1
|
Ongey EL, Banerjee A. In vitro reconstitution of transition metal transporters. J Biol Chem 2024; 300:107589. [PMID: 39032653 PMCID: PMC11381811 DOI: 10.1016/j.jbc.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Transition metal ions are critically important across all kingdoms of life. The chemical properties of iron, copper, zinc, manganese, cobalt, and nickel make them very attractive for use as cofactors in metalloenzymes and/or metalloproteins. Their versatile chemistry in aqueous solution enables them to function both as electron donors and acceptors, and thus participate in both reduction and oxidation reactions respectively. Transition metal ions can also function as nonredox multidentate coordination sites that play essential roles in macromolecular structure and function. Malfunction in transition metal transport and homeostasis has been linked to a wide number of human diseases including cancer, diabetes, and neurodegenerative disorders. Transition metal transporters are central players in the physiology of transition metals whereby they move transition metals in and out of cellular compartments. In this review, we provide a comprehensive overview of in vitro reconstitution of the activity of integral membrane transition metal transporters and discuss strategies that have been successfully implemented to overcome the challenges. We also discuss recent advances in our understanding of transition metal transport mechanisms and the techniques that are currently used to decipher the molecular basis of transport activities of these proteins. Deep mechanistic insights into transition metal transport systems will be essential to understand their malfunction in human diseases and target them for potential therapeutic strategies.
Collapse
Affiliation(s)
- Elvis L Ongey
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Anirban Banerjee
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human, Development, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
2
|
Sharma M, Sharma S, Paavan, Gupta M, Goyal S, Talukder D, Akhtar MS, Kumar R, Umar A, Alkhanjaf AAM, Baskoutas S. Mechanisms of microbial resistance against cadmium - a review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2024; 22:13-30. [PMID: 38887775 PMCID: PMC11180082 DOI: 10.1007/s40201-023-00887-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 11/15/2023] [Indexed: 06/20/2024]
Abstract
The escalating cadmium influx from industrial activities and anthropogenic sources has raised serious environmental concerns due to its toxic effects on ecosystems and human health. This review delves into the intricate mechanisms underlying microbial resistance to cadmium, shedding light on the multifaceted interplay between microorganisms and this hazardous heavy metal. Cadmium overexposure elicits severe health repercussions, including renal carcinoma, mucous membrane degradation, bone density loss, and kidney stone formation in humans. Moreover, its deleterious impact extends to animal and plant metabolism. While physico-chemical methods like reverse osmosis and ion exchange are employed to mitigate cadmium contamination, their costliness and incomplete efficacy necessitate alternative strategies. Microbes, particularly bacteria and fungi, exhibit remarkable resilience to elevated cadmium concentrations through intricate resistance mechanisms. This paper elucidates the ingenious strategies employed by these microorganisms to combat cadmium stress, encompassing metal ion sequestration, efflux pumps, and enzymatic detoxification pathways. Bioremediation emerges as a promising avenue for tackling cadmium pollution, leveraging microorganisms' ability to transform toxic cadmium forms into less hazardous derivatives. Unlike conventional methods, bioremediation offers a cost-effective, environmentally benign, and efficient approach. This review amalgamates the current understanding of microbial cadmium resistance mechanisms, highlighting their potential for sustainable remediation strategies. By unraveling the intricate interactions between microorganisms and cadmium, this study contributes to advancing our knowledge of bioremediation approaches, thereby paving the way for safer and more effective cadmium mitigation practices.
Collapse
Affiliation(s)
- Monu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Sonu Sharma
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Paavan
- Department of Biotechnology, Ambala College of Engineering and Applied Research, Devsthali, Ambala, 133101 Haryana India
| | - Mahiti Gupta
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Soniya Goyal
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Daizee Talukder
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Mohd. Sayeed Akhtar
- Department of Botany, Gandhi Faiz-E-Aam College, Shahjahanpur, 242001 Uttar Pradesh India
| | - Raman Kumar
- Department of Biosciences and Technology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207 Haryana India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and ArtsPromising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001 Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Abdulrab Ahmed M. Alkhanjaf
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, 11001 Najran, Saudi Arabia
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26500 Patras, Greece
| |
Collapse
|
3
|
Bui HB, Inaba K. Structures, Mechanisms, and Physiological Functions of Zinc Transporters in Different Biological Kingdoms. Int J Mol Sci 2024; 25:3045. [PMID: 38474291 PMCID: PMC10932157 DOI: 10.3390/ijms25053045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/14/2024] Open
Abstract
Zinc transporters take up/release zinc ions (Zn2+) across biological membranes and maintain intracellular and intra-organellar Zn2+ homeostasis. Since this process requires a series of conformational changes in the transporters, detailed information about the structures of different reaction intermediates is required for a comprehensive understanding of their Zn2+ transport mechanisms. Recently, various Zn2+ transport systems have been identified in bacteria, yeasts, plants, and humans. Based on structural analyses of human ZnT7, human ZnT8, and bacterial YiiP, we propose updated models explaining their mechanisms of action to ensure efficient Zn2+ transport. We place particular focus on the mechanistic roles of the histidine-rich loop shared by several zinc transporters, which facilitates Zn2+ recruitment to the transmembrane Zn2+-binding site. This review provides an extensive overview of the structures, mechanisms, and physiological functions of zinc transporters in different biological kingdoms.
Collapse
Affiliation(s)
- Han Ba Bui
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kenji Inaba
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan;
- Department of Molecular and Chemical Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Agency for Medical Research and Development (AMED), Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
4
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy coupling and stoichiometry of Zn 2+/H + antiport by the prokaryotic cation diffusion facilitator YiiP. eLife 2023; 12:RP87167. [PMID: 37906094 PMCID: PMC10617992 DOI: 10.7554/elife.87167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Abstract
YiiP from Shewanella oneidensis is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Shujie Fan
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Maria Lopez-Redondo
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Ian Kenney
- Department of Physics, Arizona State UniversityTempeUnited States
| | - Xihui Zhang
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| | - Oliver Beckstein
- Department of Physics, Arizona State UniversityTempeUnited States
| | - David L Stokes
- Department of Biochemistry and Molecular Pharmacology, NYU School of MedicineNew YorkUnited States
| |
Collapse
|
5
|
Matić A, Šupljika F, Brkić H, Jurasović J, Karačić Z, Tomić S. Identification of an Additional Metal-Binding Site in Human Dipeptidyl Peptidase III. Int J Mol Sci 2023; 24:12747. [PMID: 37628928 PMCID: PMC10454320 DOI: 10.3390/ijms241612747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Dipeptidyl peptidase III (DPP III, EC 3.4.14.4) is a monozinc metalloexopeptidase that hydrolyzes dipeptides from the N-terminus of peptides consisting of three or more amino acids. Recently, DPP III has attracted great interest from scientists, and numerous studies have been conducted showing that it is involved in the regulation of various physiological processes. Since it is the only metalloenzyme among the dipeptidyl peptidases, we considered it important to study the process of binding and exchange of physiologically relevant metal dications in DPP III. Using fluorimetry, we measured the Kd values for the binding of Zn2+, Cu2+, and Co2+ to the catalytic site, and using isothermal titration calorimetry (ITC), we measured the Kd values for the binding of these metals to an additional binding site. The structure of the catalytic metal's binding site is known from previous studies, and in this work, the affinities for this site were calculated for Zn2+, Cu2+, Co2+, and Mn2+ using the QM approach. The structures of the additional binding sites for the Zn2+ and Cu2+ were also identified, and MD simulations showed that two Cu2+ ions bound to the catalytic and inhibitory sites exchanged less frequently than the Zn2+ ions bound to these sites.
Collapse
Affiliation(s)
- Antonia Matić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Filip Šupljika
- Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Hrvoje Brkić
- Faculty of Medicine, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Faculty of Dental Medicine and Health, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Jasna Jurasović
- Analytical Toxicology and Mineral Metabolism Unit, Institute for Medical Research and Occupational Health, 10000 Zagreb, Croatia;
| | - Zrinka Karačić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Sanja Tomić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| |
Collapse
|
6
|
Hussein A, Fan S, Lopez-Redondo M, Kenney I, Zhang X, Beckstein O, Stokes DL. Energy Coupling and Stoichiometry of Zn 2+/H + Antiport by the Cation Diffusion Facilitator YiiP. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529644. [PMID: 36865113 PMCID: PMC9980050 DOI: 10.1101/2023.02.23.529644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
YiiP is a prokaryotic Zn2+/H+ antiporter that serves as a model for the Cation Diffusion Facilitator (CDF) superfamily, members of which are generally responsible for homeostasis of transition metal ions. Previous studies of YiiP as well as related CDF transporters have established a homodimeric architecture and the presence of three distinct Zn2+ binding sites named A, B, and C. In this study, we use cryo-EM, microscale thermophoresis and molecular dynamics simulations to address the structural and functional roles of individual sites as well as the interplay between Zn2+ binding and protonation. Structural studies indicate that site C in the cytoplasmic domain is primarily responsible for stabilizing the dimer and that site B at the cytoplasmic membrane surface controls the structural transition from an inward facing conformation to an occluded conformation. Binding data show that intramembrane site A, which is directly responsible for transport, has a dramatic pH dependence consistent with coupling to the proton motive force. A comprehensive thermodynamic model encompassing Zn2+ binding and protonation states of individual residues indicates a transport stoichiometry of 1 Zn2+ to 2-3 H+ depending on the external pH. This stoichiometry would be favorable in a physiological context, allowing the cell to use the proton gradient as well as the membrane potential to drive the export of Zn2+.
