1
|
Bhuiyan MIH, Song S, Yuan H, Begum G, Kofler J, Kahle KT, Yang SS, Lin SH, Alper SL, Subramanya AR, Sun D. WNK-Cab39-NKCC1 signaling increases the susceptibility to ischemic brain damage in hypertensive rats. J Cereb Blood Flow Metab 2017; 37:2780-2794. [PMID: 27798271 PMCID: PMC5536788 DOI: 10.1177/0271678x16675368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With-no-lysine kinase (WNK) and Na+-K+-2Cl- cotransporter 1 (NKCC1) are involved in the pathogenesis of hypertension. In this study, we investigated the WNK-NKCC1 signaling pathway in spontaneously hypertensive rats (SHR) and their associated susceptibility to stroke injury. Basal NKCC1 protein levels were higher in SHR than in normotensive Wistar Kyoto (WKY) rat brains. After inducing ischemic stroke, adult male WKY and SHR received either saline or NKCC1 inhibitor bumetanide (10 mg/kg/day, i.p.) starting at 3-h post-reperfusion. NKCC1 inhibition blunted the extent of ischemic infarction in SHR and improved their neurobehavioral functions. Interestingly, ischemia led to increased NKCC1 phosphorylation in SHR but not in WKY rats. Pronounced elevation of WNK1, WNK2 and WNK4 protein and downregulation of WNK3 were detected in ischemic SHR, but not in ischemic WKY rats. Upregulation of WNK-NKCC1 complex in ischemic SHR brain was associated with increased Ca2+-binding protein 39 (Cab39), without increases in Ste20-related proline alanine-rich kinase or oxidative stress-responsive kinase-1. Moreover, subacute middle cerebral artery stroke human brain autopsy exhibited increased expression of NKCC1 protein. We conclude that augmented WNK-Cab39-NKCC1 signaling in SHR is associated with an increased susceptibility to ischemic brain damage and may serve as a novel target for anti-hypertensive and anti-ischemic stroke therapy.
Collapse
Affiliation(s)
| | - Shanshan Song
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Hui Yuan
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Gulnaz Begum
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA
| | - Julia Kofler
- 2 Department of Pathology, University of Pittsburgh, Pittsburgh, USA
| | - Kristopher T Kahle
- 3 Department of Neurosurgery, Yale University School of Medicine, New Haven, USA.,4 Department of Pediatrics, Yale University School of Medicine, New Haven, USA
| | - Sung-Sen Yang
- 5 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,6 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hua Lin
- 5 Division of Nephrology, Department of Medicine, Tri-Service General Hospital, Taipei, Taiwan.,6 Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Seth L Alper
- 7 Division of Nephrology and Vascular Biology Center, Beth Israel Deaconess Medical Center, Boston, USA.,8 Department of Medicine, Harvard Medical School, Boston, USA
| | - Arohan R Subramanya
- 9 Department of Medicine, Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Dandan Sun
- 1 Department of Neurology, University of Pittsburgh, Pittsburgh, USA.,10 Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, USA
| |
Collapse
|
2
|
Gilad D, Shorer S, Ketzef M, Friedman A, Sekler I, Aizenman E, Hershfinkel M. Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 2015; 81:4-13. [PMID: 25562657 PMCID: PMC4490144 DOI: 10.1016/j.nbd.2014.12.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K(+)/Cl(-) co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn(2+) chelation. Importantly, kainate-induced synaptic Zn(2+) release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity.
Collapse
Affiliation(s)
- David Gilad
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Sharon Shorer
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Maya Ketzef
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Elias Aizenman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel.
| |
Collapse
|
3
|
Cairns SP, Leader JP, Loiselle DS, Higgins A, Lin W, Renaud JM. Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue. J Appl Physiol (1985) 2015; 118:662-74. [PMID: 25571990 DOI: 10.1152/japplphysiol.00705.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials.
