1
|
Sukocheva OA, Neganova ME, Aleksandrova Y, Burcher JT, Chugunova E, Fan R, Tse E, Sethi G, Bishayee A, Liu J. Signaling controversy and future therapeutical perspectives of targeting sphingolipid network in cancer immune editing and resistance to tumor necrosis factor-α immunotherapy. Cell Commun Signal 2024; 22:251. [PMID: 38698424 PMCID: PMC11064425 DOI: 10.1186/s12964-024-01626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/21/2024] [Indexed: 05/05/2024] Open
Abstract
Anticancer immune surveillance and immunotherapies trigger activation of cytotoxic cytokine signaling, including tumor necrosis factor-α (TNF-α) and TNF-related apoptosis-inducing ligand (TRAIL) pathways. The pro-inflammatory cytokine TNF-α may be secreted by stromal cells, tumor-associated macrophages, and by cancer cells, indicating a prominent role in the tumor microenvironment (TME). However, tumors manage to adapt, escape immune surveillance, and ultimately develop resistance to the cytotoxic effects of TNF-α. The mechanisms by which cancer cells evade host immunity is a central topic of current cancer research. Resistance to TNF-α is mediated by diverse molecular mechanisms, such as mutation or downregulation of TNF/TRAIL receptors, as well as activation of anti-apoptotic enzymes and transcription factors. TNF-α signaling is also mediated by sphingosine kinases (SphK1 and SphK2), which are responsible for synthesis of the growth-stimulating phospholipid, sphingosine-1-phosphate (S1P). Multiple studies have demonstrated the crucial role of S1P and its transmembrane receptors (S1PR) in both the regulation of inflammatory responses and progression of cancer. Considering that the SphK/S1P/S1PR axis mediates cancer resistance, this sphingolipid signaling pathway is of mechanistic significance when considering immunotherapy-resistant malignancies. However, the exact mechanism by which sphingolipids contribute to the evasion of immune surveillance and abrogation of TNF-α-induced apoptosis remains largely unclear. This study reviews mechanisms of TNF-α-resistance in cancer cells, with emphasis on the pro-survival and immunomodulatory effects of sphingolipids. Inhibition of SphK/S1P-linked pro-survival branch may facilitate reactivation of the pro-apoptotic TNF superfamily effects, although the role of SphK/S1P inhibitors in the regulation of the TME and lymphocyte trafficking should be thoroughly assessed in future studies.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia.
| | - Margarita E Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russian Federation
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Jack T Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420088, Russian Federation
| | - Ruitai Fan
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Edmund Tse
- Department of Hepatology, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Junqi Liu
- Department of Radiation Oncology, Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
2
|
Velazquez FN, Stith JL, Zhang L, Allam AM, Haley J, Obeid LM, Snider AJ, Hannun YA. Targeting sphingosine kinase 1 in p53KO thymic lymphoma. FASEB J 2023; 37:e23247. [PMID: 37800872 PMCID: PMC11740227 DOI: 10.1096/fj.202301417r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Sphingosine kinase 1 (SK1) is a key sphingolipid enzyme that is upregulated in several types of cancer, including lymphoma which is a heterogenous group of malignancies. Treatment for lymphoma has improved significantly by the introduction of new therapies; however, subtypes with tumor protein P53 (p53) mutations or deletion have poor prognosis, making it critical to explore new therapeutic strategies in this context. SK1 has been proposed as a therapeutic target in different types of cancer; however, the effect of targeting SK1 in cancers with p53 deletion has not been evaluated yet. Previous work from our group suggests that loss of SK1 is a key event in mediating the tumor suppressive effect of p53. Employing both genetic and pharmacological approaches to inhibit SK1 function in Trp53KO mice, we show that targeting SK1 decreases tumor growth of established p53KO thymic lymphoma. Inducible deletion of Sphk1 or its pharmacological inhibition drive increased cell death in tumors which is accompanied by selective accumulation of sphingosine levels. These results demonstrate the relevance of SK1 in the growth and maintenance of lymphoma in the absence of p53 function, positioning this enzyme as a potential therapeutic target for the treatment of tumors that lack functional p53.
Collapse
Affiliation(s)
- Fabiola N. Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Jeffrey L. Stith
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Leiqing Zhang
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Amira M. Allam
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - John Haley
- Biological Mass Spectrometry Center, Stony Brook Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| | - Ashley J. Snider
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
- School of Nutritional Sciences and Wellness, College of Agriculture and Life Sciences, and University of Arizona Cancer Center, University of Arizona, Tucson, Arizona, USA
| | - Yusuf A. Hannun
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Cancer Center, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
3
|
Bonica J, Clarke C, Obeid LM, Luberto C, Hannun YA. Upregulation of sphingosine kinase 1 in response to doxorubicin generates an angiogenic response via stabilization of Snail. FASEB J 2023; 37:e22787. [PMID: 36723905 PMCID: PMC9979566 DOI: 10.1096/fj.202201066r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 02/02/2023]
Abstract
Sphingosine kinase 1 (SK1) converts the pro-death lipid sphingosine to the pro-survival sphingosine-1-phosphate (S1P) and is upregulated in several cancers. DNA damaging agents, such as the chemotherapeutic doxorubicin (Dox), have been shown to degrade SK1 protein in cancer cells, a process dependent on wild-type p53. As mutations in p53 are very common across several types of cancer, we evaluated the effects of Dox on SK1 in p53 mutant cancer cells. In the p53 mutant breast cancer cell line MDA-MB-231, we show that Dox treatment significantly increases SK1 protein and S1P. Using MDA-MB-231 cells with CRISPR-mediated knockout of SK1 or the selective SK1 inhibitor PF-543, we implicated SK1 in both Dox-induced migration and in a newly uncovered proangiogenic program induced by Dox. Mechanistically, inhibition of SK1 suppressed the induction of the cytokine BMP4 and of the EMT transcription factor Snail in response to Dox. Interestingly, induction of BMP4 by SK1 increased Snail levels following Dox treatment by stabilizing Snail protein. Furthermore, we found that SK1 was required for Dox-induced p38 MAP kinase phosphorylation and that active p38 MAPK in turn upregulated BMP4 and Snail, positioning p38 downstream of SK1 and upstream of BMP4/Snail. Modulating production of S1P by inhibition of de novo sphingolipid synthesis or knockdown of the S1P-degrading enzyme S1P lyase identified S1P as the sphingolipid activator of p38 in this model. This work establishes a novel angiogenic pathway in response to a commonly utilized chemotherapeutic and highlights the potential of SK1 as a secondary drug target for patients with p53 mutant cancer.
Collapse
Affiliation(s)
- Joseph Bonica
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | | | - Lina M. Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
| | - Yusuf A. Hannun
- Department of Pharmacology, Stony Brook University, Stony Brook, NY 11794
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794
- Cancer Center, Stony Brook University, Stony Brook, NY 11794
- Northport Veterans Affairs Medical Center, Northport, NY, USA
- Departments of Biochemistry and Pathology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
4
|
Gao Y, Jiao Y, Gong X, Liu J, Xiao H, Zheng Q. Role of transcription factors in apoptotic cells clearance. Front Cell Dev Biol 2023; 11:1110225. [PMID: 36743409 PMCID: PMC9892555 DOI: 10.3389/fcell.2023.1110225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/09/2023] [Indexed: 01/20/2023] Open
Abstract
The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis. The genetically controlled, autonomously ordered cell death mainly proceeds by apoptosis. Apoptosis is an important way of programmed cell death in multicellular organisms, timely and effective elimination of apoptotic cells plays a key role in the growth and development of organisms and the maintenance of homeostasis. During the clearance of apoptotic cells, transcription factors bind to specific target promoters and act as activators or repressors to regulate multiple genes expression, how transcription factors regulate apoptosis is an important and poorly understood aspect of normal development. This paper summarizes the regulatory mechanisms of transcription factors in the clearance of apoptotic cells to date.
Collapse
Affiliation(s)
| | | | | | | | - Hui Xiao
- *Correspondence: Hui Xiao, ; Qian Zheng,
| | - Qian Zheng
- *Correspondence: Hui Xiao, ; Qian Zheng,
| |
Collapse
|
5
|
Al-Huseini I, Sirasanagandla SR, Babu KS, Sofin RGS, Das S. Kinase Inhibitors Involved in the Regulation of Autophagy: Molecular Concepts and Clinical Implications. Curr Med Chem 2023; 30:1502-1528. [PMID: 35078392 DOI: 10.2174/0929867329666220117114306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.
Collapse
Affiliation(s)
- Isehaq Al-Huseini
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| | - Kondaveeti Suresh Babu
- Department of Biochemistry, Symbiosis Medical College for Women, Symbiosis International (Deemed) University, Pune, Maharashtra, India
| | | | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Al-Khodh 123, Oman
| |
Collapse
|
6
|
Li S, Kim HE. Implications of Sphingolipids on Aging and Age-Related Diseases. FRONTIERS IN AGING 2022; 2:797320. [PMID: 35822041 PMCID: PMC9261390 DOI: 10.3389/fragi.2021.797320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023]
Abstract
Aging is a process leading to a progressive loss of physiological integrity and homeostasis, and a primary risk factor for many late-onset chronic diseases. The mechanisms underlying aging have long piqued the curiosity of scientists. However, the idea that aging is a biological process susceptible to genetic manipulation was not well established until the discovery that the inhibition of insulin/IGF-1 signaling extended the lifespan of C. elegans. Although aging is a complex multisystem process, López-Otín et al. described aging in reference to nine hallmarks of aging. These nine hallmarks include: genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. Due to recent advances in lipidomic, investigation into the role of lipids in biological aging has intensified, particularly the role of sphingolipids (SL). SLs are a diverse group of lipids originating from the Endoplasmic Reticulum (ER) and can be modified to create a vastly diverse group of bioactive metabolites that regulate almost every major cellular process, including cell cycle regulation, senescence, proliferation, and apoptosis. Although SL biology reaches all nine hallmarks of aging, its contribution to each hallmark is disproportionate. In this review, we will discuss in detail the major contributions of SLs to the hallmarks of aging and age-related diseases while also summarizing the importance of their other minor but integral contributions.
