1
|
Did Amino Acid Side Chain Reactivity Dictate the Composition and Timing of Aminoacyl-tRNA Synthetase Evolution? Genes (Basel) 2021; 12:genes12030409. [PMID: 33809136 PMCID: PMC8001834 DOI: 10.3390/genes12030409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/16/2022] Open
Abstract
The twenty amino acids in the standard genetic code were fixed prior to the last universal common ancestor (LUCA). Factors that guided this selection included establishment of pathways for their metabolic synthesis and the concomitant fixation of substrate specificities in the emerging aminoacyl-tRNA synthetases (aaRSs). In this conceptual paper, we propose that the chemical reactivity of some amino acid side chains (e.g., lysine, cysteine, homocysteine, ornithine, homoserine, and selenocysteine) delayed or prohibited the emergence of the corresponding aaRSs and helped define the amino acids in the standard genetic code. We also consider the possibility that amino acid chemistry delayed the emergence of the glutaminyl- and asparaginyl-tRNA synthetases, neither of which are ubiquitous in extant organisms. We argue that fundamental chemical principles played critical roles in fixation of some aspects of the genetic code pre- and post-LUCA.
Collapse
|
2
|
Paley EL. Discovery of Gut Bacteria Specific to Alzheimer's Associated Diseases is a Clue to Understanding Disease Etiology: Meta-Analysis of Population-Based Data on Human Gut Metagenomics and Metabolomics. J Alzheimers Dis 2020; 72:319-355. [PMID: 31561379 DOI: 10.3233/jad-190873] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD)-associated sequence (ADAS) of cultured fecal bacteria was discovered in human gut targeted screening. This study provides important information to expand our current understanding of the structure/activity relationship of ADAS and putative inhibitors/activators that are potentially involved in ADAS appearance/disappearance. The NCBI database analysis revealed that ADAS presents at a large proportion in American Indian Oklahoman (C&A) with a high prevalence of obesity/diabetes and in colorectal cancer (CRC) patients from the US and China. An Oklahoman non-native group (NNI) showed no ADAS. Comparison of two large US populations reveals that ADAS is more frequent in individuals aged ≥66 and in females. Prevalence and levels of fecal metabolites are altered in the C&A and CRC groups versus controls. Biogenic amines (histamine, tryptamine, tyramine, phenylethylamine, cadaverine, putrescine, agmatine, spermidine) that present in food and are produced by gut microbiota are significantly higher in C&A (e.g., histamine/histidine 95-fold) versus NNI (histamine/histidine 16-fold). The majority of these bio-amines are cytotoxic at concentrations found in food. Inositol phosphate signaling implicated in AD is altered in C&A and CRC. Tryptamine stimulated accumulation of inositol phosphate. The seizure-eliciting tryptamine induced cytoplasmic vacuolization and vesiculation with cell fragmentation. Present additions of ADAS-carriers at different ages including infants led to an ADAS-comprising human sample size of 2,830 from 27 studies from four continents (North America, Australia, Asia, Europe). Levels of food-derived monoamine oxidase inhibitors and anti-bacterial compounds, the potential modulators of ADAS-bacteria growth and biogenic amine production, were altered in C&A versus NNI. ADAS is attributable to potentially modifiable risk factors of AD associated diseases.
Collapse
Affiliation(s)
- Elena L Paley
- Expert Biomed, Inc., Miami, FL, USA.,Stop Alzheimers Corp, Miami, FL, USA
| |
Collapse
|
3
|
Di Giulio M. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory. J Theor Biol 2017; 432:14-24. [DOI: 10.1016/j.jtbi.2017.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
|
4
|
Genetic Validation of Leishmania donovani Lysyl-tRNA Synthetase Shows that It Is Indispensable for Parasite Growth and Infectivity. mSphere 2017; 2:mSphere00340-17. [PMID: 28875178 PMCID: PMC5577655 DOI: 10.1128/mspheredirect.00340-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 08/04/2017] [Indexed: 12/31/2022] Open
Abstract
Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis. Increasing resistance and severe side effects of existing drugs have led to the need to identify new chemotherapeutic targets. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and are required for protein synthesis. aaRSs are known drug targets for bacterial and fungal pathogens. Here, we have characterized and evaluated the essentiality of L. donovani lysyl-tRNA synthetase (LdLysRS). Two different coding sequences for lysyl-tRNA synthetases are annotated in the Leishmania genome database. LdLysRS-1 (LdBPK_150270.1), located on chromosome 15, is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 (LdBPK_300130.1), present on chromosome 30, is closer to bacteria. In the present study, we have characterized LdLysRS-1. Recombinant LdLysRS-1 displayed aminoacylation activity, and the protein localized to the cytosol. The LdLysRS-1 heterozygous mutants had a restrictive growth phenotype and attenuated infectivity. LdLysRS-1 appears to be an essential gene, as a chromosomal knockout of LdLysRS-1 could be generated when the gene was provided on a rescuing plasmid. Cladosporin, a fungal secondary metabolite and a known inhibitor of LysRS, was more potent against promastigotes (50% inhibitory concentration [IC50], 4.19 µM) and intracellular amastigotes (IC50, 1.09 µM) than were isomers of cladosporin (3-epi-isocladosporin and isocladosporin). These compounds exhibited low toxicity to mammalian cells. The specificity of inhibition of parasite growth caused by these inhibitors was further assessed using LdLysRS-1 heterozygous mutant strains and rescue mutant promastigotes. These inhibitors inhibited the aminoacylation activity of recombinant LdLysRS. Our data provide a framework for the development of a new class of drugs against this parasite. IMPORTANCE Aminoacyl-tRNA synthetases are housekeeping enzymes essential for protein translation, providing charged tRNAs for the proper construction of peptide chains. These enzymes provide raw materials for protein translation and also ensure fidelity of translation. L. donovani is a protozoan parasite that causes visceral leishmaniasis. It is a continuously proliferating parasite that depends heavily on efficient protein translation. Lysyl-tRNA synthetase is one of the aaRSs which charges lysine to its cognate tRNA. Two different coding sequences for lysyl-tRNA synthetases (LdLysRS) are present in this parasite. LdLysRS-1 is closer to apicomplexans and eukaryotes, whereas LdLysRS-2 is closer to bacteria. Here, we have characterized LdLysRS-1 of L. donovani. LdLysRS-1 appears to be an essential gene, as the chromosomal null mutants did not survive. The heterozygous mutants showed slower growth kinetics and exhibited attenuated virulence. This study also provides a platform to explore LdLysRS-1 as a potential drug target.