Collapse
Affiliation(s)
- Simeon P Cairns
- Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand;
| | - John P Leader
- Department of Medicine, University of Otago, Dunedin, New Zealand; Department of Physiology, University of Otago, Dunedin, New Zealand
| | - Denis S Loiselle
- Department of Physiology, School of Medical Sciences, University of Auckland, Auckland, New Zealand; Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; and
| | - Amanda Higgins
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Wei Lin
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Jean-Marc Renaud
- Department of Cellular and Molecular Medicine, Center for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Ponce-Coria J, Markadieu N, Austin TM, Flammang L, Rios K, Welling PA, Delpire E. A novel Ste20-related proline/alanine-rich kinase (SPAK)-independent pathway involving calcium-binding protein 39 (Cab39) and serine threonine kinase with no lysine member 4 (WNK4) in the activation of Na-K-Cl cotransporters. J Biol Chem 2014; 289:17680-8. [PMID: 24811174 DOI: 10.1074/jbc.m113.540518] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Na(+)-dependent chloride cotransporters (NKCC1, NKCC2, and NCC) are activated by phosphorylation to play critical roles in diverse physiological responses, including renal salt balance, hearing, epithelial fluid secretion, and volume regulation. Serine threonine kinase WNK4 (With No K = lysine member 4) and members of the Ste20 kinase family, namely SPAK and OSR1 (Ste20-related proline/alanine-rich kinase, Oxidative stress-responsive kinase) govern phosphorylation. According to present understanding, WNK4 phosphorylates key residues within SPAK/OSR1 leading to kinase activation, allowing SPAK/OSR1 to bind to and phosphorylate NKCC1, NKCC2, and NCC. Recently, the calcium-binding protein 39 (Cab39) has emerged as a binding partner and enhancer of SPAK/OSR1 activity, facilitating kinase autoactivation and promoting phosphorylation of the cotransporters. In the present study, we provide evidence showing that Cab39 differentially interacts with WNK4 and SPAK/OSR1 to switch the classic two kinase cascade into a signal kinase transduction mechanism. We found that WNK4 in association with Cab39 activates NKCC1 in a SPAK/OSR1-independent manner. We discovered that WNK4 possesses a domain that bears close resemblance to the SPAK/OSR1 C-terminal CCT/PF2 domain, which is required for physical interaction between the Ste20 kinases and the Na(+)-driven chloride cotransporters. Modeling, yeast two-hybrid, and functional data reveal that this PF2-like domain located downstream of the catalytic domain in WNK4 promotes the direct interaction between the kinase and NKCC1. We conclude that in addition to SPAK and OSR1, WNK4 is able to anchor itself to the N-terminal domain of NKCC1 and to promote cotransporter activation.
Collapse
Affiliation(s)
- Jose Ponce-Coria
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Nicolas Markadieu
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Thomas M Austin
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Lindsey Flammang
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Kerri Rios
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| | - Paul A Welling
- the Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Eric Delpire
- From the Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232 and
| |
Collapse
|
5
|
Burnstock G, Brouns I, Adriaensen D, Timmermans JP. Purinergic signaling in the airways. Pharmacol Rev 2012; 64:834-68. [PMID: 22885703 DOI: 10.1124/pr.111.005389] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence for a significant role and impact of purinergic signaling in normal and diseased airways is now beyond dispute. The present review intends to provide the current state of knowledge of the involvement of purinergic pathways in the upper and lower airways and lungs, thereby differentiating the involvement of different tissues, such as the epithelial lining, immune cells, airway smooth muscle, vasculature, peripheral and central innervation, and neuroendocrine system. In addition to the vast number of well illustrated functions for purinergic signaling in the healthy respiratory tract, increasing data pointing to enhanced levels of ATP and/or adenosine in airway secretions of patients with airway damage and respiratory diseases corroborates the emerging view that purines act as clinically important mediators resulting in either proinflammatory or protective responses. Purinergic signaling has been implicated in lung injury and in the pathogenesis of a wide range of respiratory disorders and diseases, including asthma, chronic obstructive pulmonary disease, inflammation, cystic fibrosis, lung cancer, and pulmonary hypertension. These ostensibly enigmatic actions are based on widely different mechanisms, which are influenced by the cellular microenvironment, but especially the subtypes of purine receptors involved and the activity of distinct members of the ectonucleotidase family, the latter being potential protein targets for therapeutic implementation.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Royal Free Campus, London, UK.