Collapse
Affiliation(s)
- Shengxin Li
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, United States
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hyun-Eui Kim
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, TX, United States
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Hii LW, Chung FFL, Mai CW, Ng PY, Leong CO. Sphingosine Kinase 1 Signaling in Breast Cancer: A Potential Target to Tackle Breast Cancer Stem Cells. Front Mol Biosci 2021; 8:748470. [PMID: 34820423 PMCID: PMC8606534 DOI: 10.3389/fmolb.2021.748470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023] Open
Abstract
Sphingosine kinases (SPHKs) are conserved lipid enzymes that catalyze the formation of sphingosine-1-phosphate (S1P) through ATP-dependent phosphorylation of sphingosine. Two distinct SPHK isoforms, namely SPHK1 and SPHK2, have been identified to date, and the former has been implicated for its oncogenic roles in cancer development and progression. While SPHK1 signaling axis has been extensively studied in non-stem breast cancer cells, recent evidence has emerged to suggest a role of SPHK1 in regulating cancer stem cells (CSCs). With the clinical implications of CSCs in disease relapse and metastasis, it is believed that therapeutic approaches that can eradicate both non-stem cancer cells and CSCs could be a key to cancer cure. In this review, we first explore the oncogenic functions of sphingosine kinase 1 in human cancers and summarize current research findings of SPHK1 signaling with a focus on breast cancer. We also discuss the therapeutic potentials and perspectives of targeting SPHK1 signaling in breast cancer and cancer stem cells. We aim to offer new insights and inspire future studies looking further into the regulatory functions of SPHK1 in CSC-driven tumorigenesis, uncovering novel therapeutic avenues of using SPHK1-targeted therapy in the treatment of CSC-enriched refractory cancers.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chun-Wai Mai
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
- State Key Laboratory of Oncogenes and Related Genes, School of Medicine, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pei Yuen Ng
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chee-Onn Leong
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Nduwumwami AJ, Hengst JA, Yun JK. Sphingosine Kinase Inhibition Enhances Dimerization of Calreticulin at the Cell Surface in Mitoxantrone-Induced Immunogenic Cell Death. J Pharmacol Exp Ther 2021; 378:300-310. [PMID: 34158403 DOI: 10.1124/jpet.121.000629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022] Open
Abstract
Agents that induce immunogenic cell death (ICD) alter the cellular localization of calreticulin (CRT), causing it to become cell surface-exposed within the plasma membrane lipid raft microdomain [cell surface-exposed CRT (ectoCRT)] where it serves as a damage associated-molecular pattern that elicits an antitumor immune response. We have identified the sphingolipid metabolic pathway as an integral component of the process of ectoCRT exposure. Inhibition of the sphingosine kinases (SphKs) enhances mitoxantrone-induced production of hallmarks of ICD, including ectoCRT production, with an absolute mean difference of 40 MFI (95% CI: 19-62; P = 0.0014) and 1.3-fold increase of ATP secretion with an absolute mean difference of 87 RLU (95% CI: 55-120; P < 0.0001). Mechanistically, sphingosine kinase inhibition increases mitoxantrone-induced accumulation of ceramide species, including C16:0 ceramide 2.8-fold with an absolute mean difference of 1.390 pmol/nmol Pi (95% CI: 0.798-1.983; P = 0.0023). We further examined the localization of ectoCRT to the lipid raft microdomain and demonstrate that ectoCRT forms disulfide-bridged dimers. Together, our findings suggest that ceramide accumulation impinges on the homeostatic function of the endoplasmic reticulum to induce ectoCRT exposure and that structural alterations of ectoCRT may underlie its immunogenicity. Our findings further suggest that inhibition of the SphKs may represent a means to enhance the therapeutic immunogenic efficacy of ICD-inducing agents while reducing overt toxicity/immunosuppressive effects by allowing for the modification of dosing regimens or directly lowering the dosages of ICD-inducing agents employed in therapeutic regimens. SIGNIFICANCE STATEMENT: This study demonstrates that inhibition of sphingosine kinase enhances the mitoxantrone-induced cell surface exposure of a dimeric form of the normally endoplasmic reticulum resident chaperone calreticulin as part of the process of a unique form of regulated cell death termed immunogenic cell death. Importantly, inhibition of sphingosine kinase may represent a means to enhance the therapeutic efficacy of immunogenic cell death-inducing agents, such as mitoxantrone, while reducing their overt toxicity and immunosuppressive effects, leading to better therapeutic outcomes for patients.
Collapse
Affiliation(s)
- Asvelt J Nduwumwami
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jeremy A Hengst
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Jong K Yun
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
9
|
Sattar RSA, Sumi MP, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Mahajan B, Saluja SS. S1P signaling, its interactions and cross-talks with other partners and therapeutic importance in colorectal cancer. Cell Signal 2021; 86:110080. [PMID: 34245863 DOI: 10.1016/j.cellsig.2021.110080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Sphingosine-1-Phosphate (S1P) plays an important role in normal physiology, inflammation, initiation and progression of cancer. Deregulation of S1P signaling causes aberrant proliferation, affects survival, leads to angiogenesis and metastasis. Sphingolipid rheostat is crucial for cellular homeostasis. Discrepancy in sphingolipid metabolism is linked to cancer and drug insensitivity. Owing to these diverse functions and being a potent mediator of tumor growth, S1P signaling might be a suitable candidate for anti-tumor therapy or combination therapy. In this review, with a focus on colorectal cancer we have summarized the interacting partners of S1P signaling pathway, its therapeutic approaches along with the contribution of S1P signaling to various cancer hallmarks.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science (AIIMS), Patna, Bihar, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
10
|
Truman JP, Ruiz CF, Trayssac M, Mao C, Hannun YA, Obeid LM. Sphingosine kinase 1 downregulation is required for adaptation to serine deprivation. FASEB J 2021; 35:e21284. [PMID: 33484475 DOI: 10.1096/fj.202001814rr] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/21/2023]
Abstract
It has been well-established that cancer cells often display altered metabolic profiles, and recent work has concentrated on how cancer cells adapt to serine removal. Serine can be either taken exogenously or synthesized from glucose, and its regulation forms an important mechanism for nutrient integration. One of the several important metabolic roles for serine is in the generation of bioactive sphingolipids since it is the main substrate for serine palmitoyltransferase, the initial and rate-limiting enzyme in the synthesis of sphingolipids. Previously, serine deprivation has been connected to the action of the tumor suppressor p53, and we have previously published on a role for p53 regulating sphingosine kinase 1 (SK1), an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate (S1P). SK1 is a key enzyme in sphingolipid synthesis that functions in pro-survival and tumor-promoting pathways and whose expression is also often elevated in cancers. Here we show that SK1 was degraded during serine starvation in a time and dose-dependent manner, which led to sphingosine accumulation. This was independent of effects on p53 but required the action of the proteasome. Furthermore, we show that overexpression of SK1, to compensate for SK1 loss, was detrimental to cell growth under conditions of serine starvation, demonstrating that the suppression of SK1 under these conditions is adaptive. Mitochondrial oxygen consumption decreased in response to SK1 degradation, and this was accompanied by an increase in intracellular reactive oxygen species (ROS). Suppression of ROS with N-acteylcysteine resulted in suppression of the metabolic adaptations and in decreased cell growth under serine deprivation. The effects of SK1 suppression on ROS were mimicked by D-erythro-sphingosine, whereas S1P was ineffective, suggesting that the effects of loss of SK1 were due to the accumulation of its substrate sphingosine. This study reveals a new mechanism for regulating SK1 levels and a link of SK1 to serine starvation as well as mitochondrial function.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Christian F Ruiz
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Cungui Mao
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Department of Biochemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA.,The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.,Northport Veterans Affairs Medical Center, Northport, NY, USA
| |
Collapse
|
11
|
Kim JL, Mestre B, Shin SH, Futerman AH. Ceramide synthases: Reflections on the impact of Dr. Lina M. Obeid. Cell Signal 2021; 82:109958. [PMID: 33607256 DOI: 10.1016/j.cellsig.2021.109958] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/16/2022]
Abstract
Sphingolipids are a family of lipids that are critical to cell function and survival. Much of the recent work done on sphingolipids has been performed by a closely-knit family of sphingolipid researchers, which including our colleague, Dr. Lina Obeid, who recently passed away. We now briefly review where the sphingolipid field stands today, focusing in particular on areas of sphingolipid research to which Dr. Obeid made valued contributions. These include the 'many-worlds' view of ceramides and the role of a key enzyme in the sphingolipid biosynthetic pathway, namely the ceramide synthases (CerS). The CerS contain a number of functional domains and also interact with a number of other proteins in lipid metabolic pathways, fulfilling Dr. Obeid's prophecy that ceramides, and the enzymes that generate ceramides, form the critical hub of the sphingolipid metabolic pathway.