Collapse
|
5
|
Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods 2016; 113:13-26. [PMID: 27713080 DOI: 10.1016/j.ymeth.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
6
|
Richardson CJ, First EA. Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase. Biochemistry 2016; 55:2526-37. [DOI: 10.1021/acs.biochem.6b00157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles J. Richardson
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| | - Eric A. First
- Department of Biochemistry
and Molecular Biology, Louisiana State University Health Sciences Center in Shreveport, 1501 Kings Highway, Shreveport, Louisiana 71130, United States
| |
Collapse
|
7
|
Dewan V, Reader J, Forsyth KM. Role of aminoacyl-tRNA synthetases in infectious diseases and targets for therapeutic development. Top Curr Chem (Cham) 2013; 344:293-329. [PMID: 23666077 DOI: 10.1007/128_2013_425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles. AARSs are involved in the regulation of transcription, translation, and various signaling pathways, thereby ensuring cell survival. Based in part on their versatility, AARSs have been recruited by viruses to perform essential functions. For example, host synthetases are packaged into some retroviruses and are required for their replication. Other viruses mimic tRNA-like structures in their genomes, and these motifs are aminoacylated by the host synthetase as part of the viral replication cycle. More recently, it has been shown that certain large DNA viruses infecting animals and other diverse unicellular eukaryotes encode tRNAs, AARSs, and additional components of the protein-synthesis machinery. This chapter will review our current understanding of the role of host AARSs and tRNA-like structures in viruses and discuss their potential as anti-viral drug targets. The identification and development of compounds that target bacterial AARSs, thereby serving as novel antibiotics, will also be discussed. Particular attention will be given to recent work on a number of tRNA-dependent AARS inhibitors and to advances in a new class of natural "pro-drug" antibiotics called Trojan Horse inhibitors. Finally, we will explore how bacteria that naturally produce AARS-targeting antibiotics must protect themselves against cell suicide using naturally antibiotic resistant AARSs, and how horizontal gene transfer of these AARS genes to pathogens may threaten the future use of this class of antibiotics.
Collapse
Affiliation(s)
- Varun Dewan
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, Center for RNA Biology, and Center for Retroviral Research, The Ohio State University, Columbus, OH, 43210, USA
| | | | | |
Collapse
|
8
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|
9
|
Bullwinkle TJ, Zou SB, Rajkovic A, Hersch SJ, Elgamal S, Robinson N, Smil D, Bolshan Y, Navarre WW, Ibba M. (R)-β-lysine-modified elongation factor P functions in translation elongation. J Biol Chem 2012; 288:4416-23. [PMID: 23277358 DOI: 10.1074/jbc.m112.438879] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Post-translational modification of bacterial elongation factor P (EF-P) with (R)-β-lysine at a conserved lysine residue activates the protein in vivo and increases puromycin reactivity of the ribosome in vitro. The additional hydroxylation of EF-P at the same lysine residue by the YfcM protein has also recently been described. The roles of modified and unmodified EF-P during different steps in translation, and how this correlates to its physiological role in the cell, have recently been linked to the synthesis of polyproline stretches in proteins. Polysome analysis indicated that EF-P functions in translation elongation, rather than initiation as proposed previously. This was further supported by the inability of EF-P to enhance the rate of formation of fMet-Lys or fMet-Phe, indicating that the role of EF-P is not to specifically stimulate formation of the first peptide bond. Investigation of hydroxyl-(β)-lysyl-EF-P showed 30% increased puromycin reactivity but no differences in dipeptide synthesis rates when compared with the β-lysylated form. Unlike disruption of the other genes required for EF-P modification, deletion of yfcM had no phenotypic consequences in Salmonella. Taken together, our findings indicate that EF-P functions in translation elongation, a role critically dependent on post-translational β-lysylation but not hydroxylation.