| | | | | | | |
Collapse
|
6
|
Chorin E, Vinograd O, Fleidervish I, Gilad D, Herrmann S, Sekler I, Aizenman E, Hershfinkel M. Upregulation of KCC2 activity by zinc-mediated neurotransmission via the mZnR/GPR39 receptor. J Neurosci 2011; 31:12916-26. [PMID: 21900570 PMCID: PMC3227684 DOI: 10.1523/jneurosci.2205-11.2011] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 12/15/2022] Open
Abstract
Vesicular Zn(2+) regulates postsynaptic neuronal excitability upon its corelease with glutamate. We previously demonstrated that synaptic Zn(2+) acts via a distinct metabotropic zinc-sensing receptor (mZnR) in neurons to trigger Ca(2+) responses in the hippocampus. Here, we show that physiological activation of mZnR signaling induces enhanced K(+)/Cl(-) cotransporter 2 (KCC2) activity and surface expression. As KCC2 is the major Cl(-) outward transporter in neurons, Zn(2+) also triggers a pronounced hyperpolarizing shift in the GABA(A) reversal potential. Mossy fiber stimulation-dependent upregulation of KCC2 activity is eliminated in slices from Zn(2+) transporter 3-deficient animals, which lack synaptic Zn(2+). Importantly, activity-dependent ZnR signaling and subsequent enhancement of KCC2 activity are also absent in slices from mice lacking the G-protein-coupled receptor GPR39, identifying this protein as the functional neuronal mZnR. Our work elucidates a fundamentally important role for synaptically released Zn(2+) acting as a neurotransmitter signal via activation of a mZnR to increase Cl(-) transport, thereby enhancing inhibitory tone in postsynaptic cells.
Collapse
MESH Headings
- Animals
- Blotting, Western
- CA3 Region, Hippocampal/cytology
- CA3 Region, Hippocampal/physiology
- Electrophysiological Phenomena
- Excitatory Postsynaptic Potentials/physiology
- Female
- Genotype
- In Vitro Techniques
- Male
- Mice
- Mice, Knockout
- Microscopy, Fluorescence
- Mossy Fibers, Hippocampal/physiology
- Patch-Clamp Techniques
- Receptors, Cell Surface/metabolism
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, GABA-A/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- Symporters/biosynthesis
- Symporters/physiology
- Synapses/metabolism
- Synaptic Transmission/drug effects
- Up-Regulation/drug effects
- Zinc/metabolism
- Zinc/pharmacology
- K Cl- Cotransporters
Collapse
Affiliation(s)
| | | | - Ilya Fleidervish
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | | | - Sharon Herrmann
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | - Israel Sekler
- Physiology, Faculty of Health Sciences and The Zlotowski Center of Neuroscience, Ben-Gurion University, Beer-Sheva, 84015, Israel, and
| | - Elias Aizenman
- Departments of Morphology and
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
7
|
Ong SB, Shah D, Qusous A, Jarvis SM, Kerrigan MJ. Stimulation of regulatory volume increase (RVI) in avian articular chondrocytes by gadolinium chloride. Biochem Cell Biol 2010; 88:505-12. [DOI: 10.1139/o09-179] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chondrocytes, the resident cell-type of articular cartilage, are responsible for the regulation of the extracellular matrix (ECM) in response to their physico-chemical environment. Due to the nature of cartilage loading, chondrocytes are exposed to constant changes in extracellular osmolality with a gradual increase throughout the day. As an increase in osmolality attenuates matrix synthesis, we have studied cell volume regulation (regulatory volume increase (RVI)) after hypertonic challenge and the regulation of RVI by the actin cytoskeleton. Using freshly isolated avian articular chondrocytes, changes in actin organisation were studied by confocal laser scanning microscopy following a 43% increase in extracellular osmolality. Using calcein-loading chondrocytes, the capacity for RVI was determined and the rate of volume recovery (t1/2) mathematically extrapolated. Following an increase in extracellular osmolality there was a significant increase (p < 0.05) in cortical actin, inhibited by the removal of extracellular calcium EGTA or by the addition of 100 µmol·L–1 gadolinium chloride. Most cells exhibited slow RVI (t1/2 = 55.5 ± 5.5 min), whereby inhibition of actin polymerisation by gadolinium chloride or the removal of extracellular calcium significantly increased the rate of volume recovery via a bumetanide-sensitive pathway (t1/2 of 29.6 ± 6.5 min and 13.8 ± 3.1 min, respectively). These data suggest the Na+–K+–2Cl– (NKCC) co-transporter regulated by the actin cytoskeleton is involved in avian chondrocyte RVI.