Collapse
Affiliation(s)
- Jiyoon L Kim
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Beatriz Mestre
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sun-Hye Shin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
12
|
Velazquez FN, Hernandez-Corbacho M, Trayssac M, Stith JL, Bonica J, Jean B, Pulkoski-Gross MJ, Carroll BL, Salama MF, Hannun YA, Snider AJ. Bioactive sphingolipids: Advancements and contributions from the laboratory of Dr. Lina M. Obeid. Cell Signal 2020; 79:109875. [PMID: 33290840 PMCID: PMC8244749 DOI: 10.1016/j.cellsig.2020.109875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023]
Abstract
Sphingolipids and their synthetic enzymes have emerged as critical mediators in numerous diseases including inflammation, aging, and cancer. One enzyme in particular, sphingosine kinase (SK) and its product sphingosine-1-phosphate (S1P), has been extensively implicated in these processes. SK catalyzes the phosphorylation of sphingosine to S1P and exists as two isoforms, SK1 and SK2. In this review, we will discuss the contributions from the laboratory of Dr. Lina M. Obeid that have defined the roles for several bioactive sphingolipids in signaling and disease with an emphasis on her work defining SK1 in cellular fates and pathobiologies including proliferation, senescence, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Fabiola N Velazquez
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maria Hernandez-Corbacho
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Magali Trayssac
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jeffrey L Stith
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph Bonica
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Bernandie Jean
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael J Pulkoski-Gross
- Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Brittany L Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA
| | - Mohamed F Salama
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA; Department of Biochemistry, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Yusuf A Hannun
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ashley J Snider
- Department of Nutritional Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Lee SC, Lin KH, Balogh A, Norman DD, Bavaria M, Kuo B, Yue J, Balázs L, Benyó Z, Tigyi G. Dysregulation of lysophospholipid signaling by p53 in malignant cells and the tumor microenvironment. Cell Signal 2020; 78:109850. [PMID: 33253914 DOI: 10.1016/j.cellsig.2020.109850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 12/22/2022]
Abstract
The TP53 gene has been widely studied for its roles in cell cycle control, maintaining genome stability, activating repair mechanisms upon DNA damage, and initiating apoptosis should repair mechanisms fail. Thus, it is not surprising that mutations of p53 are the most common genetic alterations found in human cancer. Emerging evidence indicates that dysregulation of lipid metabolism by p53 can have a profound impact not only on cancer cells but also cells of the tumor microenvironment (TME). In particular, intermediates of the sphingolipid and lysophospholipid pathways regulate many cellular responses common to p53 such as cell survival, migration, DNA damage repair and apoptosis. The majority of these cellular events become dysregulated in cancer as well as cell senescence. In this review, we will provide an account on the seminal contributions of Prof. Lina Obeid, who deciphered the crosstalk between p53 and the sphingolipid pathway particularly in modulating DNA damage repair and apoptosis in non-transformed as well as transformed cells. We will also provide insights on the integrative role of p53 with the lysophosphatidic acid (LPA) signaling pathway in cancer progression and TME regulation.
Collapse
Affiliation(s)
- Sue Chin Lee
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Kuan-Hung Lin
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Andrea Balogh
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Derek D Norman
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Mitul Bavaria
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Bryan Kuo
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Louisa Balázs
- Department of Pathology, University of Tennessee Health Science Center Memphis, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary
| | - Gábor Tigyi
- Department of Physiology, University of Tennessee Health Science Center Memphis, Van Vleet Cancer Research Building, 3 N. Dunlap Street, Memphis, TN 38163, USA; Institute of Translational Medicine, Semmelweis University, POB 2, H-1428 Budapest, Hungary.
| |
Collapse
|
14
|
Ziegler AC, Müller T, Gräler MH. Sphingosine 1-phosphate in sepsis and beyond: Its role in disease tolerance and host defense and the impact of carrier molecules. Cell Signal 2020; 78:109849. [PMID: 33249088 DOI: 10.1016/j.cellsig.2020.109849] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/29/2022]
Abstract
Sphingosine 1-phosphate (S1P) is an important immune modulator responsible for physiological cellular responses like lymphocyte development and function, positioning and emigration of T and B cells and cytokine secretion. Recent reports indicate that S1P does not only regulate immunity, but can also protect the function of organs by inducing disease tolerance. S1P also influences the replication of certain pathogens, and sphingolipids are also involved in pathogen recognition and killing. Certain carrier molecules for S1P like serum albumin and high density lipoproteins contribute to the regulation of S1P effects. They are able to associate with S1P and modulate its signaling properties. Similar to S1P, both carrier molecules are also decreased in sepsis patients and likely contribute to sepsis pathology and severity. In this review, we will introduce the concept of disease tolerance and the involvement of S1P. We will also discuss the contribution of S1P and its precursor sphingosine to host defense mechanisms against pathogens. Finally, we will summarize current data demonstrating the influence of carrier molecules for differential S1P signaling. The presented data may lead to new strategies for the prevention and containment of sepsis.
Collapse
Affiliation(s)
- Anke C Ziegler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Tina Müller
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany
| | - Markus H Gräler
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, 07740 Jena, Germany; Center for Molecular Biomedicine, Jena University Hospital, 07745 Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, 07740 Jena, Germany.
| |
Collapse
|
15
|
Nitric oxide induces HepG2 cell death via extracellular signal-regulated protein kinase activation by regulating acid sphingomyelinase. Mol Biol Rep 2020; 47:8353-8359. [PMID: 33025504 DOI: 10.1007/s11033-020-05881-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 09/30/2020] [Indexed: 01/14/2023]
Abstract
Nitric oxide (NO) plays a vital role in the occurrence and development of tumours. Acid sphingomyelinase (ASM) participates in cell apoptosis, cell proliferation, metabolism and other biological processes. However, whether ASM has an effect on NO-treated HepG2 cells remains unknown, and the role of the extracellular signal-regulated protein kinase (ERK) pathway is also unclear. In the present study, the effects of NO on cell viability and apoptosis were assayed, followed by investigating the mRNA and protein levels of ASM and ERK phosphorylation in NO-treated HepG2 cells. The results showed that diethylenetriamine/NO (DETA-NO), an NO donor, promoted HepG2 cell death and apoptosis in a concentration-dependent manner and that the mRNA and protein expression levels of ASM were significantly decreased in DETA-NO-treated HepG2 cells. Moreover, ERK phosphorylation was significantly increased in DETA-NO-treated HepG2 cells. The inhibition of ERK phosphorylation increased DETA-NO-induced cell apoptosis. In summary, DETA-NO can promote HepG2 cell death in a concentration-dependent manner by activating ERK and NO might activate ERK by regulating ASM and then inducing HepG2 cell death.
Collapse
|
16
|
Modulation of DNA Damage Response by Sphingolipid Signaling: An Interplay that Shapes Cell Fate. Int J Mol Sci 2020; 21:ijms21124481. [PMID: 32599736 PMCID: PMC7349968 DOI: 10.3390/ijms21124481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/11/2022] Open
Abstract
Although once considered as structural components of eukaryotic biological membranes, research in the past few decades hints at a major role of bioactive sphingolipids in mediating an array of physiological processes including cell survival, proliferation, inflammation, senescence, and death. A large body of evidence points to a fundamental role for the sphingolipid metabolic pathway in modulating the DNA damage response (DDR). The interplay between these two elements of cell signaling determines cell fate when cells are exposed to metabolic stress or ionizing radiation among other genotoxic agents. In this review, we aim to dissect the mediators of the DDR and how these interact with the different sphingolipid metabolites to mount various cellular responses.
Collapse
|
17
|
Hii LW, Chung FFL, Mai CW, Yee ZY, Chan HH, Raja VJ, Dephoure NE, Pyne NJ, Pyne S, Leong CO. Sphingosine Kinase 1 Regulates the Survival of Breast Cancer Stem Cells and Non-stem Breast Cancer Cells by Suppression of STAT1. Cells 2020; 9:886. [PMID: 32260399 PMCID: PMC7226795 DOI: 10.3390/cells9040886] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) represent rare tumor cell populations capable of self-renewal, differentiation, and tumor initiation and are highly resistant to chemotherapy and radiotherapy. Thus, therapeutic approaches that can effectively target CSCs and tumor cells could be the key to efficient tumor treatment. In this study, we explored the function of SPHK1 in breast CSCs and non-CSCs. We showed that RNAi-mediated knockdown of SPHK1 inhibited cell proliferation and induced apoptosis in both breast CSCs and non-CSCs, while ectopic expression of SPHK1 enhanced breast CSC survival and mammosphere forming efficiency. We identified STAT1 and IFN signaling as key regulatory targets of SPHK1 and demonstrated that an important mechanism by which SPHK1 promotes cancer cell survival is through the suppression of STAT1. We further demonstrated that SPHK1 inhibitors, FTY720 and PF543, synergized with doxorubicin in targeting both breast CSCs and non-CSCs. In conclusion, we provide important evidence that SPHK1 is a key regulator of cell survival and proliferation in breast CSCs and non-CSCs and is an attractive target for the design of future therapies.
Collapse
Affiliation(s)
- Ling-Wei Hii
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, 69372 Lyon, France;
| | - Chun Wai Mai
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Zong Yang Yee
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Hong Hao Chan
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Postgraduate Studies, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Vijay Joseph Raja
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Noah Elias Dephoure
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10021, USA; (V.J.R.); (N.E.D.)