Collapse
Affiliation(s)
- Tammy J Bullwinkle
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cvetesic N, Perona JJ, Gruic-Sovulj I. Kinetic partitioning between synthetic and editing pathways in class I aminoacyl-tRNA synthetases occurs at both pre-transfer and post-transfer hydrolytic steps. J Biol Chem 2012; 287:25381-94. [PMID: 22648413 DOI: 10.1074/jbc.m112.372151] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Comprehensive steady-state and transient kinetic studies of the synthetic and editing activities of Escherichia coli leucyl-tRNA synthetase (LeuRS) demonstrate that the enzyme depends almost entirely on post-transfer editing to endow the cell with specificity against incorporation of norvaline into protein. Among the three class I tRNA synthetases possessing a dedicated post-transfer editing domain (connective peptide 1; CP1 domain), LeuRS resembles valyl-tRNA synthetase in its reliance on post-transfer editing, whereas isoleucyl-tRNA synthetase differs in retaining a distinct tRNA-dependent synthetic site pre-transfer editing activity to clear noncognate amino acids before misacylation. Further characterization of the post-transfer editing activity in LeuRS by single-turnover kinetics demonstrates that the rate-limiting step is dissociation of deacylated tRNA and/or amino acid product and highlights the critical role of a conserved aspartate residue in mediating the first-order hydrolytic steps on the enzyme. Parallel analyses of adenylate and aminoacyl-tRNA formation reactions by wild-type and mutant LeuRS demonstrate that the efficiency of post-transfer editing is controlled by kinetic partitioning between hydrolysis and dissociation of misacylated tRNA and shows that trans editing after rebinding is a competent kinetic pathway. Together with prior analyses of isoleucyl-tRNA synthetase and valyl-tRNA synthetase, these experiments provide the basis for a comprehensive model of editing by class I tRNA synthetases, in which kinetic partitioning plays an essential role at both pre-transfer and post-transfer steps.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
11
|
Yadavalli SS, Ibba M. Quality control in aminoacyl-tRNA synthesis its role in translational fidelity. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:1-43. [PMID: 22243580 DOI: 10.1016/b978-0-12-386497-0.00001-3] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
Collapse
Affiliation(s)
- Srujana S Yadavalli
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
12
|
Dulic M, Pozar J, Bilokapic S, Weygand-Durasevic I, Gruic-Sovulj I. An idiosyncratic serine ordering loop in methanogen seryl-tRNA synthetases guides substrates through seryl-tRNASer formation. Biochimie 2011; 93:1761-9. [DOI: 10.1016/j.biochi.2011.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/10/2011] [Indexed: 10/18/2022]
|
13
|
Vondenhoff GHM, Van Aerschot A. Aminoacyl-tRNA synthetase inhibitors as potential antibiotics. Eur J Med Chem 2011; 46:5227-36. [PMID: 21968372 DOI: 10.1016/j.ejmech.2011.08.049] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/29/2022]
Abstract
Increasing resistance to antibiotics is a major problem worldwide and provides the stimulus for development of new bacterial inhibitors with preferably different modes of action. In search for new leads, several new bacterial targets are being exploited beside the use of traditional screening methods. Hereto, inhibition of bacterial protein synthesis is a long-standing validated target. Aminoacyl-tRNA synthetases (aaRSs) play an indispensable role in protein synthesis and their structures proved quite conserved in prokaryotes and eukaryotes. However, some divergence has occurred allowing the development of selective aaRS inhibitors. Following an outline on the action mechanism of aaRSs, an overview will be given of already existing aaRS inhibitors, which are largely based on mimics of the aminoacyl-adenylates, the natural reaction intermediates. This is followed by a discussion on more recent developments in the field and the bioavailability problem.
Collapse
Affiliation(s)
- Gaston H M Vondenhoff
- Rega Institute for Medical Research, Laboratory of Medicinal Chemistry, Katholieke Universiteit Leuven, Minderbroedersstraat 10, BE-3000 Leuven, Belgium
| | | |
Collapse
|
14
|
Gilreath MS, Roy H, Bullwinkle TJ, Katz A, Navarre WW, Ibba M. β-Lysine discrimination by lysyl-tRNA synthetase. FEBS Lett 2011; 585:3284-8. [PMID: 21925499 DOI: 10.1016/j.febslet.2011.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Elongation factor P is modified with (R)-β-lysine by the lysyl-tRNA synthetase (LysRS) paralog PoxA. PoxA specificity is orthogonal to LysRS, despite their high similarity. To investigate α- and β-lysine recognition by LysRS and PoxA, amino acid replacements were made in the LysRS active site guided by the PoxA structure. A233S LysRS behaved as wild type with α-lysine, while the G469A and A233S/G469A variants decreased stable α-lysyl-adenylate formation. A233S LysRS recognized β-lysine better than wildtype, suggesting a role for this residue in discriminating α- and β-amino acids. Both enantiomers of β-lysine were substrates for tRNA aminoacylation by LysRS, which, together with the relaxed specificity of the A233S variant, suggest a possible means to develop systems for in vivo co-translational insertion of β-amino acids.
Collapse
Affiliation(s)
- Marla S Gilreath
- Ohio State Biochemistry Program, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
15
|
Roy H, Zou SB, Bullwinkle TJ, Wolfe BS, Gilreath MS, Forsyth CJ, Navarre WW, Ibba M. The tRNA synthetase paralog PoxA modifies elongation factor-P with (R)-β-lysine. Nat Chem Biol 2011; 7:667-9. [PMID: 21841797 PMCID: PMC3177975 DOI: 10.1038/nchembio.632] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 06/17/2011] [Indexed: 11/09/2022]
Abstract
The lysyl-tRNA synthetase paralog PoxA modifies elongation factor P (EF-P) with α-lysine at low efficiency. Cell-free extracts contained non-α-lysine substrates of PoxA that modified EF-P by a change in mass consistent with β–lysine, a substrate also predicted by genomic analyses. EF-P was efficiently, functionally, modified with (R)-β-lysine but not (S)-β-lysine or genetically encoded α-amino acids, indicating that PoxA has evolved an activity orthogonal to that of the canonical aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, Center for RNA Biology, Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Godinic-Mikulcic V, Jaric J, Hausmann CD, Ibba M, Weygand-Durasevic I. An archaeal tRNA-synthetase complex that enhances aminoacylation under extreme conditions. J Biol Chem 2010; 286:3396-404. [PMID: 21098026 DOI: 10.1074/jbc.m110.168526] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (K(D)) of 250 nM. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNA(Arg), consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions.