Collapse
Affiliation(s)
- Sang-Bing Ong
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Dinesh Shah
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Ala Qusous
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Simon M. Jarvis
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| | - Mark J.P. Kerrigan
- Department of Human & Health Sciences, School of Life Sciences, University of Westminster, 115 New Cavendish St., London W1W 6UW, UK
- The Hatter Cardiovascular Institute, University College London Hospital & Medical School, 67 Chenies Mews, London WC1E 6HX, UK
- University of Greenwich, Old Royal Naval College, Park Row, London SE10 9LS, UK
| |
Collapse
|
8
|
Kim SJ, Choi JY, Son EJ, Namkung W, Lee MG, Yoon JH. Interleukin-1beta upregulates Na+-K+-2Cl- cotransporter in human middle ear epithelia. J Cell Biochem 2007; 101:576-86. [PMID: 17211836 DOI: 10.1002/jcb.21216] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Disruption of periciliary fluid homeostasis is the main pathogenesis of otitis media with effusion (OME), one of the most common childhood diseases. Although the underlying molecular mechanisms are unclear, it has been suggested that the altered functions of ion channels and transporters are involved in the fluid collection of middle ear cavity of OME patients. In the present study, we analyzed the effects of a major cytokine interleukin (IL)-1beta, which was known to be involved in the pathogenesis of OME, on Na(+)-K(+)-2Cl(-) cotransporter (NKCC) in human middle ear cells. Intracellular pH (pH(i)) was measured in primary cultures of normal human middle ear epithelial (NHMEE) cells using a double perfusion chamber, which enabled us to analyze the membrane-specific transporter activities. NKCC activities were estimated by the pH(i) reduction due to bumetanide-sensitive intracellular uptake of NH(4) (+). In NHMEE cells, NKCC activities were observed only in the basolateral membrane, and immunoblotting using specific antibodies revealed the expression of NKCC1. Interestingly, IL-1beta treatments augmented the basolateral NKCC activities and increased NKCC1 expression. In addition, IL-1beta treatments stimulated bumetanide-sensitive fluid transport across the NHMEE cell monolayers. Furthermore, an elevated NKCC1 expression was observed in middle ear cells from OME patients when compared to those from control individuals. The above results provide in vitro and in vivo evidence that the inflammatory cytokine IL-1beta upregulates NKCC1 in middle ear epithelial cells, which would be one of the important underlying mechanisms of excess fluid collection in OME patients.