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, UK; (N.J.P.); (S.P.)
| | - Chee-Onn Leong
- Centre for Cancer and Stem Cell Research, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (L.-W.H.); (C.W.M.); (Z.Y.Y.); (H.H.C.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
18
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
19
|
Diarte-Añazco EMG, Méndez-Lara KA, Pérez A, Alonso N, Blanco-Vaca F, Julve J. Novel Insights into the Role of HDL-Associated Sphingosine-1-Phosphate in Cardiometabolic Diseases. Int J Mol Sci 2019; 20:ijms20246273. [PMID: 31842389 PMCID: PMC6940915 DOI: 10.3390/ijms20246273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Sphingolipids are key signaling molecules involved in the regulation of cell physiology. These species are found in tissues and in circulation. Although they only constitute a small fraction in lipid composition of circulating lipoproteins, their concentration in plasma and distribution among plasma lipoproteins appears distorted under adverse cardiometabolic conditions such as diabetes mellitus. Sphingosine-1-phosphate (S1P), one of their main representatives, is involved in regulating cardiomyocyte homeostasis in different models of experimental cardiomyopathy. Cardiomyopathy is a common complication of diabetes mellitus and represents a main risk factor for heart failure. Notably, plasma concentration of S1P, particularly high-density lipoprotein (HDL)-bound S1P, may be decreased in patients with diabetes mellitus, and hence, inversely related to cardiac alterations. Despite this, little attention has been given to the circulating levels of either total S1P or HDL-bound S1P as potential biomarkers of diabetic cardiomyopathy. Thus, this review will focus on the potential role of HDL-bound S1P as a circulating biomarker in the diagnosis of main cardiometabolic complications frequently associated with systemic metabolic syndromes with impaired insulin signaling. Given the bioactive nature of these molecules, we also evaluated its potential of HDL-bound S1P-raising strategies for the treatment of cardiometabolic disease.
Collapse
Affiliation(s)
- Elena M. G. Diarte-Añazco
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
| | - Karen Alejandra Méndez-Lara
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Antonio Pérez
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
| | - Núria Alonso
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei d’Endocrinologia, Hospital Universitari Germans Trias i Pujol, Badalona, 08916 Barcelona, Spain
| | - Francisco Blanco-Vaca
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, 08041 Barcelona, Spain
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| | - Josep Julve
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain;
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain;
- Centro de Investigación Biomédica en Red (CIBER) de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, 28029 Madrid, Spain;
- Correspondence: (K.A.M.-L.); (F.B.-V.); (J.J.)
| |
Collapse
|
20
|
Kelch-like protein 5-mediated ubiquitination of lysine 183 promotes proteasomal degradation of sphingosine kinase 1. Biochem J 2019; 476:3211-3226. [DOI: 10.1042/bcj20190245] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 09/13/2019] [Accepted: 10/14/2019] [Indexed: 01/30/2023]
Abstract
Sphingosine kinase 1 (SK1) is a signalling enzyme that catalyses the phosphorylation of sphingosine to generate the bioactive lipid sphingosine 1-phosphate (S1P). A number of SK1 inhibitors and chemotherapeutics can induce the degradation of SK1, with the loss of this pro-survival enzyme shown to significantly contribute to the anti-cancer properties of these agents. Here we define the mechanistic basis for this degradation of SK1 in response to SK1 inhibitors, chemotherapeutics, and in natural protein turnover. Using an inducible SK1 expression system that enables the degradation of pre-formed SK1 to be assessed independent of transcriptional or translational effects, we found that SK1 was degraded primarily by the proteasome since several proteasome inhibitors blocked SK1 degradation, while lysosome, cathepsin B or pan caspase inhibitors had no effect. Importantly, we demonstrate that this proteasomal degradation of SK1 was enabled by its ubiquitination at Lys183 that appears facilitated by SK1 inhibitor-induced conformational changes in the structure of SK1 around this residue. Furthermore, using yeast two-hybrid screening, we identified Kelch-like protein 5 (KLHL5) as an important protein adaptor linking SK1 to the cullin 3 (Cul3) ubiquitin ligase complex. Notably, knockdown of KLHL5 or Cul3, use of a cullin inhibitor or a dominant-negative Cul3 all attenuated SK1 degradation. Collectively this data demonstrates the KLHL5/Cul3-based E3 ubiquitin ligase complex is important for regulation of SK1 protein stability via Lys183 ubiquitination, in response to SK1 inhibitors, chemotherapy and for normal SK1 protein turnover.
Collapse
|
21
|
Kim MK, Lee W, Yoon GH, Chang EJ, Choi SC, Kim SW. Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription. BMB Rep 2019. [PMID: 30885289 PMCID: PMC6476483 DOI: 10.5483/bmbrep.2019.52.3.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin B1, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.
Collapse
Affiliation(s)
- Min Kyung Kim
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Wooseong Lee
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gang-Ho Yoon
- Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eun-Ju Chang
- Departments of Biochemistry and Molecular Biology and Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sun-Cheol Choi
- Departments of Biochemistry and Molecular Biology and Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Seong Who Kim
- Departments of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
22
|
Jęśko H, Stępień A, Lukiw WJ, Strosznajder RP. The Cross-Talk Between Sphingolipids and Insulin-Like Growth Factor Signaling: Significance for Aging and Neurodegeneration. Mol Neurobiol 2019; 56:3501-3521. [PMID: 30140974 PMCID: PMC6476865 DOI: 10.1007/s12035-018-1286-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022]
Abstract
Bioactive sphingolipids: sphingosine, sphingosine-1-phosphate (S1P), ceramide, and ceramide-1-phosphate (C1P) are increasingly implicated in cell survival, proliferation, differentiation, and in multiple aspects of stress response in the nervous system. The opposite roles of closely related sphingolipid species in cell survival/death signaling is reflected in the concept of tightly controlled sphingolipid rheostat. Aging has a complex influence on sphingolipid metabolism, disturbing signaling pathways and the properties of lipid membranes. A metabolic signature of stress resistance-associated sphingolipids correlates with longevity in humans. Moreover, accumulating evidence suggests extensive links between sphingolipid signaling and the insulin-like growth factor I (IGF-I)-Akt-mTOR pathway (IIS), which is involved in the modulation of aging process and longevity. IIS integrates a wide array of metabolic signals, cross-talks with p53, nuclear factor κB (NF-κB), or reactive oxygen species (ROS) and influences gene expression to shape the cellular metabolic profile and stress resistance. The multiple connections between sphingolipids and IIS signaling suggest possible engagement of these compounds in the aging process itself, which creates a vulnerable background for the majority of neurodegenerative disorders.
Collapse
Affiliation(s)
- Henryk Jęśko
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland
| | - Adam Stępień
- Central Clinical Hospital of the Ministry of National Defense, Department of Neurology, Military Institute of Medicine, Warsaw, Szaserów, 128, 04-141, Poland
| | - Walter J Lukiw
- LSU Neuroscience Center and Departments of Neurology and Ophthalmology, Louisiana State University School of Medicine, New Orleans, USA
| | - Robert P Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Department of Neurosurgery, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Pawińskiego, 5, 02-106, Poland.
| |
Collapse
|
23
|
Xia Y, Du Z, Wang X, Li X. Treatment of Uterine Sarcoma with rAd-p53 (Gendicine) Followed by Chemotherapy: Clinical Study of TP53 Gene Therapy. Hum Gene Ther 2019; 29:242-250. [PMID: 29281902 DOI: 10.1089/hum.2017.206] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the efficacy of rAd-p53 (Gendicine®) followed by chemotherapy for the treatment of uterine sarcoma. Twelve cases of uterine sarcoma treated at Shengjing Hospital were retrospectively analyzed. Among the 12 patients, one had primary cancer, and 11 had recurrent cancer. For the recurrent cases, the interval between the first operation and diagnosis of recurrence, or progression-free survival time 1 (PFS1), was 1-18 months (median 3 months). All patients were treated with local application of rAd-p53 followed by chemotherapy (local injection of bleomycin and i.v. infusion of cisplatin, epirubicin, and isocyclophosphamide). Efficacy was evaluated, and the rates of complete remission (CR) and partial remission (PR) were calculated. During follow-up, PFS time 2 (PFS2) after the baseline period and overall survival (OS) time after the baseline period of rAd-p53 treatment data were obtained. The treatment resulted in one CR, seven PR, three with stable disease (SD), and one with progressive disease (PD). The remission rate (CR + PR) was 66.7%, and the responsive (CR + PR + SD) rate was 91.7%. PFS2 ranged from 2 to 62 months, with a median of 13 months, which is 10 months longer than that of PFS1; this difference was statistically significant (p = 0.0038). The OS time ranged from 6 to 62 months, with a median of 24 months. Following the combined treatment, four of the patients underwent a second debulking surgery. Of the two patients with liver metastases, one had CR of liver foci, and one had PR. Up to the follow-up date of the two patients who survived, one was tumor-free for 60 months. The PFS2 for the other patient was 39 months. This patient survived with tumor for 53 months with slow disease progression. The remaining 10 patients died. Local application of rAd-p53 combined with local injection of bleomycin and intravenous infusion of cisplatin, epirubicin and isocyclophosphamide was effective for treatment of uterine sarcoma, especially for patients with liver metastases. For patients with uterine sarcoma who do not have the opportunity for surgery, this regimen can be used as a new adjuvant therapy to obtain a surgical opportunity that allows further debulking of the tumor mass.