Collapse
Affiliation(s)
- Adel Hussein
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | - Shujie Fan
- Dept. of Physics, Arizona State University, Tempe AZ
| | | | - Ian Kenney
- Dept. of Physics, Arizona State University, Tempe AZ
| | - Xihui Zhang
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| | | | - David L Stokes
- Dept. of Cell Biology, NYU School of Medicine, New York, NY 10016 USA
| |
Collapse
|
7
|
Pang C, Chai J, Zhu P, Shanklin J, Liu Q. Structural mechanism of intracellular autoregulation of zinc uptake in ZIP transporters. Nat Commun 2023; 14:3404. [PMID: 37296139 PMCID: PMC10256678 DOI: 10.1038/s41467-023-39010-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Zinc is an essential micronutrient that supports all living organisms through regulating numerous biological processes. However, the mechanism of uptake regulation by intracellular Zn2+ status remains unclear. Here we report a cryo-electron microscopy structure of a ZIP-family transporter from Bordetella bronchiseptica at 3.05 Å resolution in an inward-facing, inhibited conformation. The transporter forms a homodimer, each protomer containing nine transmembrane helices and three metal ions. Two metal ions form a binuclear pore structure, and the third ion is located at an egress site facing the cytoplasm. The egress site is covered by a loop, and two histidine residues on the loop interact with the egress-site ion and regulate its release. Cell-based Zn2+ uptake and cell growth viability assays reveal a negative regulation of Zn2+ uptake through sensing intracellular Zn2+ status using a built-in sensor. These structural and biochemical analyses provide mechanistic insight into the autoregulation of zinc uptake across membranes.
Collapse
Affiliation(s)
- Changxu Pang
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Jin Chai
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Ping Zhu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, USA.
- NSLS-II, Brookhaven National Laboratory, Upton, NY, USA.
| |
Collapse
|
8
|
Sharma G, Jafari M, Merz KM. Getting zinc into and out of cells. Methods Enzymol 2023; 687:263-278. [PMID: 37666635 DOI: 10.1016/bs.mie.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Ion channels are specialized proteins located on the plasma membrane and control the movement of ions across the membrane. Zn ion plays an indispensable role as a structural constituent of various proteins, moreover, it plays an important dynamic role in cell signaling. In this chapter, we discuss computational insights into zinc efflux and influx mechanism through YiiP (from Escherichia coli and Shewanella oneidensis) and BbZIP (Bordetella bronchiseptica) transporters, respectively. Gaining knowledge about the mechanism of zinc transport at the molecular level can aid in developing treatments for conditions such as diabetes and cancer by manipulating extracellular and intracellular levels of zinc ions.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Majid Jafari
- Department of Chemistry, Michigan State University, East Lansing, MI, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, MI, United States; Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
9
|
Borko V, Friganović T, Weitner T. Glycoproteomics meets thermodynamics: A calorimetric study of the effect of sialylation and synergistic anion on the binding of iron to human serum transferrin. J Inorg Biochem 2023; 244:112207. [PMID: 37054508 DOI: 10.1016/j.jinorgbio.2023.112207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
The thermodynamic parameters for the binding of ferric ions to human serum transferrin (hTf) as the major mediator of iron transport in blood plasma were determined by isothermal titration calorimetry in the presence of carbonate and oxalate as synergistic anions at pH 7.4. The results indicate that the binding of ferric ions to the two binding sites of hTf is driven both enthalpically and entropically in a lobe-dependent manner: binding to the C-site is mainly enthalpically driven, whereas binding to the N-site is mainly entropically driven. Lower sialic acid content of hTf leads to more exothermic apparent binding enthalpies for both lobes, while the increased apparent binding constants for both sites were found in the presence of carbonate. Sialylation also unequally affected the heat change rates for both sites only in the presence of carbonate, but not in the presence of oxalate. Overall, the results suggest that the desialylated hTf has a higher iron sequestering ability, which may have implications for iron metabolism.
Collapse
|
10
|
Zhang S, Fu C, Luo Y, Xie Q, Xu T, Sun Z, Su Z, Zhou X. Cryo-EM structure of a eukaryotic zinc transporter at a low pH suggests its Zn 2+-releasing mechanism. J Struct Biol 2023; 215:107926. [PMID: 36464198 DOI: 10.1016/j.jsb.2022.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/10/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Zinc transporter 8 (ZnT8) is mainly expressed in pancreatic islet β cells and is responsible for H+-coupled uptake (antiport) of Zn2+ into the lumen of insulin secretory granules. Structures of human ZnT8 and its prokaryotic homolog YiiP have provided structural basis for constructing a plausible transport cycle for Zn2+. However, the mechanistic role that protons play in the transport process remains unclear. Here we present a lumen-facing cryo-EM structure of ZnT8 from Xenopus tropicalis (xtZnT8) in the presence of Zn2+ at a luminal pH (5.5). Compared to a Zn2+-bound xtZnT8 structure at a cytosolic pH (7.5), the low-pH structure displays an empty transmembrane Zn2+-binding site with a disrupted coordination geometry. Combined with a Zn2+-binding assay our data suggest that protons may disrupt Zn2+ coordination at the transmembrane Zn2+-binding site in the lumen-facing state, thus facilitating Zn2+ release from ZnT8 into the lumen.
Collapse
Affiliation(s)
- Senfeng Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chunting Fu
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongbo Luo
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qingrong Xie
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tong Xu
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ziyi Sun
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Xiaoming Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Rare Diseases Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
11
|
Shinya S, Katahira R, Furuita K, Sugiki T, Lee YH, Hattori Y, Takeshita K, Nakagawa A, Kokago A, Akagi KI, Oouchi M, Hayashi F, Kigawa T, Takimoto-Kamimura M, Fujiwara T, Kojima C. 19F chemical library and 19F-NMR for a weakly bound complex structure. RSC Med Chem 2022; 13:1100-1111. [PMID: 36324497 PMCID: PMC9491350 DOI: 10.1039/d2md00170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 07/24/2023] Open
Abstract
Fragment-based drug discovery (FBDD), which involves small compounds <300 Da, has been recognized as one of the most powerful tools for drug discovery. In FBDD, the affinity of hit compounds tends to be low, and the analysis of protein-compound interactions becomes difficult. In an effort to overcome such difficulty, we developed a 19F-NMR screening method optimizing a 19F chemical library focusing on highly soluble monomeric molecules. Our method was successfully applied to four proteins, including protein kinases and a membrane protein. For FKBP12, hit compounds were carefully validated by protein thermal shift analysis, 1H-15N HSQC NMR spectroscopy, and isothermal titration calorimetry to determine dissociation constants and model complex structures. It should be noted that the 1H and 19F saturation transfer difference experiments were crucial to obtaining highly precise model structures. The combination of 19F-NMR analysis and the optimized 19F chemical library enables the modeling of the complex structure made up of a weak binder and its target protein.
Collapse
Affiliation(s)
- Shoko Shinya
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Ritsuko Katahira
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kyoko Furuita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Toshihiko Sugiki
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Young-Ho Lee
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute Chungbuk 28119 South Korea
- Bio-Analytical Science, University of Science and Technology Daejeon 34113 South Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 South Korea
| | - Yoshikazu Hattori
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Kohei Takeshita
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Atsushi Nakagawa
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Aoi Kokago
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| | - Ken-Ichi Akagi
- National Institute of Biomedical Innovation, Health and Nutrition 7-6-8 Saito Asagi Ibaraki-city Osaka 567-0085 Japan
| | - Muneki Oouchi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Fumiaki Hayashi
- RIKEN Spring-8 Center 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Takanori Kigawa
- RIKEN Center for Biosystems Dynamics Research 1-7-22 Suehiro-cho, Tsurumi-ku Yokohama 230-0045 Japan
| | - Midori Takimoto-Kamimura
- Quantum-Structural Life Science Laboratories, CBI Research Institute 3-11-1 Shibaura, Minato-ku Tokyo 108-0023 Japan
| | - Toshimichi Fujiwara
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
| | - Chojiro Kojima
- Institute for Protein Research, Osaka University 3-2 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Engineering Science, Yokohama National University Tokiwadai 79-5, Hodogaya-ku Yokohama 2408501 Japan
| |
Collapse
|
12
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
13
|
Sharma G, Merz KM. Mechanism of Zinc Transport through the Zinc Transporter YiiP. J Chem Theory Comput 2022; 18:2556-2568. [PMID: 35226479 DOI: 10.1021/acs.jctc.1c00927] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc is an essential transition metal ion that plays as a structural, functional (catalytic), and a signaling molecule regulating cellular function. Unbalanced levels of zinc in cells can result in various pathological conditions. In the current work, all-atom molecular dynamics simulations were used to study the structure-function correlation between different YiiP states embedded in a lipid bilayer. This study enabled us to develop a hypothesis on the zinc efflux mechanism of YiiP. We have created six different models of YiiP representing the stages of the ion-transport process. We found that zinc ion plays a crucial role in restraining the transmembrane domains (TMDs) of the protein. In addition, H153, located in the TMD, has been proposed to guide the zinc ion toward the ZnA site of the YiiP transporter. Understanding the molecular-level Zn2+-transport process sheds light on the strategies affecting intracellular transition-metal ion concentrations in order to treat diseases like diabetes and cancer.
