1
|
Obsilova V, Obsil T. The yeast 14-3-3 proteins Bmh1 and Bmh2 regulate key signaling pathways. Front Mol Biosci 2024; 11:1327014. [PMID: 38328397 PMCID: PMC10847541 DOI: 10.3389/fmolb.2024.1327014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Cell signaling regulates several physiological processes by receiving, processing, and transmitting signals between the extracellular and intracellular environments. In signal transduction, phosphorylation is a crucial effector as the most common posttranslational modification. Selectively recognizing specific phosphorylated motifs of target proteins and modulating their functions through binding interactions, the yeast 14-3-3 proteins Bmh1 and Bmh2 are involved in catabolite repression, carbon metabolism, endocytosis, and mitochondrial retrograde signaling, among other key cellular processes. These conserved scaffolding molecules also mediate crosstalk between ubiquitination and phosphorylation, the spatiotemporal control of meiosis, and the activity of ion transporters Trk1 and Nha1. In humans, deregulation of analogous processes triggers the development of serious diseases, such as diabetes, cancer, viral infections, microbial conditions and neuronal and age-related diseases. Accordingly, the aim of this review article is to provide a brief overview of the latest findings on the functions of yeast 14-3-3 proteins, focusing on their role in modulating the aforementioned processes.
Collapse
Affiliation(s)
- Veronika Obsilova
- Institute of Physiology of the Czech Academy of Sciences, Laboratory of Structural Biology of Signaling Proteins, Division, BIOCEV, Vestec, Czechia
| | - Tomas Obsil
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
2
|
Yasukawa T, Iwama R, Yamasaki Y, Masuo N, Noda Y. Yeast Rim11 kinase responds to glutathione-induced stress by regulating the transcription of phospholipid biosynthetic genes. Mol Biol Cell 2024; 35:ar8. [PMID: 37938929 PMCID: PMC10881166 DOI: 10.1091/mbc.e23-03-0116] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Glutathione (GSH), a tripeptide composed of glycine, cysteine, and glutamic acid, is an abundant thiol found in a wide variety of cells, ranging from bacterial to mammalian cells. Adequate levels of GSH are essential for maintaining iron homeostasis. The ratio of oxidized/reduced GSH is strictly regulated in each organelle to maintain the cellular redox potential. Cellular redox imbalances cause defects in physiological activities, which can lead to various diseases. Although there are many reports regarding the cellular response to GSH depletion, studies on stress response to high levels of GSH are limited. Here, we performed genome-scale screening in the yeast Saccharomyces cerevisiae and identified RIM11, BMH1, and WHI2 as multicopy suppressors of the growth defect caused by GSH stress. The deletion strains of each gene were sensitive to GSH. We found that Rim11, a kinase important in the regulation of meiosis, was activated via autophosphorylation upon GSH stress in a glucose-rich medium. Furthermore, RNA-seq revealed that transcription of phospholipid biosynthetic genes was downregulated under GSH stress, and introduction of multiple copies of RIM11 counteracted this effect. These results demonstrate that S. cerevisiae copes with GSH stress via multiple stress-responsive pathways, including a part of the adaptive pathway to glucose limitation.
Collapse
Affiliation(s)
- Taishi Yasukawa
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Ryo Iwama
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuriko Yamasaki
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Naohisa Masuo
- Mitsubishi Corporation Life Sciences Limited, Tokyo Takarazuka Building 14F, 1-1-3 Yurakucho, Chiyoda-ku, Tokyo 100-0006, Japan
| | - Yoichi Noda
- Collaborative Research Institute for Innovative Microbiology, Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
3
|
Collins JH, Kunyeit L, Weintraub S, Sharma N, White C, Haq N, Anu-Appaiah KA, Rao RP, Young EM. Genetic basis for probiotic yeast phenotypes revealed by nanopore sequencing. G3 (BETHESDA, MD.) 2023; 13:jkad093. [PMID: 37103477 PMCID: PMC10411601 DOI: 10.1093/g3journal/jkad093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023]
Abstract
Probiotic yeasts are emerging as preventative and therapeutic solutions for disease. Often ingested via cultured foods and beverages, they can survive the harsh conditions of the gastrointestinal tract and adhere to it, where they provide nutrients and inhibit pathogens like Candida albicans. Yet, little is known of the genomic determinants of these beneficial traits. To this end, we have sequenced 2 food-derived probiotic yeast isolates that mitigate fungal infections. We find that the first strain, KTP, is a strain of Saccharomyces cerevisiae within a small clade that lacks any apparent ancestry from common European/wine S. cerevisiae strains. Significantly, we show that S. cerevisiae KTP genes involved in general stress, pH tolerance, and adherence are markedly different from S. cerevisiae S288C but are similar to the commercial probiotic yeast species S. boulardii. This suggests that even though S. cerevisiae KTP and S. boulardii are from different clades, they may achieve probiotic effect through similar genetic mechanisms. We find that the second strain, ApC, is a strain of Issatchenkia occidentalis, one of the few of this family of yeasts to be sequenced. Because of the dissimilarity of its genome structure and gene organization, we infer that I. occidentalis ApC likely achieves a probiotic effect through a different mechanism than the Saccharomyces strains. Therefore, this work establishes a strong genetic link among probiotic Saccharomycetes, advances the genomics of Issatchenkia yeasts, and indicates that probiotic activity is not monophyletic and complimentary mixtures of probiotics could enhance health benefits beyond a single species.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Lohith Kunyeit
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Sarah Weintraub
- Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nilesh Sharma
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Charlotte White
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Nabeeha Haq
- Department of Biology, Brandeis University, Waltham, MA 02453, USA
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR—Central Food Technological Research Institute (CFTRI), Mysore, Karnataka 570020, India
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
4
|
Avecilla G, Spealman P, Matthews J, Caudal E, Schacherer J, Gresham D. Copy number variation alters local and global mutational tolerance. Genome Res 2023; 33:1340-1353. [PMID: 37652668 PMCID: PMC10547251 DOI: 10.1101/gr.277625.122] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
Copy number variants (CNVs), duplications and deletions of genomic sequences, contribute to evolutionary adaptation but can also confer deleterious effects and cause disease. Whereas the effects of amplifying individual genes or whole chromosomes (i.e., aneuploidy) have been studied extensively, much less is known about the genetic and functional effects of CNVs of differing sizes and structures. Here, we investigated Saccharomyces cerevisiae (yeast) strains that acquired adaptive CNVs of variable structures and copy numbers following experimental evolution in glutamine-limited chemostats. Although beneficial in the selective environment, CNVs result in decreased fitness compared with the euploid ancestor in rich media. We used transposon mutagenesis to investigate mutational tolerance and genome-wide genetic interactions in CNV strains. We find that CNVs increase mutational target size, confer increased mutational tolerance in amplified essential genes, and result in novel genetic interactions with unlinked genes. We validated a novel genetic interaction between different CNVs and BMH1 that was common to multiple strains. We also analyzed global gene expression and found that transcriptional dosage compensation does not affect most genes amplified by CNVs, although gene-specific transcriptional dosage compensation does occur for ∼12% of amplified genes. Furthermore, we find that CNV strains do not show previously described transcriptional signatures of aneuploidy. Our study reveals the extent to which local and global mutational tolerance is modified by CNVs with implications for genome evolution and CNV-associated diseases, such as cancer.
Collapse
Affiliation(s)
- Grace Avecilla
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Pieter Spealman
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Julia Matthews
- Department of Biology, New York University, New York, New York 10003, USA
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| | - Elodie Caudal
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM UMR, 7156 Strasbourg, France
- Institut Universitaire de France (IUF), 75231 Paris Cedex 05, France
| | - David Gresham
- Department of Biology, New York University, New York, New York 10003, USA;
- Center for Genomics and Systems Biology, New York University, New York, New York 10003, USA
| |
Collapse
|
5
|
Yamada Y, Shiroma A, Hirai S, Iwasaki J. Zuo1, a ribosome-associated J protein, is involved in glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 2023; 23:foad038. [PMID: 37550218 DOI: 10.1093/femsyr/foad038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023] Open
Abstract
In Saccharomyces cerevisiae, the J-protein Zuo1 and the nonconventional Hsp70 homologue Ssz1 stimulate the ATPase activity of the chaperone proteins Ssb1 and Ssb2 (Ssb1/2), which are associated with the ribosomes. The dephosphorylation of sucrose nonfermenting 1 (Snf1) on Thr210 is required for glucose repression. The Ssb1/2 and 14-3-3 proteins Bmh1 and Bmh2 appear to be responsible for the dephosphorylation of Snf1 on Thr210 and glucose repression. Here, we investigated the role of Zuo1 in glucose repression. The zuo1∆ strain as well as the ssb1∆ssb2∆ strain exhibited a glucose-specific growth defect during logarithmic growth on glucose. Many of the respiratory chain genes examined were statistically significantly upregulated, but less than 2-fold, in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain on glucose. In addition, excessive phosphorylation of Snf1 on Thr210 was observed in the zuo1∆ strain as well as in the ssb1∆ssb2∆ strain in the presence of glucose. The mRNA levels of SSB1/2 and BMH1 were statistically significantly reduced by approximately 0.5- to 0.8-fold relative to the wild-type level in the zuo1∆ strain on glucose. These results suggest that Zuo1 is responsible for glucose repression, possibly by increasing the mRNA levels of SSB1/2 and BMH1 during growth on glucose.
