1
|
Tachibana S, Hayashi S, Ikuta K, Anjiki K, Onoi Y, Suda Y, Wada K, Maeda T, Saito A, Tsubosaka M, Kamenaga T, Kuroda Y, Nakano N, Matsumoto T, Hosooka T, Ogawa W, Kuroda R. Downregulation of Krüppel-like factor 15 expression delays endochondral bone ossification during fracture healing. Bone 2024; 190:117302. [PMID: 39437873 DOI: 10.1016/j.bone.2024.117302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The role of Krüppel-like zinc finger transcription factor 15 (KLF15) in endochondral ossification during fracture healing remains unexplored. In this study, we aimed to elucidate the impact of KLF15 in a mouse model of tibial transverse fracture. METHODS We created tamoxifen-inducible, cartilage-specific KLF15 knockout mice (KLF15 KO). KLF15 fl/fl Col2-CreERT mice from the same litters as the KLF15 KO mice, but not treated with 4-hydroxytamoxifen, were used as controls (CT). At 10 weeks, male KLF15 KO and CT mice underwent tibial fracture followed by intramedullary nailing. Both groups were administered tamoxifen at days 0, 3, and 7 after surgery. The tibiae were harvested on post-surgery days 7, 10, and 14 for radiological assessment using micro-computed tomography. Histological staining (Safranin-O) and immunohistochemistry for KLF15, SOX9, Indian hedgehog (IHH), RUNX2, and Osterix were performed. Additionally, cartilage from mouse fetus was cultured for qRT-PCR and western blot analyses of KLF15, SOX9, IHH, Col2, RUNX2, Osterix, TGF-β, SMAD3, and phosphor-SMAD3. RESULTS The radiological assessment revealed that immature callus formation was delayed in KLF15 KO, compared with that in CT, peaking on day 14 compared with that on day 10 in CT. KLF15 KO mice exhibited delayed fracture healing and reduced Safranin-O staining at days 7 and 10 post-surgery. The ratio of cells positive for KLF15 and SOX9 was significantly lower in KLF15 KO than in CT, whereas the ratios for IHH, RUNX2, and Osterix showed no significant difference. RT-PCR revealed reduced expression of KLF15, SOX9, and COL2, with no significant changes in IHH, Osterix, RUNX2, TGF-β, and SMAD3. Western blot analysis indicated decreased SMAD3 phosphorylation in KLF15 KO mice. CONCLUSION KLF15 regulates SOX9 via the TGF-β-SMAD3-SOX9 pathway, independent of IHH, in endochondral ossification. The KLF15 deficiency decreases SOX9 expression through reduced SMAD3 phosphorylation, subsequently delaying fracture healing.
Collapse
Affiliation(s)
- Shotaro Tachibana
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinya Hayashi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan.
| | - Kemmei Ikuta
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Anjiki
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuma Onoi
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihito Suda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kensuke Wada
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Saito
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Kamenaga
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Nakano
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tetsuya Hosooka
- Laboratory of Nutritional Physiology, Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Wataru Ogawa
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
2
|
Vlahopoulos SA. Divergent Processing of Cell Stress Signals as the Basis of Cancer Progression: Licensing NFκB on Chromatin. Int J Mol Sci 2024; 25:8621. [PMID: 39201306 PMCID: PMC11354898 DOI: 10.3390/ijms25168621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Inflammation is activated by diverse triggers that induce the expression of cytokines and adhesion molecules, which permit a succession of molecules and cells to deliver stimuli and functions that help the immune system clear the primary cause of tissue damage, whether this is an infection, a tumor, or a trauma. During inflammation, short-term changes in the expression and secretion of strong mediators of inflammation occur, while long-term changes occur to specific groups of cells. Long-term changes include cellular transdifferentiation for some types of cells that need to regenerate damaged tissue, as well as death for specific immune cells that can be detrimental to tissue integrity if they remain active beyond the boundaries of essential function. The transcriptional regulator NFκB enables some of the fundamental gene expression changes during inflammation, as well as during tissue development. During recurrence of malignant disease, cell stress-induced alterations enable the growth of cancer cell clones that are substantially resistant to therapeutic intervention and to the immune system. A number of those alterations occur due to significant defects in feedback signal cascades that control the activity of NFκB. Specifically, cell stress contributes to feedback defects as it overrides modules that otherwise control inflammation to protect host tissue. NFκB is involved in both the suppression and promotion of cancer, and the key distinctive feature that determines its net effect remains unclear. This paper aims to provide a clear answer to at least one aspect of this question, namely the mechanism that enables a divergent response of cancer cells to critical inflammatory stimuli and to cell stress in general.