Collapse
Affiliation(s)
- Gaurav Sharma
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kenneth M Merz
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
14
|
Brown JB, Lee MA, Smith AT. Ins and Outs: Recent Advancements in Membrane Protein-Mediated Prokaryotic Ferrous Iron Transport. Biochemistry 2021; 60:3277-3291. [PMID: 34670078 DOI: 10.1021/acs.biochem.1c00586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Iron is an essential nutrient for virtually every living organism, especially pathogenic prokaryotes. Despite its importance, however, both the acquisition and the export of this element require dedicated pathways that are dependent on oxidation state. Due to its solubility and kinetic lability, reduced ferrous iron (Fe2+) is useful to bacteria for import, chaperoning, and efflux. Once imported, ferrous iron may be loaded into apo and nascent enzymes and even sequestered into storage proteins under certain conditions. However, excess labile ferrous iron can impart toxicity as it may spuriously catalyze Fenton chemistry, thereby generating reactive oxygen species and leading to cellular damage. In response, it is becoming increasingly evident that bacteria have evolved Fe2+ efflux pumps to deal with conditions of ferrous iron excess and to prevent intracellular oxidative stress. In this work, we highlight recent structural and mechanistic advancements in our understanding of prokaryotic ferrous iron import and export systems, with a focus on the connection of these essential transport systems to pathogenesis. Given the connection of these pathways to the virulence of many increasingly antibiotic resistant bacterial strains, a greater understanding of the mechanistic details of ferrous iron cycling in pathogens could illuminate new pathways for future therapeutic developments.
Collapse
Affiliation(s)
- Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Mark A Lee
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Aaron T Smith
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
15
|
Lopez-Redondo M, Fan S, Koide A, Koide S, Beckstein O, Stokes DL. Zinc binding alters the conformational dynamics and drives the transport cycle of the cation diffusion facilitator YiiP. J Gen Physiol 2021; 153:212464. [PMID: 34254979 PMCID: PMC8282283 DOI: 10.1085/jgp.202112873] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
YiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport. To study the effects of Zn2+ binding on the conformational transition, we use cryo-EM together with molecular dynamics simulation to compare structures of YiiP from Shewanella oneidensis in the presence and absence of Zn2+. To enable single-particle cryo-EM, we used a phage-display library to develop a Fab antibody fragment with high affinity for YiiP, thus producing a YiiP/Fab complex. To perform MD simulations, we developed a nonbonded dummy model for Zn2+ and validated its performance with known Zn2+-binding proteins. Using these tools, we find that, in the presence of Zn2+, YiiP adopts an inward-facing conformation consistent with that previously seen in tubular crystals. After removal of Zn2+ with high-affinity chelators, YiiP exhibits enhanced flexibility and adopts a novel conformation that appears to be intermediate between inward-facing and outward-facing states. This conformation involves closure of a hydrophobic gate that has been postulated to control access to the primary transport site. Comparison of several independent cryo-EM maps suggests that the transition from the inward-facing state is controlled by occupancy of a secondary Zn2+ site at the cytoplasmic membrane interface. This work enhances our understanding of individual Zn2+ binding sites and their role in the conformational dynamics that govern the transport cycle.
Collapse
Affiliation(s)
- Maria Lopez-Redondo
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY
| | - Shujie Fan
- Department of Physics, Arizona State University, Tempe, AZ
| | - Akiko Koide
- Perlmutter Cancer Center, Department of Medicine, New York University School of Medicine, New York, NY
| | - Shohei Koide
- Perlmutter Cancer Center, Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY
| | | | - David L Stokes
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY
| |
Collapse
|
16
|
Kaur H, Bari NK, Garg A, Sinha S. Protein morphology drives the structure and catalytic activity of bio-inorganic hybrids. Int J Biol Macromol 2021; 176:106-116. [PMID: 33556398 DOI: 10.1016/j.ijbiomac.2021.01.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/26/2022]
Abstract
Bio-hybrid materials have received a lot of attention in view of their bio-mimicking nature. One such biomimetic material with catalytic activity are the protein derived floral nanohybrid. Copper phosphate coordinated flakes can be curated to distinct floral morphology using proteins. Structurally two different proteins with similar size and with no known enzymatic activity are used to evaluate the role of protein structure and morphology, on the structure-activity relationship of the developed hybrid nanoflowers. Globular protein BSA and bacterial microcompartment domain protein PduBB' are selected. PduBB' because of self-assembling nature forms extended sheets, whereas BSA lacks specific assembly. The developed hybrid NFs differ in their morphology and also in their mimicry as a biological catalyst. The present investigation highlights the importance of the quaternary structure of proteins in tailoring the structure and function of the h-NFs. The results in this manuscript will motivate and guide designing, engineering and selection of glue material for fabricating biomacromolecule derived biohybrid material to mimic natural enzymes of potential industrial application.
Collapse
Affiliation(s)
- Harpreet Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Naimat K Bari
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Ankush Garg
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India
| | - Sharmistha Sinha
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Sector-81, Knowledge City, SAS Nagar Mohali, Punjab 140306, India.
| |
Collapse
|
17
|
Kambe T, Taylor KM, Fu D. Zinc transporters and their functional integration in mammalian cells. J Biol Chem 2021; 296:100320. [PMID: 33485965 PMCID: PMC7949119 DOI: 10.1016/j.jbc.2021.100320] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Zinc is a ubiquitous biological metal in all living organisms. The spatiotemporal zinc dynamics in cells provide crucial cellular signaling opportunities, but also challenges for intracellular zinc homeostasis with broad disease implications. Zinc transporters play a central role in regulating cellular zinc balance and subcellular zinc distributions. The discoveries of two complementary families of mammalian zinc transporters (ZnTs and ZIPs) in the mid-1990s spurred much speculation on their metal selectivity and cellular functions. After two decades of research, we have arrived at a biochemical description of zinc transport. However, in vitro functions are fundamentally different from those in living cells, where mammalian zinc transporters are directed to specific subcellular locations, engaged in dedicated macromolecular machineries, and connected with diverse cellular processes. Hence, the molecular functions of individual zinc transporters are reshaped and deeply integrated in cells to promote the utilization of zinc chemistry to perform enzymatic reactions, tune cellular responsiveness to pathophysiologic signals, and safeguard cellular homeostasis. At present, the underlying mechanisms driving the functional integration of mammalian zinc transporters are largely unknown. This knowledge gap has motivated a shift of the research focus from in vitro studies of purified zinc transporters to in cell studies of mammalian zinc transporters in the context of their subcellular locations and protein interactions. In this review, we will outline how knowledge of zinc transporters has been accumulated from in-test-tube to in-cell studies, highlighting new insights and paradigm shifts in our understanding of the molecular and cellular basis of mammalian zinc transporter functions.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom
| | - Dax Fu
- Department of Physiology, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Tempio T, Anelli T. The pivotal role of ERp44 in patrolling protein secretion. J Cell Sci 2020; 133:133/21/jcs240366. [PMID: 33173013 DOI: 10.1242/jcs.240366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interactions between protein ligands and receptors are the main language of intercellular communication; hence, how cells select proteins to be secreted or presented on the plasma membrane is a central concern in cell biology. A series of checkpoints are located along the secretory pathway, which ensure the fidelity of such protein signals (quality control). Proteins that pass the checkpoints operated in the endoplasmic reticulum (ER) by the binding immunoglobulin protein (BiP; also known as HSPA5 and GRP78) and the calnexin-calreticulin systems, must still overcome additional scrutiny in the ER-Golgi intermediate compartment (ERGIC) and the Golgi. One of the main players of this process in all metazoans is the ER-resident protein 44 (ERp44); by cycling between the ER and the Golgi, ERp44 controls the localization of key enzymes designed to act in the ER but that are devoid of suitable localization motifs. ERp44 also patrols the secretion of correctly assembled disulfide-linked oligomeric proteins. Here, we discuss the mechanisms driving ERp44 substrate recognition, with important consequences on the definition of 'thiol-mediated quality control'. We also describe how pH and zinc gradients regulate the functional cycle of ERp44, coupling quality control and membrane trafficking along the early secretory compartment.
