1
|
Leng Y, Luan Z, Li Z, Ma Y, Zhou Y, Liu J, Liu S, Tian T, Feng W, Liu Y, Shi Q, Huang C, Zhao X, Wang W, Liu A, Wang T, Ren Q, Liu J, Huang Q, Zhang Y, Yin B, Chen J, Yang L, Zhao S, Bao R, Ji X, Xu Y, Liu L, Zhou J, Chen M, Ma W, Shen L, Zhang T, Zhao H. PPM1F regulates ovarian cancer progression by affecting the dephosphorylation of ITGB1. Clin Transl Oncol 2024:10.1007/s12094-024-03614-1. [PMID: 39133386 DOI: 10.1007/s12094-024-03614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024]
Abstract
PPM1F has been shown to play diverse biological functions in the progression of multiple tumors. PPM1F controls the T788/T789 phosphorylation switch of ITGB1 and regulates integrin activity. However, the impacts of PPM1F and ITGB1 on ovarian cancer (OV) progression remain unclear. Whether there is such a regulatory relationship between PPM1F and ITGB1 in ovarian cancer has not been studied. Therefore, the purpose of this study is to elucidate the function and the mechanism of PPM1F in ovarian cancer. The expression level and the survival curve of PPM1F were analyzed by databases. Gain of function and loss of function were applied to explore the function of PPM1F in ovarian cancer. A tumor formation assay in nude mice showed that knockdown of PPM1F inhibited tumor formation. We tested the effect of PPM1F on ITGB1 dephosphorylation in ovarian cancer cells by co-immunoprecipitation and western blotting. Loss of function was applied to investigate the function of ITGB1 in ovarian cancer. ITGB1-mut overexpression promotes the progression of ovarian cancer. Rescue assays showed the promoting effect of ITGB1-wt on ovarian cancer is attenuated due to the dephosphorylation of ITGB1-wt by PPM1F. PPM1F and ITGB1 play an oncogene function in ovarian cancer. PPM1F regulates the phosphorylation of ITGB1, which affects the occurrence and development of ovarian cancer.
Collapse
Affiliation(s)
- Yahui Leng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Zhenzi Luan
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Zihang Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yongqing Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yang Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jiaqi Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Song Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Tian Tian
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wenxiao Feng
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yanni Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qin Shi
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Chengyang Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Xuan Zhao
- The Second Clinical College, Xi'an Medical University, Xi'an, China
| | - Wenlong Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Ao Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Tianhang Wang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qiulei Ren
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jiakun Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Qian Huang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yaling Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Bin Yin
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Jialin Chen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Liangliang Yang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Shiyun Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Ruoyi Bao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Xingyu Ji
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Yuewen Xu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Liaoyuan Liu
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Junsuo Zhou
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Miao Chen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Wenhui Ma
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China
| | - Li Shen
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| | - Te Zhang
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| | - Hongyan Zhao
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, China.
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Biomedical Research Institute, Hubei University of Medicine, Shiyan, 442000, Hubei, China.
- Department of Clinical OncologyU, Taihe Hospital, Hubei University of Medicine, 30 Renmin South Road, Shiyan, 442000, Hubei, China.
| |
Collapse
|
2
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
3
|
Akizuki K, Shimoda N, Ozaki H, Yamazaki T, Hirano T, Ishihara Y, Sueyoshi N, Kameshita I, Murai T, Ishida A. CaMK phosphatase (CaMKP/POPX2/PPM1F) inhibitors suppress the migration of human breast cancer MDA-MB-231 cells with loss of polarized morphology. Biochem Biophys Res Commun 2023; 639:1-8. [PMID: 36463756 DOI: 10.1016/j.bbrc.2022.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022]
Abstract
CaMK phosphatase (CaMKP/POPX2/PPM1F) is a Ser/Thr protein phosphatase that belongs to the PPM family. Accumulating evidence suggests that CaMKP is involved in the pathogenesis of various diseases, including cancer. To clarify the relationship between CaMKP activity and human breast cancer cell motility, we examined the phosphatase activity of CaMKP in cell extracts. CaMKP activity assays of the immunoprecipitates prepared from the cell extract revealed that cells exhibiting higher motility had higher CaMKP activity, with no significant differences in the specific activity being observed. Two CaMKP-specific inhibitors, 1-amino-8-naphthol-4-sulfonic acid (ANS) and 1-amino-8-naphthol-2,4-disulfonic acid (ANDS), inhibited the migration of highly invasive MDA-MB-231 breast cancer cells without significant cytotoxicity, while an inactive analog, naphthionic acid, did not. Furthermore, the cells lost their elongated morphology and assumed a rounded shape following treatment with ANS, whereas they retained their elongated morphology following treatment with naphthionic acid. Consistent with these findings, ANS and ANDS significantly enhanced the phosphorylation level of CaMKI, a cellular substrate of CaMKP, while naphthionic acid did not. The present data suggest that CaMKP could be a novel therapeutic target for cancer metastasis.
Collapse
Affiliation(s)
- Kazutoshi Akizuki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Nao Shimoda
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Hana Ozaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Tetsuo Hirano
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Toshiyuki Murai
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, 565-0871, Japan.
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
4
|
Grimm TM, Herbinger M, Krüger L, Müller S, Mayer TU, Hauck CR. Lockdown, a selective small-molecule inhibitor of the integrin phosphatase PPM1F, blocks cancer cell invasion. Cell Chem Biol 2022; 29:930-946.e9. [PMID: 35443151 DOI: 10.1016/j.chembiol.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 12/18/2022]
Abstract
Phosphatase PPM1F is a regulator of cell adhesion by fine-tuning integrin activity and actin cytoskeleton structures. Elevated expression of this enzyme in human tumors is associated with high invasiveness, enhanced metastasis, and poor prognosis. Thus, PPM1F is a target for pharmacological intervention, yet inhibitors of this enzyme are lacking. Here, we use high-throughput screening to identify Lockdown, a reversible and non-competitive PPM1F inhibitor. Lockdown is selective for PPM1F, because this compound does not inhibit other protein phosphatases in vitro and does not induce additional phenotypes in PPM1F knockout cells. Importantly, Lockdown-treated glioblastoma cells fully re-capitulate the phenotype of PPM1F-deficient cells as assessed by increased phosphorylation of PPM1F substrates and corruption of integrin-dependent cellular processes. Ester modification yields LockdownPro with increased membrane permeability and prodrug-like properties. LockdownPro suppresses tissue invasion by PPM1F-overexpressing human cancer cells, validating PPM1F as a therapeutic target and providing an access point to control tumor cell dissemination.