Collapse
Affiliation(s)
- Su Jin Kim
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
9
|
Kim J, Jung YS, Han W, Kim MY, Namkung W, Lee BH, Yi KY, Yoo SE, Lee MG, Kim KH. Pharmacodynamic characteristics and cardioprotective effects of new NHE1 inhibitors. Eur J Pharmacol 2007; 567:131-8. [PMID: 17482160 DOI: 10.1016/j.ejphar.2007.03.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 03/22/2007] [Accepted: 03/27/2007] [Indexed: 11/19/2022]
Abstract
Inhibitors of Na(+)/H(+) exchanger (NHE) 1 have been shown to exert protective effects on various myocardial injuries. In this study, we characterized the pharmacodynamic properties of new guanidine NHE1 inhibitors (cariporide, sabiporide, KR-32511, KR-32570, and KR-33028) to analyze their myocardial protective effects. Although NHE1 is the major NHE isoform in cardiomyocytes, IC(50)values of these chemicals tested in rat cardiomyocytes were significantly different from those in PS120/hNHE1 cells where human NHE1 is heterologously expressed. In rat cardiomyocytes, KR-32570 and KR-33028 exhibited the highest potencies and their IC(50)values were 7+/-2 nM and 9+/-3 nM, respectively. The IC(50)values of all the chemicals tested on rat submandibular gland NHE2 were in the micromolar range, and they showed no inhibitory effects on hNHE3 and epithelial Na(+) channels up to 30 microM, suggesting a high selectivity toward NHE1. Sabiporide and KR-32570 exhibited slow dissociation kinetics with NHE1 inhibition persisting even after rinsing-out. When the cytoprotective effects of chemicals against hypoxic damage of rat cardiomyocytes were examined, the order of potency was KR-32570>or=KR-33028>sabiporide>cariporide>KR-32511. This order was exactly the same as that for the NHE1 inhibition in rat cardiomyocytes and did not correlate with any other properties, including the slow dissociation kinetics. Taken together, these results suggest that KR-32570 and KR-33028 are potent candidates for cardioprotective agents, and that the IC(50) in the target organ is the most critical factor governing the cytoprotective effects of NHE1 inhibitors.
Collapse
Affiliation(s)
- Juno Kim
- Department of Pharmacology, Yonsei University College of Medicine, Sinchon-Dong, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Reversible phosphorylation by protein kinases is probably one of the most important examples of post-translational modification of ion transport proteins. Ste20-related proline alanine-rich kinase (SPAK) and oxidative stress response kinase (OSR1) are two serine/threonine kinases belonging to the germinal centre-like kinase subfamily VI. Genetic analysis suggests that OSR1 evolved first, with SPAK arising following a gene duplication in vertebrate evolution. SPAK and OSR1 are two recently discovered kinases which have been linked to several key cellular processes, including cell differentiation, cell transformation and proliferation, cytoskeleton rearrangement, and most recently, regulation of ion transporters. Na-K-2Cl cotransporter activity is regulated by phosphorylation. Pharmacological evidence has identified several kinases and phosphatases which alter cotransporter function, however, no direct linkage between these enzymes and the cotransporter has been demonstrated. This article will review some of the physical and physiological properties of SPAK and OSR1, and present new evidence of a direct interaction between the Na-K-Cl cotransporter and the stress kinases.
Collapse
Affiliation(s)
- E Delpire
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
11
|
Ghanem E, Robaye B, Leal T, Leipziger J, Driessche WV, Beauwens R, Boeynaems JM. The role of epithelial P2Y2 and P2Y4 receptors in the regulation of intestinal chloride secretion. Br J Pharmacol 2006; 146:364-9. [PMID: 16056234 PMCID: PMC1576293 DOI: 10.1038/sj.bjp.0706353] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
UTP-induced chloride secretion by the intestinal mucosa mounted in Ussing chambers was assessed by measurement of the short-circuit current (I(sc)) in the presence of phloridzin in the case of jejunum or amiloride in the case of colon to eliminate any contribution of electrogenic Na(+) movement to the net ionic transport. Since we have previously demonstrated the absence of chloride-secretory response to apical UTP in the jejunum from P2Y(4)-null mice, in the present study we studied the response to basolateral UTP in the jejunum and to either apical or basolateral UTP in the colon, in both P2Y(2)- and P2Y(4)-deficient mice. In the jejunum, the chloride-secretory response to basolateral UTP was partially reduced in both P2Y(2)- (40%) and P2Y(4)- (60%) null mice. In the colon, both apical or basolateral UTP increased the I(sc). That response was abolished in a chloride-free medium. The colonic chloride-secretory response to either basolateral or apical UTP was abolished in P2Y(4)-deficient mice, but not significantly affected in P2Y(2)-deficient mice. The chloride-secretory response to forskolin was potentiated by prior basolateral addition of UTP and this potentiation was abolished in P2Y(4)-null mice. The jejunum of mice homozygous for the DeltaF508 mutation of cystic fibrosis transmembrane conductance regulator was responsive to UTP, but the magnitude of that response was smaller than in the wild-type littermates. In conclusion, the P2Y(4) receptor fully mediates the chloride-secretory response to UTP in both small and large intestines, except at the basolateral side of the jejunum, where both P2Y(2) and P2Y(4) receptors are involved.