Collapse
Affiliation(s)
- Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy.,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy .,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
19
|
The Role of Zinc in Male Fertility. Int J Mol Sci 2020; 21:ijms21207796. [PMID: 33096823 PMCID: PMC7589359 DOI: 10.3390/ijms21207796] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Several studies proposed the importance of zinc ion in male fertility. Here, we describe the properties, roles and cellular mechanisms of action of Zn2+ in spermatozoa, focusing on its involvement in sperm motility, capacitation and acrosomal exocytosis, three functions that are crucial for successful fertilization. The impact of zinc supplementation on assisted fertilization techniques is also described. The impact of zinc on sperm motility has been investigated in many vertebrate and invertebrate species. It has been reported that Zn2+ in human seminal plasma decreases sperm motility and that Zn2+ removal enhances motility. Reduction in the intracellular concentration of Zn2+ during epididymal transit allows the development of progressive motility and the subsequent hyper activated motility during sperm capacitation. Extracellular Zn2+ affects intracellular signaling pathways through its interaction with the Zn2+ sensing receptor (ZnR), also named GPR39. This receptor was found in the sperm tail and the acrosome, suggesting the possible involvement of Zn2+ in sperm motility and acrosomal exocytosis. Our studies showed that Zn2+ stimulates bovine sperm acrosomal exocytosis, as well as human sperm hyper-activated motility, were both mediated by GPR39. Zn2+ binds and activates GPR39, which activates the trans-membrane-adenylyl-cyclase (tmAC) to catalyze cAMP production. The NHE (Na+/H+-exchanger) is activated by cAMP, leading in increased pHi and activation of the sperm-specific Ca2+ channel CatSper, resulting in an increase in [Ca2+]i, which, together with HCO3−, activates the soluble adenylyl-cyclase (sAC). The increase in [cAMP]i activates protein kinase A (PKA), followed by activation of the Src-epidermal growth factor receptor-Pphospholipase C (Src-EGFR-PLC) cascade, resulting in inositol-triphosphate (IP3) production, which mobilizes Ca2+ from the acrosome, causing a further increase in [Ca2+]i and the development of hyper-activated motility. PKA also activates phospholipase D1 (PLD1), leading to F-actin formation during capacitation. Prior to the acrosomal exocytosis, PLC induces phosphadidylinositol-4,5-bisphosphate (PIP2) hydrolysis, leading to the release of the actin-severing protein gelsolin to the cytosol, which is activated by Ca2+, resulting in F-actin breakdown and the occurrence of acrosomal exocytosis.
Collapse
|
20
|
Udagedara SR, La Porta DM, Spehar C, Purohit G, Hein MJA, Fatmous ME, Casas Garcia GP, Ganio K, McDevitt CA, Maher MJ. Structural and functional characterizations of the C-terminal domains of CzcD proteins. J Inorg Biochem 2020; 208:111087. [PMID: 32505855 DOI: 10.1016/j.jinorgbio.2020.111087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/15/2022]
Abstract
Zinc is a potent antimicrobial component of the innate immune response at the host-pathogen interface. Bacteria subvert or resist host zinc insults by metal efflux pathways that include cation diffusion facilitator (CDF) proteins. The structural and functional examination of this protein class has been limited, with only the structures of the zinc transporter YiiP proteins from E. coli and Shewanella oneidensis described to date. Here, we determine the metal binding properties, solution quaternary structures and three dimensional architectures of the C-terminal domains of the metal transporter CzcD proteins from Cupriavidus metallidurans, Pseudomonas aeruginosa and Thermotoga maritima. We reveal significant diversity in the metal-binding properties and structures of these proteins and discover a potential novel mechanism for metal-promoted dimerization for the Cupriavidus metallidurans and Pseudomonas aeruginosa proteins.
Collapse
Affiliation(s)
- Saumya R Udagedara
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Daniel M La Porta
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Christian Spehar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Ghruta Purohit
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Matthew J A Hein
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Monique E Fatmous
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - G Patricia Casas Garcia
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia
| | - Katherine Ganio
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Christopher A McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne 3000, Australia
| | - Megan J Maher
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3083, Australia; School of Chemistry, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne 3010, Australia.
| |
Collapse
|
21
|
Roskamp KW, Kozlyuk N, Sengupta S, Bierma JC, Martin RW. Divalent Cations and the Divergence of βγ-Crystallin Function. Biochemistry 2019; 58:4505-4518. [PMID: 31647219 DOI: 10.1021/acs.biochem.9b00507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The βγ-crystallin superfamily contains both β- and γ-crystallins of the vertebrate eye lens and the microbial calcium-binding proteins, all of which are characterized by a common double-Greek key domain structure. The vertebrate βγ-crystallins are long-lived structural proteins that refract light onto the retina. In contrast, the microbial βγ-crystallins bind calcium ions. The βγ-crystallin from the tunicate Ciona intestinalis (Ci-βγ) provides a potential link between these two functions. It binds calcium with high affinity and is found in a light-sensitive sensory organ that is highly enriched in metal ions. Thus, Ci-βγ is valuable for investigating the evolution of the βγ-crystallin fold away from calcium binding and toward stability in the apo form as part of the vertebrate lens. Here, we investigate the effect of Ca2+ and other divalent cations on the stability and aggregation propensity of Ci-βγ and human γS-crystallin (HγS). Beyond Ca2+, Ci-βγ is capable of coordinating Mg2+, Sr2+, Co2+, Mn2+, Ni2+, and Zn2+, although only Sr2+ is bound with comparable affinity to its preferred metal ion. The extent to which the tested divalent cations stabilize Ci-βγ structure correlates strongly with ionic radius. In contrast, none of the tested divalent cations improved the stability of HγS, and some of them induced aggregation. Zn2+, Ni2+, and Co2+ induce aggregation by interacting with cysteine residues, whereas Cu2+-mediated aggregation proceeds via a different binding site.
Collapse
Affiliation(s)
- Kyle W Roskamp
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Natalia Kozlyuk
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Suvrajit Sengupta
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States
| | - Jan C Bierma
- Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States
| | - Rachel W Martin
- Department of Chemistry , University of California , Irvine , California 92697-2025 , United States.,Department of Molecular Biology and Biochemistry , University of California , Irvine , California 92697-3900 , United States
| |
Collapse
|
22
|
de Jesus JR, Aragão AZB, Arruda MAZ, Ramos CHI. Optimization of a Methodology for Quantification and Removal of Zinc Gives Insights Into the Effect of This Metal on the Stability and Function of the Zinc-Binding Co-chaperone Ydj1. Front Chem 2019; 7:416. [PMID: 31263692 PMCID: PMC6584821 DOI: 10.3389/fchem.2019.00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/21/2019] [Indexed: 01/13/2023] Open
Abstract
Ydj1, a class B J-protein (Hsp40) in yeast, has two zinc finger domains in each monomer and belongs to an important co-chaperone family that plays crucial roles in cells, such as recognizing and binding partially folded proteins and assisting the Hsp70 chaperone family in protein folding. Yeast cells with ydj1 deletion were less efficient at coping with zinc stress than wild-type cells, and site-directed mutagenesis studies that impair or delete the zinc finger region have confirmed the importance of this region to the function of Ydj1; however, little is known about whether the presence of zinc is critical for the function of the protein. To gain insights into the effect of zinc on the structure and function of Ydj1 without having to modify its primary structure, a method was developed and optimized to quantify and remove the zinc from the protein. Recombinant Ydj1 was produced and purified, and its zinc content was determined by ICP-MS. The result showed that two zinc atoms were bound per monomer of protein, a good indicator that all sites were saturated. To optimize the removal of the bound zinc, variations on chelating agent (EDTA, EGTA, 1,10-phenanthroline), chelator concentration, reaction time, pH, and temperature were tested. These procedures had no effect on the overall secondary structure of the protein, since no significant changes in the circular dichroism spectrum were observed. The most significant removal (91 ± 2%, n = 3) of zinc was achieved using 1,10-phenanthroline (1 × 10−3 mol L−1) at 37°C with a pH 8.5 for 24 h. Zinc removal affected the stability of the protein, as observed by a thermal-induced unfolding assay showing that the temperature at the middle of the transition (Tm) decreased from 63 ± 1°C to 60 ± 1°C after Zn extraction. In addition, the effect on the ability of Ydj1 to protect a model protein (luciferase) against aggregation was completely abolished after the Zn removal procedure. The main conclusion is that zinc plays an important role in the stability and activity of Ydj1. Additionally, the results highlight the medical importance of chaperones, as altered zinc homeostasis is implicated in many diseases, such as neurodegenerative disorders.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | | | - Marco Aurélio Zezzi Arruda
- National Institute of Science and Technology for Bioanalytics, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil.,Spectrometry, Sample Preparation and Mechanization Group - GEPAM, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil
| | - Carlos H I Ramos
- Department of Organic Chemistry, Institute of Chemistry, University of Campinas - UNICAMP, Campinas, Brazil.,National Institute of Science and Technology for Bioimage and Structural Biology (INBEB), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
23
|
Sala D, Giachetti A, Rosato A. An atomistic view of the YiiP structural changes upon zinc(II) binding. Biochim Biophys Acta Gen Subj 2019; 1863:1560-1567. [PMID: 31176764 DOI: 10.1016/j.bbagen.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/28/2019] [Accepted: 06/03/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND YiiP is a bacterial zinc-for-proton antiporter belonging to the cation diffusion facilitator family. The zinc(II) ions are transported across the cell membrane, from the cytosol to the extracellular space. METHODS We performed atomistic molecular dynamics simulations of the YiiP dimer with zinc(II) ions in solution to elucidate how the metal ions interact with the protein while moving from the cytosol to the transport site. RESULTS We observed that of the two cavities of the dimer, only one was accessible from the cytosol during transport. Zinc(II) binding to D49 of the transport site triggered a rearrangement of the transmembrane domain that closed the accessible cavity. Finally, we analyzed the free-energy profiles of metal transit in the channel and observed the existence of a high barrier preventing release from the transport site. CONCLUSIONS The observed dynamics is consistent with the dimer-dimer interface forming a stable scaffold against which the rest of the trans-membrane rearranges. GENERAL SIGNIFICANCE Zinc(II) transporters are present in all kingdoms of life. The present study highlights structural features that might be of general relevance.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Tuscany, Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Tuscany, Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Tuscany, Sesto Fiorentino, Italy; Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Tuscany, Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Tuscany, Sesto Fiorentino, Italy.