Collapse
Affiliation(s)
- Yoichi Yamada
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Kanazawa 920-1192, Japan
| | - Atsuki Shiroma
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Suguru Hirai
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| | - Jun Iwasaki
- School of Biological Science and Technology, College of Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan
| |
Collapse
|
6
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
7
|
Casamayor A, Ariño J. When Phosphatases Go Mad: The Molecular Basis for Toxicity of Yeast Ppz1. Int J Mol Sci 2022; 23:ijms23084304. [PMID: 35457140 PMCID: PMC9029398 DOI: 10.3390/ijms23084304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
The fact that overexpression of the yeast Ser/Thr protein phosphatase Ppz1 induces a dramatic halt in cell proliferation was known long ago, but only work in the last few years has provided insight into the molecular basis for this toxicity. Overexpression of Ppz1 causes abundant changes in gene expression and modifies the phosphorylation state of more than 150 proteins, including key signaling protein kinases such as Hog1 or Snf1. Diverse cellular processes are altered: halt in translation, failure to properly adapt to low glucose supply, acidification of the cytosol, or depletion of intracellular potassium content are a few examples. Therefore, the toxicity derived from an excess of Ppz1 appears to be multifactorial, the characteristic cell growth blockage thus arising from the combination of various altered processes. Notably, overexpression of the Ppz1 regulatory subunit Hal3 fully counteracts the toxic effects of the phosphatase, and this process involves intracellular relocation of the phosphatase to internal membranes.
Collapse
|
8
|
Yang Y, Liu G, Chen X, Liu M, Zhan C, Liu X, Bai Z. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris. Enzyme Microb Technol 2020; 138:109556. [PMID: 32527526 DOI: 10.1016/j.enzmictec.2020.109556] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022]
Abstract
Pichia pastoris is a methylotrophic yeast in which host heterologous expression of proteins has been developed owing to the strong inducible alcohol oxidase promoter (PAOX1). However, it is difficult to manipulate the genome in P. pastoris. Based on previous attempts to apply the CRISPR/Cas9 system in P. pastoris, a CRISPR/Cas9 system with episomal sgRNA plasmid was developed and 100 % genome editing efficiency, high multicopy gene editing and stable multigene editing were obtained without a sharp decline caused by multi-sgRNA. And 28/34 (∼82 %) sgRNAs tested were effective. The CGG may have a slightly higher and more stable cleavage efficiency than the other three NGG motifs, and a low GC content may be preferable for higher cleavage efficiency. This provides researchers with a stable genome editing tool that shows a high editing efficiency, shortening the experimentation period. Furthermore, we introduced dCas9 into P. pastoris and achieved target gene interference, expanding the CRISPR/Cas9 toolbox in P. pastoris.
Collapse
Affiliation(s)
- Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Guoqiang Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiao Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meng Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chunjun Zhan
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
9
|
Takagi S, Kojima K, Ohashi S. Proteomic analysis on Aspergillus strains that are useful for industrial enzyme production. Biosci Biotechnol Biochem 2020; 84:2241-2252. [PMID: 32693695 DOI: 10.1080/09168451.2020.1794784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A simple intracellular proteomic study was conducted to investigate the biological activities of Aspergillus niger during industrial enzyme production. A strain actively secreting a heterologous enzyme was compared to a reference strain. In total, 1824 spots on 2-D gels were analyzed using MALDI-TOF MS, yielding 343 proteins. The elevated levels of UPR components, BipA, PDI, and calnexin, and proteins related to ERAD and ROS reduction, were observed in the enzyme-producer. The results suggest the occurrence of these responses in the enzyme-producers. Major glycolytic enzymes, Fba1, EnoA, and GpdA, were abundant but at a reduced level relative to the reference, indicating a potential repression of the glycolytic pathway. Interestingly, it was observed that a portion of over-expressed heterologous enzyme accumulated inside the cells and digested during fermentation, suggesting the secretion capacity of the strain was not enough for completing secretion. Newly identified conserved-proteins, likely in signal transduction, and other proteins were also investigated. Abbreviations: 2-D: two-dimensional; UPR: unfolded protein response; ER: endoplasmic reticulum; ERAD: ER-associated protein degradation; PDI: protein disulfide-isomerase; ROS: reactive oxygen species; RESS: Repression under Secretion Stress; CSAP: Conserved Small Abundant Protein; TCTP: translationally controlled tumor protein.
Collapse
Affiliation(s)
| | | | - Shinichi Ohashi
- Genome Biotechnology Laboratory, Kanazawa-Institute of Technology , Ishikawa, Japan
| |
Collapse
|
10
|
Vallejo B, Peltier E, Garrigós V, Matallana E, Marullo P, Aranda A. Role of Saccharomyces cerevisiae Nutrient Signaling Pathways During Winemaking: A Phenomics Approach. Front Bioeng Biotechnol 2020; 8:853. [PMID: 32793580 PMCID: PMC7387434 DOI: 10.3389/fbioe.2020.00853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023] Open
Abstract
The ability of the yeast Saccharomyces cerevisiae to adapt to the changing environment of industrial processes lies in the activation and coordination of many molecular pathways. The most relevant ones are nutrient signaling pathways because they control growth and stress response mechanisms as a result of nutrient availability or scarcity and, therefore, leave an ample margin to improve yeast biotechnological performance. A standardized grape juice fermentation assay allowed the analysis of mutants for different elements of many nutrient signaling pathways under different conditions (low/high nitrogen and different oxygenation levels) to allow genetic-environment interactions to be analyzed. The results indicate that the cAMP-dependent PKA pathway is the most relevant regardless of fermentation conditions, while mutations on TOR pathways display an effect that depends on nitrogen availability. The production of metabolites of interest, such as glycerol, acetic acid and pyruvate, is controlled in a coordinated manner by the contribution of several components of different pathways. Ras GTPase Ras2, a stimulator of cAMP production, is a key factor for achieving fermentation, and is also relevant for sensing nitrogen availability. Increasing cAMP concentrations by deleting an enzyme used for its degradation, phosphodiesterase Pde2, proved a good way to increase fermentation kinetics, and offered keys for biotechnological improvement. Surprisingly glucose repression protein kinase Snf1 and Nitrogen Catabolite Repression transcription factor Gln3 are relevant in fermentation, even in the absence of starvation. Gln3 proved essential for respiration in several genetic backgrounds, and its presence is required to achieve full glucose de-repression. Therefore, most pathways sense different types of nutrients and only their coordinated action can ensure successful wine fermentation.
Collapse
Affiliation(s)
- Beatriz Vallejo
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilien Peltier
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, Strasbourg, France.,ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Victor Garrigós
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Emilia Matallana
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Philippe Marullo
- ISVV UR Oenology, INRAE, Bordeaux INP, University of Bordeaux, Bordeaux, France.,Biolaffort, Bordeaux, France
| | - Agustín Aranda
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| |
Collapse
|
11
|
Transcriptional regulatory proteins in central carbon metabolism of Pichia pastoris and Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2020; 104:7273-7311. [PMID: 32651601 DOI: 10.1007/s00253-020-10680-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 01/21/2023]
Abstract
System-wide interactions in living cells and discovery of the diverse roles of transcriptional regulatory proteins that are mediator proteins with catalytic domains and regulatory subunits and transcription factors in the cellular pathways have become crucial for understanding the cellular response to environmental conditions. This review provides information for future metabolic engineering strategies through analyses on the highly interconnected regulatory networks in Saccharomyces cerevisiae and Pichia pastoris and identifying their components. We discuss the current knowledge on the carbon catabolite repression (CCR) mechanism, interconnecting regulatory system of the central metabolic pathways that regulate cell metabolism based on nutrient availability in the industrial yeasts. The regulatory proteins and their functions in the CCR signalling pathways in both yeasts are presented and discussed. We highlight the importance of metabolic signalling networks by signifying ways on how effective engineering strategies can be designed for generating novel regulatory circuits, furthermore to activate pathways that reconfigure the network architecture. We summarize the evidence that engineering of multilayer regulation is needed for directed evolution of the cellular network by putting the transcriptional control into a new perspective for the regulation of central carbon metabolism of the industrial yeasts; furthermore, we suggest research directions that may help to enhance production of recombinant products in the widely used, creatively engineered, but relatively less studied P. pastoris through de novo metabolic engineering strategies based on the discovery of components of signalling pathways in CCR metabolism. KEY POINTS: • Transcriptional regulation and control is the key phenomenon in the cellular processes. • Designing de novo metabolic engineering strategies depends on the discovery of signalling pathways in CCR metabolism. • Crosstalk between pathways occurs through essential parts of transcriptional machinery connected to specific catalytic domains. • In S. cerevisiae, a major part of CCR metabolism is controlled through Snf1 kinase, Glc7 phosphatase, and Srb10 kinase. • In P. pastoris, signalling pathways in CCR metabolism have not yet been clearly known yet. • Cellular regulations on the transcription of promoters are controlled with carbon sources.