Collapse
|
3
|
Zhu S, Chen W, Masson A, Li YP. Cell signaling and transcriptional regulation of osteoblast lineage commitment, differentiation, bone formation, and homeostasis. Cell Discov 2024; 10:71. [PMID: 38956429 PMCID: PMC11219878 DOI: 10.1038/s41421-024-00689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 05/04/2024] [Indexed: 07/04/2024] Open
Abstract
The initiation of osteogenesis primarily occurs as mesenchymal stem cells undergo differentiation into osteoblasts. This differentiation process plays a crucial role in bone formation and homeostasis and is regulated by two intricate processes: cell signal transduction and transcriptional gene expression. Various essential cell signaling pathways, including Wnt, BMP, TGF-β, Hedgehog, PTH, FGF, Ephrin, Notch, Hippo, and Piezo1/2, play a critical role in facilitating osteoblast differentiation, bone formation, and bone homeostasis. Key transcriptional factors in this differentiation process include Runx2, Cbfβ, Runx1, Osterix, ATF4, SATB2, and TAZ/YAP. Furthermore, a diverse array of epigenetic factors also plays critical roles in osteoblast differentiation, bone formation, and homeostasis at the transcriptional level. This review provides an overview of the latest developments and current comprehension concerning the pathways of cell signaling, regulation of hormones, and transcriptional regulation of genes involved in the commitment and differentiation of osteoblast lineage, as well as in bone formation and maintenance of homeostasis. The paper also reviews epigenetic regulation of osteoblast differentiation via mechanisms, such as histone and DNA modifications. Additionally, we summarize the latest developments in osteoblast biology spurred by recent advancements in various modern technologies and bioinformatics. By synthesizing these insights into a comprehensive understanding of osteoblast differentiation, this review provides further clarification of the mechanisms underlying osteoblast lineage commitment, differentiation, and bone formation, and highlights potential new therapeutic applications for the treatment of bone diseases.
Collapse
Affiliation(s)
- Siyu Zhu
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| | - Alasdair Masson
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
4
|
Kealy L, Runting J, Thiele D, Scheer S. An emerging maestro of immune regulation: how DOT1L orchestrates the harmonies of the immune system. Front Immunol 2024; 15:1385319. [PMID: 38962004 PMCID: PMC11219580 DOI: 10.3389/fimmu.2024.1385319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/04/2024] [Indexed: 07/05/2024] Open
Abstract
The immune system comprises a complex yet tightly regulated network of cells and molecules that play a critical role in protecting the body from infection and disease. The activity and development of each immune cell is regulated in a myriad of ways including through the cytokine milieu, the availability of key receptors, via tailored intracellular signalling cascades, dedicated transcription factors and even by directly modulating gene accessibility and expression; the latter is more commonly known as epigenetic regulation. In recent years, epigenetic regulators have begun to emerge as key players involved in modulating the immune system. Among these, the lysine methyltransferase DOT1L has gained significant attention for its involvement in orchestrating immune cell formation and function. In this review we provide an overview of the role of DOT1L across the immune system and the implications of this role on health and disease. We begin by elucidating the general mechanisms of DOT1L-mediated histone methylation and its impact on gene expression within immune cells. Subsequently, we provide a detailed and comprehensive overview of recent studies that identify DOT1L as a crucial regulator of immune cell development, differentiation, and activation. Next, we discuss the potential mechanisms of DOT1L-mediated regulation of immune cell function and shed light on how DOT1L might be contributing to immune cell homeostasis and dysfunction. We then provide food for thought by highlighting some of the current obstacles and technical limitations precluding a more in-depth elucidation of DOT1L's role. Finally, we explore the potential therapeutic implications of targeting DOT1L in the context of immune-related diseases and discuss ongoing research efforts to this end. Overall, this review consolidates the current paradigm regarding DOT1L's role across the immune network and emphasises its critical role in governing the healthy immune system and its potential as a novel therapeutic target for immune-related diseases. A deeper understanding of DOT1L's immunomodulatory functions could pave the way for innovative therapeutic approaches which fine-tune the immune response to enhance or restore human health.