Collapse
Affiliation(s)
- Vlatka Godinic-Mikulcic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia
| | | | | | | | | |
Collapse
|
17
|
Ambrogelly A, O'Donoghue P, Söll D, Moses S. A bacterial ortholog of class II lysyl-tRNA synthetase activates lysine. FEBS Lett 2010; 584:3055-60. [PMID: 20580719 DOI: 10.1016/j.febslet.2010.05.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/16/2010] [Accepted: 05/17/2010] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases produce aminoacyl-tRNAs, essential substrates for accurate protein synthesis. Beyond their central role in translation some of these enzymes or their orthologs are recruited for alternative functions, not always related to their primary cellular role. We investigate here the enzymatic properties of GenX (also called PoxA and YjeA), an ortholog of bacterial class II lysyl-tRNA synthetase. GenX is present in most Gram-negative bacteria and is homologous to the catalytic core of lysyl-tRNA synthetase, but it lacks the amino terminal anticodon binding domain of the latter enzyme. We show that, in agreement with its well-conserved lysine binding site, GenX can activate in vitro l-lysine and lysine analogs, but does not acylate tRNA(Lys) or other cellular RNAs.
Collapse
Affiliation(s)
- Alexandre Ambrogelly
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | | | | | |
Collapse
|
18
|
Ataide SF, Rogers TE, Ibba M. The CCA anticodon specifies separate functions inside and outside translation in Bacillus cereus. RNA Biol 2009; 6:479-87. [PMID: 19667754 DOI: 10.4161/rna.6.4.9332] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Bacillus cereus 14579 encodes two tRNAs with the CCA anticodon, tRNA(Trp) and tRNA(Other). tRNA(Trp) was separately aminoacylated by two enzymes, TrpRS1 and TrpRS2, which share only 34% similarity and display different catalytic capacities and specificities. TrpRS1 was 18-fold more proficient at aminoacylating tRNA(Trp) with Trp, while TrpRS2 more efficiently utilizes the Trp analog 5-hydroxy Trp. tRNA(Other) was not aminoacylated by either TrpRS but instead by the combined activity of LysRS1 and LysRS2, which recognized sequence elements absent from tRNA(Trp). Polysomes were found to contain tRNA(Trp), consistent with its role in translation, but not tRNA(Other) suggesting a function outside protein synthesis. Regulation of the genes encoding TrpRS1 and TrpRS2 (trpS1 and trpS2) is dependent on riboswitch-mediated recognition of the CCA anticodon, and the role of tRNA(Other) in this process was investigated. Deletion of tRNA(Other) led to up to a 50 fold drop in trpS1 expression, which resulted in the loss of differential regulation of the trpS1 and trpS2 genes in stationary phase. These findings reveal that sequence-specific interactions with a tRNA anticodon can be confined to processes outside translation, suggesting a means by which such RNAs may evolve non-coding functions.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, Ohio State University, Columbus, OH 43210-1292, USA
| | | | | |
Collapse
|
19
|
Sakurama H, Takita T, Mikami B, Itoh T, Yasukawa K, Inouye K. Two crystal structures of lysyl-tRNA synthetase from Bacillus stearothermophilus in complex with lysyladenylate-like compounds: insights into the irreversible formation of the enzyme-bound adenylate of L-lysine hydroxamate. J Biochem 2009; 145:555-63. [PMID: 19174549 DOI: 10.1093/jb/mvp014] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aminoacyl-tRNA synthetase forms an enzyme-bound intermediate, aminoacyladenylate in the amino-acid activation reaction. This reaction is monitored by measuring the ATP-PPi exchange reason in which [(32)P]PPi is incorporated into ATP. We previously reported that L-lysine hydroxamate completely inhibited the L-lysine-dependent ATP-PPi exchange reaction catalysed by lysyl-tRNA synthetase from Bacillus stearothermophilus (BsLysRS). Several experiments suggested that BsLysRS can adenylate L-lysine hydroxamate, but the enzyme-bound lysyladenylate-like compound does not undergo the nucleophilic attack of PPi. This contrasts with the two reports for seryl-tRNA synthetase (SerRS): (i) L-serine hydroxamate was utilized by yeast SerRS as a substrate in the ATP-PPi exchange; and (ii) a seryladenylate-like compound was formed from L-serine hydroxamate in the crystal structure of Thermus thermophilus SerRS. To gain clues about the mechanistic difference, we have determined the crystal structures of two complexes of BsLysRS with the adenylate of L-lysine hydroxamate and with 5'-O-[N-(L-Lysyl)sulphamoyl] adenosine. The comparisons of the two BsLysRS structures and the above SerRS structure revealed the specific side-chain shift of Glu411 of BsLysRS in the complex with the adenylate of L-lysine hydroxamate. In support of other structural comparisons, the result suggested that Glu411 plays a key role in the arrangement of PPi for the nucleophilic attack.
Collapse
Affiliation(s)
- Haruko Sakurama
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Igloi GL, Schiefermayr E. Amino acid discrimination by arginyl-tRNA synthetases as revealed by an examination of natural specificity variants. FEBS J 2009; 276:1307-18. [DOI: 10.1111/j.1742-4658.2009.06866.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Mascarenhas AP, An S, Rosen AE, Martinis SA, Musier-Forsyth K. Fidelity Mechanisms of the Aminoacyl-tRNA Synthetases. PROTEIN ENGINEERING 2009. [DOI: 10.1007/978-3-540-70941-1_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
Hausmann CD, Ibba M. Aminoacyl-tRNA synthetase complexes: molecular multitasking revealed. FEMS Microbiol Rev 2008; 32:705-21. [PMID: 18522650 DOI: 10.1111/j.1574-6976.2008.00119.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The accurate synthesis of proteins, dictated by the corresponding nucleotide sequence encoded in mRNA, is essential for cell growth and survival. Central to this process are the aminoacyl-tRNA synthetases (aaRSs), which provide amino acid substrates for the growing polypeptide chain in the form of aminoacyl-tRNAs. The aaRSs are essential for coupling the correct amino acid and tRNA molecules, but are also known to associate in higher order complexes with proteins involved in processes beyond translation. Multiprotein complexes containing aaRSs are found in all three domains of life playing roles in splicing, apoptosis, viral assembly, and regulation of transcription and translation. An overview of the complexes aaRSs form in all domains of life is presented, demonstrating the extensive network of connections between the translational machinery and cellular components involved in a myriad of essential processes beyond protein synthesis.