Collapse
|
12
|
Perez-Samper G, Cerulus B, Jariani A, Vermeersch L, Barrajón Simancas N, Bisschops MMM, van den Brink J, Solis-Escalante D, Gallone B, De Maeyer D, van Bael E, Wenseleers T, Michiels J, Marchal K, Daran-Lapujade P, Verstrepen KJ. The Crabtree Effect Shapes the Saccharomyces cerevisiae Lag Phase during the Switch between Different Carbon Sources. mBio 2018; 9:e01331-18. [PMID: 30377274 PMCID: PMC6212832 DOI: 10.1128/mbio.01331-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022] Open
Abstract
When faced with environmental changes, microbes often enter a temporary growth arrest during which they reprogram the expression of specific genes to adapt to the new conditions. A prime example of such a lag phase occurs when microbes need to switch from glucose to other, less-preferred carbon sources. Despite its industrial relevance, the genetic network that determines the duration of the lag phase has not been studied in much detail. Here, we performed a genome-wide Bar-Seq screen to identify genetic determinants of the Saccharomyces cerevisiae glucose-to-galactose lag phase. The results show that genes involved in respiration, and specifically those encoding complexes III and IV of the electron transport chain, are needed for efficient growth resumption after the lag phase. Anaerobic growth experiments confirmed the importance of respiratory energy conversion in determining the lag phase duration. Moreover, overexpression of the central regulator of respiration, HAP4, leads to significantly shorter lag phases. Together, these results suggest that the glucose-induced repression of respiration, known as the Crabtree effect, is a major determinant of microbial fitness in fluctuating carbon environments.IMPORTANCE The lag phase is arguably one of the prime characteristics of microbial growth. Longer lag phases result in lower competitive fitness in variable environments, and the duration of the lag phase is also important in many industrial processes where long lag phases lead to sluggish, less efficient fermentations. Despite the immense importance of the lag phase, surprisingly little is known about the exact molecular processes that determine its duration. Our study uses the molecular toolbox of S. cerevisiae combined with detailed growth experiments to reveal how the transition from fermentative to respirative metabolism is a key bottleneck for cells to overcome the lag phase. Together, our findings not only yield insight into the key molecular processes and genes that influence lag duration but also open routes to increase the efficiency of industrial fermentations and offer an experimental framework to study other types of lag behavior.
Collapse
Affiliation(s)
- Gemma Perez-Samper
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Bram Cerulus
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Abbas Jariani
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Lieselotte Vermeersch
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | | | - Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Joost van den Brink
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | | | - Brigida Gallone
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Dries De Maeyer
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Elise van Bael
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| | - Tom Wenseleers
- Laboratory of Socioecology and Social Evolution, Department of Biology, KU Leuven, Leuven, Belgium
| | - Jan Michiels
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Kathleen Marchal
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | - Kevin J Verstrepen
- VIB - KU Leuven Center for Microbiology, Leuven, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Gene Expression of Pneumocystis murina after Treatment with Anidulafungin Results in Strong Signals for Sexual Reproduction, Cell Wall Integrity, and Cell Cycle Arrest, Indicating a Requirement for Ascus Formation for Proliferation. Antimicrob Agents Chemother 2018; 62:AAC.02513-17. [PMID: 29463544 PMCID: PMC5923105 DOI: 10.1128/aac.02513-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/10/2018] [Indexed: 01/03/2023] Open
Abstract
The echinocandins are a class of antifungal agents that target β-1,3-d-glucan (BG) biosynthesis. In the ascigerous Pneumocystis species, treatment with these drugs depletes the ascus life cycle stage, which contains BG, but large numbers of forms which do not express BG remain in the infected lungs. In the present study, the gene expression profiles of Pneumocystis murina were compared between infected, untreated mice and mice treated with anidulafungin for 2 weeks to understand the metabolism of the persisting forms. Almost 80 genes were significantly up- or downregulated. Like other fungi exposed to echinocandins, genes associated with sexual replication, cell wall integrity, cell cycle arrest, and stress comprised the strongest upregulated signals in P. murina from the treated mice. The upregulation of the P. murina β-1,3-d-glucan endohydrolase and endo-1,3-glucanase was notable and may explain the disappearance of the existing asci in the lungs of treated mice since both enzymes can degrade BG. The biochemical measurement of BG in the lungs of treated mice and fluorescence microscopy with an anti-BG antibody supported the loss of BG. Downregulated signals included genes involved in cell replication, genome stability, and ribosomal biogenesis and function and the Pneumocystis-specific genes encoding the major surface glycoproteins (Msg). These studies suggest that P. murina attempted to undergo sexual replication in response to a stressed environment and was halted in any type of proliferative cycle, likely due to a lack of BG. Asci appear to be a required part of the life cycle stage of Pneumocystis, and BG may be needed to facilitate progression through the life cycle via sexual replication.
Collapse
|
14
|
Zhang TJ, Shi L, Chen DD, Liu R, Shi DK, Wu CG, Sun ZH, Ren A, Zhao MW. 14-3-3 proteins are involved in growth, hyphal branching, ganoderic acid biosynthesis, and response to abiotic stress in Ganoderma lucidum. Appl Microbiol Biotechnol 2018; 102:1769-1782. [DOI: 10.1007/s00253-017-8711-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/13/2017] [Accepted: 12/11/2017] [Indexed: 12/18/2022]
|
15
|
Two chaperones locked in an embrace: structure and function of the ribosome-associated complex RAC. Nat Struct Mol Biol 2017; 24:611-619. [PMID: 28771464 DOI: 10.1038/nsmb.3435] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/14/2017] [Indexed: 12/26/2022]
Abstract
Chaperones, which assist protein folding are essential components of every living cell. The yeast ribosome-associated complex (RAC) is a chaperone that is highly conserved in eukaryotic cells. The RAC consists of the J protein Zuo1 and the unconventional Hsp70 homolog Ssz1. The RAC heterodimer stimulates the ATPase activity of the ribosome-bound Hsp70 homolog Ssb, which interacts with nascent polypeptide chains to facilitate de novo protein folding. In addition, the RAC-Ssb system is required to maintain the fidelity of protein translation. Recent work reveals important details of the unique structures of RAC and Ssb and identifies how the chaperones interact with the ribosome. The new findings start to uncover how the exceptional chaperone triad cooperates in protein folding and maintenance of translational fidelity and its connection to extraribosomal functions.
Collapse
|
16
|
Kumar R. An account of fungal 14-3-3 proteins. Eur J Cell Biol 2017; 96:206-217. [PMID: 28258766 DOI: 10.1016/j.ejcb.2017.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/09/2023] Open
Abstract
14-3-3s are a group of relatively low molecular weight, acidic, dimeric, protein(s) conserved from single-celled yeast to multicellular vertebrates including humans. Despite lacking catalytic activity, these proteins have been shown to be involved in multiple cellular processes. Apart from their role in normal cellular physiology, recently these proteins have been implicated in various medical consequences. In this present review, fungal 14-3-3 protein localization, interactions, transcription, regulation, their role in the diverse cellular process including DNA duplication, cell cycle, protein trafficking or secretion, apoptosis, autophagy, cell viability under stress, gene expression, spindle positioning, role in carbon metabolism have been discussed. In the end, I also highlighted various roles of yeasts 14-3-3 proteins in tabular form. Thus this review with primary emphasis on yeast will help in appreciating the significance of 14-3-3 proteins in cell physiology.
Collapse
Affiliation(s)
- Ravinder Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
17
|
The yeast Hsp70 homolog Ssb: a chaperone for general de novo protein folding and a nanny for specific intrinsically disordered protein domains. Curr Genet 2016; 63:9-13. [PMID: 27230907 PMCID: PMC5274638 DOI: 10.1007/s00294-016-0610-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022]
Abstract
Activation of the heterotrimeric kinase SNF1 via phosphorylation of a specific residue within the α subunit is essential for the release from glucose repression in the yeast Saccharomyces cerevisiae. When glucose is available, SNF1 is maintained in the dephosphorylated, inactive state by the phosphatase Glc7-Reg1. Recent findings suggest that Bmh and Ssb combine their unique client-binding properties to interact with the regulatory region of the SNF1 α subunit and by that stabilize a conformation of SNF1, which is accessible for Glc7-Reg1-dependent dephosphorylation. Together, the 14-3-3 protein Bmh and the Hsp70 homolog Ssb comprise a novel chaperone module, which is required to maintain proper glucose repression in the yeast S. cerevisiae.