Collapse
Affiliation(s)
- Tanja M Grimm
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Marleen Herbinger
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Lena Krüger
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Silke Müller
- Lehrstuhl Molekulare Genetik, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Screening Center, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Thomas U Mayer
- Lehrstuhl Molekulare Genetik, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Screening Center, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Department of Biology, University of Konstanz, Maildrop 621, Universitätsstrasse 10, 78467 Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78467 Konstanz, Germany.
| |
Collapse
|
5
|
Liu Y, Wu M, Sun Z, Li Q, Jiang R, Meng F, Liu J, Wang W, Dai J, Li C, Jiang S. Effect of PPM1F in dorsal raphe 5-HT neurons in regulating methamphetamine-induced conditioned place preference performance in mice. Brain Res Bull 2021; 179:36-48. [PMID: 34871711 DOI: 10.1016/j.brainresbull.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 11/02/2022]
Abstract
Methamphetamine (METH), a synthetically produced central nervous system stimulant, is one of the most illicit and addictive drugs worldwide. Protein phosphatase Mg2 + /Mn2 + -dependent 1F F (PPM1F) has been reported to exert multiple biological and cellular functions. Nevertheless, the effects of PPM1F and its neuronal substrates on METH addiction remain unclear. Herein, we first established a METH-induced conditioned place preference (CPP) mouse model. We showed that PPM1F is widely distributed in 5-HT neurons of the dorsal raphe nucleus (DRN), and METH treatment decreased the expression of PPM1F in DRN, which was negatively correlated with METH-induced CPP behaviors. Knockout of PPM1F mediated by adeno-associated virus (AAV) in DRN produced enhanced susceptibility to METH-induced CPP, whereas the overexpression of PPM1F in DRN attenuated METH-induced CPP phenotypes. The expression levels of Tryptophan hydroxylase2 (TPH2) and serotonin transporter (SERT) were down-regulated with a concurrent reduction in 5-hydroxytryptamine (5-HT), tryptophan hydroxylase2 (TPH2)-immunoreactivity neurons and 5-HT levels in DRN of PPM1F knockout mice. In the end, decreased expression levels of PPM1F were found in the blood of METH abusers and METH-taking mice. These results suggest that PPM1F in DRN 5-HT neurons regulates METH-induced CPP behaviors by modulating the key components of the 5-HT neurotransmitter system, which might be an important pathological gene and diagnostic marker for METH-induced addiction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Binzhou Medical University, Shandong, China; Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Zongyue Sun
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China; Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Rong Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| | - Fantao Meng
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Jing Liu
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Wentao Wang
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Juanjuan Dai
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Medical research center, Binzhou Medical University Hospital, Binzhou, Shandong, China; Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Shujun Jiang
- Department of Physiology, Binzhou Medical University, Shandong, China.
| |
Collapse
|
6
|
PPM1F in hippocampal dentate gyrus regulates the depression-related behaviors by modulating neuronal excitability. Exp Neurol 2021; 340:113657. [PMID: 33639208 DOI: 10.1016/j.expneurol.2021.113657] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/28/2020] [Accepted: 02/21/2021] [Indexed: 01/21/2023]
Abstract
Major depressive disorder (MDD) is a common, serious, debilitating mental illness. Protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F), a serine/threonine phosphatase, has been reported to have multiple biological and cellular functions. However, the effects of PPM1F and its neuronal substrates on depressive behaviors remain largely unknown. Here, we showed that PPM1F is widely distributed in the hippocampus, and chronic unpredictable stress (CUS) can induce increased expression of PPM1F in the hippocampus, which was correlated with depression-associated behaviors. Overexpression of PPM1F mediated by adeno-associated virus (AAV) in the dentate gyrus (DG) produced depression-related behaviors and enhanced susceptibility to subthreshold CUS (SCUS) in both male and female mice, while, knockout of PPM1F in DG produced antidepressant phonotypes under stress conditions. Whole-cell patch-clamp recordings demonstrated that overexpression of PPM1F increased the neuronal excitability of the granule cells in the DG. Consistent with neuronal hyperexcitability, overexpression of PPM1F regulated the expression of certain ion channel genes and induced decreased phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) in hippocampus. These results suggest that PPM1F in the DG regulates depression-related behaviors by modulating neuronal excitability, which might be an important pathological gene for depression or other mental diseases.
Collapse
|
7
|
Sathe SR, Jain D, Koh CG, Yim EKF. POPX2 phosphatase enhances topographical contact guidance for cell morphology and migration. Biomed Mater 2021; 16:025020. [PMID: 33321483 DOI: 10.1088/1748-605x/abd3b5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Topography mediated contact guidance affects multiple cell behaviors such as establishment of cellular morphology and migration. The direction of cell migration is associated with the establishment of cell polarity, which also affects the primary cilia in migrating cells. POPX2, a partner of PIX2, is involved in pathways essential to primary cilium formation, while over-expression of POPX2 has been reported to cause a loss of cell polarity during migration. This study aims to examine how topographical cues direct morphological changes, and how topography affects the process of cellular migration and primary cilium architecture, in the context of POPX2 over-expression. Thus, the effect of anisotropic topography, 2 μm grating pattern on tissue-culture polystyrene, was used as a contact guidance cue to investigate the migration and cell polarity of POPX2 overexpressing cells, in comparison to control NIH3T3 fibroblast cells. We report that POPX2 overexpressing NIH3T3 cells were more sensitive to surface topographical cues as the cells became more elongated. In addition, these cues also affected focal adhesion alignment of POPX2 overexpressing cells. Cell migration was further studied using wound closure assays, in which the 2 μm gratings were designed to be either perpendicular or parallel to wound-induced cell migration direction, which would be agonistic or antagonistic to cell migration, respectively. We observed that both POPX2 overexpressing cells' migration direction and migration rate were more significantly influenced by gratings direction compared to control NIH3T3 cells. The migration paths of POPX2 overexpressing cells become more direct in the presence of anisotropic topographical cues. Further, cilia and centrosome alignment, which is important in cell migration, was also affected by the direction of gratings during this migration process. Collectively, enhancement of NIH3T3 cell sensitivity towards surface topography through POPX2 overexpression might reflect one of the mechanisms that combine biochemical and mechanical cues for directional cell migration.