Collapse
Affiliation(s)
- Liam Kealy
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Jessica Runting
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Daniel Thiele
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Sebastian Scheer
- Immunity Program, The Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Lin J, Wu Y, Tian G, Yu D, Yang E, Lam WH, Liu Z, Jing Y, Dang S, Bao X, Wong JWH, Zhai Y, Li XD. Menin "reads" H3K79me2 mark in a nucleosomal context. Science 2023; 379:717-723. [PMID: 36795828 DOI: 10.1126/science.adc9318] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Methylation of histone H3 lysine-79 (H3K79) is an epigenetic mark for gene regulation in development, cellular differentiation, and disease progression. However, how this histone mark is translated into downstream effects remains poorly understood owing to a lack of knowledge about its readers. We developed a nucleosome-based photoaffinity probe to capture proteins that recognize H3K79 dimethylation (H3K79me2) in a nucleosomal context. In combination with a quantitative proteomics approach, this probe identified menin as a H3K79me2 reader. A cryo-electron microscopy structure of menin bound to an H3K79me2 nucleosome revealed that menin engages with the nucleosome using its fingers and palm domains and recognizes the methylation mark through a π-cation interaction. In cells, menin is selectively associated with H3K79me2 on chromatin, particularly in gene bodies.
Collapse
Affiliation(s)
- Jianwei Lin
- Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Yiping Wu
- Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Gaofei Tian
- Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Daqi Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Eunjeong Yang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.,Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Wai Hei Lam
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Zheng Liu
- Department of Chemistry, University of Hong Kong, Hong Kong SAR, China
| | - Yihang Jing
- Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shangyu Dang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiucong Bao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Jason Wing Hon Wong
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China.,Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Yuanliang Zhai
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Xiang David Li
- Department of Chemistry, University of Hong Kong, Hong Kong SAR, China.,Greater Bay Biomedical InnoCenter, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
6
|
Troka I, Griffanti G, Canaff L, Hendy GN, Goltzman D, Nazhat SN. Effect of Menin Deletion in Early Osteoblast Lineage on the Mineralization of an In Vitro 3D Osteoid-like Dense Collagen Gel Matrix. Biomimetics (Basel) 2022; 7:biomimetics7030101. [PMID: 35892371 PMCID: PMC9329857 DOI: 10.3390/biomimetics7030101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/16/2022] [Indexed: 02/05/2023] Open
Abstract
Bone has a complex microenvironment formed by an extracellular matrix (ECM) composed mainly of mineralized type I collagen fibres. Bone ECM regulates signaling pathways important in the differentiation of osteoblast-lineage cells, necessary for bone mineralization and in preserving tissue architecture. Compared to conventional 2D cell cultures, 3D in vitro models may better mimic bone ECM and provide an environment to support osteoblastic differentiation. In this study, a biomimetic 3D osteoid-like dense collagen gel model was used to investigate the role of the nuclear protein menin plays in osteoblastic differentiation and matrix mineralization. Previous in vitro and in vivo studies have shown that when expressed at later stages of osteoblastic differentiation, menin modulates osteoblastogenesis and regulates bone mass in adult mice. To investigate the role of menin when expressed at earlier stages of the osteoblastic lineage, conditional knockout mice in which the Men1 gene is specifically deleted early (i.e., at the level of the pluripotent mesenchymal stem cell lineage), where generated and primary calvarial osteoblasts were cultured in plastically compressed dense collagen gels for 21 days. The proliferation, morphology and differentiation of isolated seeded primary calvarial osteoblasts from knockout (Prx1-Cre; Men1f/f) mice were compared to those isolated from wild-type (Men1f/f) mice. Primary calvarial osteoblasts from knockout and wild-type mice did not show differences in terms of proliferation. However, in comparison to wild-type cells, primary osteoblast cells derived from knockout mice demonstrated deficient mineralization capabilities and an altered gene expression profile when cultured in 3D dense collagen gels. In summary, these findings indicate that when expressed at earlier stages of osteoblast differentiation, menin is important in maintaining matrix mineralization in 3D dense collagen gel matrices, in vitro.