Collapse
|
18
|
Hübscher V, Mudholkar K, Chiabudini M, Fitzke E, Wölfle T, Pfeifer D, Drepper F, Warscheid B, Rospert S. The Hsp70 homolog Ssb and the 14-3-3 protein Bmh1 jointly regulate transcription of glucose repressed genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:5629-45. [PMID: 27001512 PMCID: PMC4937304 DOI: 10.1093/nar/gkw168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/03/2016] [Indexed: 11/26/2022] Open
Abstract
Chaperones of the Hsp70 family interact with a multitude of newly synthesized polypeptides and prevent their aggregation. Saccharomyces cerevisiae cells lacking the Hsp70 homolog Ssb suffer from pleiotropic defects, among others a defect in glucose-repression. The highly conserved heterotrimeric kinase SNF1/AMPK (AMP-activated protein kinase) is required for the release from glucose-repression in yeast and is a key regulator of energy balance also in mammalian cells. When glucose is available the phosphatase Glc7 keeps SNF1 in its inactive, dephosphorylated state. Dephosphorylation depends on Reg1, which mediates targeting of Glc7 to its substrate SNF1. Here we show that the defect in glucose-repression in the absence of Ssb is due to the ability of the chaperone to bridge between the SNF1 and Glc7 complexes. Ssb performs this post-translational function in concert with the 14-3-3 protein Bmh, to which Ssb binds via its very C-terminus. Raising the intracellular concentration of Ssb or Bmh enabled Glc7 to dephosphorylate SNF1 even in the absence of Reg1. By that Ssb and Bmh efficiently suppressed transcriptional deregulation of Δreg1 cells. The findings reveal that Ssb and Bmh comprise a new chaperone module, which is involved in the fine tuning of a phosphorylation-dependent switch between respiration and fermentation.
Collapse
Affiliation(s)
- Volker Hübscher
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | - Kaivalya Mudholkar
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | - Marco Chiabudini
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Edith Fitzke
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | - Tina Wölfle
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | - Dietmar Pfeifer
- Genomics Lab, Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center, University of Freiburg, D-79106 Freiburg, Germany
| | - Friedel Drepper
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Bettina Warscheid
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Sabine Rospert
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
19
|
Snf1-Dependent Transcription Confers Glucose-Induced Decay upon the mRNA Product. Mol Cell Biol 2015; 36:628-44. [PMID: 26667037 DOI: 10.1128/mcb.00436-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 11/30/2015] [Indexed: 01/11/2023] Open
Abstract
In the yeast Saccharomyces cerevisiae, the switch from respiratory metabolism to fermentation causes rapid decay of transcripts encoding proteins uniquely required for aerobic metabolism. Snf1, the yeast ortholog of AMP-activated protein kinase, has been implicated in this process because inhibiting Snf1 mimics the addition of glucose. In this study, we show that the SNF1-dependent ADH2 promoter, or just the major transcription factor binding site, is sufficient to confer glucose-induced mRNA decay upon heterologous transcripts. SNF1-independent expression from the ADH2 promoter prevented glucose-induced mRNA decay without altering the start site of transcription. SNF1-dependent transcripts are enriched for the binding motif of the RNA binding protein Vts1, an important mediator of mRNA decay and mRNA repression whose expression is correlated with decreased abundance of SNF1-dependent transcripts during the yeast metabolic cycle. However, deletion of VTS1 did not slow the rate of glucose-induced mRNA decay. ADH2 mRNA rapidly dissociated from polysomes after glucose repletion, and sequences bound by RNA binding proteins were enriched in the transcripts from repressed cells. Inhibiting the protein kinase A pathway did not affect glucose-induced decay of ADH2 mRNA. Our results suggest that Snf1 may influence mRNA stability by altering the recruitment activity of the transcription factor Adr1.
Collapse
|
20
|
Abstract
Glucose is the primary source of energy for the budding yeast Saccharomyces cerevisiae. Although yeast cells can utilize a wide range of carbon sources, presence of glucose suppresses molecular activities involved in the use of alternate carbon sources as well as it represses respiration and gluconeogenesis. This dominant effect of glucose on yeast carbon metabolism is coordinated by several signaling and metabolic interactions that mainly regulate transcriptional activity but are also effective at post-transcriptional and post-translational levels. This review describes effects of glucose repression on yeast carbon metabolism with a focus on roles of the Snf3/Rgt2 glucose-sensing pathway and Snf1 signal transduction in establishment and relief of glucose repression. The role of Snf1 signaling in glucose repression and carbon metabolism in Saccharomyces cerevisae.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Kemivägen 10, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE41296 Gothenburg, Sweden Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2970 Hørsholm, Denmark
| |
Collapse
|
21
|
Effects of GLC7 and REG1 deletion on maltose metabolism and leavening ability of baker's yeast in lean dough. J Biotechnol 2015; 209:1-6. [PMID: 26073997 DOI: 10.1016/j.jbiotec.2015.06.386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Revised: 05/19/2015] [Accepted: 06/08/2015] [Indexed: 01/25/2023]
Abstract
Maltose metabolism and leavening ability of baker's yeast (Saccharomyces cerevisiae) in lean dough is negatively influenced by glucose repression. To improve maltose metabolism and leavening ability, it is necessary to alleviate glucose repression. In this study, we focus on the effects of regulators (GLC7 encoding the catalytic and REG1 encoding the regulatory subunits of protein phosphatase type 1) of glucose repression on maltose metabolism and leavening ability of baker's yeast in lean dough. To this end, GLC7 and/or REG1 deletions were constructed and characterized in terms of the growth characteristics, maltose metabolism, leavening ability, and enzyme activities. The results suggest that GLC7 and/or REG1 deletions increased maltose metabolism and leavening ability at different level with glucose derepression and increased enzymes (maltase and maltose permease) activities. In a medium containing glucose and maltose, at the point of glucose exhaustion the maltose metabolized and the leavening ability were increased 59.3% and 23.1%, respectively, in the case of a REG1 single gene deletion.
Collapse
|
22
|
Parua PK, Dombek KM, Young ET. Yeast 14-3-3 protein functions as a comodulator of transcription by inhibiting coactivator functions. J Biol Chem 2014; 289:35542-60. [PMID: 25355315 PMCID: PMC4271238 DOI: 10.1074/jbc.m114.592287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/22/2014] [Indexed: 01/23/2023] Open
Abstract
In eukaryotes combinatorial activation of transcription is an important component of gene regulation. In the budding yeast Saccharomyces cerevisiae, Adr1-Cat8 and Adr1-Oaf1/Pip2 are pairs of activators that act together to regulate two diverse sets of genes. Transcription activation of both sets is regulated positively by the yeast AMP-activated protein kinase homolog, Snf1, in response to low glucose or the presence of a non-fermentable carbon source and negatively by two redundant 14-3-3 isoforms, Bmh1 and Bmh2. Bmh regulates the function of these pairs at a post-promoter binding step by direct binding to Adr1. However, how Bmh regulates transcription after activator binding remains unknown. In the present study we analyzed Bmh-mediated regulation of two sets of genes activated independently by these pairs of activators. We report that Bmh inhibits mRNA synthesis when the second activator is absent. Using gene fusions we show that Bmh binding to the Adr1 regulatory domain inhibits an Adr1 activation domain but not a heterologous activation domain or artificially recruited Mediator, consistent with Bmh acting at a step in transcription downstream of activator binding. Bmh inhibits the assembly and the function of a preinitiation complex (PIC). Gene expression studies suggest that Bmh regulates Adr1 activity through the coactivators Mediator and Swi/Snf. Mediator recruitment appeared to occur normally, but PIC formation and function were defective, suggesting that Bmh inhibits a step between Mediator recruitment and PIC activation.
Collapse
Affiliation(s)
- Pabitra K Parua
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Kenneth M Dombek
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| | - Elton T Young
- From the Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350
| |
Collapse
|
23
|
Binding and transcriptional regulation by 14-3-3 (Bmh) proteins requires residues outside of the canonical motif. EUKARYOTIC CELL 2013; 13:21-30. [PMID: 24142105 DOI: 10.1128/ec.00240-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Evolutionarily conserved 14-3-3 proteins have important functions as dimers in numerous cellular signaling processes, including regulation of transcription. Yeast 14-3-3 proteins, known as Bmh, inhibit a post-DNA binding step in transcription activation by Adr1, a glucose-regulated transcription factor, by binding to its regulatory domain, residues 226 to 240. The domain was originally defined by regulatory mutations, ADR1(c) alleles that alter activator-dependent gene expression. Here, we report that ADR1(c) alleles and other mutations in the regulatory domain impair Bmh binding and abolish Bmh-dependent regulation both directly and indirectly. The indirect effect is caused by mutations that inhibit phosphorylation of Ser230 and thus inhibit Bmh binding, which requires phosphorylated Ser230. However, several mutations inhibit Bmh binding without inhibiting phosphorylation and thus define residues that provide important interaction sites between Adr1 and Bmh. Our proposed model of the Adr1 regulatory domain bound to Bmh suggests that residues Ser238 and Tyr239 could provide cross-dimer contacts to stabilize the complex and that this might explain the failure of a dimerization-deficient Bmh mutant to bind Adr1 and to inhibit its activity. A bioinformatics analysis of Bmh-interacting proteins suggests that residues outside the canonical 14-3-3 motif might be a general property of Bmh target proteins and might help explain the ability of 14-3-3 to distinguish target and nontarget proteins. Bmh binding to the Adr1 regulatory domain, and its failure to bind when mutations are present, explains at a molecular level the transcriptional phenotype of ADR1(c) mutants.