| |
Collapse
|
24
|
Cotrim CA, Jarrott RJ, Martin JL, Drew D. A structural overview of the zinc transporters in the cation diffusion facilitator family. Acta Crystallogr D Struct Biol 2019; 75:357-367. [PMID: 30988253 PMCID: PMC6465983 DOI: 10.1107/s2059798319003814] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/19/2019] [Indexed: 01/07/2023] Open
Abstract
The cation diffusion facilitators (CDFs) are a family of membrane-bound proteins that maintain cellular homeostasis of essential metal ions. In humans, the zinc-transporter CDF family members (ZnTs) play important roles in zinc homeostasis. They do this by facilitating zinc efflux from the cytoplasm to the extracellular space across the plasma membrane or into intracellular organelles. Several ZnTs have been implicated in human health owing to their association with type 2 diabetes and neurodegenerative diseases. Although the structure determination of CDF family members is not trivial, recent advances in membrane-protein structural biology have resulted in two structures of bacterial YiiPs and several structures of their soluble C-terminal domains. These data reveal new insights into the molecular mechanism of ZnT proteins, suggesting a unique rocking-bundle mechanism that provides alternating access to the metal-binding site.
Collapse
Affiliation(s)
- Camila A. Cotrim
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Russell J. Jarrott
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Golan Y, Alhadeff R, Warshel A, Assaraf YG. ZnT2 is an electroneutral proton-coupled vesicular antiporter displaying an apparent stoichiometry of two protons per zinc ion. PLoS Comput Biol 2019; 15:e1006882. [PMID: 30893306 PMCID: PMC6443192 DOI: 10.1371/journal.pcbi.1006882] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/01/2019] [Accepted: 02/18/2019] [Indexed: 01/29/2023] Open
Abstract
Zinc is a vital trace element crucial for the proper function of some 3,000 cellular proteins. Specifically, zinc is essential for key physiological processes including nucleic acid metabolism, regulation of gene expression, signal transduction, cell division, immune- and nervous system functions, wound healing, and apoptosis. Consequently, impairment of zinc homeostasis disrupts key cellular functions resulting in various human pathologies. Mammalian zinc transport proceeds via two transporter families ZnT and ZIP. However, the detailed mechanism of action of ZnT2, which is responsible for vesicular zinc accumulation and zinc secretion into breast milk during lactation, is currently unknown. Moreover, although the putative coupling of zinc transport to the proton gradient in acidic vesicles has been suggested, it has not been conclusively established. Herein we modeled the mechanism of action of ZnT2 and demonstrated both computationally and experimentally, using functional zinc transport assays, that ZnT2 is indeed a proton-coupled zinc antiporter. Bafilomycin A1, a specific inhibitor of vacuolar-type proton ATPase (V-ATPase) which alkalizes acidic vesicles, abolished ZnT2-dependent zinc transport into intracellular vesicles. Moreover, using LysoTracker Red and Lyso-pHluorin, we further showed that upon transient ZnT2 overexpression in intracellular vesicles and addition of exogenous zinc, the vesicular pH underwent alkalization, presumably due to a proton-zinc antiport; this phenomenon was reversed in the presence of TPEN, a specific zinc chelator. Finally, based on computational energy calculations, we propose that ZnT2 functions as an antiporter with a stoichiometry of 2H+/Zn2+ ion. Hence, ZnT2 is a proton motive force-driven, electroneutral vesicular zinc exchanger, concentrating zinc in acidic vesicles on the expense of proton extrusion to the cytoplasm. Herein we explored the mechanism of action of the human ZnT2 zinc transporter. ZnT2 is essential for zinc accumulation in breast milk and is therefore of paramount medical significance. Expanding on our previous study, we herein present energy calculations suggesting that ZnT2 functions as a proton/zinc antiporter. Our calculations consist of electrostatic and pKa calculations as well as zinc binding free-energy curves. Upon integration of our calculation results, we conclude that ZnT2 functions as an antiporter with a 2H+/Zn2+ stoichiometry, construct a Monte Carlo model to test this mode of ZnT2 transport activity, and validate our computational results experimentally using live human breast epithelial cells. These functional experiments reveal that ZnT2 cannot function in the absence of protons suggesting that it operates as a substrate-induced alternating-access transporter, displaying an apparent 2H+/Zn2+ stoichiometry.
Collapse
Affiliation(s)
- Yarden Golan
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Raphael Alhadeff
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California
| | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- * E-mail:
| |
Collapse
|
26
|
|
27
|
Function, Structure, and Transport Aspects of ZIP and ZnT Zinc Transporters in Immune Cells. J Immunol Res 2018; 2018:9365747. [PMID: 30370308 PMCID: PMC6189677 DOI: 10.1155/2018/9365747] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022] Open
Abstract
Zinc is an important trace metal in immune systems, and zinc transporters are involved in many immune responses. Recent advances have revealed the structural and biochemical bases for zinc transport across the cell membrane, with clinical implications for the regulation of zinc homeostasis in immune cells like dendritic cells, T cells, B cells, and mast cells. In this review, we discuss the function, structure, and transport aspects of two major mammalian zinc transporter types, importers and exporters. First, Zrt-/Irt-like proteins (ZIPs) mediate the zinc influx from the extracellular or luminal side into the cytoplasm. There are 14 ZIP family members in humans. They form a homo- or heterodimer with 8 transmembrane domains and extra-/intracellular domains of various lengths. Several ZIP members show specific extracellular domains composed of two subdomains, a helix-rich domain and proline-alanine-leucine (PAL) motif-containing domain. Second, ZnT (zinc transporter) was initially identified in early studies of zinc biology; it mediates zinc efflux as a counterpart of ZIPs in zinc homeostasis. Ten family members have been identified. They show a unique architecture characterized by a Y-shaped conformation and a large cytoplasmic domain. A precise, comprehensive understanding of the structures and transport mechanisms of ZIP and ZnT in combination with mice experiments would provide promising drug targets as well as a basis for identifying other transporters with therapeutic potential.
Collapse
|
28
|
Komárek J, Ivanov Kavková E, Houser J, Horáčková A, Ždánská J, Demo G, Wimmerová M. Structure and properties of AB21, a novelAgaricus bisporusprotein with structural relation to bacterial pore-forming toxins. Proteins 2018; 86:897-911. [DOI: 10.1002/prot.25522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jan Komárek
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Eva Ivanov Kavková
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Josef Houser
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Aneta Horáčková
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Jitka Ždánská
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
| | - Gabriel Demo
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| | - Michaela Wimmerová
- Central European Institute of Technology, Masaryk University, Kamenice 5; Brno 62500 Czech Republic
- National Centre for Biomolecular Research; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
- Department of Biochemistry; Faculty of Science, Masaryk University, Kotlarska 2; Brno 61137 Czech Republic
| |
Collapse
|
29
|
Joh NH, Grigoryan G, Wu Y, DeGrado WF. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Philos Trans R Soc Lond B Biol Sci 2018. [PMID: 28630154 DOI: 10.1098/rstb.2016.0214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ion transporters and channels are able to identify and act on specific substrates among myriads of ions and molecules critical to cellular processes, such as homeostasis, cell signalling, nutrient influx and drug efflux. Recently, we designed Rocker, a minimalist model for Zn2+/H+ co-transport. The success of this effort suggests that de novo membrane protein design has now come of age so as to serve a key approach towards probing the determinants of membrane protein folding, assembly and function. Here, we review general principles that can be used to design membrane proteins, with particular reference to helical assemblies with transport function. We also provide new functional and NMR data that probe the dynamic mechanism of conduction through Rocker.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Nathan H Joh
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gevorg Grigoryan
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA.,Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
30
|
Structural basis for the alternating access mechanism of the cation diffusion facilitator YiiP. Proc Natl Acad Sci U S A 2018; 115:3042-3047. [PMID: 29507252 DOI: 10.1073/pnas.1715051115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
YiiP is a dimeric antiporter from the cation diffusion facilitator family that uses the proton motive force to transport Zn2+ across bacterial membranes. Previous work defined the atomic structure of an outward-facing conformation, the location of several Zn2+ binding sites, and hydrophobic residues that appear to control access to the transport sites from the cytoplasm. A low-resolution cryo-EM structure revealed changes within the membrane domain that were associated with the alternating access mechanism for transport. In the current work, the resolution of this cryo-EM structure has been extended to 4.1 Å. Comparison with the X-ray structure defines the differences between inward-facing and outward-facing conformations at an atomic level. These differences include rocking and twisting of a four-helix bundle that harbors the Zn2+ transport site and controls its accessibility within each monomer. As previously noted, membrane domains are closely associated in the dimeric structure from cryo-EM but dramatically splayed apart in the X-ray structure. Cysteine crosslinking was used to constrain these membrane domains and to show that this large-scale splaying was not necessary for transport activity. Furthermore, dimer stability was not compromised by mutagenesis of elements in the cytoplasmic domain, suggesting that the extensive interface between membrane domains is a strong determinant of dimerization. As with other secondary transporters, this interface could provide a stable scaffold for movements of the four-helix bundle that confers alternating access of these ions to opposite sides of the membrane.