Collapse
Affiliation(s)
- Yu Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, China
| | - Zhenhua Du
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, China
| | - Xinyan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, China
| | - Xiuqin Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University , Shenyang, China
| |
Collapse
|
24
|
Hasanifard L, Sheervalilou R, Majidinia M, Yousefi B. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol 2018; 234:8162-8181. [PMID: 30456838 DOI: 10.1002/jcp.27612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Chemoresistance is a complicated process developed by most cancers and accounts for the majority of relapse and metastasis in cancer. The main mechanisms of chemoresistance phenotype include increased expression and/or activated drug efflux pumps, altered DNA repair, altered metabolism of therapeutics as well as impaired apoptotic signaling pathways. Aberrant sphingolipid signaling has also recently received considerable attention in chemoresistance. Sphingolipid metabolites regulate main biological processes such as apoptosis, cell survival, proliferation, and differentiation. Two sphingosine kinases, SphK1 and SphK2, convert sphingosine to sphingosine-1-phosphate, an antiapoptotic bioactive lipid mediator. Numerous evidence has revealed the involvement of activated SphK1 in tumorigenesis and resistance, however, contradictory results have been found for the role of SphK2 in these functions. In some studies, overexpression of SphK2 suppressed cell growth and induced apoptosis. In contrast, some others have shown cell proliferation and tumor promotion effect for SphK2. Our understanding of the role of SphK2 in cancer does not have a sufficient integrity. The main focus of this review will be on the re-evaluation of the role of SphK2 in cell death and chemoresistance in light of our new understanding of molecular targeted therapy. We will also highlight the connections between SphK2 and the DNA damage response. Finally, we will provide our insight into the regulatory mechanisms of SphKs by two main categories, micro and long, noncoding RNAs as the novel players of cancer chemoresistance.
Collapse
Affiliation(s)
- Leili Hasanifard
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
25
|
Kreitzburg KM, van Waardenburg RCAM, Yoon KJ. Sphingolipid metabolism and drug resistance in ovarian cancer. ACTA ACUST UNITED AC 2018; 1:181-197. [PMID: 31891125 PMCID: PMC6936734 DOI: 10.20517/cdr.2018.06] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite progress in understanding molecular aberrations that contribute to the development and progression of ovarian cancer, virtually all patients succumb to drug resistant disease at relapse. Emerging data implicate bioactive sphingolipids and regulation of sphingolipid metabolism as components of response to chemotherapy or development of resistance. Increases in cytosolic ceramide induce apoptosis in response to therapy with multiple classes of chemotherapeutic agents. Aberrations in sphingolipid metabolism that accelerate the catabolism of ceramide or that prevent the production and accumulation of ceramide contribute to resistance to standard of care platinum- and taxane-based agents. The aim of this review is to highlight current literature and research investigating the influence of the sphingolipids and enzymes that comprise the sphingosine-1-phosphate pathway on the progression of ovarian cancer. The focus of the review is on the utility of sphingolipid-centric therapeutics as a mechanism to circumvent drug resistance in this tumor type.
Collapse
Affiliation(s)
- Kelly M Kreitzburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
26
|
Pulkoski-Gross MJ, Obeid LM. Molecular mechanisms of regulation of sphingosine kinase 1. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1413-1422. [PMID: 30591148 DOI: 10.1016/j.bbalip.2018.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/08/2023]
Abstract
Within the last 3 decades, there has been intense study of bioactive sphingolipids and the enzymes which metabolize those lipids. One enzyme is the critical lipid kinase sphingosine kinase 1 (SK1), which produces the potent and pleiotropic signaling lipid, sphingosine 1-phosphate (S1P). SK1 and S1P have been implicated in a host of different diseases including cancer, chronic inflammation, and metabolic diseases. However, while there is ample knowledge about the importance of these molecules in the development and progression of disease there is a dearth of knowledge of the molecular mechanisms which regulate SK1 function. In this review, we will cover some of the more recent and exciting findings about the different ways SK1 function can be regulated, from transcriptional regulation to protein stability. Finally, we will delve into recent structural insights into SK1 and how they might relate to function at cell membranes.
Collapse
Affiliation(s)
- Michael J Pulkoski-Gross
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11790, USA; Department of Medicine, The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11790, USA.
| | - Lina M Obeid
- Department of Medicine, The Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11790, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
27
|
Danese S, Furfaro F, Vetrano S. Targeting S1P in Inflammatory Bowel Disease: New Avenues for Modulating Intestinal Leukocyte Migration. J Crohns Colitis 2018; 12:S678-S686. [PMID: 28961752 DOI: 10.1093/ecco-jcc/jjx107] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Sphingosine 1 phosphate [S1P] is a bioactive lipid mediator involved in the regulation of several cellular processes though the activation of a G protein-coupled receptor family known as the S1P receptors [S1PRs]. Advances in the understanding of the biological activities mediated by S1PRs have sparked great interest in the S1P/S1PRs axes as new therapeutic targets for the modulation of several cellular processes. In particular, the S1P/S1PR1 axis has been identified as key regulator for lymphocyte migration from lymph nodes. The blockade of this axis is emerging as a new therapeutic approach to control the aberrant leukocyte migration into the mucosa in inflammatory bowel disease [IBD]. This review briefly summarises the current evidence coming from clinical studies, and discusses the future prospects of S1P inhibitors for treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Silvio Danese
- IBD Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| | - Federica Furfaro
- IBD Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy
| | - Stefania Vetrano
- IBD Centre, Humanitas Clinical and Research Centre, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Rozzano, Milan, Italy
| |
Collapse
|
28
|
Brachtendorf S, Wanger RA, Birod K, Thomas D, Trautmann S, Wegner MS, Fuhrmann DC, Brüne B, Geisslinger G, Grösch S. Chemosensitivity of human colon cancer cells is influenced by a p53-dependent enhancement of ceramide synthase 5 and induction of autophagy. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1214-1227. [PMID: 30059758 DOI: 10.1016/j.bbalip.2018.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/03/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Resistance against chemotherapy is a life-threatening complication in colon cancer therapy. To increase response rate, new additional targets that contribute to chemoresistance are still needed to be explored. Ceramides, which belong to the group of sphingolipids, are well-known regulators of cell death and survival, respectively. Here, we show that in human wild-type (wt) p53 HCT-116 colon cancer cells treatment with oxaliplatin or 5-fluorouracil (5-FU) leads to a strong increase in ceramide synthase 5 (CerS5) expression and C16:0-ceramide levels, which was not shown in HCT-116 lacking p53 expression (HCT-116 p53-/-). The increase in CerS5 expression occurs by stabilizing CerS5 mRNA at the 3'-UTR. By contrast, in the p53-deficient cells CerS2 expression and CerS2-related C24:0- and C24:1-ceramide levels were elevated which is possibly related to enhanced polyadenylation of the CerS2 transcript in these cells. Stable knockdown of CerS5 expression using CerS5-targeting shRNA led to an increased sensitivity of HCT-116 p53wt cells, but not of p53-/- cells, to oxaliplatin and 5-FU. Enhanced sensitivity was accompanied by an inhibition of autophagy and inhibition of mitochondrial respiration in these cells. However, knockdown of CerS2 had no significant effects on chemosensitivity of both cell lines. In conclusion, in p53wt colon cancer cells chemosensitivity against oxaliplatin or 5-FU could be enhanced by downregulation of CerS5 expression leading to reduced autophagy and mitochondrial respiration.
Collapse
Affiliation(s)
- Sebastian Brachtendorf
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Ruth Anna Wanger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Kerstin Birod
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany
| | - Dominik C Fuhrmann
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Bernhard Brüne
- Faculty of Medicine, Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Germany.
| |
Collapse
|
29
|
Trayssac M, Hannun YA, Obeid LM. Role of sphingolipids in senescence: implication in aging and age-related diseases. J Clin Invest 2018; 128:2702-2712. [PMID: 30108193 PMCID: PMC6025964 DOI: 10.1172/jci97949] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aging is defined as the progressive deterioration of physiological function with age. Incidence of many pathologies increases with age, including neurological and cardiovascular diseases and cancer. Aging tissues become less adaptable and renewable, and cells undergo senescence, a process by which they "irreversibly" stop dividing. Senescence has been shown to serve as a tumor suppression mechanism with clear desirable effects. However, senescence also has deleterious consequences, especially for cardiovascular, metabolic, and immune systems. Sphingolipids are a major class of lipids that regulate cell biology, owing to their structural and bioactive properties and diversity. Their involvement in the regulation of aging and senescence has been demonstrated and studied in multiple organisms and cell types, especially that of ceramide and sphingosine-1-phosphate; ceramide induces cellular senescence and sphingosine-1-phosphate delays it. These discoveries could be very useful in the future to understand aging mechanisms and improve therapeutic interventions.
Collapse
Affiliation(s)
- Magali Trayssac
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yusuf A. Hannun
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Lina M. Obeid
- Stony Brook Cancer Center and Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Northport Veterans Affairs Medical Center, Northport, New York, USA
| |
Collapse
|
30
|
Targeting sphingolipid metabolism as an approach for combination therapies in haematological malignancies. Cell Death Discov 2018; 4:72. [PMID: 30062053 PMCID: PMC6060109 DOI: 10.1038/s41420-018-0075-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Abstract
Conventional chemotherapy-based drug combinations have, until recently, been the backbone of most therapeutic strategies for cancer. In a time of emerging rationale drug development, targeted therapies are beginning to be added to traditional chemotherapeutics to synergistically enhance clinical responses. Of note, the importance of pro-apoptotic ceramide in mediating the anti-cancer effects of these therapies is becoming more apparent. Furthermore, reduced cellular ceramide in favour of pro-survival sphingolipids correlates with tumorigenesis and most importantly, drug resistance. Thus, agents that manipulate sphingolipid metabolism have been explored as potential anti-cancer agents and have recently demonstrated exciting potential to augment the efficacy of anti-cancer therapeutics. This review examines the biology underpinning these observations and the potential use of sphingolipid manipulating agents in the context of existing and emerging therapies for haematological malignancies. • Efficacy of many chemotherapeutics and targeted therapies is dictated by cellular ceramide levels. • Oncogene activation skews sphingolipid metabolism to favour the production of pro-survival sphingolipids. • Inhibitors of enzymes involved in ceramide metabolism exhibit promise in the relapsed-refractory setting. • Anti-cancer activity of sphingosine kinase inhibitors provides several options for new drug combinations. Open Questions • What other clinically utilised drugs rely on increases in ceramide levels for their efficacy and can they be effectively partnered with other ceramide inducing agents? • How does ceramide modulate the Bcl-2 family proteins, Mcl-1 and Bcl-2? • Are sphingolipid enzyme inhibitors best suited in the frontline or relapsed-refractory setting?