Collapse
|
24
|
Regulations of sugar transporters: insights from yeast. Curr Genet 2013; 59:1-31. [PMID: 23455612 DOI: 10.1007/s00294-013-0388-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 02/02/2013] [Indexed: 12/24/2022]
Abstract
Transport across the plasma membrane is the first step at which nutrient supply is tightly regulated in response to intracellular needs and often also rapidly changing external environment. In this review, I describe primarily our current understanding of multiple interconnected glucose-sensing systems and signal-transduction pathways that ensure fast and optimum expression of genes encoding hexose transporters in three yeast species, Saccharomyces cerevisiae, Kluyveromyces lactis and Candida albicans. In addition, an overview of GAL- and MAL-specific regulatory networks, controlling galactose and maltose utilization, is provided. Finally, pathways generating signals inducing posttranslational degradation of sugar transporters will be highlighted.
Collapse
|
25
|
Aoh QL, Hung CW, Duncan MC. Energy metabolism regulates clathrin adaptors at the trans-Golgi network and endosomes. Mol Biol Cell 2013; 24:832-47. [PMID: 23345590 PMCID: PMC3596253 DOI: 10.1091/mbc.e12-10-0750] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glucose is a master regulator of cell behavior in the yeast Saccharomyces cerevisiae. It acts as both a metabolic substrate and a potent regulator of intracellular signaling cascades. Glucose starvation induces the transient delocalization and then partial relocalization of clathrin adaptors at the trans-Golgi network and endosomes. Although these localization responses are known to depend on the protein kinase A (PKA) signaling pathway, the molecular mechanism of this regulation is unknown. Here we demonstrate that PKA and the AMP-regulated kinase regulate adaptor localization through changes in energy metabolism. We show that genetic and chemical manipulation of intracellular ATP levels cause corresponding changes in adaptor localization. In permeabilized cells, exogenous ATP is sufficient to induce adaptor localization. Furthermore, we reveal distinct energy-dependent steps in adaptor localization: a step that requires the ADP-ribosylation factor ARF, an ATP-dependent step that requires the phosphatidyl-inositol-4 kinase Pik1, and third ATP-dependent step for which we provide evidence but for which the mechanism is unknown. We propose that these energy-dependent mechanisms precisely synchronize membrane traffic with overall proliferation rates and contribute a crucial aspect of energy conservation during acute glucose starvation.
Collapse
Affiliation(s)
- Quyen L Aoh
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
26
|
14-3-3 (Bmh) proteins regulate combinatorial transcription following RNA polymerase II recruitment by binding at Adr1-dependent promoters in Saccharomyces cerevisiae. Mol Cell Biol 2012. [PMID: 23207903 DOI: 10.1128/mcb.01226-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adr1 and Cat8 are nutrient-regulated transcription factors in Saccharomyces cerevisiae that coactivate genes necessary for growth in the absence of a fermentable carbon source. Transcriptional activation by Adr1 is dependent on the AMP-activated protein kinase Snf1 and is inhibited by binding of Bmh, yeast 14-3-3 proteins, to the phosphorylated Adr1 regulatory domain. We show here that Bmh inhibits transcription by binding to Adr1 at promoters that contain a preinitiation complex, demonstrating that Bmh-mediated inhibition is not due to nuclear exclusion, inhibition of DNA binding, or RNA polymerase II (Pol II) recruitment. Adr1-dependent mRNA levels under repressing growth conditions are synergistically enhanced in a mutant lacking Bmh and the two major histone deacetylases (HDACs), suggesting that Bmh and HDACs inhibit gene expression independently. The synergism requires Snf1 and Adr1 but not Cat8. Inactivating Bmh or preventing it from binding to Adr1 suppresses the normal requirement for Cat8 at codependent promoters, suggesting that Bmh modulates combinatorial control of gene expression in addition to having an inhibitory role in transcription. Activating Snf1 by deleting Reg1, a Glc7 protein phosphatase regulatory subunit, is lethal in combination with defective Bmh in strain W303, suggesting that Bmh and Snf1 have opposing roles in an essential cellular process.
Collapse
|
27
|
Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiol Mol Biol Rev 2012; 76:115-58. [PMID: 22688810 DOI: 10.1128/mmbr.05018-11] [Citation(s) in RCA: 377] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The eukaryotic heat shock response is an ancient and highly conserved transcriptional program that results in the immediate synthesis of a battery of cytoprotective genes in the presence of thermal and other environmental stresses. Many of these genes encode molecular chaperones, powerful protein remodelers with the capacity to shield, fold, or unfold substrates in a context-dependent manner. The budding yeast Saccharomyces cerevisiae continues to be an invaluable model for driving the discovery of regulatory features of this fundamental stress response. In addition, budding yeast has been an outstanding model system to elucidate the cell biology of protein chaperones and their organization into functional networks. In this review, we evaluate our understanding of the multifaceted response to heat shock. In addition, the chaperone complement of the cytosol is compared to those of mitochondria and the endoplasmic reticulum, organelles with their own unique protein homeostasis milieus. Finally, we examine recent advances in the understanding of the roles of protein chaperones and the heat shock response in pathogenic fungi, which is being accelerated by the wealth of information gained for budding yeast.
Collapse
|
28
|
Abstract
Availability of key nutrients, such as sugars, amino acids, and nitrogen compounds, dictates the developmental programs and the growth rates of yeast cells. A number of overlapping signaling networks--those centered on Ras/protein kinase A, AMP-activated kinase, and target of rapamycin complex I, for instance--inform cells on nutrient availability and influence the cells' transcriptional, translational, posttranslational, and metabolic profiles as well as their developmental decisions. Here I review our current understanding of the structures of the networks responsible for assessing the quantity and quality of carbon and nitrogen sources. I review how these signaling pathways impinge on transcriptional, metabolic, and developmental programs to optimize survival of cells under different environmental conditions. I highlight the profound knowledge we have gained on the structure of these signaling networks but also emphasize the limits of our current understanding of the dynamics of these signaling networks. Moreover, the conservation of these pathways has allowed us to extrapolate our finding with yeast to address issues of lifespan, cancer metabolism, and growth control in more complex organisms.
Collapse
Affiliation(s)
- James R Broach
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
29
|
Young ET, Zhang C, Shokat KM, Parua PK, Braun KA. The AMP-activated protein kinase Snf1 regulates transcription factor binding, RNA polymerase II activity, and mRNA stability of glucose-repressed genes in Saccharomyces cerevisiae. J Biol Chem 2012; 287:29021-34. [PMID: 22761425 DOI: 10.1074/jbc.m112.380147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
AMP-activated protein kinase, the "energy sensor of the cell," responds to low cellular energy stores by regulating enzymes and transcription factors that allow the cell to adapt to limiting nutritional conditions. Snf1, the yeast ortholog of AMP-activated protein kinase, has an essential role in respiratory metabolism in Saccharomyces cerevisiae that includes activating the transcription factor Adr1. How Snf1 regulates Adr1 activity is poorly understood. We used an analog-sensitive allele, SNF1(as)(I132G), that is inhibited by 2-naphthylmethyl pyrazolopyrimidine 1 to study the role of Snf1 in transcriptional regulation of glucose-repressible genes. When Snf1(as) was inhibited at the time of glucose depletion, there was a promoter-specific response with some Snf1-dependent genes being activated by low levels of inhibitor, whereas all Snf1-dependent genes were inhibited at high levels. Transcript accumulation was more sensitive to Snf1(as) inhibition than Adr1 or RNA polymerase (pol) II binding or acetylation of promoter nucleosomes. When Snf1(as) was inhibited after gene activation, Adr1 and RNA pol II remained at promoters, and RNA pol II remained in the ORF with associated nascent transcripts. However, cytoplasmic mRNAs were lost at a rapid rate compared with their decay following chemical or genetic inactivation of RNA pol II. In conclusion, Snf1 appears to affect multiple steps in gene regulation, including transcription factor binding, RNA polymerase II activity, and cytoplasmic mRNA stability.
Collapse
Affiliation(s)
- Elton T Young
- Department of Biochemistry, University of Washington, Seattle, Washington 98195-7350, USA.
| | | | | | | | | |
Collapse
|
30
|
Parua PK, Ryan PM, Trang K, Young ET. Pichia pastoris 14-3-3 regulates transcriptional activity of the methanol inducible transcription factor Mxr1 by direct interaction. Mol Microbiol 2012; 85:282-98. [PMID: 22625429 DOI: 10.1111/j.1365-2958.2012.08112.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The zinc-finger transcription factor, Mxr1 activates methanol utilization and peroxisome biogenesis genes in the methylotrophic yeast, Pichia pastoris. Expression of Mxr1-dependent genes is regulated in response to various carbon sources by an unknown mechanism. We show here that this mechanism involves the highly conserved 14-3-3 proteins. 14-3-3 proteins participate in many biological processes in different eukaryotes. We have characterized a putative 14-3-3 binding region at Mxr1 residues 212-225 and mapped the major activation domain of Mxr1 to residues 246-280, and showed that phenylalanine residues in this region are critical for its function. Furthermore, we report that a unique and previously uncharacterized 14-3-3 family protein in P. pastoris complements Saccharomyces cerevisiae 14-3-3 functions and interacts with Mxr1 through its 14-3-3 binding region via phosphorylation of Ser215 in a carbon source-dependent manner. Indeed, our in vivo results suggest a carbon source-dependent regulation of expression of Mxr1-activated genes by 14-3-3 in P. pastoris. Interestingly, we observed 14-3-3-independent binding of Mxr1 to the promoters, suggesting a post-DNA binding function of 14-3-3 in regulating transcription. We provide the first molecular explanation of carbon source-mediated regulation of Mxr1 activity, whose mechanism involves a post-DNA binding role of 14-3-3.