Collapse
Affiliation(s)
- Ildi Troka
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Gabriele Griffanti
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
| | - Lucie Canaff
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Geoffrey N. Hendy
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - David Goltzman
- Department of Medicine, McGill University and McGill University Health Centre, Montreal, QC H4A 3J1, Canada; (L.C.); (D.G.)
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC H3A 0C5, Canada;
- Correspondence:
| |
Collapse
|
7
|
Lu Y, Zhao J, Tian Y, Shao D, Zhang Z, Li S, Li J, Zhang H, Wang W, Jiao P, Ma J. Dichotomous Roles of Men1 in Macrophages and Fibroblasts in Bleomycin-Induced Pulmonary Fibrosis. Int J Mol Sci 2022; 23:ijms23105385. [PMID: 35628193 PMCID: PMC9140697 DOI: 10.3390/ijms23105385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/19/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022] Open
Abstract
Pulmonary fibrosis therapy is limited by the unclear mechanism of its pathogenesis. C57BL/6 mice were used to construct the pulmonary fibrosis model in this study. The results showed that Men1, which encodes menin protein, was significantly downregulated in bleomycin (BLM)—induced pulmonary fibrosis. Mice were made to overexpress or had Men1 knockdown with adeno-associated virus (AAV) infection and then induced with pulmonary fibrosis. BLM—induced pulmonary fibrosis was attenuated by Men1 overexpression and exacerbated by Men1 knockdown. Further analysis revealed the distinct roles of Men1 in fibroblasts and macrophages. Men1 inhibited fibroblast activation and extracellular matrix (ECM) protein expression while promoting macrophages to be profibrotic (M2) phenotype and enhancing their migration. Accordingly, pyroptosis was potentiated by Men1 in mouse peritoneal macrophages (PMCs) and lung tissues upon BLM stimulation. Furthermore, the expression of profibrotic factor OPN was positively regulated by menin in Raw264.7 cells and lung tissues by binding to the OPN promoter region. Taken together, although Men1 showed antifibrotic properties in BLM—induced pulmonary fibrosis mice, conflictive roles of Men1 were displayed in fibroblasts and macrophages. The profibrotic role of Men1 in macrophages may occur via the regulation of macrophage pyroptosis and OPN expression. This study extends the current pathogenic understanding of pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ping Jiao
- Correspondence: (P.J.); (J.M.); Tel.: +86-431-8561-9289 (P.J.); +86-431-8561-9719 (J.M.)
| | - Jie Ma
- Correspondence: (P.J.); (J.M.); Tel.: +86-431-8561-9289 (P.J.); +86-431-8561-9719 (J.M.)
| |
Collapse
|
8
|
Ma Q, Song C, Yin B, Shi Y, Ye L. The role of Trithorax family regulating osteogenic and Chondrogenic differentiation in mesenchymal stem cells. Cell Prolif 2022; 55:e13233. [PMID: 35481717 PMCID: PMC9136489 DOI: 10.1111/cpr.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/17/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) hold great promise and clinical efficacy in bone/cartilage regeneration. With a deeper understanding of stem cell biology over the past decade, epigenetics stands out as one of the most promising ways to control MSCs differentiation. Trithorax group (TrxG) proteins, including the COMPASS family, ASH1L, CBP/p300 as histone modifying factors, and the SWI/SNF complexes as chromatin remodelers, play an important role in gene expression regulation during the process of stem cell differentiation. This review summarises the components and functions of TrxG complexes. We provide an overview of the regulation mechanisms of TrxG in MSCs osteogenic and chondrogenic differentiation, and discuss the prospects of epigenetic regulation mediated by TrxG in bone and cartilage regeneration.
