxA6a regains its alpha-helical structures. At a higher pressure of the lipid monolayer the average orientation of the alpha-helices of AnxA6a changes from flat to tilted by 45 degrees with respect to normal to the membrane interface. For AnxA6b no such changes are detected, even at a high pressure of the lipid monolayer-suggesting that the putative pH-sensitive domain of AnxA6 is localized in the N-terminal half of the protein.
Collapse
Affiliation(s)
- Marcin Golczak
- Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
36
|
Abstract
Annexins are a well-known multigene family of Ca(2+)-regulated phospholipid-binding and membrane-binding proteins. Recent work employing annexin-knockdown or - knockout models has provided new insights into the biological functions of different annexin proteins. Transient annexin depletion by RNA interference and the expression of dominant-negative mutant proteins has revealed roles for the proteins in membrane processes ranging from the control of membrane structure to certain membrane transport phenomena. Although such functions correlate well with the ability of annexins to interact with cellular membranes in a reversible and regulated manner, some activities are membrane independent, probably because annexins can also engage in specific protein-protein interactions. Among other things, this is evident in annexin A1- and A2-knockout mice, which show impaired regulation of neutrophil extravasation and defects in plasmin generation, respectively.
Collapse
Affiliation(s)
- Ursula Rescher
- Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Münster, von-Esmarch-Strasse 56, Münster 48149, Germany
| | | |
Collapse
|
37
|
Menke M, Ross M, Gerke V, Steinem C. The Molecular Arrangement of Membrane-Bound Annexin A2-S100A10 Tetramer as Revealed by Scanning Force Microscopy. Chembiochem 2004; 5:1003-6. [PMID: 15239061 DOI: 10.1002/cbic.200400004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Manuela Menke
- Institut für Analytische Chemie, Chemo- und Biosensorik, Universität Regensburg, 93040 Regensburg, Germany
| | | | | | | |
Collapse
|