Collapse
Affiliation(s)
- Pabitra K Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350, USA
| | | | | | | |
Collapse
|
31
|
Becuwe M, Vieira N, Lara D, Gomes-Rezende J, Soares-Cunha C, Casal M, Haguenauer-Tsapis R, Vincent O, Paiva S, Léon S. A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. ACTA ACUST UNITED AC 2012; 196:247-59. [PMID: 22249293 PMCID: PMC3265958 DOI: 10.1083/jcb.201109113] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Glucose remodels the post-translational modifications of the yeast arrestin-like protein Rod1 to promote glucose-induced transporter endocytosis. Endocytosis regulates the plasma membrane protein landscape in response to environmental cues. In yeast, the endocytosis of transporters depends on their ubiquitylation by the Nedd4-like ubiquitin ligase Rsp5, but how extracellular signals trigger this ubiquitylation is unknown. Various carbon source transporters are known to be ubiquitylated and endocytosed when glucose-starved cells are exposed to glucose. We show that this required the conserved arrestin-related protein Rod1/Art4, which was activated in response to glucose addition. Indeed, Rod1 was a direct target of the glucose signaling pathway composed of the AMPK homologue Snf1 and the PP1 phosphatase Glc7/Reg1. Glucose promoted Rod1 dephosphorylation and its subsequent release from a phospho-dependent interaction with 14-3-3 proteins. Consequently, this allowed Rod1 ubiquitylation by Rsp5, which was a prerequisite for transporter endocytosis. This paper therefore demonstrates that the arrestin-related protein Rod1 relays glucose signaling to transporter endocytosis and provides the first molecular insights into the nutrient-induced activation of an arrestin-related protein through a switch in post-translational modifications.
Collapse
Affiliation(s)
- Michel Becuwe
- Institut Jacques Monod, Centre National de la Recherche Scientifique, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Shifting the fermentative/oxidative balance in Saccharomyces cerevisiae by transcriptional deregulation of Snf1 via overexpression of the upstream activating kinase Sak1p. Appl Environ Microbiol 2011; 77:1981-9. [PMID: 21257817 DOI: 10.1128/aem.02219-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
With the aim to reduce fermentation by-products and to promote respiratory metabolism by shifting the fermentative/oxidative balance, we evaluated the constitutive overexpression of the SAK1 and HAP4 genes in Saccharomyces cerevisiae. Sak1p is one of three kinases responsible for the phosphorylation, and thereby the activation, of the Snf1p complex, while Hap4p is the activator subunit of the Hap2/3/4/5 transcriptional complex. We compared the physiology of a SAK1-overexpressing strain with that of a strain overexpressing the HAP4 gene in wild-type and sdh2 deletion (respiratory-deficient) backgrounds. Both SAK1 and HAP4 overexpressions led to the upregulation of glucose-repressed genes and to reduced by-product formation rates (ethanol and glycerol). SAK1 overexpression had a greater impact on growth rates than did HAP4 overexpression. Elevated transcript levels of SAK1, but not HAP4, resulted in increased biomass yields in batch cultures grown on glucose (aerobic and excess glucose) as well as on nonfermentable carbon sources. SAK1 overexpression, but not the combined overexpression of SAK1 and HAP4 or the overexpression of HAP4 alone, restored growth on ethanol in an sdh2 deletion strain. In glucose-grown shake flask cultures, the sdh2 deletion strain with SAK1 and HAP4 overexpression produced succinic acid at a titer of 8.5 g liter(-1) and a yield of 0.26 mol (mol glucose)(-1) within 216 h. We here report for the first time that a constitutively high level of expression of SAK1 alleviates glucose repression and shifts the fermentative/oxidative balance under both glucose-repressed and -derepressed conditions.
Collapse
|
33
|
Parua PK, Ratnakumar S, Braun KA, Dombek KM, Arms E, Ryan PM, Young ET. 14-3-3 (Bmh) proteins inhibit transcription activation by Adr1 through direct binding to its regulatory domain. Mol Cell Biol 2010; 30:5273-83. [PMID: 20855531 PMCID: PMC2976377 DOI: 10.1128/mcb.00715-10] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 08/10/2010] [Accepted: 09/02/2010] [Indexed: 11/20/2022] Open
Abstract
14-3-3 proteins, known as Bmh in yeast, are ubiquitous, highly conserved proteins that function as adaptors in signal transduction pathways by binding to phosphorylated proteins to activate, inactivate, or sequester their substrates. Bmh proteins have an important role in glucose repression by binding to Reg1, the regulatory subunit of Glc7, a protein phosphatase that inactivates the AMP-activated protein kinase Snf1. We describe here another role for Bmh in glucose repression. We show that Bmh binds to the Snf1-dependent transcription factor Adr1 and inhibits its transcriptional activity. Bmh binds within the regulatory domain of Adr1 between amino acids 215 and 260, the location of mutant ADR1(c) alleles that deregulate Adr1 activity. This provides the first explanation for the phenotype resulting from these mutations. Bmh inhibits Gal4-Adr1 fusion protein activity by binding to the Ser230 region and blocking the function of a nearby cryptic activating region. ADR1(c) alleles, or the inactivation of Bmh, relieve the inhibition and Snf1 dependence of this activating region, indicating that the phosphorylation of Ser230 and Bmh are important for the inactivation of Gal4-Adr1. The Bmh binding domain is conserved in orthologs of Adr1, suggesting that it acquired an important biological function before the whole-genome duplication of the ancestor of S. cerevisiae.
Collapse
Affiliation(s)
- P. K. Parua
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - S. Ratnakumar
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - K. A. Braun
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - K. M. Dombek
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - E. Arms
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - P. M. Ryan
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| | - E. T. Young
- Department of Biochemistry, University of Washington, 1705 NE Pacific Street, Seattle, Washington 98195-7350
| |
Collapse
|
34
|
Cannon JF. Function of protein phosphatase-1, Glc7, in Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2010; 73:27-59. [PMID: 20800758 DOI: 10.1016/s0065-2164(10)73002-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Budding yeast, Saccharomyces cerevisiae, and its close relatives are unique among eukaryotes in having a single gene, GLC7, encoding protein phosphatase-1 (PP1). This enzyme with a highly conserved amino acid sequence controls many processes in all eukaryotic cells. Therefore, the study of Glc7 function offers a unique opportunity to gain a comprehensive understanding of this critical regulatory enzyme. This review summarizes our current knowledge of how Glc7 function modulates processes in the cytoplasm and nucleus. Additionally, global Glc7 regulation is described.
Collapse
Affiliation(s)
- John F Cannon
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|
35
|
Ratnakumar S, Hesketh A, Gkargkas K, Wilson M, Rash BM, Hayes A, Tunnacliffe A, Oliver SG. Phenomic and transcriptomic analyses reveal that autophagy plays a major role in desiccation tolerance in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2010; 7:139-49. [PMID: 20963216 DOI: 10.1039/c0mb00114g] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Saccharomyces cerevisiae can survive extreme desiccation, but the molecular mechanisms are poorly understood. To define genes involved in desiccation tolerance, two complementary genome-wide approaches, phenomics and transcriptomics, have been used, together with a targeted analysis of gene deletion mutants tested individually for their ability to survive drying. Genome-wide phenotypic analyses carried out on a pooled library of single-gene deletion mutants subjected to three cycles of desiccation and re-growth to post-diauxic phase identified about 650 genes that contributed to strain survival in the drying process. Air-drying desiccation-tolerant post-diauxic phase cells significantly altered transcription in 12% of the yeast genome, activating expression of over 450 genes and down-regulating 330. Autophagy processes were significantly over-represented in both the phenomics study and the genes up-regulated on drying, indicating the importance of the clearance of protein aggregates/damaged organelles and the recycling of nutrients for the survival of desiccation in yeast. Functional carbon source sensing networks governed by the PKA, Tor and Snf1 protein kinase complexes were important for the survival of desiccation, as indicated by phenomics, transcriptomics, and individual analyses of mutant strains. Changes in nitrogen metabolism were evident during the drying process and parts of the environmental stress response were activated, repressing ribosome production and inducing genes for coping with oxidative and osmotic stress.