Collapse
Affiliation(s)
- Sharvari R Sathe
- Mechanobiology Institute, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
8
|
Grimm TM, Dierdorf NI, Betz K, Paone C, Hauck CR. PPM1F controls integrin activity via a conserved phospho-switch. J Cell Biol 2020; 219:211512. [PMID: 33119040 PMCID: PMC7604772 DOI: 10.1083/jcb.202001057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 01/04/2023] Open
Abstract
Control of integrin activity is vital during development and tissue homeostasis, while derailment of integrin function contributes to pathophysiological processes. Phosphorylation of a conserved threonine motif (T788/T789) in the integrin β cytoplasmic domain increases integrin activity. Here, we report that T788/T789 functions as a phospho-switch, which determines the association with either talin and kindlin-2, the major integrin activators, or filaminA, an integrin activity suppressor. A genetic screen identifies the phosphatase PPM1F as the critical enzyme, which selectively and directly dephosphorylates the T788/T789 motif. PPM1F-deficient cell lines show constitutive integrin phosphorylation, exaggerated talin binding, increased integrin activity, and enhanced cell adhesion. These gain-of-function phenotypes are reverted by reexpression of active PPM1F, but not a phosphatase-dead mutant. Disruption of the ppm1f gene in mice results in early embryonic death at day E10.5. Together, PPM1F controls the T788/T789 phospho-switch in the integrin β1 cytoplasmic tail and constitutes a novel target to modulate integrin activity.
Collapse
Affiliation(s)
- Tanja M. Grimm
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Nina I. Dierdorf
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Karin Betz
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Lehrstuhl Zelluläre Chemie, Fachbereich Chemie, Universität Konstanz, Konstanz, Germany
| | - Christoph Paone
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany,Correspondence to Christof R. Hauck:
| |
Collapse
|
9
|
Harich B, van der Voet M, Klein M, Čížek P, Fenckova M, Schenck A, Franke B. From Rare Copy Number Variants to Biological Processes in ADHD. Am J Psychiatry 2020; 177:855-866. [PMID: 32600152 DOI: 10.1176/appi.ajp.2020.19090923] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a highly heritable psychiatric disorder. The objective of this study was to define ADHD-associated candidate genes and their associated molecular modules and biological themes, based on the analysis of rare genetic variants. METHODS The authors combined data from 11 published copy number variation studies in 6,176 individuals with ADHD and 25,026 control subjects and prioritized genes by applying an integrative strategy based on criteria including recurrence in individuals with ADHD, absence in control subjects, complete coverage in copy number gains, and presence in the minimal region common to overlapping copy number variants (CNVs), as well as on protein-protein interactions and information from cross-species genotype-phenotype annotation. RESULTS The authors localized 2,241 eligible genes in the 1,532 reported CNVs, of which they classified 432 as high-priority ADHD candidate genes. The high-priority ADHD candidate genes were significantly coexpressed in the brain. A network of 66 genes was supported by ADHD-relevant phenotypes in the cross-species database. Four significantly interconnected protein modules were found among the high-priority ADHD genes. A total of 26 genes were observed across all applied bioinformatic methods. Lookup in the latest genome-wide association study for ADHD showed that among those 26 genes, POLR3C and RBFOX1 were also supported by common genetic variants. CONCLUSIONS Integration of a stringent filtering procedure in CNV studies with suitable bioinformatics approaches can identify ADHD candidate genes at increased levels of credibility. The authors' analytic pipeline provides additional insight into the molecular mechanisms underlying ADHD and allows prioritization of genes for functional validation in validated model organisms.
Collapse
Affiliation(s)
- Benjamin Harich
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Monique van der Voet
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Marieke Klein
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Pavel Čížek
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Michaela Fenckova
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Annette Schenck
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| | - Barbara Franke
- Department of Human Genetics (Harich, van der Voet, Klein, Fenckova, Schenck, Franke) and Department of Psychiatry (Franke), Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; and Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands (Čížek)
| |
Collapse
|
10
|
Metal-dependent Ser/Thr protein phosphatase PPM family: Evolution, structures, diseases and inhibitors. Pharmacol Ther 2020; 215:107622. [PMID: 32650009 DOI: 10.1016/j.pharmthera.2020.107622] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Protein phosphatases and kinases control multiple cellular events including proliferation, differentiation, and stress responses through regulating reversible protein phosphorylation, the most important post-translational modification. Members of metal-dependent protein phosphatase (PPM) family, also known as PP2C phosphatases, are Ser/Thr phosphatases that bind manganese/magnesium ions (Mn2+/Mg2+) in their active center and function as single subunit enzymes. In mammals, there are 20 isoforms of PPM phosphatases: PPM1A, PPM1B, PPM1D, PPM1E, PPM1F, PPM1G, PPM1H, PPM1J, PPM1K, PPM1L, PPM1M, PPM1N, ILKAP, PDP1, PDP2, PHLPP1, PHLPP2, PP2D1, PPTC7, and TAB1, whereas there are only 8 in yeast. Phylogenetic analysis of the DNA sequences of vertebrate PPM isoforms revealed that they can be divided into 12 different classes: PPM1A/PPM1B/PPM1N, PPM1D, PPM1E/PPM1F, PPM1G, PPM1H/PPM1J/PPM1M, PPM1K, PPM1L, ILKAP, PDP1/PDP2, PP2D1/PHLPP1/PHLPP2, TAB1, and PPTC7. PPM-family members have a conserved catalytic core region, which contains the metal-chelating residues. The different isoforms also have isoform specific regions within their catalytic core domain and terminal domains, and these regions may be involved in substrate recognition and/or functional regulation of the phosphatases. The twenty mammalian PPM phosphatases are involved in regulating diverse cellular functions, such as cell cycle control, cell differentiation, immune responses, and cell metabolism. Mutation, overexpression, or deletion of the PPM phosphatase gene results in abnormal cellular responses, which lead to various human diseases. This review focuses on the structures and biological functions of the PPM-phosphatase family and their associated diseases. The development of specific inhibitors against the PPM phosphatase family as a therapeutic strategy will also be discussed.