Collapse
|
31
|
Pro-metastatic collagen lysyl hydroxylase dimer assemblies stabilized by Fe 2+-binding. Nat Commun 2018; 9:512. [PMID: 29410444 PMCID: PMC5802723 DOI: 10.1038/s41467-018-02859-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/04/2018] [Indexed: 11/30/2022] Open
Abstract
Collagen lysyl hydroxylases (LH1-3) are Fe2+- and 2-oxoglutarate (2-OG)-dependent oxygenases that maintain extracellular matrix homeostasis. High LH2 levels cause stable collagen cross-link accumulations that promote fibrosis and cancer progression. However, developing LH antagonists will require structural insights. Here, we report a 2 Å crystal structure and X-ray scattering on dimer assemblies for the LH domain of L230 in Acanthamoeba polyphaga mimivirus. Loop residues in the double-stranded β-helix core generate a tail-to-tail dimer. A stabilizing hydrophobic leucine locks into an aromatic tyrosine-pocket on the opposite subunit. An active site triad coordinates Fe2+. The two active sites flank a deep surface cleft that suggest dimerization creates a collagen-binding site. Loss of Fe2+-binding disrupts the dimer. Dimer disruption and charge reversal in the cleft increase Km and reduce LH activity. Ectopic L230 expression in tumors promotes collagen cross-linking and metastasis. These insights suggest inhibitor targets for fibrosis and cancer. Collagen lysyl hydroxylases promote cancer progression. Here the authors present the crystal structure of the lysyl hydroxylase domain of L230 from Acanthamoeba polyphagamimivirus, which is of interest for LH inhibitor development, and show that ectopic expression of L230 in tumors promotes collagen cross-linking and metastasis.
Collapse
|
32
|
Abstract
Bacteria require iron for growth, with only a few reported exceptions. In many environments, iron is a limiting nutrient for growth and high affinity uptake systems play a central role in iron homeostasis. However, iron can also be detrimental to cells when it is present in excess, particularly under aerobic conditions where its participation in Fenton chemistry generates highly reactive hydroxyl radicals. Recent results have revealed a critical role for iron efflux transporters in protecting bacteria from iron intoxication. Systems that efflux iron are widely distributed amongst bacteria and fall into several categories: P1B-type ATPases, cation diffusion facilitator (CDF) proteins, major facilitator superfamily (MFS) proteins, and membrane bound ferritin-like proteins. Here, we review the emerging role of iron export in both iron homeostasis and as part of the adaptive response to oxidative stress.
Collapse
Affiliation(s)
- Hualiang Pi
- Department of Microbiology, Cornell University, Ithaca, NY 14853-8101, USA.
| | | |
Collapse
|
33
|
Hariharan P, Andersson M, Jiang X, Pardon E, Steyaert J, Kaback HR, Guan L. Thermodynamics of Nanobody Binding to Lactose Permease. Biochemistry 2016; 55:5917-5926. [PMID: 27686537 DOI: 10.1021/acs.biochem.6b00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Camelid nanobodies (Nbs) raised against the outward-facing conformer of a double-Trp mutant of the lactose permease of Escherichia coli (LacY) stabilize the permease in outward-facing conformations. Isothermal titration calorimetry is applied herein to dissect the binding thermodynamics of two Nbs, one that markedly improves access to the sugar-binding site and another that dramatically increases the affinity for galactoside. The findings presented here show that both enthalpy and entropy contribute favorably to binding of the Nbs to wild-type (WT) LacY and that binding of Nb to double-Trp mutant G46W/G262W is driven by a greater enthalpy at an entropic penalty. Thermodynamic analyses support the interpretation that WT LacY is stabilized in outward-facing conformations like the double-Trp mutant with closure of the water-filled cytoplasmic cavity through conformational selection. The LacY conformational transition required for ligand binding is reflected by a favorable entropy increase. Molecular dynamics simulations further suggest that the entropy increase likely stems from release of immobilized water molecules primarily from the cytoplasmic cavity upon closure.
Collapse
Affiliation(s)
- Parameswaran Hariharan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| | - Magnus Andersson
- Department of Theoretical Physics and Swedish e-Science Research Center, Science for Life Laboratory, KTH Royal Institute of Technology , SE-171 21 Solna, Sweden
| | - Xiaoxu Jiang
- Department of Physiology, University of California , Los Angeles, California 90095, United States
| | - Els Pardon
- VIB Center for Structural Biology Research, VIB , 1050 Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussel, Belgium
| | - Jan Steyaert
- VIB Center for Structural Biology Research, VIB , 1050 Brussel, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel , Pleinlaan 2, 1050 Brussel, Belgium
| | - H Ronald Kaback
- Department of Physiology, University of California , Los Angeles, California 90095, United States
| | - Lan Guan
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center , Lubbock, Texas 79430, United States
| |
Collapse
|
34
|
Wątły J, Potocki S, Rowińska-Żyrek M. Zinc Homeostasis at the Bacteria/Host Interface-From Coordination Chemistry to Nutritional Immunity. Chemistry 2016; 22:15992-16010. [DOI: 10.1002/chem.201602376] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Joanna Wątły
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | - Sławomir Potocki
- Faculty of Chemistry; University of Wroclaw; F. Joliot-Curie 14 50-383 Wroclaw Poland
| | | |
Collapse
|
35
|
Zogzas CE, Aschner M, Mukhopadhyay S. Structural Elements in the Transmembrane and Cytoplasmic Domains of the Metal Transporter SLC30A10 Are Required for Its Manganese Efflux Activity. J Biol Chem 2016; 291:15940-57. [PMID: 27307044 DOI: 10.1074/jbc.m116.726935] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 01/06/2023] Open
Abstract
Homozygous mutations in SLC30A10 lead to the development of familial manganese-induced parkinsonism. We previously demonstrated that SLC30A10 is a cell surface-localized manganese efflux transporter, and parkinsonism-causing mutations block its trafficking and efflux activity. Interestingly, other transporters in the SLC30 family mediate zinc efflux. Determining the mechanisms that allow SLC30A10 to transport manganese, which are unclear, is essential to understand its role in parkinsonism. Here, we generated a predicted structure of SLC30A10, based on the structure of the bacterial zinc transporter YiiP, and performed functional studies. In YiiP, side chains of residues Asp-45 and Asp-49 in the second and His-153 and Asp-157 in the fifth transmembrane segments coordinate zinc and are required for transport. In SLC30A10, the corresponding residues are Asn-43 and Asp-47 in the second and His-244 and Asp-248 in the fifth transmembrane segments. Surprisingly, although alanine substitution of Asp-248 abolished manganese efflux, that of Asn-43 and Asp-47 did not. Instead, side chains of charged or polar residues adjacent to Asp-248 in the first (Glu-25) or fourth (Asn-127) transmembrane segments were required. Further analyses revealed that residues His-333 and His-350 in the cytoplasmic C-terminal domain were required for full activity. However, the C-terminal domain failed to transfer manganese transport capability to a related zinc transporter. Overall, our results indicate that residues in the transmembrane and C-terminal domains together confer optimal manganese transport capability to SLC30A10 and suggest that the mechanism of ion coordination in the transmembrane domain of SLC30A10 may be substantially different from that in YiiP/other SLC30 proteins.
Collapse
Affiliation(s)
- Charles E Zogzas
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712 and
| | - Michael Aschner
- the Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Somshuvra Mukhopadhyay
- From the Division of Pharmacology and Toxicology, College of Pharmacy, Institute for Cellular and Molecular Biology, and Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712 and
| |
Collapse
|
36
|
Bennett BD, Brutinel ED, Gralnick JA. A Ferrous Iron Exporter Mediates Iron Resistance in Shewanella oneidensis MR-1. Appl Environ Microbiol 2015; 81:7938-44. [PMID: 26341213 PMCID: PMC4616933 DOI: 10.1128/aem.02835-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis strain MR-1 is a dissimilatory metal-reducing bacterium frequently found in aquatic sediments. In the absence of oxygen, S. oneidensis can respire extracellular, insoluble oxidized metals, such as iron (hydr)oxides, making it intimately involved in environmental metal and nutrient cycling. The reduction of ferric iron (Fe(3+)) results in the production of ferrous iron (Fe(2+)) ions, which remain soluble under certain conditions and are toxic to cells at higher concentrations. We have identified an inner membrane protein in S. oneidensis, encoded by the gene SO_4475 and here called FeoE, which is important for survival during anaerobic iron respiration. FeoE, a member of the cation diffusion facilitator (CDF) protein family, functions to export excess Fe(2+) from the MR-1 cytoplasm. Mutants lacking feoE exhibit an increased sensitivity to Fe(2+). The export function of FeoE is specific for Fe(2+), as an feoE mutant is equally sensitive to other metal ions known to be substrates of other CDF proteins (Cd(2+), Co(2+), Cu(2+), Mn(2+), Ni(2+), or Zn(2+)). The substrate specificity of FeoE differs from that of FieF, the Escherichia coli homolog of FeoE, which has been reported to be a Cd(2+)/Zn(2+) or Fe(2+)/Zn(2+) exporter. A complemented feoE mutant has an increased growth rate in the presence of excess Fe(2+) compared to that of the ΔfeoE mutant complemented with fieF. It is possible that FeoE has evolved to become an efficient and specific Fe(2+) exporter in response to the high levels of iron often present in the types of environmental niches in which Shewanella species can be found.