Collapse
Affiliation(s)
- Qingge Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenghao Song
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shi
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Gorbacheva A, Eremkina A, Goliusova D, Krupinova J, Mokrysheva N. The role of menin in bone pathology. Endocr Connect 2022; 11:EC-21-0494.R2. [PMID: 35148273 PMCID: PMC8942318 DOI: 10.1530/ec-21-0494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 12/02/2022]
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is the most common cause of hereditary primary hyperparathyroidism (PHPT). Bone disorders are considered one of the key symptoms in PHPT present with the significant reduction in bone mineral density and low-energy fractures. Previously, these bone disorders were believed to be caused solely by the increase in the level of parathyroid hormone and its subsequent effect on bone resorption. The current paradigm, however, states that the mutations in the menin gene, which cause the development of MEN1, can also affect the metabolism of the cells of the osteoid lineage. This review analyzes both the proven and the potential intracellular mechanisms through which menin can affect bone metabolism.
Collapse
Affiliation(s)
- Anna Gorbacheva
- Endocrinology Research Center, Moscow, Russian Federation
- Correspondence should be addressed to A Gorbacheva:
| | - Anna Eremkina
- Endocrinology Research Center, Moscow, Russian Federation
| | | | | | | |
Collapse
|
10
|
Abi‐Rafeh J, Asgari M, Troka I, Canaff L, Moussa A, Pasini D, Goltzman D. Genetic deletion of menin in mouse mesenchymal stem cells: an experimental and computational analysis. JBMR Plus 2022; 6:e10622. [PMID: 35509630 PMCID: PMC9059475 DOI: 10.1002/jbm4.10622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 11/16/2022] Open
Abstract
Loss‐of‐function mutations in the MEN1 tumor‐suppressor gene cause the multiple endocrine neoplasia type 1 syndrome. Menin, the MEN1 gene product, is expressed in many tissues, including bone, where its function remains elusive. We conditionally inactivated menin in mesenchymal stem cells (MSCs) using paired‐related homeobox 1 (Prx1)‐Cre and compared resultant skeletal phenotypes of Prx1‐Cre;Men1f/f menin‐knockout mice (KO) and wild‐type controls using in vivo and in vitro experimental approaches and mechanics simulation. Dual‐energy X‐ray absorptiometry demonstrated significantly reduced bone mineral density, and 3‐dimensional micro‐CT imaging revealed a decrease in trabecular bone volume, altered trabecular structure, and an increase in trabecular separation in KO mice at 6 and 9 months of age. Numbers of osteoblasts were unaltered, and dynamic histomorphometry demonstrated unaltered bone formation; however, osteoclast number and activity and receptor activator of NF‐κB ligand/osteoprotegerin (RANKL/OPG) mRNA profiles were increased, supporting increased osteoclastogenesis and bone resorption. In vitro, proliferative capabilities of bone marrow stem cells and differentiation of osteoblasts and mineralization were unaltered; however, osteoclast generation was increased. Gross femur geometrical alterations observed included significant reductions in length and in mid‐metaphyseal cross‐sectional area. Atomic force microscopy demonstrated significant decreases in elasticity of both cortical and trabecular bone at the nanoscale, whereas three‐point bending tests demonstrated a 30% reduction in bone stiffness; finite element analysis showed morphological changes of the femur microgeometry and a significantly diminished femur flexural rigidity. The biomechanical results demonstrated the detrimental outcome of the accelerated osteoclastic bone resorption. Our studies have a twofold implication; first, MEN1 deletion from MSCs can negatively regulate bone mass and bone biomechanics, and second, the experimental and computational biomechanical analyses employed in the present study should be applicable for improved phenotypic characterization of murine bone. Furthermore, our findings of critical menin function in bone may underpin the more severe skeletal phenotype found in hyperparathyroidism associated with loss‐of‐function of the MEN1 gene. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jad Abi‐Rafeh
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Meisam Asgari
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
- Theoretical and Applied Mechanics Program School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road Evanston IL USA
| | - Ildi Troka
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Lucie Canaff
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| | - Ahmed Moussa
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
| | - Damiano Pasini
- Department of Mechanical Engineering McGill University, 817 Sherbrooke Street West Montreal QC Canada
| | - David Goltzman
- Department of Medicine McGill University and McGill University Health Centre Montreal Quebec Canada
| |
Collapse
|
11
|