Collapse
Affiliation(s)
- Esam Ghanem
- Laboratory of Cell and Molecular Physiology, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Bernard Robaye
- Institute of Interdisciplinary Research, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
| | - Teresinha Leal
- Department of Clinical Chemistry, Saint Luc Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Jens Leipziger
- Institute of Physiology, The Water and Salt Research Center, University of Aarhus, Aarhus, Denmark
| | | | - Renaud Beauwens
- Laboratory of Cell and Molecular Physiology, School of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Jean-Marie Boeynaems
- Institute of Interdisciplinary Research, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Gosselies, Belgium
- Laboratory of Medical Chemistry, Erasme Hospital, Brussels, Belgium
- Author for correspondence:
| |
Collapse
|
12
|
Oshima A, Kojima T, Dejima K, Hisa Y, Kasai H, Nemoto T. Two-photon microscopic analysis of acetylcholine-induced mucus secretion in guinea pig nasal glands. Cell Calcium 2005; 37:349-57. [PMID: 15755496 DOI: 10.1016/j.ceca.2004.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 10/10/2004] [Accepted: 12/10/2004] [Indexed: 11/15/2022]
Abstract
The spatiotemporal changes in intracellular free Ca(2+) concentration ([Ca(2+)](i)) as well as fluid secretion and exocytosis induced by acetylcholine (ACh) in intact acini of guinea pig nasal glands were investigated by two-photon excitation imaging. Cross-sectional images of acini loaded with the fluorescent Ca(2+) indicator fura-2 revealed that the ACh-evoked increase in [Ca(2+)](i) was immediate and spread from the apical region (the secretory pole) of acinar cells to the basal region. Immersion of acini in a solution containing a fluorescent polar tracer, sulforhodamine B (SRB), revealed that fluid secretion, detected as a rapid disappearance of SRB fluorescence from the extracellular space, occurred exclusively in the luminal region and was accompanied by a reduction in acinar cell volume. Individual exocytic events were also visualized with SRB as the formation of Omega-shaped profiles at the apical membrane. In contrast to the rapidity of fluid secretion, exocytosis of secretory granules occurred with a delay of approximately 70s relative to the increase in [Ca(2+)](i). Exocytic events also occurred deep within the cytoplasm in a sequential manner with the latency of secondary exocytosis being greatly reduced compared with that of primary exocytosis. The delay in sequential compound exocytosis relative to fluid secretion may be important for release of the viscous contents of secretory granules into the nasal cavity.