Collapse
Affiliation(s)
- Sooraj Ratnakumar
- Department of Chemical Engineering and Biotechnology, Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ohlmeier S, Hiltunen JK, Bergmann U. Protein phosphorylation in mitochondria - A study on fermentative and respiratory growth of Saccharomyces cerevisiae. Electrophoresis 2010; 31:2869-81. [DOI: 10.1002/elps.200900759] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Busti S, Coccetti P, Alberghina L, Vanoni M. Glucose signaling-mediated coordination of cell growth and cell cycle in Saccharomyces cerevisiae. SENSORS 2010; 10:6195-240. [PMID: 22219709 PMCID: PMC3247754 DOI: 10.3390/s100606195] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/05/2023]
Abstract
Besides being the favorite carbon and energy source for the budding yeast Sacchromyces cerevisiae, glucose can act as a signaling molecule to regulate multiple aspects of yeast physiology. Yeast cells have evolved several mechanisms for monitoring the level of glucose in their habitat and respond quickly to frequent changes in the sugar availability in the environment: the cAMP/PKA pathways (with its two branches comprising Ras and the Gpr1/Gpa2 module), the Rgt2/Snf3-Rgt1 pathway and the main repression pathway involving the kinase Snf1. The cAMP/PKA pathway plays the prominent role in responding to changes in glucose availability and initiating the signaling processes that promote cell growth and division. Snf1 (the yeast homologous to mammalian AMP-activated protein kinase) is primarily required for the adaptation of yeast cell to glucose limitation and for growth on alternative carbon source, but it is also involved in the cellular response to various environmental stresses. The Rgt2/Snf3-Rgt1 pathway regulates the expression of genes required for glucose uptake. Many interconnections exist between the diverse glucose sensing systems, which enables yeast cells to fine tune cell growth, cell cycle and their coordination in response to nutritional changes.
Collapse
Affiliation(s)
- Stefano Busti
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza, 2-20126 Milano, Italy.
| | | | | | | |
Collapse
|
38
|
Peisker K, Chiabudini M, Rospert S. The ribosome-bound Hsp70 homolog Ssb of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:662-72. [PMID: 20226819 DOI: 10.1016/j.bbamcr.2010.03.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 03/01/2010] [Accepted: 03/04/2010] [Indexed: 11/29/2022]
Abstract
The Hsp70 homolog Ssb directly binds to the ribosome and contacts a variety of newly synthesized polypeptide chains as soon as they emerge from the ribosomal exit tunnel. For this reason a general role of Ssb in the de novo folding of newly synthesized proteins is highly suggestive. However, for more than a decade client proteins which require Ssb for proper folding have remained elusive. It was therefore speculated that Ssb, despite its ability to interact with a large variety of nascent polypeptides, may assist the folding of only a small and specific subset. Alternatively, it has been suggested that Ssb's function may be limited to the protection of nascent polypeptides from aggregation until downstream chaperones take over and actively fold their substrates. There is also evidence that Ssb, in parallel to a classical chaperone function, is involved in the regulation of cellular signaling processes. Here we aim to summarize what is currently known about Ssb's multiple functions and what remains to be ascertained by future research.
Collapse
Affiliation(s)
- Kristin Peisker
- Department of Cell and Molecular Biology, Biomedicinskt Centrum BMC, Uppsala, Sweden
| | | | | |
Collapse
|
39
|
PP1 phosphatase-binding motif in Reg1 protein of Saccharomyces cerevisiae is required for interaction with both the PP1 phosphatase Glc7 and the Snf1 protein kinase. Cell Signal 2010; 22:1013-21. [PMID: 20170726 DOI: 10.1016/j.cellsig.2010.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 01/25/2010] [Accepted: 02/09/2010] [Indexed: 01/30/2023]
Abstract
In Saccharomyces cerevisiae, Snf1 kinase, the ortholog of the mammalian AMP-activated protein kinase, is activated by an increase in the phosphorylation of the conserved threonine residue in its activation loop. The phosphorylation status of this key site is determined by changes in the rate of dephosphorylation catalyzed by the yeast PP1 phosphatase Glc7 in a complex with the Reg1 protein. Reg1 and many PP1 phosphatase regulatory subunits utilize some variation of the conserved RVxF motif for interaction with PP1. In the Snf1 pathway, the exact role of the Reg1 protein is uncertain since it binds to both the Glc7 phosphatase and to Snf1, the Glc7 substrate. In this study we sought to clarify the role of Reg1 by separating the Snf1- and Glc7-binding functions. We generated a series of Reg1 proteins, some with deletions of conserved domains and one with two amino acid changes in the RVxF motif. The ability of Reg1 to bind Snf1 and Glc7 required the same domains of Reg1. Further, the RVxF motif that is essential for Reg1 binding to Glc7 is also required for binding to Snf1. Our data suggest that the regulation of Snf1 dephosphorylation is imparted through a dynamic competition between the Glc7 phosphatase and the Snf1 kinase for binding to the PP1 regulatory subunit Reg1.
Collapse
|
40
|
von Plehwe U, Berndt U, Conz C, Chiabudini M, Fitzke E, Sickmann A, Petersen A, Pfeifer D, Rospert S. The Hsp70 homolog Ssb is essential for glucose sensing via the SNF1 kinase network. Genes Dev 2009; 23:2102-15. [PMID: 19723765 DOI: 10.1101/gad.529409] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Yeast senses the availability of external energy sources via multiple interconnected signaling networks. One of the central components is SNF1, the homolog of mammalian AMP-activated protein kinase, which in yeast is essential for the expression of glucose-repressed genes. When glucose is available hyperphosphorylated SNF1 is rendered inactive by the type 1 protein phosphatase Glc7. Dephosphorylation requires Reg1, which physically targets Glc7 to SNF1. Here we show that the chaperone Ssb is required to keep SNF1 in the nonphosphorylated state in the presence of glucose. Using a proteome approach we found that the Deltassb1Deltassb2 strain displays alterations in protein expression and suffers from phenotypic characteristics reminiscent of glucose repression mutants. Microarray analysis revealed a correlation between deregulation on the protein and on the transcript level. Supporting studies uncovered that SSB1 was an effective multicopy suppressor of severe growth defects caused by the Deltareg1 mutation. Suppression of Deltareg1 by high levels of Ssb was coupled to a reduction of Snf1 hyperphosphorylation back to the wild-type phosphorylation level. The data are consistent with a model in which Ssb is crucial for efficient regulation within the SNF1 signaling network, thereby allowing an appropriate response to changing glucose levels.
Collapse
Affiliation(s)
- Ulrike von Plehwe
- Institute of Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, D-79104 Freiburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Yeast cells sense the amount and quality of external nutrients through multiple interconnected signaling networks, which allow them to adjust their metabolism, transcriptional profile and developmental program to adapt readily and appropriately to changing nutritional states. We present our current understanding of the nutritional sensing networks yeast cells rely on for perceiving the nutritional landscape, with particular emphasis on those sensitive to carbon and nitrogen sources. We describe the means by which these networks inform the cell's decision among the different developmental programs available to them-growth, quiescence, filamentous development, or meiosis/sporulation. We conclude that the highly interconnected signaling networks provide the cell with a highly nuanced view of the environment and that the cell can interpret that information through a sophisticated calculus to achieve optimum responses to any nutritional condition.
Collapse
Affiliation(s)
- Shadia Zaman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | |
Collapse
|
42
|
Abstract
In the presence of glucose, yeast undergoes an important remodelling of its metabolism. There are changes in the concentration of intracellular metabolites and in the stability of proteins and mRNAs; modifications occur in the activity of enzymes as well as in the rate of transcription of a large number of genes, some of the genes being induced while others are repressed. Diverse combinations of input signals are required for glucose regulation of gene expression and of other cellular processes. This review focuses on the early elements in glucose signalling and discusses their relevance for the regulation of specific processes. Glucose sensing involves the plasma membrane proteins Snf3, Rgt2 and Gpr1 and the glucose-phosphorylating enzyme Hxk2, as well as other regulatory elements whose functions are still incompletely understood. The similarities and differences in the way in which yeasts and mammalian cells respond to glucose are also examined. It is shown that in Saccharomyces cerevisiae, sensing systems for other nutrients share some of the characteristics of the glucose-sensing pathways.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain.
| |
Collapse
|
43
|
Effects of ADH2 overexpression in Saccharomyces bayanus during alcoholic fermentation. Appl Environ Microbiol 2007; 74:702-7. [PMID: 18065623 DOI: 10.1128/aem.01805-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of overexpression of the gene ADH2 on metabolic and biological activity in Saccharomyces bayanus V5 during alcoholic fermentation has been evaluated. This gene is known to encode alcohol dehydrogenase II (ADH II). During the biological aging of sherry wines, where yeasts have to grow on ethanol owing to the absence of glucose, this isoenzyme plays a prominent role by converting the ethanol into acetaldehyde and producing NADH in the process. Overexpression of the gene ADH2 during alcoholic fermentation has no effect on the proteomic profile or the net production of some metabolites associated with glycolysis and alcoholic fermentation such as ethanol, acetaldehyde, and glycerol. However, it affects indirectly glucose and ammonium uptakes, cell growth, and intracellular redox potential, which lead to an altered metabolome. The increased contents in acetoin, acetic acid, and L-proline present in the fermentation medium under these conditions can be ascribed to detoxification by removal of excess acetaldehyde and the need to restore and maintain the intracellular redox potential balance.