Collapse
Affiliation(s)
- Corinne D Hausmann
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | | |
Collapse
|
23
|
Ledoux S, Uhlenbeck OC. [3'-32P]-labeling tRNA with nucleotidyltransferase for assaying aminoacylation and peptide bond formation. Methods 2008; 44:74-80. [PMID: 18241789 DOI: 10.1016/j.ymeth.2007.08.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/04/2007] [Indexed: 11/19/2022] Open
Abstract
The analysis of reactions involving amino acids esterified to tRNAs traditionally uses radiolabeled amino acids. We describe here an alternative assay involving [3'-32P]-labeled tRNA followed by nuclease digestion and TLC analysis that permits aminoacylation to be monitored in an efficient, quantitative manner while circumventing many of the problems faced when using radiolabeled amino acids. We also describe a similar assay using [3'-32P]-labeled aa-tRNAs to determine the rate of peptide bond formation on the ribosome. This type of assay can also potentially be adapted to study other reactions involving an amino acid or peptide esterified to tRNA.
Collapse
Affiliation(s)
- Sarah Ledoux
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
24
|
Roy H, Ibba M. Monitoring Lys-tRNA(Lys) phosphatidylglycerol transferase activity. Methods 2008; 44:164-9. [PMID: 18241797 DOI: 10.1016/j.ymeth.2007.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 09/19/2007] [Accepted: 09/19/2007] [Indexed: 11/19/2022] Open
Abstract
In some bacteria Lys-tRNA(Lys) is used both in translation and for the specific addition of Lys to phosphatidylglycerol in the cytoplasmic membrane. This reaction is catalyzed by the membrane protein MprF, and the lysyl-phosphatidylglycerol formed contributes to the resistance of these bacteria to various cationic antibacterial molecules. Obtaining proteins and reconstituting an in vitro system mimicking membrane conditions is a major challenge to studying the function of membrane proteins, especially when labile substrates such as Lys-tRNA(Lys) are required. Here we report methods to obtain a stable enriched membrane fraction containing MprF, and the techniques necessary to quantitatively monitor its activity in vitro and in vivo.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA.
| | | |
Collapse
|
25
|
RNA-dependent lipid remodeling by bacterial multiple peptide resistance factors. Proc Natl Acad Sci U S A 2008; 105:4667-72. [PMID: 18305156 DOI: 10.1073/pnas.0800006105] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Multiple peptide resistance (MprF) virulence factors control cellular permeability to cationic antibiotics by aminoacylating inner membrane lipids. It has been shown previously that one class of MprF can use Lys-tRNA(Lys) to modify phosphatidylglycerol (PG), but the mechanism of recognition and possible role of other MprFs are unknown. Here, we used an in vitro reconstituted lipid aminoacylation system to investigate the two phylogenetically distinct MprF paralogs (MprF1 and MprF2) found in the bacterial pathogen Clostridium perfringens. Although both forms of MprF aminoacylate PG, they do so with different amino acids; MprF1 is specific for Ala-tRNA(Ala), and MprF2 utilizes Lys-tRNA(Lys). This provides a mechanism by which the cell can fine tune the charge of the inner membrane by using the neutral amino acid alanine, potentially providing resistance to a broader range of antibiotics than offered by lysine modification alone. Mutation of tRNA(Ala) and tRNA(Lys) had little effect on either MprF activity, indicating that the aminoacyl moiety is the primary determinant for aminoacyl-tRNA recognition. The lack of discrimination of the tRNA is consistent with the role of MprF as a virulence factor, because species-specific differences in tRNA sequence would not present a barrier to horizontal gene transfer. Taken together, our findings reveal how the MprF proteins provide a potent virulence mechanism by which pathogens can readily acquire resistance to chemically diverse antibiotics.
Collapse
|
26
|
Ataide SF, Wilson SN, Dang S, Rogers TE, Roy B, Banerjee R, Henkin TM, Ibba M. Mechanisms of resistance to an amino acid antibiotic that targets translation. ACS Chem Biol 2007; 2:819-27. [PMID: 18154269 DOI: 10.1021/cb7002253] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural and functional diversity among the aminoacyl-tRNA synthetases prevent infiltration of the genetic code by noncognate amino acids. To explore whether these same features distinguish the synthetases as potential sources of resistance against antibiotic amino acid analogues, we investigated bacterial growth inhibition by S-(2-aminoethyl)-L-cysteine (AEC). Wild-type lysyl-tRNA synthetase (LysRS) and a series of active site variants were screened for their ability to restore growth of an Escherichia coli LysRS null strain at increasing concentrations of AEC. While wild-type E. coli growth is completely inhibited at 5 microM AEC, two LysRS variants, Y280F and F426W, provided substantial resistance and allowed E. coli to grow in the presence of up to 1 mM AEC. Elevated resistance did not reflect changes in the kinetics of amino acid activation or tRNA (Lys) aminoacylation, which showed at best 4-6-fold improvements, but instead correlated with the binding affinity for AEC, which was decreased approximately 50-fold in the LysRS variants. In addition to changes in LysRS, AEC resistance has also been attributed to mutations in the L box riboswitch, which regulates expression of the lysC gene, encoding aspartokinase. The Y280F and F426W LysRS mutants contained wild-type L box riboswitches that responded normally to AEC in vitro, indicating that LysRS is the primary cellular target of this antibiotic. These findings suggest that the AEC resistance conferred by L box mutations is an indirect effect resulting from derepression of lysC expression and increased cellular pools of lysine, which results in more effective competition with AEC for binding to LysRS.