Collapse
Affiliation(s)
- Akihiro Oshima
- Department of Cell Physiology, National Institute for Physiological Sciences, Graduate University of Advanced Studies (SOKENDAI), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Swystun V, Chen L, Factor P, Siroky B, Bell PD, Matalon S. Apical trypsin increases ion transport and resistance by a phospholipase C-dependent rise of Ca2+. Am J Physiol Lung Cell Mol Physiol 2005; 288:L820-30. [PMID: 15626748 DOI: 10.1152/ajplung.00396.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We investigated the mechanisms by which serine proteases alter lung fluid clearance in rat lungs and vectorial ion transport in airway and alveolar epithelial cells. Inhibition of endogenous protease activity by intratracheal instillation of soybean trypsin inhibitor (SBTI) or α1-antitrypsin decreased amiloride-sensitive lung fluid clearance across rat fluid-filled lungs; instillation of trypsin partially restored this effect. Gelatin zymography demonstrated SBTI-inhibitable trypsin-like activity in rat lung lavage fluid. Apical trypsin and human neutrophil elastase, but not agonists of protease activated receptors, increased Na+and Cl−short-circuit currents ( Isc) and transepithelial resistance ( RTE) across human bronchial and nasal epithelial cells and rat alveolar type II cells, mounted in Ussing chambers, for at least 2 h. The increase in Iscwas fully reversed by amiloride and glibenclamide. The increase in RTEwas not prevented by ouabain, suggesting that trypsin decreased paracellular conductance. Apical trypsin also induced a transient increase in intracellular Ca2+in human airway cells; treatment of these cells with BAPTA-AM mitigated the trypsin-induced increases of intracellular Ca2+and of Iscand RTE. Increasing intracellular Ca2+in airway cells with either ionomycin or thapsigargin reproduced the increase in Isc, whereas inhibitors of phospholipase C (PLC) prevented the increases in both Ca2+and Isc. These data indicate trypsin-like proteases and elastase, either present in lung cells or released by inflammatory cells into the alveolar space, play an important role in the clearance of alveolar fluid by increasing ion transport and paracellular resistance via a PLC-initiated rise of intracellular Ca2+.
Collapse
Affiliation(s)
- Veronica Swystun
- University of Alabama at Birmingham, Dept. of Anesthesiology, AL 35205-3703, USA
| | | | | | | | | | | |
Collapse
|
14
|
Lee JE, Nam JH, Kim SJ. Muscarinic activation of Na+-dependent ion transporters and modulation by bicarbonate in rat submandibular gland acinus. Am J Physiol Gastrointest Liver Physiol 2005; 288:G822-31. [PMID: 15539434 DOI: 10.1152/ajpgi.00406.2004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To investigate the interaction between the ion channels and transporters in the salivary fluid secretion, we measured the membrane voltage (V(m)) and intracellular concentrations of Ca(2+), Na(+) ([Na(+)](c)), Cl(-), and H(+) (pH(i)) in rat submandibular gland acini (RSMGA). After a transient depolarization induced by a short application of acetylcholine (ACh; 5 muM, 20 s), RSMGA showed strong delayed hyperpolarization (V(h,ACh); -95 +/- 1.8 mV) that was abolished by ouabain. In the HCO(3)(-)-free condition, the V(h,ACh) was also blocked by bumetanide, a blocker of Na(+)-K(+)-2Cl(-) cotransporter (NKCC). In the presence of HCO(3)(-) (24 meq, bubbled with 5% CO(2)), however, the V(h,ACh) was not blocked by bumetanide, but it was suppressed by ethylisopropylamiloride (EIPA), a Na(+)/H(+) exchanger (NHE) inhibitor. Similarly, the ACh-induced increase in [Na(+)](c) was totally blocked by bumetanide in the absence of HCO(3)(-), but only by one-half in the presence of HCO(3)(-). ACh induced a prominent acidification of pH(i) in the presence of HCO(3)(-), and the acidification was further increased by EIPA treatment. Without HCO(3)(-), an application of ACh strongly accelerated the NKCC activity that was measured from the decay of pH(i) during the application of NH(4)(+) (20 mM). Notably, the ACh-induced activation of NKCC was largely suppressed in the presence of HCO(3)(-). In summary, the ACh-induced anion secretion in RSMGA is followed by the activation of NKCC and NHE, resulting an increase in [Na(+)](c). The intracellular Na(+)-induced activation of electrogenic Na(+)/K(+)-ATPase causes V(h,ACh). The regulation of NKCC and NHE by ACh is strongly affected by the physiological level of HCO(3)(-).