Еремкина АК, Сазонова ДВ, Бибик ЕЕ, Шейхова АЗ, Хайриева АВ, Буклемишев ЮВ, Мокрышева НГ. [Severe bone complications of primary hyperparathyroidism in a young patient with the rare verified mutation of MEN1]. PROBLEMY ENDOKRINOLOGII 2022; 68:81-93. [PMID: 35262299 PMCID: PMC9761876 DOI: 10.14341/probl12864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Multiple endocrine neoplasia type 1 syndrome (MEN1) is a rare inherited disorder that can include combinations of more than 20 endocrine and non-endocrine tumors. Unfortunately, none of the described MEN1 mutations has been associated with a peculiar clinical phenotype, even within members of the same family, thus a genotype-to-phenotype correlation does not exist. MEN1 syndrome is the most common cause of hereditary primary hyperparathyroidism (PHPT), the disease penetrance of which exceeds 50% by the age of 20 and reaches 95% by the age of 40. At the same time, PHPT with hyperplasia or adenomas of the parathyroid glands (PTG) is the most distinctive manifestation of the MEN1 syndrome. One of the main symptoms of PHPT, both in sporadic and hereditary forms of the disease, is bone damage. At the time of diagnosis in PHPT/MEN1, the bone mineral density is generally lower in comparison with the sporadic form of PHPT. This may be due to excessive secretion of parathyroid hormone during the period of peak bone mass, concomitant components of the syndrome, extended surgical treatment, and the direct effect of a mutation in the menin gene on bone remodeling. This clinical case describes a young patient with severe bone complications of PHPT and uncertain rare MEN1 mutation. PHPT was diagnosed five years later from the first onset of bone complications and repeated orthopedic operations. There was the «hungry bones» syndrome after successful surgery of PHPT, which was managed with vitamin D and calcium carbonate supplementation and there is a positive dynamic in increased bone mineral density in the main skeleton after 6 months.
Collapse
Affiliation(s)
- А. К. Еремкина
- Национальный медицинский исследовательский центр эндокринологии
| | - Д. В. Сазонова
- Национальный медицинский исследовательский центр эндокринологии
| | - Е. Е. Бибик
- Национальный медицинский исследовательский центр эндокринологии
| | - А. З. Шейхова
- Национальный медицинский исследовательский центр эндокринологии
| | - А. В. Хайриева
- Национальный медицинский исследовательский центр эндокринологии
| | - Ю. В. Буклемишев
- Национальный медицинский исследовательский центр травматологии и ортопедии им. Н.Н. Приорова
| | - Н. Г. Мокрышева
- Национальный медицинский исследовательский центр эндокринологии
| |
Collapse
|
12
|
Teinturier R, Abou Ziki R, Kassem L, Luo Y, Malbeteau L, Gherardi S, Corbo L, Bertolino P, Bachelot T, Treilleux I, Zhang CX, Le Romancer M. Reduced menin expression leads to decreased ERα expression and is correlated with the occurrence of human luminal B-like and ER-negative breast cancer subtypes. Breast Cancer Res Treat 2021; 190:389-401. [PMID: 34561764 PMCID: PMC8558183 DOI: 10.1007/s10549-021-06339-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/26/2021] [Indexed: 12/29/2022]
Abstract
Purpose Menin, encoded by the MEN1 gene, was recently reported to be involved in breast cancers, though the underlying mechanisms remain elusive. In the current study, we sought to further determine its role in mammary cells. Methods Menin expression in mammary lesions from mammary-specific Men1 mutant mice was detected using immunofluorescence staining. RT-qPCR and western blot were performed to determine the role of menin in ERα expression in human breast cancer cell lines. ChIP-qPCR and reporter gene assays were carried out to dissect the action of menin on the proximal ESR1 promoter. Menin expression in female patients with breast cancer was analyzed and its correlation with breast cancer subtypes was investigated. Results Immunofluorescence staining revealed that early mammary neoplasia in Men1 mutant mice displayed weak ERα expression. Furthermore, MEN1 silencing led to both reduced ESR1 mRNA and ERα protein expression in MCF7 and T47D cells. To further dissect the regulation of ESR1 transcription by menin, we examined whether and in which way menin could regulate the proximal ESR1 promoter, which has not been fully explored. Using ChIP analysis and reporter gene assays covering − 2500 bp to + 2000 bp of the TSS position, we showed that the activity of the proximal ESR1 promoter was markedly reduced upon menin downregulation independently of H3K4me3 status. Importantly, by analyzing the expression of menin in 354 human breast cancers, we found that a lower expression was associated with ER-negative breast cancer (P = 0.041). Moreover, among the 294 ER-positive breast cancer samples, reduced menin expression was not only associated with larger tumors (P = 0.01) and higher SBR grades (P = 0.005) but also with the luminal B-like breast cancer subtype (P = 0.006). Consistent with our clinical data, we demonstrated that GATA3 and FOXA1, co-factors in ESR1 regulation, interact physically with menin in MCF7 cells, and MEN1 knockdown led to altered protein expression of GATA3, the latter being a known marker of the luminal A subtype, in MCF7 cells. Conclusion Taken together, our data provide clues to the important role of menin in ERα regulation and the formation of breast cancer subtypes. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06339-9.