Collapse
Affiliation(s)
| | | | | | | | - Bappaditya Roy
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Rajat Banerjee
- Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, Kolkata, 700 019 West Bengal, India
| | - Tina M. Henkin
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| | - Michael Ibba
- Department of Microbiology
- Ohio State Biochemistry Program
- Ohio State RNA Group
| |
Collapse
|
27
|
Hartman MCT, Josephson K, Lin CW, Szostak JW. An expanded set of amino acid analogs for the ribosomal translation of unnatural peptides. PLoS One 2007; 2:e972. [PMID: 17912351 PMCID: PMC1989143 DOI: 10.1371/journal.pone.0000972] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 09/12/2007] [Indexed: 11/23/2022] Open
Abstract
Background The application of in vitro translation to the synthesis of unnatural peptides may allow the production of extremely large libraries of highly modified peptides, which are a potential source of lead compounds in the search for new pharmaceutical agents. The specificity of the translation apparatus, however, limits the diversity of unnatural amino acids that can be incorporated into peptides by ribosomal translation. We have previously shown that over 90 unnatural amino acids can be enzymatically loaded onto tRNA. Methodology/Principal Findings We have now used a competition assay to assess the efficiency of tRNA-aminoacylation of these analogs. We have also used a series of peptide translation assays to measure the efficiency with which these analogs are incorporated into peptides. The translation apparatus tolerates most side chain derivatives, a few α,α disubstituted, N-methyl and α-hydroxy derivatives, but no β-amino acids. We show that over 50 unnatural amino acids can be incorporated into peptides by ribosomal translation. Using a set of analogs that are efficiently charged and translated we were able to prepare individual peptides containing up to 13 different unnatural amino acids. Conclusions/Significance Our results demonstrate that a diverse array of unnatural building blocks can be translationally incorporated into peptides. These building blocks provide new opportunities for in vitro selections with highly modified drug-like peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kristopher Josephson
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Chi-Wang Lin
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jack W. Szostak
- Howard Hughes Medical Institute, Department of Molecular Biology, Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Levengood JD, Roy H, Ishitani R, Söll D, Nureki O, Ibba M. Anticodon recognition and discrimination by the alpha-helix cage domain of class I lysyl-tRNA synthetase. Biochemistry 2007; 46:11033-8. [PMID: 17760422 PMCID: PMC2583228 DOI: 10.1021/bi700815a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminoacyl-tRNA synthetases are normally found in one of two mutually exclusive structural classes, the only known exception being lysyl-tRNA synthetase which exists in both classes I (LysRS1) and II (LysRS2). Differences in tRNA acceptor stem recognition between LysRS1 and LysRS2 do not drastically impact cellular aminoacylation levels, focusing attention on the mechanism of tRNA anticodon recognition by LysRS1. On the basis of structure-based sequence alignments, seven tRNALys anticodon variants and seven LysRS1 anticodon binding site variants were selected for analysis of the Pyrococcus horikoshii LysRS1-tRNALys docking model. LysRS1 specifically recognized the bases at positions 35 and 36, but not that at position 34. Aromatic residues form stacking interactions with U34 and U35, and aminoacylation kinetics also identified direct interactions between Arg502 and both U35 and U36. Tyr491 was also found to interact with U36, and the Y491E variant exhibited significant improvement compared to the wild type in aminoacylation of a tRNALysUUG mutant. Refinement of the LysRS1-tRNALys docking model based upon these data suggested that anticodon recognition by LysRS1 relies on considerably fewer interactions than that by LysRS2, providing a structural basis for the more significant role of the anticodon in tRNA recognition by the class II enzyme. To date, only glutamyl-tRNA synthetase (GluRS) has been found to contain an alpha-helix cage anticodon binding domain homologous to that of LysRS1, and these data now suggest that specificity for the anticodon of tRNALys could have been acquired through relatively few changes to the corresponding domain of an ancestral GluRS enzyme.
Collapse
Affiliation(s)
- Jeffrey D Levengood
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | | | | | | | | | |
Collapse
|
29
|
Mahapatra A, Srinivasan G, Richter KB, Meyer A, Lienard T, Zhang JK, Zhao G, Kang PT, Chan M, Gottschalk G, Metcalf WW, Krzycki JA. Class I and class II lysyl-tRNA synthetase mutants and the genetic encoding of pyrrolysine in Methanosarcina spp. Mol Microbiol 2007; 64:1306-18. [PMID: 17542922 DOI: 10.1111/j.1365-2958.2007.05740.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Methanosarcina spp. begin methanogenesis from methylamines with methyltransferases made via the translation of UAG as pyrrolysine. In vitro evidence indicates two possible routes to pyrrolysyl-tRNA(Pyl). PylS ligates pyrrolysine to tRNA(Pyl). Alternatively, class I and class II lysyl-tRNA synthetases (LysRS1 and LysRS2) together form lysyl-tRNA(Pyl), a potential intermediate to pyrrolysyl-tRNA(Pyl). The unusual possession of both LysRS1 and LysRS2 by Methanosarcina spp. may also reflect differences in catalytic properties. Here we assessed the in vivo relevance of these hypotheses. The lysK and mtmB transcripts, encoding LysRS1 and monomethylamine methyltransferase, were detectable in Methanosarcina barkeri during early log growth on trimethylamine, but not methanol. In contrast, lysS transcript encoding LysRS2 was detectable during log phase with either substrate. Methanosarcina acetivorans strains bearing deletions of lysK or lysS grew normally on methanol and methylamines with wild-type levels of monomethylamine methyltransferase and aminoacyl-tRNA(Pyl). The lysK and lysS genes could not replace pylS in a recombinant system employing tRNA(Pyl) for UAG suppression. The results support an association of LysRS1 with growth on methylamine, but not an essential role for LysRS1/LysRS2 in the genetic encoding of pyrrolysine. However, decreased lysyl-tRNA(Lys) in the lysS mutant provides a possible rationale for stable transfer of the bacterial lysS gene to methanoarchaea.