Collapse
|
11
|
Kim PR, Koon YL, Lee RTC, Azizan F, Koh DHZ, Chiam KH, Koh CG. Phosphatase POPX2 interferes with cell cycle by interacting with Chk1. Cell Cycle 2020; 19:405-418. [PMID: 31944151 DOI: 10.1080/15384101.2020.1711577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Protein-protein interaction network analysis plays critical roles in predicting the functions of target proteins. In this study, we used a combination of SILAC-MS proteomics and bioinformatic approaches to identify Checkpoint Kinase 1 (Chk1) as a possible POPX2 phosphatase interacting protein. POPX2 is a PP2C phosphatase that has been implicated in cancer cell invasion and migration. From the Domain-Domain Interaction (DDI) database, we first determined that the PP2C phosphatase domain interacts with Pkinase domain. Subsequently, 46 proteins with Pkinase domain were identified from POPX2 SILAC-MS data. We then narrowed down the leads and confirmed the biological interaction between Chk1 and POPX2. We also found that Chk1 is a substrate of POPX2. Chk1 is a key regulator of the cell cycle and is activated when the cell suffers DNA damage. Our approach has led us to identify POPX2 as a regulator of Chk1 and can interfere with the normal function of Chk1 at G1-S transition of the cell cycle in response to DNA damage.
Collapse
Affiliation(s)
- Pu Rum Kim
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yen Ling Koon
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,ASTAR, Biopolis, Bioinformatics Institute, Singapore, Singapore
| | | | - Farouq Azizan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Dylan Hong Zheng Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Keng-Hwee Chiam
- ASTAR, Biopolis, Bioinformatics Institute, Singapore, Singapore
| | - Cheng-Gee Koh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
Sullivan DR, Morrison FG, Wolf EJ, Logue MW, Fortier CB, Salat DH, Fonda JR, Stone A, Schichman S, Milberg W, McGlinchey R, Miller MW. The PPM1F gene moderates the association between PTSD and cortical thickness. J Affect Disord 2019; 259:201-209. [PMID: 31446381 PMCID: PMC6791735 DOI: 10.1016/j.jad.2019.08.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/21/2019] [Accepted: 08/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Evidence suggests that single nucleotide polymorphisms (SNPs) in genes involved in serotonergic signaling and stress response pathways moderate associations between PTSD and cortical thickness. This study examined a genetic regulator of these pathways, the PPM1F gene, which has also been implicated in mechanisms of stress responding and is differentially expressed in individuals with comorbid PTSD and depression compared to controls. METHODS Drawing from a sample of 240 white non-Hispanic trauma-exposed veterans, we tested 18 SNPs spanning the PPM1F gene for association with PTSD and cortical thickness. RESULTS Analyses revealed six PPM1F SNPs that moderated associations between PTSD symptom severity and cortical thickness of bilateral superior frontal and orbitofrontal regions as well as the right pars triangularis (all corrected p's < 0.05) such that greater PTSD severity was related to reduced cortical thickness as a function of genotype. A whole-cortex vertex-wise analysis using the most associated SNP (rs9610608) revealed this effect to be localized to a cluster in the right superior frontal gyrus (cluster-corrected p < 0.02). LIMITATIONS Limitations of this study include the small sample size and that the sample was all-white, non-Hispanic predominately male veterans. CONCLUSIONS These results extend prior work linking PPM1F to PTSD and suggest that variants in this gene may have bearing on the neural integrity of the prefrontal cortex (PFC).
Collapse
Affiliation(s)
- Danielle R. Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Filomene G. Morrison
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA,Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Catherine B. Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - David H. Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA,Anthinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
| | - Jennifer R. Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA,Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Annjanette Stone
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AK, USA
| | - Steven Schichman
- Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System, Little Rock, AK, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA,Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
13
|
Wingo AP, Velasco ER, Florido A, Lori A, Choi DC, Jovanovic T, Ressler KJ, Andero R. Expression of the PPM1F Gene Is Regulated by Stress and Associated With Anxiety and Depression. Biol Psychiatry 2018; 83:284-295. [PMID: 29054677 PMCID: PMC5743606 DOI: 10.1016/j.biopsych.2017.08.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Molecular mechanisms underlying psychological sequelae of exposure to stressful experiences, such as posttraumatic stress disorder (PTSD) and depression, are not well understood. METHODS Using convergent evidence from animal and human transcriptomic and genomic studies, we aimed to identify genetic mechanisms underlying depression and anxiety after traumatic experiences. RESULTS From a transcriptome-wide analysis in mice, we found the Ppm1f gene to be differentially expressed in the amygdala and medial prefrontal cortex (mPFC) a week after immobilization stress. Next, we found that PPM1F messenger RNA levels in human blood were downregulated in cases with symptoms of comorbid PTSD and depression and consistently in cases with anxiety symptoms in a separate human dataset. Furthermore, we showed that a genetic variant of PPM1F, rs17759843, was associated with comorbid PTSD and depression and with PPM1F expression in both human brain and blood. Given prior reported mechanistic links between PPM1F and CAMK2 (CAMKII), we examined blood messenger RNA level of CAMK2G in humans and found it to be lower in cases with comorbid PTSD and depression. We also found that PPM1F protein levels and colocalization with CAMK2G were altered in amygdala and mPFC of male mice. Additionally, we found that a systemic dose of corticosterone blocked the depressive-like phenotype elicited by stress in female mice. Lastly, corticosterone rescued the anxiety-like phenotype and messenger RNA levels of Ppm1f in amygdala and mPFC in male mice and in mPFC of female mice. CONCLUSIONS Taken together, our data suggest a mechanistic pathway involving PPM1F and CAMK2G in stress- and trauma-related manifestation of anxiety and depression across species.