Collapse
|
31
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
32
|
Abstract
Ceramides, important players in signal transduction, interact with multiple cellular pathways, including p53 pathways. However, the relationship between ceramide and p53 is very complex, and mechanisms underlying their coregulation are diverse and not fully characterized. The role of p53, an important cellular regulator and a transcription factor, is linked to its tumor suppressor function. Ceramides are involved in the regulation of fundamental processes in cancer cells including cell death, proliferation, autophagy, and drug resistance. This regulation, however, can be pro-death or pro-survival depending on cancer type, the balance between ceramide species, the rate of their synthesis and utilization, and the availability of a specific array of downstream targets. This chapter highlights the central role of ceramide in sphingolipid metabolism, its role in cancer, specific effectors in ceramide pathways controlled by p53, and coregulation of ceramide and p53 signaling. We discuss the recent studies, which underscore the function of p53 in the regulation of ceramide pathways and the reciprocal regulation of p53 by ceramide. This complex relationship is based on several molecular mechanisms including the p53-dependent transcriptional regulation of enzymes in sphingolipid pathways, the activation of mutant p53 through ceramide-mediated alternative splicing, as well as modulation of the p53 function through direct and indirect effects on p53 coregulators and downstream targets. Further insight into the connections between ceramide and p53 will allow simultaneous targeting of the two pathways with a potential to yield more efficient anticancer therapeutics.
Collapse
Affiliation(s)
- Kristen A Jeffries
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC, United States
| | - Natalia I Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC, United States; Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
33
|
Lima S, Takabe K, Newton J, Saurabh K, Young MM, Leopoldino AM, Hait NC, Roberts JL, Wang HG, Dent P, Milstien S, Booth L, Spiegel S. TP53 is required for BECN1- and ATG5-dependent cell death induced by sphingosine kinase 1 inhibition. Autophagy 2018; 14:942-957. [PMID: 29368980 DOI: 10.1080/15548627.2018.1429875] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) and the enzyme that produces it, SPHK1 (sphingosine kinase 1), regulate many processes important for the etiology of cancer. It has been suggested that SPHK1 levels are regulated by the tumor suppressor protein TP53, a key regulator of cell cycle arrest, apoptosis, and macroautophagy/autophagy. However, little is still known of the relationship between TP53 and SPHK1 activity in the regulation of these processes. To explore this link, we examined the effects of inhibiting SPHK1 in wild-type and TP53 null cancer cell lines. SK1-I, an analog of sphingosine and isozyme-specific SPHK1 inhibitor, suppressed cancer cell growth and clonogenic survival in a TP53-dependent manner. It also more strongly enhanced intrinsic apoptosis in wild-type TP53 cells than in isogenic TP53 null cells. Intriguingly, SK1-I induced phosphorylation of TP53 on Ser15, which increases its transcriptional activity. Consequently, levels of TP53 downstream targets such as pro-apoptotic members of the BCL2 family, including BAX, BAK1, and BID were increased in wild-type but not in TP53 null cells. Inhibition of SPHK1 also increased the formation of autophagic and multivesicular bodies, and increased processing of LC3 and its localization within acidic compartments in a TP53-dependent manner. SK1-I also induced massive accumulation of vacuoles, enhanced autophagy, and increased cell death in an SPHK1-dependent manner that also required TP53 expression. Importantly, downregulation of the key regulators of autophagic flux, BECN1 and ATG5, dramatically decreased the cytotoxicity of SK1-I only in cells with TP53 expression. Hence, our results reveal that TP53 plays an important role in vacuole-associated cell death induced by SPHK1 inhibition in cancer cells.
Collapse
Affiliation(s)
- Santiago Lima
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Kazuaki Takabe
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA.,c Department of Surgery and the Massey Cancer Center , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Jason Newton
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Kumar Saurabh
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Megan M Young
- d Department of Pharmacology , Department of Pediatrics , Penn State University College of Medicine , Hershey , PA , USA
| | - Andreia Machado Leopoldino
- b Department of Clinical Analysis, Toxicology and Food Sciences , School of Pharmaceutical Sciences of Riberião Preto , University of São Paulo , Ribeirão Preto , SP , Brazil
| | - Nitai C Hait
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Jane L Roberts
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Hong-Gang Wang
- d Department of Pharmacology , Department of Pediatrics , Penn State University College of Medicine , Hershey , PA , USA
| | - Paul Dent
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Sheldon Milstien
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Laurence Booth
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| | - Sarah Spiegel
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University School of Medicine , Richmond , VA USA
| |
Collapse
|
34
|
Carroll BL, Bonica J, Shamseddine AA, Hannun YA, Obeid LM. A role for caspase-2 in sphingosine kinase 1 proteolysis in response to doxorubicin in breast cancer cells - implications for the CHK1-suppressed pathway. FEBS Open Bio 2017; 8:27-40. [PMID: 29321954 PMCID: PMC5757171 DOI: 10.1002/2211-5463.12344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 09/29/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022] Open
Abstract
Sphingosine kinase 1 (SK1) is a lipid kinase whose activity produces sphingosine 1‐phosphate, a prosurvival lipid associated with proliferation, angiogenesis, and invasion. SK1 overexpression has been observed in numerous cancers. Recent studies have demonstrated that SK1 proteolysis occurs downstream of the tumor suppressor p53 in response to several DNA‐damaging agents. Moreover, loss of SK1 in p53‐knockout mice resulted in complete protection from thymic lymphoma, providing evidence that regulation of SK1 constitutes a major tumor suppressor function of p53. Given this profound phenotype, this study aimed to investigate the mechanism by which wild‐type p53 regulates proteolysis of SK1 in response to the DNA‐damaging agent doxorubicin in breast cancer cells. We find that p53‐mediated activation of caspase‐2 was required for SK1 proteolysis and that caspase‐2 activity significantly alters the levels of endogenous sphingolipids. As p53 is mutated in 50% of all cancers, we extended our studies to investigate whether SK1 is deregulated in the context of triple‐negative breast cancer cells (TNBC) harboring a mutation in p53. Indeed, caspase‐2 was not activated in these cells and SK1 was not degraded. Moreover, caspase‐2 activation was recently shown to be downstream of the CHK1‐suppressed pathway in p53‐mutant cells, whereby inhibition of the cell cycle kinase CHK1 leads to caspase‐2 activation and apoptosis. Indeed, knockdown and inhibition of CHK1 led to the loss of SK1 in p53‐mutant TNBC cells, providing evidence that SK1 may be the first identified effector of the CHK1‐suppressed pathway.
Collapse
Affiliation(s)
- Brittany L Carroll
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Joseph Bonica
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Achraf A Shamseddine
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Yusuf A Hannun
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA
| | - Lina M Obeid
- Department of Medicine Stony Brook Cancer Center Health Sciences Center Stony Brook University NY USA.,Northport Veterans Affairs Medical Center NY USA
| |
Collapse
|
35
|
Nagahashi M, Matsuda Y, Moro K, Tsuchida J, Soma D, Hirose Y, Kobayashi T, Kosugi SI, Takabe K, Komatsu M, Wakai T. DNA damage response and sphingolipid signaling in liver diseases. Surg Today 2016; 46:995-1005. [PMID: 26514817 PMCID: PMC5053096 DOI: 10.1007/s00595-015-1270-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 10/04/2015] [Indexed: 02/06/2023]
Abstract
Patients with unresectable hepatocellular carcinoma (HCC) cannot generally be cured by systemic chemotherapy or radiotherapy due to their poor response to conventional therapeutic agents. The development of novel and efficient targeted therapies to increase their treatment options depends on the elucidation of the molecular mechanisms that underlie the pathogenesis of HCC. The DNA damage response (DDR) is a network of cell-signaling events that are triggered by DNA damage. Its dysregulation is thought to be one of the key mechanisms underlying the generation of HCC. Sphingosine-1-phosphate (S1P), a lipid mediator, has emerged as an important signaling molecule that has been found to be involved in many cellular functions. In the liver, the alteration of S1P signaling potentially affects the DDR pathways. In this review, we explore the role of the DDR in hepatocarcinogenesis of various etiologies, including hepatitis B and C infection and non-alcoholic steatohepatitis. Furthermore, we discuss the metabolism and functions of S1P that may affect the hepatic DDR. The elucidation of the pathogenic role of S1P may create new avenues of research into therapeutic strategies for patients with HCC.