Collapse
Affiliation(s)
- Anirban Mahapatra
- Department of Microbiology, Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Ochsner UA, Sun X, Jarvis T, Critchley I, Janjic N. Aminoacyl-tRNA synthetases: essential and still promising targets for new anti-infective agents. Expert Opin Investig Drugs 2007; 16:573-93. [PMID: 17461733 DOI: 10.1517/13543784.16.5.573] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The emergence of resistance to existing antibiotics demands the development of novel antimicrobial agents directed against novel targets. Historically, bacterial cell wall synthesis, protein, and DNA and RNA synthesis have been major targets of very successful classes of antibiotics such as beta-lactams, glycopeptides, macrolides, aminoglycosides, tetracyclines, rifampicins and quinolones. Recently, efforts have been made to develop novel agents against validated targets in these pathways but also against new, previously unexploited targets. The era of genomics has provided insights into novel targets in microbial pathogens. Among the less exploited--but still promising--targets is the family of 20 aminoacyl-tRNA synthetases (aaRSs), which are essential for protein synthesis. These targets have been validated in nature as aaRS inhibition has been shown as the specific mode of action for many natural antimicrobial agents synthesized by bacteria and fungi. Therefore, aaRSs have the potential to be targeted by novel agents either from synthetic or natural sources to yield specific and selective anti-infectives. Numerous high-throughput screening programs aimed at identifying aaRS inhibitors have been performed over the last 20 years. A large number of promising lead compounds have been identified but only a few agents have moved forward into clinical development. This review provides an update on the present strategies to develop novel aaRS inhibitors as anti-infective drugs.
Collapse
Affiliation(s)
- Urs A Ochsner
- Replidyne, Inc., 1450 Infinite Dr, Louisville, CO 80027, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are responsible for selecting specific amino acids for protein synthesis, and this essential role in translation has garnered them much attention as targets for novel antimicrobials. Understanding how the aaRSs evolved efficient substrate selection offers a potential route to develop useful inhibitors of microbial protein synthesis. Here, we discuss discrimination of small molecules by aaRSs, and how the evolutionary divergence of these mechanisms offers a means to target inhibitors against these essential microbial enzymes.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | |
Collapse
|
32
|
Wang S, Prætorius-Ibba M, Ataide S, Roy H, Ibba M. Discrimination of cognate and noncognate substrates at the active site of class I lysyl-tRNA synthetase. Biochemistry 2006; 45:3646-52. [PMID: 16533047 PMCID: PMC2527480 DOI: 10.1021/bi0523005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aminoacyl-tRNA synthetases are divided into two unrelated structural classes, with lysyl-tRNA synthetase (LysRS) being the only enzyme represented in both classes. On the basis of the structure of l-lysine complexed with Pyrococcus horikoshii class I LysRS (LysRS1) and homology to glutamyl-tRNA synthetase (GluRS), residues implicated in amino acid recognition and noncognate substrate discrimination were systematically replaced in Borrelia burgdorferi LysRS1. The catalytic efficiency of steady-state aminoacylation (k(cat)/K(M)) with lysine by LysRS1 variants fell by 1-4 orders of magnitude compared to that of the wild type. Disruption of putative hydrogen bonding interactions through replacement of G29, T31, and Y269 caused up to 1500-fold reductions in k(cat)/K(M), similar to changes previously observed for comparable variants of class II LysRS (LysRS2). Replacements of W220 and H242, both of which are implicated in hydrophobic interactions with the side chain of lysine, resulted in more dramatic changes with up to 40000-fold reductions in k(cat)/K(M) observed. This indicates that the more compact LysRS1 active site employs both electrostatic and hydrophobic interactions during lysine discrimination, explaining the ability of LysRS1 to discriminate against noncognate substrates accepted by LysRS2. Several of the LysRS1 variants were found to be more specific than the wild type with respect to noncognate amino acid recognition but less efficient in cognate aminoacylation. This indicates that LysRS1 compromises between efficient catalysis and substrate discrimination, in contrast to LysRS2 which is considerably more effective in catalysis but is less specific than its class I counterpart.