Collapse
Affiliation(s)
- Ji Eun Lee
- Dept. of Physiology, Seoul National Univ. College of Medicine, Seoul 110-799, Korea
| | | | | |
Collapse
|
15
|
Simard CF, Daigle ND, Bergeron MJ, Brunet GM, Caron L, Noël M, Montminy V, Isenring P. Characterization of a novel interaction between the secretory Na+-K+-Cl- cotransporter and the chaperone hsp90. J Biol Chem 2004; 279:48449-56. [PMID: 15347682 DOI: 10.1074/jbc.m407012200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first isoform of the Na(+)-K(+)-Cl(-) cotransporter (NKCC1) is of central importance for the control of cellular ion concentration and epithelium-mediated salt secretion. Several studies have established that a change in intracellular [Cl(-)] (Cl(-)(i)) represents a key signaling mechanism by which NKCC1-induced Cl(-) movement is autoregulated and by which Cl(-) entry and exit on opposite sides of polarized cells are coordinated. Although this signaling mechanism is coupled to a pathway that leads to post-translational modification of the carrier, no unifying model currently accounts for the ion dependence of NKCC1 regulation. In this paper, evidence is presented for the first time that hsp90 associates with the cytosolic C terminus of NKCC1, probably when the carrier is predominantly in its unfolded form during early biogenesis. Evidence is also presented that the Cl(-)(i)-dependent regulatory pathway can be activated by a thermal stress but that it is no longer operational if NKCC1-expressing cells are pretreated with geldanamycin, an antibiotic that inhibits hsp90, albeit nonspecifically. Taken together, our data indicate that binding of hsp90 to NKCC1 may be required for Na(+)-K(+)-Cl(-) cotransport to occur at the cell surface and that it could play an important role in ion-dependent signaling mechanisms, insofar as the maneuvers that were used to alter the expression or activity of the chaperone do not exert their main effect by inducing other cellular events such as the unfolded protein response. Further studies will be required to elucidate the functional relevance of this novel interaction.
Collapse
Affiliation(s)
- Charles F Simard
- Nephrology Research Group, Department of Medicine, Faculty of Medicine, Laval University, Québec, Canada G1R 2J6
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kim CH, Kim SS, Choi JY, Shin JH, Kim JY, Namkung W, Lee JG, Lee MG, Yoon JH. Membrane-specific expression of functional purinergic receptors in normal human nasal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2004; 287:L835-42. [PMID: 15208093 DOI: 10.1152/ajplung.00285.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular purines and pyrimidines regulate various physiological responses via the cell surface receptors known as purinoreceptors and may exert autocrine or paracrine effects on ion transport, fluid transport, ciliary beat frequency, and mucin secretion. Therefore, this study aims to investigate the expression patterns of the purinoreceptors in normal human nasal epithelial (NHNE) cells. In RT-PCR, the mRNAs for several P2X (P2X3, P2X4, P2X7) and P2Y (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12) receptors were identified in NHNE cells. Functional localizations of P2 receptors were investigated by measuring intracellular calcium concentration ([Ca2+]i) increases in membrane-specific manner using a double-perfusion chamber. Absence of the responses of alphabeta-methylene ATP and 2-methylthio-ATP excluded functionally active P2X3, P2X4, and P2Y1 receptors as far as [Ca2+]i increase is concerned. Applications with ATP and UTP revealed that luminal membranes of NHNE cells express P2Y2 and P2Y6 receptors and basolateral membranes express P2Y2 receptor. Expressions of P2Y2 and P2Y6 receptors in NHNE cells were further verified by immunoblotting using specific antibodies. In addition, the results with 2,3-O-(4-benzoyl)-benzoyl-ATP indicate that the P2Y11 receptor may be present on the luminal side. In conclusion, the NHNE cells express functionally active P2Y2, P2Y6, and P2Y11 receptors in a membrane-specific pattern, which may play an important role in the control of mucin and fluid secretion in NHNE cells.
Collapse
Affiliation(s)
- Chang-Hoon Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|