Collapse
Affiliation(s)
- Masayuki Nagahashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan.
| | - Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, 951-8518, Japan
| | - Kazuki Moro
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Junko Tsuchida
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Daiki Soma
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Yuki Hirose
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Takashi Kobayashi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Shin-Ichi Kosugi
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Kazuaki Takabe
- Division of Surgical Oncology, Department of Surgery, Virginia Commonwealth University School of Medicine and the Massey Cancer Center, West Hospital 7-402, 1200 East Broad Street, Richmond, VA, 23298-0011, USA
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | - Toshifumi Wakai
- Division of Digestive and General Surgery, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| |
Collapse
|
36
|
Shamseddine AA, Clarke CJ, Carroll B, Airola MV, Mohammed S, Rella A, Obeid LM, Hannun YA. P53-dependent upregulation of neutral sphingomyelinase-2: role in doxorubicin-induced growth arrest. Cell Death Dis 2015; 6:e1947. [PMID: 26512957 PMCID: PMC4632297 DOI: 10.1038/cddis.2015.268] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 08/12/2015] [Accepted: 08/17/2015] [Indexed: 12/16/2022]
Abstract
Neutral sphingomyelinase-2 (nSMase2) is a ceramide-generating enzyme that has been implicated in growth arrest, apoptosis and exosome secretion. Although previous studies have reported transcriptional upregulation of nSMase2 in response to daunorubicin, through Sp1 and Sp3 transcription factors, the role of the DNA damage pathway in regulating nSMase2 remains unclear. In this study, we show that doxorubicin induces a dose-dependent induction of nSMase2 mRNA and protein with concomitant increases in nSMase activity and ceramide levels. Upregulation of nSMase2 was dependent on ATR, Chk1 and p53, thus placing it downstream of the DNA damage pathway. Moreover, overexpression of p53 was sufficient to transcriptionally induce nSMase2, without the need for DNA damage. DNA-binding mutants as well as acetylation mutants of p53 were unable to induce nSMase2, suggesting a role of nSMase2 in growth arrest. Moreover, knockdown of nSMase2 prevented doxorubicin-induced growth arrest. Finally, p53-induced nSMase2 upregulation appears to occur via a novel transcription start site upstream of exon 3. These results identify nSMase2 as a novel p53 target gene, regulated by the DNA damage pathway to induce cell growth arrest.
Collapse
Affiliation(s)
- A A Shamseddine
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
| | - C J Clarke
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
| | - B Carroll
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
| | - M V Airola
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
| | - S Mohammed
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
| | - A Rella
- Stony Brook University Cancer Center, Stony Brook, NY 11794-8430, USA
| | - L M Obeid
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
- Department of Microbiology and Immunology at Stony Brook University, Stony Brook, NY 11794-8430, USA
| | - Y A Hannun
- Department of Medicine, Stony Brook University, Health Science Center, Stony Brook, NY 11794-8430, USA
- Stony Brook University Cancer Center, Stony Brook, NY 11794-8430, USA
- The Northport Veterans Affairs Hospital, Northport, NY 11768, USA
| |
Collapse
|
37
|
Carroll B, Donaldson JC, Obeid L. Sphingolipids in the DNA damage response. Adv Biol Regul 2014; 58:38-52. [PMID: 25434743 DOI: 10.1016/j.jbior.2014.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 12/16/2022]
Abstract
Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate.
Collapse
Affiliation(s)
- Brittany Carroll
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jane Catalina Donaldson
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina Obeid
- Northport VA Medical Center, Northport, NY 11768, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
38
|
Ishitsuka A, Fujine E, Mizutani Y, Tawada C, Kanoh H, Banno Y, Seishima M. FTY720 and cisplatin synergistically induce the death of cisplatin-resistant melanoma cells through the downregulation of the PI3K pathway and the decrease in epidermal growth factor receptor expression. Int J Mol Med 2014; 34:1169-74. [PMID: 25109763 DOI: 10.3892/ijmm.2014.1882] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/31/2014] [Indexed: 11/06/2022] Open
Abstract
Sphingosine kinase (SK), a key enzyme in sphingosine-1-phosphate (S1P) synthesis, is known to be overexpressed in various types of cancer cells. The effects of anticancer agents on SK1/S1P signaling have not yet been fully assessed in melanoma cells. In the present study, we investigated the effects of the combination of FTY720, an S1P receptor antagonist, and cisplatin, a DNA-damaging agent, on the induction of the death of human melanoma cells, as well as the molecular mechanisms involved. The viability of various human melanoma cell lines was examined following treatment with anticancer drugs. The cisplatin-resistant SK-Mel-28 and cisplatin-sensitive A375 cell lines were selected for this analysis. Protein expression and apoptotic rates were evaluated by western blot analysis following treatment with cisplatin and/or FTY720. Following treatment with a combination of FTY720 and cisplatin, cell viability significantly decreased and the expression of apoptosis-associated cleaved poly(ADP-ribose) polymerase (PARP) was significantly higher in comparison to treatment with cisplatin alone in the SK-Mel-28 cells. In addition, the combination of FTY720 and cisplatin reduced the protein expression of SK1 and the phosphorylation levels of phosphoinositide 3-kinase (PI3K), Akt and mTOR in the SK-Mel-28 cells; the expression of epidermal growth factor receptor (EGFR) was also markedly reduced. These findings suggest that FTY720 and cisplatin synergistically induce cell death through the downregulation of the PI3K/Akt/mTOR pathway and the decrease in EGFR expression in SK-Mel-28 cells. Thus, the combination of FTY720 and cisplatin may have therapeutic potential for chemotherapy-resistant melanoma, and the effects are likely exerted through the downregulation of S1P signaling.
Collapse
Affiliation(s)
- Asako Ishitsuka
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Etsuko Fujine
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoko Mizutani
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Chisato Tawada
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyuki Kanoh
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Yoshiko Banno
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mariko Seishima
- Department of Dermatology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
39
|
Gassowska M, Cieslik M, Wilkaniec A, Strosznajder JB. Sphingosine kinases/sphingosine-1-phosphate and death Signalling in APP-transfected cells. Neurochem Res 2014; 39:645-52. [PMID: 24452756 PMCID: PMC3962740 DOI: 10.1007/s11064-014-1240-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/07/2013] [Accepted: 01/09/2014] [Indexed: 02/06/2023]
Abstract
It has been postulated that disturbances in the sphingolipid metabolism play a key role in the pathogenesis of Alzheimer’s disease (AD). An alteration in sphingosine kinases 1, 2 (SphK1/2) and sphingosine-1-phosphate (S1P) was recently reported in AD. However, the effect of AD-related amyloid beta (Aβ) peptides on SphK1/2 and the role of S1P in Aβ toxicity have not been fully elucidated. In this study the relationship between the Aβ concentration and SphK1/2 expression/activity was analysed in PC12 cells transfected with the Aβ precursor protein, wild-type (APPwt) or bearing a double Swedish mutation (APPsw). The role of SphK(s)/S1P in cell survival and death was also investigated. Our results indicated that endogenously liberated Aβ significantly decreases expression and activity of SphK1/2. The SphK(s) inhibitor (SKI II, 10 μM) decreased the viability of APPwt, APPsw as well as empty vector-transfected PC12 control cells. Our data demonstrated that expression of S1P receptor-1 (S1P1) was significantly reduced in APP-transfected cells. The effect of S1P applied exogenously was cell type-dependent. In control and APPwt cells S1P reduced the effect of the SphK1 inhibitor on death signalling. Conversely, it decreased the survival of APPsw cells and had no protective effect on cells treated with SKI II. Using the S1P1 agonist (SEW2871, 5 μM) and antagonist (W123, 20 μM), we demonstrated that the cytoprotective effect of S1P was receptor-independent. Summarising, we showed that Aβ peptides evoke down-regulation of gene expression and activity for SphK(s) and S1P1. Inhibition of SphK(s) significantly decreased cell survival. The effect of exogenous S1P depended on the concentration of Aβ peptides.
Collapse
Affiliation(s)
- Magdalena Gassowska
- Department of Cellular Signalling, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5, 02-106, Warsaw, Poland
| | | | | | | |
Collapse
|
40
|
Truman JP, García-Barros M, Obeid LM, Hannun YA. Evolving concepts in cancer therapy through targeting sphingolipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1841:1174-88. [PMID: 24384461 DOI: 10.1016/j.bbalip.2013.12.013] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 12/18/2013] [Accepted: 12/21/2013] [Indexed: 12/29/2022]
Abstract
Traditional methods of cancer treatment are limited in their efficacy due to both inherent and acquired factors. Many different studies have shown that the generation of ceramide in response to cytotoxic therapy is generally an important step leading to cell death. Cancer cells employ different methods to both limit ceramide generation and to remove ceramide in order to become resistant to treatment. Furthermore, sphingosine kinase activity, which phosphorylates sphingosine the product of ceramide hydrolysis, has been linked to multidrug resistance, and can act as a strong survival factor. This review will examine several of the most frequently used cancer therapies and their effect on both ceramide generation and the mechanisms employed to remove it. The development and use of inhibitors of sphingosine kinase will be focused upon as an example of how targeting sphingolipid metabolism may provide an effective means to improve treatment response rates and reduce associated treatment toxicity. This article is part of a Special Issue entitled Tools to study lipid functions.