Collapse
|
44
|
Rubenstein EM, McCartney RR, Zhang C, Shokat KM, Shirra MK, Arndt KM, Schmidt MC. Access denied: Snf1 activation loop phosphorylation is controlled by availability of the phosphorylated threonine 210 to the PP1 phosphatase. J Biol Chem 2007; 283:222-230. [PMID: 17991748 DOI: 10.1074/jbc.m707957200] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phosphorylation of the Saccharomyces cerevisiae Snf1 kinase activation loop is determined by the integration of two reaction rates: the rate of phosphorylation by upstream kinases and the rate of dephosphorylation by Glc7. The activities of the Snf1-activating kinases do not appear to be glucose-regulated, since immune complex kinase assays with each of the three Snf1-activating kinases show similar levels of activity when prepared from cells grown in either high or low glucose. In contrast, the dephosphorylation of the Snf1 activation loop was strongly regulated by glucose. When de novo phosphorylation of Snf1 was inhibited, phosphorylation of the Snf1 activation loop was found to be stable in low glucose but rapidly lost upon the addition of glucose. A greater than 10-fold difference in the rates of Snf1 activation loop dephosphorylation was detected. However, the activity of the Glc7-Reg1 phosphatase may not itself be directly regulated by glucose, since the Glc7-Reg1 enzyme was active in low glucose toward another substrate, the transcription factor Mig1. Glucose-mediated regulation of Snf1 activation loop dephosphorylation is controlled by changes in the ability of the Snf1 activation loop to act as a substrate for Glc7.
Collapse
Affiliation(s)
- Eric M Rubenstein
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Rhonda R McCartney
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - Chao Zhang
- Howard Hughes Medical Institute and Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Kevan M Shokat
- Howard Hughes Medical Institute and Department of Molecular and Cellular Pharmacology, University of California, San Francisco, San Francisco, California 94143
| | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Martin C Schmidt
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261.
| |
Collapse
|
45
|
Westergaard SL, Oliveira AP, Bro C, Olsson L, Nielsen J. A systems biology approach to study glucose repression in the yeast Saccharomyces cerevisiae. Biotechnol Bioeng 2007; 96:134-45. [PMID: 16878332 DOI: 10.1002/bit.21135] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glucose repression in the yeast Saccharomyces cerevisiae has evolved as a complex regulatory system involving several different pathways. There are two main pathways involved in signal transduction. One has a role in glucose sensing and regulation of glucose transport, while another takes part in repression of a wide range of genes involved in utilization of alternative carbon sources. In this work, we applied a systems biology approach to study the interaction between these two pathways. Through genome-wide transcription analysis of strains with disruption of HXK2, GRR1, MIG1, the combination of MIG1 and MIG2, and the parental strain, we identified 393 genes to have significantly changed expression levels. To identify co-regulation patterns in the different strains we applied principal component analysis. Disruption of either GRR1 or HXK2 were both found to have profound effects on transcription of genes related to TCA cycle and respiration, as well as ATP synthesis coupled proton transport, all displaying an increased expression. The hxk2Delta strain showed reduced overflow metabolism towards ethanol relative to the parental strain. We also used a genome-scale metabolic model to identify reporter metabolites, and found that there is a high degree of consistency between the identified reporter metabolites and the physiological effects observed in the different mutants. Our systems biology approach points to close interaction between the two pathways, and our metabolism driven analysis of transcription data may find a wider application for analysis of cross-talk between different pathways involved in regulation of metabolism.
Collapse
Affiliation(s)
- Steen Lund Westergaard
- Center for Microbial Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800 Kgs, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
46
|
Elbing K, McCartney R, Schmidt M. Purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. Biochem J 2006; 393:797-805. [PMID: 16201971 PMCID: PMC1360733 DOI: 10.1042/bj20051213] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Members of the Snf1/AMPK family of protein kinases are activated by distinct upstream kinases that phosphorylate a conserved threonine residue in the Snf1/AMPK activation loop. Recently, the identities of the Snf1- and AMPK-activating kinases have been determined. Here we describe the purification and characterization of the three Snf1-activating kinases of Saccharomyces cerevisiae. The identities of proteins associated with the Snf1-activating kinases were determined by peptide mass fingerprinting. These kinases, Sak1, Tos3 and Elm2 do not appear to require the presence of additional subunits for activity. Sak1 and Snf1 co-purify and co-elute in size exclusion chromatography, demonstrating that these two proteins form a stable complex. The Snf1-activating kinases phosphorylate the activation loop threonine of Snf1 in vitro with great specificity and are able to do so in the absence of beta and gamma subunits of the Snf1 heterotrimer. Finally, we showed that the Snf1 kinase domain isolated from bacteria as a GST fusion protein can be activated in vitro and shows substrate specificity in the absence of its beta and gamma subunits.
Collapse
Affiliation(s)
- Karin Elbing
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Rhonda R. McCartney
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
| | - Martin C. Schmidt
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
47
|
Abstract
Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called "reverse recruitment." An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
Collapse
Affiliation(s)
- George M Santangelo
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39406-5018, USA.
| |
Collapse
|
48
|
Voronkova V, Kacherovsky N, Tachibana C, Yu D, Young ET. Snf1-dependent and Snf1-independent pathways of constitutive ADH2 expression in Saccharomyces cerevisiae. Genetics 2006; 172:2123-38. [PMID: 16415371 PMCID: PMC1456411 DOI: 10.1534/genetics.105.048231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor Adr1 directly activates the expression of genes encoding enzymes in numerous pathways that are upregulated after the exhaustion of glucose in the yeast Saccharomyces cerevisiae. ADH2, encoding the alcohol dehydrogenase isozyme required for ethanol oxidation, is a highly glucose-repressed, Adr1-dependent gene. Using a genetic screen we isolated >100 mutants in 12 complementation groups that exhibit ADR1-dependent constitutive ADH2 expression on glucose. Temperature-sensitive alleles are present among the new constitutive mutants, indicating that essential genes play a role in ADH2 repression. Among the genes we cloned is MOT1, encoding a repressor that inhibits TBP binding to the promoter, thus linking glucose repression with TBP access to chromatin. Two genes encoding proteins involved in vacuolar function, FAB1 and VPS35, and CDC10, encoding a nonessential septin, were also uncovered in the search, suggesting that vacuolar function and the cytoskeleton have previously unknown roles in regulating gene expression. Constitutive activation of ADH2 expression by Adr1 is SNF1-dependent in a strain with a defective MOT1 gene, whereas deletion of SNF1 did not affect constitutive ADH2 expression in the mutants affecting vacuolar or septin function. Thus, the mutant search revealed previously unknown Snf1-dependent and -independent pathways of ADH2 expression.
Collapse
Affiliation(s)
- Valentina Voronkova
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
49
|
Liu Y, Xu X, Singh-Rodriguez S, Zhao Y, Kuo MH. Histone H3 Ser10 phosphorylation-independent function of Snf1 and Reg1 proteins rescues a gcn5- mutant in HIS3 expression. Mol Cell Biol 2005; 25:10566-79. [PMID: 16287868 PMCID: PMC1291248 DOI: 10.1128/mcb.25.23.10566-10579.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gcn5 protein is a prototypical histone acetyltransferase that controls transcription of multiple yeast genes. To identify molecular functions that act downstream of or in parallel with Gcn5 protein, we screened for suppressors that rescue the transcriptional defects of HIS3 caused by a catalytically inactive mutant Gcn5, the E173H mutant. One bypass of Gcn5 requirement gene (BGR) suppressor was mapped to the REG1 locus that encodes a semidominant mutant truncated after amino acid 740. Reg1(1-740) protein does not rescue the complete knockout of GCN5, nor does it suppress other gcn5- defects, including the inability to utilize nonglucose carbon sources. Reg1(1-740) enhances HIS3 transcription while HIS3 promoter remains hypoacetylated, indicating that a noncatalytic function of Gcn5 is targeted by this suppressor protein. Reg1 protein is a major regulator of Snf1 kinase that phosphorylates Ser10 of histone H3. However, whereas Snf1 protein is important for HIS3 expression, replacing Ser10 of H3 with alanine or glutamate neither attenuates nor augments the BGR phenotypes. Overproduction of Snf1 protein also preferentially rescues the E173H allele. Biochemically, both Snf1 and Reg1(1-740) proteins copurify with Gcn5 protein. Snf1 can phosphorylate recombinant Gcn5 in vitro. Together, these data suggest that Reg1 and Snf1 proteins function in an H3 phosphorylation-independent pathway that also involves a noncatalytic role played by Gcn5 protein.
Collapse
Affiliation(s)
- Yang Liu
- 401 BCH Building, Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824.
| | | | | | | | | |
Collapse
|
50
|
Current awareness on yeast. Yeast 2005; 22:241-8. [PMID: 15762016 DOI: 10.1002/yea.1159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|