Collapse
Affiliation(s)
- Aliza P Wingo
- Atlanta VA Medical Center, Decatur, Georgia; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Eric R Velasco
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Antonio Florido
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Adriana Lori
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Dennis C Choi
- Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Kerry J Ressler
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Raül Andero
- Institut de Neurociènces, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain; Unitat de Psicobiologia (Facultat de Psicologia), Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
14
|
Functions and dysfunctions of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) and CaMKP-N/PPM1E. Arch Biochem Biophys 2018; 640:83-92. [DOI: 10.1016/j.abb.2018.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022]
|
15
|
Ozaki H, Katoh T, Nakagawa R, Ishihara Y, Sueyoshi N, Kameshita I, Taniguchi T, Hirano T, Yamazaki T, Ishida A. Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) interacts with neurofilament L and inhibits its filament association. Biochem Biophys Res Commun 2016; 477:820-825. [PMID: 27369073 DOI: 10.1016/j.bbrc.2016.06.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 06/27/2016] [Indexed: 01/24/2023]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr phosphatase that belongs to the PPM family. Growing evidence suggests that PPM phosphatases including CaMKP act as a complex with other proteins to regulate cellular functions. In this study, using the two-dimensional far-western blotting technique with digoxigenin-labeled CaMKP as a probe, in conjunction with peptide mass fingerprinting analysis, we identified neurofilament L (NFL) as a CaMKP-binding protein in a Triton-insoluble fraction of rat brain. We confirmed binding of fluorescein-labeled CaMKP (F-CaMKP) to NFL in solution by fluorescence polarization. The analysis showed that the dissociation constant of F-CaMKP for NFL is 73 ± 17 nM (n = 3). Co-immunoprecipitation assay using a cytosolic fraction of NGF-differentiated PC12 cells showed that endogenous CaMKP and NFL form a complex in cells. Furthermore, the effect of CaMKP on self-assembly of NFL was examined. Electron microscopy revealed that CaMKP markedly prevented NFL from forming large filamentous aggregates, suggesting that CaMKP-binding to NFL inhibits its filament association. These findings may provide new insights into a novel mechanism for regulating network formation of neurofilaments during neuronal differentiation.
Collapse
Affiliation(s)
- Hana Ozaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Tsuyoshi Katoh
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Ryoko Nakagawa
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Yasuhiro Ishihara
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa, 761-0795, Japan
| | - Takanobu Taniguchi
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, 078-8510, Japan
| | - Tetsuo Hirano
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
16
|
Onouchi T, Kishino-Kaneko Y, Kameshita I, Ishida A, Sueyoshi N. Regulation of Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) by protocadherin-γC5 (Pcdh-γC5). Arch Biochem Biophys 2015; 585:109-120. [PMID: 26386307 DOI: 10.1016/j.abb.2015.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP/PPM1F) is a Ser/Thr protein phosphatase that belongs to the PPM family. It is important to identify an endogenous regulator of CaMKP. Using an Escherichia coli two-hybrid screening method, we identified the C-terminal cytoplasmic fragment of protocadherin γ subfamily C5 (Pcdh-γC5), which was generated by intracellular processing, as a CaMKP-binding protein. Dephosphorylation of phosphorylated Ca(2+)/calmodulin-dependent protein kinase I (CaMKI) by CaMKP was significantly activated by the C-terminal cytoplasmic fragment, Pcdh-γC5(715-944), both in vitro and in cells, suggesting that the C-terminal fragment functions as an endogenous activator of CaMKP. The nuclear translocation of the fragment was blocked by its binding to cytoplasmic CaMKP to form a ternary complex with CaMKI. Taken together, these results strongly suggest that the C-terminal cytoplasmic fragment of Pcdh-γC5 acts as a scaffold for CaMKP and CaMKI to regulate CaMKP activity. These findings may provide new insights into the reversible regulation of CaMKP in cells.
Collapse
Affiliation(s)
- Takashi Onouchi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Yoshimi Kishino-Kaneko
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Isamu Kameshita
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
| | - Atsuhiko Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan.
| | - Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan.
| |
Collapse
|
17
|
Hoon JL, Li HY, Koh CG. POPX2 phosphatase regulates cell polarity and centrosome placement. Cell Cycle 2015; 13:2459-68. [PMID: 25483195 DOI: 10.4161/cc.29421] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proper centrosome positioning is critical for many cellular functions, such as cell migration and maintenance of polarity. During wound healing, fibroblasts orient their centrosomes such that they face the wound edge. The centrosome orientation determines the direction of cells' migration so that they can close the wound effectively. In this study, we investigated the regulation of centrosome polarization and have identified the phosphatase POPX2 as an important regulator of centrosome orientation. We found that POPX2 inhibits centrosome centration, but not rearward nuclear movement, by regulating multiple proteins that function in centrosome positioning. High POPX2 levels result in reduced motility of the kinesin-2 motor, which, in turn, inhibits the transport of N-cadherin to the cell periphery and cell junctions. Loss of N-cadherin localization to the cell membrane affects the localization of focal adhesions and perturbs CDC42-Par6/PKCζ signaling. In addition, overexpression of POPX2 also results in a loss of Par3 localization to the cell periphery and reduced levels of LIC2 (dynein light intermediate chain 2), leading to defects in microtubule tethering and dynamics at cell-cell contacts. Therefore, POPX2 functions as a regulator of signaling pathways to modulate the positioning of centrosome in fibroblast during wound healing.
Collapse
Affiliation(s)
- Jing-Ling Hoon
- a School of Biological Sciences; Nanyang Technological University; Singapore
| | | | | |
Collapse
|
18
|
Baba H, Sueyoshi N, Shigeri Y, Ishida A, Kameshita I. Regulation of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) by oxidation/reduction at Cys-359. Arch Biochem Biophys 2012; 526:9-15. [DOI: 10.1016/j.abb.2012.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/12/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022]
|
19
|
Nawrot B, Sochacka E, Düchler M. tRNA structural and functional changes induced by oxidative stress. Cell Mol Life Sci 2011; 68:4023-32. [PMID: 21833586 PMCID: PMC3221842 DOI: 10.1007/s00018-011-0773-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/04/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Oxidatively damaged biomolecules impair cellular functions and contribute to the pathology of a variety of diseases. RNA is also attacked by reactive oxygen species, and oxidized RNA is increasingly recognized as an important contributor to neurodegenerative complications in humans. Recently, evidence has accumulated supporting the notion that tRNA is involved in cellular responses to various stress conditions. This review focuses on the intriguing consequences of oxidative modification of tRNA at the structural and functional level.
Collapse
Affiliation(s)
- Barbara Nawrot
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland
| | - Elzbieta Sochacka
- Institute of Organic Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland
| | - Markus Düchler
- Department of Bioorganic Chemistry, Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, 112, Sienkiewicza Street, 90-363 Lodz, Poland
| |
Collapse
|
20
|
Singh P, Gan CS, Guo T, Phang HQ, Sze SK, Koh CG. Investigation of POPX2 phosphatase functions by comparative phosphoproteomic analysis. Proteomics 2011; 11:2891-900. [PMID: 21656682 DOI: 10.1002/pmic.201100044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/18/2011] [Accepted: 05/03/2011] [Indexed: 01/13/2023]
Abstract
Identifying the substrates and biochemical pathway regulated by phosphatases has always been more challenging than finding those regulated by kinases. Here, we report the use of phosphoproteomic methods to analyse the pathways regulated by POPX2 (partner of PIX 2) phosphatase. POPX2 is a serine/threonine phosphatase, found in many cancer types. The levels of the POPX2 have been found to be up-regulated in the more invasive breast cancer cells compared with non-invasive ones. Our observations also suggest that POPX2 level is positively correlated with cell motility. Thus, finding substrates or pathways regulated by POPX2 will help to elucidate the regulatory mechanism of cancer cell motility and invasiveness. We have also developed and validated a protocol using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) to enrich the phosphopeptides followed by LC-MS/MS to allow comparison between the phosphoproteomes of control and POPX2 overexpressing cells. With this approach, we were able to identify a biochemical pathway through which POPX2 exerts its apparent cellular function: the regulation of activity of glycogen synthase kinase-3, which in turn modulates extracellular signal-regulated kinase and cell motility.