Collapse
Affiliation(s)
- Jean-Philip Truman
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Mónica García-Barros
- Health Science Center, Stony Brook University, 100 Nicolls Road, T15, 023, 11794 Stony Brook, NY, USA.
| | - Lina M Obeid
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA; Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| | - Yusuf A Hannun
- Department of Medicine and the Stony Brook Cancer Center, Health Science Center, Stony Brook University, 100 Nicolls Road, L4, 178, 11794 Stony Brook, NY, USA.
| |
Collapse
|
41
|
Emerging roles of lipids in BCL-2 family-regulated apoptosis. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1542-54. [DOI: 10.1016/j.bbalip.2013.03.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/28/2013] [Accepted: 03/02/2013] [Indexed: 01/06/2023]
|
42
|
Cuvillier O, Ader I, Bouquerel P, Brizuela L, Gstalder C, Malavaud B. Hypoxia, therapeutic resistance, and sphingosine 1-phosphate. Adv Cancer Res 2013; 117:117-41. [PMID: 23290779 DOI: 10.1016/b978-0-12-394274-6.00005-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hypoxia, defined as a poor oxygenation, has been long recognized as a hallmark of solid tumors and a negative prognostic factor for response to therapeutics and survival of patients. Cancer cells have evolved biochemical mechanisms that allow them to react and adapt to hypoxia. At the cellular level, this adaptation is under the control of two related transcription factors, HIF-1 and HIF-2 (hypoxia-inducible factor), that respond rapidly to decreased oxygen levels to activate the expression of a broad range of genes promoting neoangiogenesis, glycolysis, metastasis, increased tumor growth, and resistance to treatments. Recent studies have identified the sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) signaling pathway-which elicits various cellular processes including cell proliferation, cell survival, or angiogenesis-as a new regulator of HIF-1 or HIF-2 activity. In this review, we will focus on how the inhibition/neutralization of the SphK1/S1P signaling could be exploited for cancer therapy.
Collapse
Affiliation(s)
- Olivier Cuvillier
- CNRS, Institut de Pharmacologie et de Biologie Structurale, Toulouse, France; Université de Toulouse, Toulouse, France.
| | | | | | | | | | | |
Collapse
|
43
|
Sphingosine kinase 1 plays a role in the upregulation of CD44 expression through extracellular signal-regulated kinase signaling in human colon cancer cells. Anticancer Drugs 2013; 24:473-83. [DOI: 10.1097/cad.0b013e32835f705f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
44
|
Hage-Sleiman R, Esmerian MO, Kobeissy H, Dbaibo G. p53 and Ceramide as Collaborators in the Stress Response. Int J Mol Sci 2013; 14:4982-5012. [PMID: 23455468 PMCID: PMC3634419 DOI: 10.3390/ijms14034982] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 01/22/2013] [Accepted: 02/01/2013] [Indexed: 02/08/2023] Open
Abstract
The sphingolipid ceramide mediates various cellular processes in response to several extracellular stimuli. Some genotoxic stresses are able to induce p53-dependent ceramide accumulation leading to cell death. However, in other cases, in the absence of the tumor suppressor protein p53, apoptosis proceeds partly due to the activity of this "tumor suppressor lipid", ceramide. In the current review, we describe ceramide and its roles in signaling pathways such as cell cycle arrest, hypoxia, hyperoxia, cell death, and cancer. In a specific manner, we are elaborating on the role of ceramide in mitochondrial apoptotic cell death signaling. Furthermore, after highlighting the role and mechanism of action of p53 in apoptosis, we review the association of ceramide and p53 with respect to apoptosis. Strikingly, the hypothesis for a direct interaction between ceramide and p53 is less favored. Recent data suggest that ceramide can act either upstream or downstream of p53 protein through posttranscriptional regulation or through many potential mediators, respectively.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +961-1-350-000 (ext. 4883)
| | - Maria O. Esmerian
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Hadile Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Infectious Diseases, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mails: (M.O.E.); (G.D.)
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236 Riad El Solh, 1107 2020 Beirut, Lebanon; E-Mail:
| |
Collapse
|
45
|
Gandy KAO, Obeid LM. Regulation of the sphingosine kinase/sphingosine 1-phosphate pathway. Handb Exp Pharmacol 2013:275-303. [PMID: 23563662 DOI: 10.1007/978-3-7091-1511-4_14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingolipids have emerged as pleiotropic signaling molecules with roles in numerous cellular and biological functions. Defining the regulatory mechanisms governing sphingolipid metabolism is crucial in order to develop a complete understanding of the biological functions of sphingolipid metabolites. The sphingosine kinase/ sphingosine 1-phosphate pathway was originally thought to function in the irreversible breakdown of sphingoid bases; however, in the last few decades it has materialized as an extremely important signaling pathway involved in a plethora of cellular events contributing to both normal and pathophysiological events. Recognition of the SK/S1P pathway as a second messaging system has aided in the identification of many mechanisms of its regulation; however, a cohesive, global understanding of the regulatory mechanisms controlling the SK/S1P pathway is lacking. In this chapter, the role of the SK/S1P pathway as a second messenger is discussed, and its role in mediating TNF-α- and EGF-induced biologies is examined. This work provides a comprehensive look into the roles and regulation of the sphingosine kinase/ sphingosine 1-phosphate pathway and highlights the potential of the pathway as a therapeutic target.
Collapse
Affiliation(s)
- K Alexa Orr Gandy
- The Department of Molecular and Cellular Biology and Pathobiology, The Medical University of South Carolina, Charleston, SC 29425, USA
| | | |
Collapse
|
46
|
Post-translational regulation of sphingosine kinases. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:147-56. [DOI: 10.1016/j.bbalip.2012.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 12/22/2022]
|
47
|
Abstract
In this chapter, we review the latest developments concerning the role of sphingosine 1-phosphate (S1P) in cancer. Particular focus is paid to the role of sphingosine kinases 1 and 2, S1P lyase and S1P-dependent signalling networks in both solid tumours and haematological cancer. The potential of this S1P-dependent pathophysiology as a therapeutic target for the treatment of cancer is also discussed.
Collapse
|
48
|
Goldstein I, Rotter V. Regulation of lipid metabolism by p53 - fighting two villains with one sword. Trends Endocrinol Metab 2012; 23:567-75. [PMID: 22819212 DOI: 10.1016/j.tem.2012.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 01/01/2023]
Abstract
Both cellular and systemic metabolism of lipids are paramount for homeostasis, and their malfunction leads to devastating pathologies. Recently, exciting findings have linked the p53 tumor suppressor to the regulation of lipid metabolism. Here, we summarize these findings showing a clear role for p53 in enhancing lipid catabolism while inhibiting its anabolism. We also describe the multitude of genes regulated by p53 that participate in or regulate systemic lipid transport. From the compilation of available data a scenario is emerging in which p53 regulates genes involved in lipid metabolism - both in a cancer-preventive effort and, intriguingly, as a means to prevent atherosclerosis. Thus, by regulating lipid metabolism, p53 fights the two major causes of death worldwide - atherosclerosis and cancer.
Collapse
Affiliation(s)
- Ido Goldstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100 Israel
| | | |
Collapse
|
49
|
The control of the balance between ceramide and sphingosine-1-phosphate by sphingosine kinase: Oxidative stress and the seesaw of cell survival and death. Comp Biochem Physiol B Biochem Mol Biol 2012; 163:26-36. [DOI: 10.1016/j.cbpb.2012.05.006] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 05/09/2012] [Accepted: 05/12/2012] [Indexed: 12/19/2022]
|
50
|
Shirakura Y, Kikuchi K, Matsumura K, Mukai K, Mitsutake S, Igarashi Y. 4,8-Sphingadienine and 4-hydroxy-8-sphingenine activate ceramide production in the skin. Lipids Health Dis 2012; 11:108. [PMID: 22937840 PMCID: PMC3477085 DOI: 10.1186/1476-511x-11-108] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/19/2012] [Indexed: 11/16/2022] Open
Abstract
Background Ingestion of glucosylceramide improves transepidermal water loss (TEWL) from the skin, but the underlying mechanism by which a small amount of dietary glucosylceramide can vastly improve skin conditions remains unclear. In a previous report, glucosylceramides were shown to be digested to sphingoids, which were shown to be absorbed through the intestinal epithelium. Based on these observations, we hypothesized that sphingoids are the key molecules facilitating endogenous ceramide production. In this study, we assessed the effect of 4,8-sphingadienine (d18:2) and 4-hydroxy-8-sphingenine (t18:1), derived from konjac glucosylceramide, on stimulating ceramide production. Methods Konjac glucosylceramide acidolysis was performed using hydrochloric acid; the resulting d18:2 and t18:1 were fractionated by column chromatography. Real-time quantitative RT-PCR was performed to assess the effect of d18:2 and t18:1 on gene expression in normal human epidermal keratinocytes, while their effect on the nuclear receptor, peroxisome proliferator-activated receptor (PPAR)γ, was measured using a receptor-cofactor assay system. The effect of d18:2 and t18:1 on stimulating ceramide production was evaluated using HPTLC analysis in a 3-dimensional human skin model. Results We noted the upregulation of genes related to de novo ceramide synthesis as well as of those encoding the elongases of very long-chain fatty acids by d18:2 and t18:1, but not by glucosylceramide and 4-sphingenine. Both these sphingoids also facilitated the expression of PPARβ/δ and PPARγ; moreover, they also demonstrated ligand activity for PPARγ. These results indicated that d18:2 and t18:1 promote the differentiation of keratinocytes. Analysis of the lipids within the 3-dimensional human skin model indicated that treatment with d18:2 and t18:1 not only upregulated gene expression but also increased ceramide production. Conclusions The sphingoids d18:2 and t18:1 activated genes related to de novo ceramide synthesis and increased ceramide production, whereas glucosylceramide and 4-sphingenine could not. These results suggest that the effect of dietary glucosylceramides on the skin is mediated by d18:2 and t18:1.
Collapse
|