Collapse
Affiliation(s)
- Shiming Wang
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Mette Prætorius-Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sandro Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hervé Roy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, USA
- Correspondence to: Dr. Michael Ibba, Department of Microbiology, The Ohio State University, 484 West 12 Avenue, Columbus, Ohio 43210-1292, Phone: 614-292-2120, Fax: 614-292-8120, e-mail:
| |
Collapse
|
33
|
Hartman MCT, Josephson K, Szostak JW. Enzymatic aminoacylation of tRNA with unnatural amino acids. Proc Natl Acad Sci U S A 2006; 103:4356-61. [PMID: 16537388 PMCID: PMC1450175 DOI: 10.1073/pnas.0509219103] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Indexed: 11/18/2022] Open
Abstract
The biochemical flexibility of the cellular translation apparatus offers, in principle, a simple route to the synthesis of drug-like modified peptides and novel biopolymers. However, only approximately 75 unnatural building blocks are known to be fully compatible with enzymatic tRNA acylation and subsequent ribosomal synthesis of modified peptides. Although the translation system can reject substrate analogs at several steps along the pathway to peptide synthesis, much of the specificity resides at the level of the aminoacyl-tRNA synthetase (AARS) enzymes that are responsible for charging tRNAs with amino acids. We have developed an AARS assay based on mass spectrometry that can be used to rapidly identify unnatural monomers that can be enzymatically charged onto tRNA. By using this assay, we have found 59 previously unknown AARS substrates. These include numerous side-chain analogs with useful functional properties. Remarkably, many beta-amino acids, N-methyl amino acids, and alpha,alpha-disubstituted amino acids are also AARS substrates. These previously unidentified AARS substrates will be useful in studies of the specificity of subsequent steps in translation and may significantly expand the number of analogs that can be used for the ribosomal synthesis of modified peptides.
Collapse
Affiliation(s)
- Matthew C. T. Hartman
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Kristopher Josephson
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| | - Jack W. Szostak
- Department of Molecular Biology and Center for Computational and Integrative Biology, Simches Research Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114
| |
Collapse
|
34
|
Ataide SF, Jester BC, Devine KM, Ibba M. Stationary-phase expression and aminoacylation of a transfer-RNA-like small RNA. EMBO Rep 2006; 6:742-7. [PMID: 16065067 PMCID: PMC1369145 DOI: 10.1038/sj.embor.7400474] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/03/2005] [Accepted: 06/07/2005] [Indexed: 11/09/2022] Open
Abstract
Genome-scale analyses have shown numerous functional duplications in the canonical translational machinery. One of the most striking examples is the occurrence of unrelated class I and class II lysyl-transfer RNA synthetases (LysRS), which together may aminoacylate non-canonical tRNAs. We show that, in Bacillus cereus, the two LysRSs together aminoacylate a small RNA of unknown function named tRNA(Other), and that the aminoacylated product stably binds translation elongation factor Tu. In vitro reconstitution of a defined lysylation system showed that Lys-tRNA(Other) is synthesized in the presence of both LysRSs, but not by either alone. In vivo analyses showed that the class 2 LysRS was present both during and after exponential growth, whereas the class I enzyme and tRNA(Other) were predominantly produced during the stationary phase. Aminoacylation of tRNA(Other) was also found to be confined to the stationary phase, which suggests a role for this non-canonical tRNA in growth-phase-specific protein synthesis.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
| | - Brian C Jester
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Kevin M Devine
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Ohio State Biochemistry Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio 43210-1292, USA
- Tel: +1 614 292 2120; Fax: +1 614 292 8120; E-mail:
| |
Collapse
|
35
|
Ahel D, Slade D, Mocibob M, Söll D, Weygand-Durasevic I. Selective inhibition of divergent seryl-tRNA synthetases by serine analogues. FEBS Lett 2005; 579:4344-8. [PMID: 16054140 DOI: 10.1016/j.febslet.2005.06.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2005] [Revised: 06/23/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
Seryl-tRNA synthetases (SerRSs) fall into two distinct evolutionary groups of enzymes, bacterial and methanogenic. These two types of SerRSs display only minimal sequence similarity, primarily within the class II conserved motifs, and possess distinct modes of tRNA(Ser) recognition. In order to determine whether the two types of SerRSs also differ in their recognition of the serine substrate, we compared the sensitivity of the representative methanogenic and bacterial-type SerRSs to serine hydroxamate and two previously unidentified inhibitors, serinamide and serine methyl ester. Our kinetic data showed selective inhibition of the methanogenic SerRS by serinamide, suggesting a lack of mechanistic uniformity in serine recognition between the evolutionarily distinct SerRSs.
Collapse
Affiliation(s)
- Dragana Ahel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
36
|
Ataide SF, Ibba M. Discrimination of cognate and noncognate substrates at the active site of class II lysyl-tRNA synthetase. Biochemistry 2004; 43:11836-41. [PMID: 15362869 DOI: 10.1021/bi0490542] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within the two unrelated aminoacyl-tRNA synthetase classes, lysyl-tRNA synthetase (LysRS) is the only example known to exist in both classes. To probe the role of the amino acids responsible for L-lysine binding in the active site of the class II LysRS (LysRS2), we studied the lysS-encoded Escherichia coli protein. On the basis of the structure of L-lysine complexed with E. coli LysRS2 (lysS), residues implicated in amino acid recognition and discrimination were systematically replaced. Steady-state kinetic parameters for these variants showed reductions in the catalytic efficiency (k(cat)/K(M)) of 1-3 orders of magnitude, allowing the assignment of specific roles for key residues in the active site of LysRS2. To further investigate the role of each residue in discrimination against noncognate amino acids, steady-state kinetic parameters were determined for the nonprotein amino acid S-(2-aminoethyl)-L-cysteine, a potent inhibitor of LysRS2. While a number of variants showed reductions of several hundred-fold in efficiency of S-(2-aminoethyl)-L-cysteine utilization, this was uniformly accompanied by similar reductions in the efficiency of lysine utilization. Thus, manipulation of the amino acid binding site only allowed up to a 4-fold improvement in S-(2-aminoethyl)-L-cysteine discrimination. This is in contrast to the highly effective discrimination against S-(2-aminoethyl)-L-cysteine by class I LysRS and correlates with the fundamentally different roles of conserved aromatic residues in the two LysRS active sites. This now provides a mechanistic basis for the proposal that differences in amino acid discrimination have been pivotal in the evolution of two unrelated LysRSs.
Collapse
Affiliation(s)
- Sandro F Ataide
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210-1292, USA
| | | |
Collapse
|