Collapse
Affiliation(s)
- Pritpal Singh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
| | | | | | | | | | | |
Collapse
|
21
|
Trakooljul N, Hicks JA, Liu HC. Identification of target genes and pathways associated with chicken microRNA miR-143. Anim Genet 2010; 41:357-64. [PMID: 20064147 DOI: 10.1111/j.1365-2052.2009.02015.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNA (miRNA) is a family of small regulatory RNAs that post-transcriptionally regulate many biological functions including growth and development. Recently, the expression of chicken miRNA miR-143 was identified by using a deep sequencing approach. In other vertebrate species, miR-143 functions as a regulator of adipocyte differentiation and as a tumour suppressor. However, little is known about the biological function(s) of miR-143 in chickens. To study the functions of chicken miR-143, DNA microarray analysis and a dual luciferase reporter assay were employed to identify genes directly targeted by miR-143 as well as other biologically relevant genes. Microarray analysis indicated that 124 genes were differentially expressed upon in vitro anti-miR-143 treatment in embryonic chick splenocytes (P-value cutoff <0.01). Many of these genes are associated with cell proliferation, apoptosis and tumourigenesis. Six of the up-regulated genes possess at least one potential miR-143 binding site in their 3'UTRs, of these the binding sites of PYCR2, PSTPIP1 and PDCD5 were validated by an in vitro luciferase reporter assay. In addition, several potential targets with important biological functions were identified by the miRanda algorithm and experimentally confirmed. These targets include KLF5, MAP3K7, TARDBP and UBE2E3, which have conserved miR-143 binding sites across multiple vertebrate species. Potential chicken specific miR-143 target sites were also validated for LPIN1, PCK2, PYCR2, METTL14, SLC2A2 and TNFSF10. Overall, the current study suggests that miR-143 is ubiquitously expressed among tissues and is likely to be involved in the regulation of cell proliferation and apoptosis.
Collapse
Affiliation(s)
- N Trakooljul
- Department of Animal Science, North Carolina State University, Raleigh, NC 27695-7621, USA
| | | | | |
Collapse
|
22
|
Sueyoshi N, Nimura T, Ishida A, Taniguchi T, Yoshimura Y, Ito M, Shigeri Y, Kameshita I. Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP) is indispensable for normal embryogenesis in zebrafish, Danio rerio. Arch Biochem Biophys 2009; 488:48-59. [DOI: 10.1016/j.abb.2009.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 06/03/2009] [Accepted: 06/09/2009] [Indexed: 11/30/2022]
|
23
|
Elbarbary RA, Takaku H, Uchiumi N, Tamiya H, Abe M, Takahashi M, Nishida H, Nashimoto M. Modulation of gene expression by human cytosolic tRNase Z(L) through 5'-half-tRNA. PLoS One 2009; 4:e5908. [PMID: 19526060 PMCID: PMC2691602 DOI: 10.1371/journal.pone.0005908] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 05/19/2009] [Indexed: 01/10/2023] Open
Abstract
A long form (tRNase Z(L)) of tRNA 3' processing endoribonuclease (tRNase Z, or 3' tRNase) can cleave any target RNA at any desired site under the direction of artificial small guide RNA (sgRNA) that mimics a 5'-half portion of tRNA. Based on this enzymatic property, a gene silencing technology has been developed, in which a specific mRNA level can be downregulated by introducing into cells a synthetic 5'-half-tRNA that is designed to form a pre-tRNA-like complex with a part of the mRNA. Recently 5'-half-tRNA fragments have been reported to exist stably in various types of cells, although little is know about their physiological roles. We were curious to know if endogenous 5'-half-tRNA works as sgRNA for tRNase Z(L) in the cells. Here we show that human cytosolic tRNase Z(L) modulates gene expression through 5'-half-tRNA. We found that 5'-half-tRNA(Glu), which co-immunoprecipitates with tRNase Z(L), exists predominantly in the cytoplasm, functions as sgRNA in vitro, and downregulates the level of a luciferase mRNA containing its target sequence in human kidney 293 cells. We also demonstrated that the PPM1F mRNA is one of the genuine targets of tRNase Z(L) guided by 5'-half-tRNA(Glu). Furthermore, the DNA microarray data suggested that tRNase Z(L) is likely to be involved in the p53 signaling pathway and apoptosis.
Collapse
Affiliation(s)
- Reyad A. Elbarbary
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Hiroaki Takaku
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Naoto Uchiumi
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Hiroko Tamiya
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Mayumi Abe
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masayuki Takahashi
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Hiroshi Nishida
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masayuki Nashimoto
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
24
|
Ishida A, Sueyoshi N, Shigeri Y, Kameshita I. Negative regulation of multifunctional Ca2+/calmodulin-dependent protein kinases: physiological and pharmacological significance of protein phosphatases. Br J Pharmacol 2008; 154:729-40. [PMID: 18454172 DOI: 10.1038/bjp.2008.127] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Multifunctional Ca2+/calmodulin-dependent protein kinases (CaMKs) play pivotal roles in intracellular Ca2+ signaling pathways. There is growing evidence that CaMKs are involved in the pathogenic mechanisms underlying various human diseases. In this review, we begin by briefly summarizing our knowledge of the involvement of CaMKs in the pathogenesis of various diseases suggested to be caused by the dysfunction/dysregulation or aberrant expression of CaMKs. It is widely known that the activities of CaMKs are strictly regulated by protein phosphorylation/dephosphorylation of specific phosphorylation sites. Since phosphorylation status is balanced by protein kinases and protein phosphatases, the mechanism of dephosphorylation/deactivation of CaMKs, corresponding to their 'switching off', is extremely important, as is the mechanism of phosphorylation/activation corresponding to their 'switching on'. Therefore, we focus on the regulation of multifunctional CaMKs by protein phosphatases. We summarize the current understanding of negative regulation of CaMKs by protein phosphatases. We also discuss the biochemical properties and physiological significance of a protein phosphatase that we designated as Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP), and those of its homologue CaMKP-N. Pharmacological applications of CaMKP inhibitors are also discussed. These compounds may be useful not only for exploring the physiological functions of CaMKP/CaMKP-N, but also as novel chemotherapies for various diseases.