Collapse
Affiliation(s)
- Brittany D Bennett
- BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Evan D Brutinel
- BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Microbiology, University of Minnesota-Twin Cities, St. Paul, Minnesota, USA
| |
Collapse
|
37
|
Abstract
This chapter focuses on transition metals. All transition metal cations are toxic-those that are essential for Escherichia coli and belong to the first transition period of the periodic system of the element and also the "toxic-only" metals with higher atomic numbers. Common themes are visible in the metabolism of these ions. First, there is transport. High-rate but low-affinity uptake systems provide a variety of cations and anions to the cells. Control of the respective systems seems to be mainly through regulation of transport activity (flux control), with control of gene expression playing only a minor role. If these systems do not provide sufficient amounts of a needed ion to the cell, genes for ATP-hydrolyzing high-affinity but low-rate uptake systems are induced, e.g., ABC transport systems or P-type ATPases. On the other hand, if the amount of an ion is in surplus, genes for efflux systems are induced. By combining different kinds of uptake and efflux systems with regulation at the levels of gene expression and transport activity, the concentration of a single ion in the cytoplasm and the composition of the cellular ion "bouquet" can be rapidly adjusted and carefully controlled. The toxicity threshold of an ion is defined by its ability to produce radicals (copper, iron, chromate), to bind to sulfide and thiol groups (copper, zinc, all cations of the second and third transition period), or to interfere with the metabolism of other ions. Iron poses an exceptional metabolic problem due its metabolic importance and the low solubility of Fe(III) compounds, combined with the ability to cause dangerous Fenton reactions. This dilemma for the cells led to the evolution of sophisticated multi-channel iron uptake and storage pathways to prevent the occurrence of unbound iron in the cytoplasm. Toxic metals like Cd2+ bind to thiols and sulfide, preventing assembly of iron complexes and releasing the metal from iron-sulfur clusters. In the unique case of mercury, the cation can be reduced to the volatile metallic form. Interference of nickel and cobalt with iron is prevented by the low abundance of these metals in the cytoplasm and their sequestration by metal chaperones, in the case of nickel, or by B12 and its derivatives, in the case of cobalt. The most dangerous metal, copper, catalyzes Fenton-like reactions, binds to thiol groups, and interferes with iron metabolism. E. coli solves this problem probably by preventing copper uptake, combined with rapid efflux if the metal happens to enter the cytoplasm.
Collapse
|
38
|
Abstract
Zinc is an important micronutrient, essential in the diet to avoid a variety of conditions associated with malnutrition such as diarrhoea and alopecia. Lowered circulating levels of zinc are also found in diabetes mellitus, a condition which affects one in twelve of the adult population and whose treatments consume approximately 10 % of healthcare budgets. Zn2+ ions are essential for a huge range of cellular functions and, in the specialised pancreatic β-cell, for the storage of insulin within the secretory granule. Correspondingly, genetic variants in the SLC30A8 gene, which encodes the diabetes-associated granule-resident Zn2+ transporter ZnT8, are associated with an altered risk of type 2 diabetes. Here, we focus on (i) recent advances in measuring free zinc concentrations dynamically in subcellular compartments, and (ii) studies dissecting the role of intracellular zinc in the control of glucose homeostasis in vitro and in vivo. We discuss the effects on insulin secretion and action of deleting or over-expressing Slc30a8 highly selectively in the pancreatic β-cell, and the role of zinc in insulin signalling. While modulated by genetic variability, healthy levels of dietary zinc, and hence normal cellular zinc homeostasis, are likely to play an important role in the proper release and action of insulin to maintain glucose homeostasis and lower diabetes risk.
Collapse
|
39
|
Wang T, Si M, Song Y, Zhu W, Gao F, Wang Y, Zhang L, Zhang W, Wei G, Luo ZQ, Shen X. Type VI Secretion System Transports Zn2+ to Combat Multiple Stresses and Host Immunity. PLoS Pathog 2015; 11:e1005020. [PMID: 26134274 PMCID: PMC4489752 DOI: 10.1371/journal.ppat.1005020] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 06/09/2015] [Indexed: 12/21/2022] Open
Abstract
Type VI secretion systems (T6SSs) are widespread multi-component machineries that translocate effectors into either eukaryotic or prokaryotic cells, for virulence or for interbacterial competition. Herein, we report that the T6SS-4 from Yersinia pseudotuberculosis displays an unexpected function in the transportation of Zn2+ to combat diverse stresses and host immunity. Environmental insults such as oxidative stress induce the expression of T6SS-4 via OxyR, the transcriptional factor that also regulates many oxidative response genes. Zinc transportation is achieved by T6SS-4-mediated translocation of a novel Zn2+-binding protein substrate YezP (YPK_3549), which has the capacity to rescue the sensitivity to oxidative stress exhibited by T6SS-4 mutants when added to extracellular milieu. Disruption of the classic zinc transporter ZnuABC together with T6SS-4 or yezP results in mutants that almost completely lost virulence against mice, further highlighting the importance of T6SS-4 in resistance to host immunity. These results assigned an unconventional role to T6SSs, which will lay the foundation for studying novel mechanisms of metal ion uptake by bacteria and the role of this process in their resistance to host immunity and survival in harmful environments. One unique feature of type VI secretion system is the presence of multiple distinct systems in certain bacterial species. It is well established that some of these systems function to compete for their living niches among diverse bacterial species, whilst the activity of many such transporters remains unknown. Because metal ions are essential components to virtually all forms of life including bacteria, eukaryotic hosts have evolved complicated strategies to sequester metal ions, which constitute a major branch of their nutritional immunity. Therefore the ability to acquire metal ions is critical for bacterial virulence. This study reveals that the T6SS-4 of Yersinia pseudotuberculosis (Yptb) functions to import Zn2+ from the environment to mitigate the detrimental effects such as hydroxyl radicals induced by diverse stresses. Expression of the transporter is activated by multiple regulatory proteins, including OxyR and OmpR that sense diverse environmental cues. Zinc ion acquisition is achieved by translocating a Zn2+-binding substrate YezP, which is co-regulated with T6SS-4 by OxyR. Our results reveal a novel role for type VI secretion system, which is important in the study of the mechanism of metal ion acquisition by bacteria and the role of this process in bacterial pathogenesis and survival in detrimental environments.
Collapse
Affiliation(s)
- Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Meiru Si
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yunhong Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhan Zhu
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lei Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Weipeng Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhao-Qing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
40
|
Cation Diffusion Facilitator family: Structure and function. FEBS Lett 2015; 589:1283-95. [PMID: 25896018 DOI: 10.1016/j.febslet.2015.04.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings.
Collapse
|
41
|
Boudker O, Oh S. Isothermal titration calorimetry of ion-coupled membrane transporters. Methods 2015; 76:171-182. [PMID: 25676707 PMCID: PMC4912014 DOI: 10.1016/j.ymeth.2015.01.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/20/2015] [Accepted: 01/21/2015] [Indexed: 11/17/2022] Open
Abstract
Binding of ligands, ranging from proteins to ions, to membrane proteins is associated with absorption or release of heat that can be detected by isothermal titration calorimetry (ITC). Such measurements not only provide binding affinities but also afford direct access to thermodynamic parameters of binding--enthalpy, entropy and heat capacity. These parameters can be interpreted in a structural context, allow discrimination between different binding mechanisms and guide drug design. In this review, we introduce advantages and limitations of ITC as a methodology to study molecular interactions of membrane proteins. We further describe case studies where ITC was used to analyze thermodynamic linkage between ions and substrates in ion-coupled transporters. Similar type of linkage analysis will likely be applicable to a wide range of transporters, channels, and receptors.
Collapse
Affiliation(s)
- Olga Boudker
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York 10021, USA.
| | - SeCheol Oh
- Department of Physiology & Biophysics, Weill Cornell Medical College, New York 10021, USA.
| |
Collapse
|
42
|
Joh NH, Wang T, Bhate MP, Acharya R, Wu Y, Grabe M, Hong M, Grigoryan G, DeGrado WF. De novo design of a transmembrane Zn²⁺-transporting four-helix bundle. Science 2015; 346:1520-4. [PMID: 25525248 DOI: 10.1126/science.1261172] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The design of functional membrane proteins from first principles represents a grand challenge in chemistry and structural biology. Here, we report the design of a membrane-spanning, four-helical bundle that transports first-row transition metal ions Zn(2+) and Co(2+), but not Ca(2+), across membranes. The conduction path was designed to contain two di-metal binding sites that bind with negative cooperativity. X-ray crystallography and solid-state and solution nuclear magnetic resonance indicate that the overall helical bundle is formed from two tightly interacting pairs of helices, which form individual domains that interact weakly along a more dynamic interface. Vesicle flux experiments show that as Zn(2+) ions diffuse down their concentration gradients, protons are antiported. These experiments illustrate the feasibility of designing membrane proteins with predefined structural and dynamic properties.