Collapse
Affiliation(s)
- A Ishida
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | | | | |
Collapse
|
25
|
Lammers T, Lavi S. Role of type 2C protein phosphatases in growth regulation and in cellular stress signaling. Crit Rev Biochem Mol Biol 2008; 42:437-61. [PMID: 18066953 DOI: 10.1080/10409230701693342] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A number of interesting features, phenotypes, and potential clinical applications have recently been ascribed to the type 2C family of protein phosphatases. Thus far, 16 different PP2C genes have been identified in the human genome, encoding (by means of alternative splicing) for at least 22 different isozymes. Virtually ever since their discovery, type 2C phosphatases have been predominantly linked to cell growth and to cellular stress signaling. Here, we provide an overview of the involvement of type 2C phosphatases in these two processes, and we show that four of them (PP2Calpha, PP2Cbeta, ILKAP, and PHLPP) can be expected to function as tumor suppressor proteins, and one as an oncoprotein (PP2Cdelta /Wip1). In addition, we demonstrate that in virtually all cases in which they have been linked to the stress response, PP2Cs act as inhibitors of cellular stress signaling. Based on the vast amount of experimental evidence obtained thus far, it therefore seems justified to conclude that type 2C protein phosphatases are important physiological regulators of cell growth and of cellular stress signaling.
Collapse
Affiliation(s)
- Twan Lammers
- Department of Innovative Cancer Diagnosis and Therapy, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
26
|
Sueyoshi N, Takao T, Nimura T, Sugiyama Y, Numano T, Shigeri Y, Taniguchi T, Kameshita I, Ishida A. Inhibitors of the Ca2+/calmodulin-dependent protein kinase phosphatase family (CaMKP and CaMKP-N). Biochem Biophys Res Commun 2007; 363:715-21. [PMID: 17897624 DOI: 10.1016/j.bbrc.2007.09.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Accepted: 09/10/2007] [Indexed: 10/22/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) and its nuclear isoform CaMKP-N are unique Ser/Thr protein phosphatases that negatively regulate the Ca(2+)/calmodulin-dependent protein kinase (CaMK) cascade by dephosphorylating multifunctional CaMKI, II, and IV. However, the lack of specific inhibitors of these phosphatases has hampered studies on these enzymes in vivo. In an attempt to obtain specific inhibitors, we searched inhibitory compounds and found that Evans Blue and Chicago Sky Blue 6B served as effective inhibitors for CaMKP. These compounds also inhibited CaMKP-N, but inhibited neither protein phosphatase 2C, another member of PPM family phosphatase, nor calcineurin, a typical PPP family phosphatase. The minimum structure required for the inhibition was 1-amino-8-naphthol-4-sulfonic acid. When Neuro2a cells cotransfected with CaMKIV and CaMKP-N were treated with these compounds, the dephosphorylation of CaMKIV was strongly suppressed, suggesting that these compounds could be used as potent inhibitors of CaMKP and CaMKP-N in vivo as well as in vitro.
Collapse
Affiliation(s)
- Noriyuki Sueyoshi
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wang ZC, Buraimoh A, Iglehart JD, Richardson AL. Genome-wide analysis for loss of heterozygosity in primary and recurrent phyllodes tumor and fibroadenoma of breast using single nucleotide polymorphism arrays. Breast Cancer Res Treat 2006; 97:301-9. [PMID: 16791486 DOI: 10.1007/s10549-005-9124-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Phyllodes tumors of the breast are biphasic stromal and epithelial tumors histologically similar to benign fibroadenomas, but with a neoplastic stromal component. In contrast to fibroadenoma, phyllodes tumors can recur and be locally aggressive or be malignant. This study uses SNP array analysis to present a genome-wide map of loss of heterozygosity (LOH) in a cohort of phyllodes tumors and fibroadenomas. LOH is frequent and sometimes extensive in phyllodes tumors, but is rarely seen in fibroadenomas. There is heterogeneity between phyllodes tumors of different patients and no one LOH marker identifies a majority of these lesions. However, a subset of LOH loci occur in multiple cases of phyllodes tumors and are not found in fibroadenomas. Primary phyllodes tumors and paired recurrences from the same patient share common regions of LOH. In contrast, metachronous fibroadenomas from the same patient have different LOH patterns with no indication of a shared origin. Specific LOH loci may be associated with pathologic progression in recurrent phyllodes tumors. In a single case of phyllodes tumor containing a malignant epithelial component the malignant epithelium and stroma partially share an LOH genotype, suggesting a common precursor cell for the biphasic malignant components.
Collapse
|
28
|
Tada Y, Nimura T, Sueyoshi N, Ishida A, Shigeri Y, Kameshita I. Mutational analysis of Ca2+/calmodulin-dependent protein kinase phosphatase (CaMKP). Arch Biochem Biophys 2006; 452:174-85. [PMID: 16844074 DOI: 10.1016/j.abb.2006.06.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Revised: 05/31/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a member of the serine/threonine protein phosphatases and shares 29% sequence identity with protein phosphatase 2Calpha (PP2Calpha) in its catalytic domain. To investigate the functional domains of CaMKP, mutational analysis was carried out using various recombinant CaMKPs expressed in Escherichia coli. Analysis of N-terminal deletion mutants showed that the N-terminal region of CaMKP played important roles in the formation of the catalytically active structure of the enzyme, and a critical role in polycation stimulation. A chimera mutant, a fusion of the N-terminal domain of CaMKP and the catalytic domain of PP2Calpha, exhibited similar substrate specificity to CaMKP but not to PP2Calpha, suggesting that the N-terminal region of CaMKP is crucial for its unique substrate specificity. Point mutations at Arg-162, Asp-194, His-196, and Asp-400, highly conserved amino acid residues in the catalytic domain of PP2C family, resulted in a significant loss of phosphatase activity, indicating that these amino acid residues may play important roles in the catalytic activity of CaMKP. Although CaMKP(1-412), a C-terminal truncation mutant, retained phosphatase activity, it was found to be much less stable upon incubation at 37 degrees C than wild type CaMKP, indicating that the C-terminal region of CaMKP is important for the maintenance of the catalytically active conformation. The results suggested that the N- and C-terminal sequences of CaMKP are essential for the regulation and stability of CaMKP.
Collapse
Affiliation(s)
- Yukiyo Tada
- Department of Life Sciences, Faculty of Agriculture, Kagawa University, Ikenobe 2393, Miki-cho, Kagawa 761-0795, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Benetkiewicz M, Díaz de Ståhl T, Gördör A, Pfeifer S, Wittmann S, Gessler M, Dumanski JP. Identification of limited regions of genetic aberrations in patients affected with Wilms' tumor using a tiling-path chromosome 22 array. Int J Cancer 2006; 119:571-8. [PMID: 16496407 DOI: 10.1002/ijc.21868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Wilms' tumor (WT) is one of the most common solid tumors of childhood. The genetics of this disorder is complex and few studies have suggested allelic loss of chromosome 22 as a frequent aberration. To assess tumor- and possible germline-specific regions affected with gene copy number variations on this chromosome, we applied a high-resolution genomic clone-based chromosome 22 array to a series of 28 WT samples and the paired blood-derived DNA of the patients. The group of tumors was enriched for cases with metastases, relapse or fatal outcome, criteria that were expected to yield a higher number of alterations on chromosome 22. Overall, the array-based form of comparative genomic hybridization (array-CGH) analysis revealed genomic changes in 53% (15 out of 28) of cases. We identified hemizygous deletion of the whole arm of 22q in 3 tumors (11%). Furthermore, a complex amplifier genotype was detected in 8 samples, presenting regions of gain along the chromosome, which defined 7 distinct minimal overlapping segments. The distribution of aberrations in 4 additional cases displaying regional genomic imbalances delimited 2 tumor suppressor/oncogene candidate loci, 1 in the proximal and the other in the terminal part of 22q. Analysis of these regions revealed the presence of several candidate genes that may play a role in the development of WT. These findings demonstrate the power of array-CGH in the determination of DNA copy number alterations and further strength the notion that WT-associated genes exist on this chromosome.
Collapse
Affiliation(s)
- Magdalena Benetkiewicz
- Department of Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| | | | | | | | | | | | | |
Collapse
|
30
|
Wakeham DE, Abi-Rached L, Towler MC, Wilbur JD, Parham P, Brodsky FM. Clathrin heavy and light chain isoforms originated by independent mechanisms of gene duplication during chordate evolution. Proc Natl Acad Sci U S A 2005; 102:7209-14. [PMID: 15883369 PMCID: PMC1091751 DOI: 10.1073/pnas.0502058102] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In humans, there are two isoforms each of clathrin heavy chain (CHC17 and CHC22) and light chain (LCa and LCb) subunits, all encoded by separate genes. CHC17 forms the ubiquitous clathrin-coated vesicles that mediate membrane traffic. CHC22 is implicated in specialized membrane organization in skeletal muscle. CHC17 is bound and regulated by LCa and LCb, whereas CHC22 does not functionally interact with either light chain. The imbalanced interactions between clathrin subunit isoforms suggest a distinct evolutionary history for each isoform pair. Phylogenetic and sequence analysis placed both heavy and light chain gene duplications during chordate evolution, 510-600 million years ago. Genes encoding CHC22 orthologues were found in several vertebrate species, with only a pseudogene present in mice. Multiple paralogons surrounding the CHC genes (CLTC and CLTD) were identified, evidence that genomic or large-scale gene duplication produced the two CHC isoforms. In contrast, clathrin light chain genes (CLTA and CLTB) apparently arose by localized duplication, within 1-11 million years of CHC gene duplication. Analysis of sequence divergence patterns suggested that structural features of the CHCs were maintained after gene duplication, but new interactions with regulatory proteins evolved for the CHC22 isoform. Thus, independent mechanisms of gene duplication expanded clathrin functions, concomitant with development of neuromuscular sophistication in chordates.
Collapse
Affiliation(s)
- Diane E Wakeham
- The G. W. Hooper Foundation and Department of Biopharmaceutical Sciences, University of California, San Francisco, CA 94143-0552, USA
| | | | | | | | | | | |
Collapse
|
31
|
Ishida A, Tada Y, Nimura T, Sueyoshi N, Katoh T, Takeuchi M, Fujisawa H, Taniguchi T, Kameshita I. Identification of major Ca(2+)/calmodulin-dependent protein kinase phosphatase-binding proteins in brain: biochemical analysis of the interaction. Arch Biochem Biophys 2005; 435:134-46. [PMID: 15680915 DOI: 10.1016/j.abb.2004.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Revised: 11/22/2004] [Indexed: 11/26/2022]
Abstract
Ca(2+)/calmodulin-dependent protein kinase phosphatase (CaMKP) is a unique protein phosphatase that specifically dephosphorylates and regulates multifunctional Ca(2+)/calmodulin-dependent protein kinases (CaMKs). To clarify the physiological significance of CaMKP, we identified glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and fructose bisphosphate aldolase as major binding partners of CaMKP in a soluble fraction of rat brain using the two-dimensional far-Western blotting technique, in conjunction with peptide mass fingerprinting analysis. We analyzed the affinities of these interactions. Wild type CaMKP-glutathione S-transferase (GST) associated with GAPDH in a GST pull-down assay. Deletion analysis suggested that the N-terminal side of the catalytic domain of CaMKP was responsible for the binding to GAPDH. Further, anti-CaMKP antibody coimmunoprecipitated GAPDH in a rat brain extract. GAPDH was phosphorylated by CaMKI or CaMKIV in vitro; however, when CaMKP coexisted, the phosphorylation was markedly attenuated. Under these conditions, CaMKP significantly dephosphorylated CaMKI and CaMKIV, which had been phosphorylated by CaMK kinase, whereas it did not dephosphorylate the previously phosphorylated GAPDH. The results suggest that CaMKP regulates the phosphorylation level of GAPDH in the CaMKP-GAPDH complex by dephosphorylating and deactivating CaMKs that are responsible for the phosphorylation of GAPDH.
Collapse
Affiliation(s)
- Atsuhiko Ishida
- Department of Biochemistry, Asahikawa Medical College, Asahikawa, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|