Collapse
Affiliation(s)
- Nathan H Joh
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Manasi P Bhate
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Rudresh Acharya
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Yibing Wu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Grabe
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gevorg Grigoryan
- Department of Computer Science and Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
43
|
Saidijam M, Patching SG. Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 2015; 33:2205-20. [DOI: 10.1080/07391102.2014.998283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| | - Simon G. Patching
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| |
Collapse
|
44
|
Abstract
SLC30A8 encodes the secretory granule-resident and largely endocrine pancreas-restricted zinc transporter ZnT8. Interest in this gene product was sparked amongst diabetologists in 2007 when the first genome-wide association study for type 2 diabetes identified polymorphisms in SLC30A8 as affecting disease risk. Thus, the common polymorphism rs13266634 was associated with lowered beta cell function and a 14% increase in diabetes abundance per risk (C) allele. This non-synonymous variant encodes a tryptophan-to-arginine switch at position 325 in the protein's intracellular carboxy-terminal domain, resulting in reduced zinc transport activity and, consequently, decreased intragranular zinc levels. Whereas insulin secretion from isolated islets is most often increased in mice inactivated for Slc30a8, null animals usually show impaired glucose tolerance and lowered circulating insulin. Since Slc30a8 null animals display little, if any, zinc secretion from islets, the lower plasma insulin levels could be explained by increased hepatic clearance as a result of lowered local zinc levels, or less efficient insulin action on target tissues. Despite the emerging consensus on the role of ZnT8 in glucose homeostasis, a recent genetic study in humans has unexpectedly identified loss-of-function SLC30A8 mutants that are associated with protection from diabetes. Here, we attempt to reconcile these apparently contradictory findings, implicating (1) differing degrees of inhibition of ZnT8 activity in carriers of common variants vs rare loss-of-function forms, (2) effects dependent on age or hypoxic beta cell stress. We propose that these variables conspire to affect both the size and the direction of the effect of SLC30A8 risk alleles in man.
Collapse
Affiliation(s)
- Guy A Rutter
- Section of Cell Biology, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial Centre for Translational and Experimental Medicine, Hammersmith Hospital, Imperial College London, Du Cane Road, London, W12 ONN, UK,
| | | |
Collapse
|
45
|
Blindauer CA. Advances in the molecular understanding of biological zinc transport. Chem Commun (Camb) 2015; 51:4544-63. [DOI: 10.1039/c4cc10174j] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recognition of the importance of zinc homeostasis for health has driven a surge in structural data on major zinc-transporting proteins.
Collapse
|
46
|
Abstract
From the catalytic reactions that sustain the global oxygen, nitrogen, and carbon cycles to the stabilization of DNA processing proteins, transition metal ions and metallocofactors play key roles in biology. Although the exquisite interplay between metal ions and protein scaffolds has been studied extensively, the fact that the biological roles of the metals often stem from their placement in the interfaces between proteins and protein subunits is not always recognized. Interfacial metal ions stabilize permanent or transient protein-protein interactions, enable protein complexes involved in cellular signaling to adopt distinct conformations in response to environmental stimuli, and catalyze challenging chemical reactions that are uniquely performed by multisubunit protein complexes. This review provides a structural survey of transition metal ions and metallocofactors found in protein-protein interfaces, along with a series of selected examples that illustrate their diverse biological utility and significance.
Collapse
Affiliation(s)
- Woon Ju Song
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; emails: , ,
| | | | | | | |
Collapse
|
47
|
Visualizing the kinetic power stroke that drives proton-coupled zinc(II) transport. Nature 2014; 512:101-4. [PMID: 25043033 PMCID: PMC4144069 DOI: 10.1038/nature13382] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 04/14/2014] [Indexed: 01/30/2023]
Abstract
The proton gradient is a principal energy source for respiration-dependent active transport, but the structural mechanisms of proton-coupled transport processes are poorly understood. YiiP is a proton-coupled zinc transporter found in the cytoplasmic membrane of Escherichia coli. Its transport site receives protons from water molecules that gain access to its hydrophobic environment and transduces the energy of an inward proton gradient to drive Zn(II) efflux. This membrane protein is a well-characterized member of the family of cation diffusion facilitators that occurs at all phylogenetic levels. Here we show, using X-ray-mediated hydroxyl radical labelling of YiiP and mass spectrometry, that Zn(II) binding triggers a highly localized, all-or-nothing change of water accessibility to the transport site and an adjacent hydrophobic gate. Millisecond time-resolved dynamics reveal a concerted and reciprocal pattern of accessibility changes along a transmembrane helix, suggesting a rigid-body helical re-orientation linked to Zn(II) binding that triggers the closing of the hydrophobic gate. The gated water access to the transport site enables a stationary proton gradient to facilitate the conversion of zinc-binding energy to the kinetic power stroke of a vectorial zinc transport. The kinetic details provide energetic insights into a proton-coupled active-transport reaction.
Collapse
|
48
|
Németh E, Körtvélyesi T, Thulstrup PW, Christensen HEM, Kožíšek M, Nagata K, Czene A, Gyurcsik B. Fine tuning of the catalytic activity of colicin E7 nuclease domain by systematic N-terminal mutations. Protein Sci 2014; 23:1113-22. [PMID: 24895333 DOI: 10.1002/pro.2497] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/20/2014] [Accepted: 05/29/2014] [Indexed: 11/11/2022]
Abstract
The nuclease domain of colicin E7 (NColE7) promotes the nonspecific cleavage of nucleic acids at its C-terminal HNH motif. Interestingly, the deletion of four N-terminal residues (446-449 NColE7 = KRNK) resulted in complete loss of the enzyme activity. R447A mutation was reported to decrease the nuclease activity, but a detailed analysis of the role of the highly positive and flexible N-terminus is still missing. Here, we present the study of four mutants, with a decreased activity in the following order: NColE7 >> KGNK > KGNG ∼ GGNK > GGNG. At the same time, the folding, the metal-ion, and the DNA-binding affinity were unaffected by the mutations as revealed by linear and circular dichroism spectroscopy, isothermal calorimetric titrations, and gel mobility shift experiments. Semiempirical quantum chemical calculations and molecular dynamics simulations revealed that K446, K449, and/or the N-terminal amino group are able to approach the active centre in the absence of the other positively charged residues. The results suggested a complex role of the N-terminus in the catalytic process that could be exploited in the design of a controlled nuclease.
Collapse
Affiliation(s)
- Eszter Németh
- Department of Inorganic and Analytical Chemistry, University of Szeged, 6720, Szeged, Hungary; Department of Physical Chemistry and Material Sciences, University of Szeged, 6720, Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tarrés M, Viñas C, González-Cardoso P, Hänninen MM, Sillanpää R, Ďorďovič V, Uchman M, Teixidor F, Matějíček P. Aqueous Self-Assembly and Cation Selectivity of Cobaltabisdicarbollide Dianionic Dumbbells. Chemistry 2014; 20:6786-94. [DOI: 10.1002/chem.201402193] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 01/09/2023]
|
50
|
Cubillas C, Vinuesa P, Tabche ML, García-de los Santos A. Phylogenomic analysis of Cation Diffusion Facilitator proteins uncovers Ni2+/Co2+ transporters. Metallomics 2013; 5:1634-43. [PMID: 24077251 DOI: 10.1039/c3mt00204g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ubiquitous Cation Diffusion Facilitator proteins (CDF) play a key role in maintaining the cellular homeostasis of essential metal ions. Previous neighbor-joining phylogenetic analysis classified CDF proteins into three substrate-defined groups: Zn(2+), Fe(2+)/Zn(2+) and Mn(2+). These studies were unable to discern substrate-defined clades for Ni(2+), Co(2+), Cd(2+) and Cu(2+) transporters, despite their existence in this family. In this study we improved the accuracy of this previous functional classification using a phylogenomic approach based on a thorough maximum-likelihood phylogeny and the inclusion of recently characterized CDF transporters. The inference of CDF protein function predicted novel clades for Zn(2+), Fe(2+), Cd(2+) and Mn(2+). The Ni(2+)/Co(2+) and Co(2+) substrate specificities of two clades containing uncharacterized proteins were defined through the functional characterization of nepA and cepA metal inducible genes which independently conferred Ni(2+) and Co(2+) resistances to Rhizobium etli CFN42 and increased, respectively, Ni(2+)/Co(2+) and Co(2+) resistances to Escherichia coli. Neither NepA nor CepA confer Zn(2+), Fe(2+) and Mn(2+) resistances. The ability of NepA to confer Ni(2+)/Co(2+) resistance is dependent on clade-specific residues Asn(88) and Arg(197) whose mutations produce a non-functional protein.
Collapse
Affiliation(s)
- Ciro Cubillas
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apdo. Postal 565-A, Cuernavaca, Morelos, México.
| | | | | | | |
Collapse
|