Collapse
Affiliation(s)
- Romain Teinturier
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Razan Abou Ziki
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Loay Kassem
- Clinical Oncology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yakun Luo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Lucie Malbeteau
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Samuele Gherardi
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Laura Corbo
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Philippe Bertolino
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Thomas Bachelot
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | | | - Chang Xian Zhang
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.
| | - Muriel Le Romancer
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| |
Collapse
|
13
|
Genetics of otosclerosis: finally catching up with other complex traits? Hum Genet 2021; 141:939-950. [PMID: 34498117 DOI: 10.1007/s00439-021-02357-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
Otosclerosis is a relatively common cause of hearing impairment, characterized by abnormal bone remodeling of the middle and inner ear. In about 50-60% of the patients, the disease is present in a familial form. In most of these families, otosclerosis seems to be caused by a small number of genetic factors (oligogenic) while only in a small number of families the disease seems to be truly monogenic. In the remaining patients a complex genetic form of otosclerosis is present. Several studies have aimed to identify the genetic factors underlying otosclerosis, which has led to the identification of eight published loci for monogenic otosclerosis, as well as several genes and one chromosomal region (11q13.1) with a clear association with otosclerosis. Implementation of next-generation sequencing (NGS) in otosclerosis research has led to the identification of pathogenic variants in MEPE, ACAN and SERPINF1, although the pathogenic role of the latter is under debate. In addition, a recent GWAS can be considered a breakthrough for otosclerosis as it identified several strong associations with otosclerosis and suggested new potential candidate genes. These recent findings are important for unraveling the genetic architecture of otosclerosis. More future studies will help to understand the complete pathogenesis of the disease.
Collapse
|
14
|
Marini F, Giusti F, Iantomasi T, Brandi ML. Genetic Determinants of Inherited Endocrine Tumors: Do They Have a Direct Role in Bone Metabolism Regulation and Osteoporosis? Genes (Basel) 2021; 12:genes12081286. [PMID: 34440460 PMCID: PMC8393565 DOI: 10.3390/genes12081286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Endocrine tumors are neoplasms originating from specialized hormone-secreting cells. They can develop as sporadic tumors, caused by somatic mutations, or in the context of familial Mendelian inherited diseases. Congenital forms, manifesting as syndromic or non-syndromic diseases, are caused by germinal heterozygote autosomal dominant mutations in oncogenes or tumor suppressor genes. The genetic defect leads to a loss of cell growth control in target endocrine tissues and to tumor development. In addition to the classical cancer manifestations, some affected patients can manifest alterations of bone and mineral metabolism, presenting both as pathognomonic and/or non-specific skeletal clinical features, which can be either secondary complications of endocrine functioning primary tumors and/or a direct consequence of the gene mutation. Here, we specifically review the current knowledge on possible direct roles of the genes that cause inherited endocrine tumors in the regulation of bone modeling and remodeling by exploring functional in vitro and in vivo studies highlighting how some of these genes participate in the regulation of molecular pathways involved in bone and mineral metabolism homeostasis, and by describing the potential direct effects of gene mutations on the development of skeletal and mineral metabolism clinical features in patients.
Collapse
Affiliation(s)
- Francesca Marini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
| | - Francesca Giusti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Teresa Iantomasi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50139 Florence, Italy; (F.M.); (F.G.); (T.I.)
| | - Maria Luisa Brandi
- Fondazione Italiana Ricerca sulle Malattie dell’Osso, Italian Foundation for the Research on Bone Diseases, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-055-2336663
| |
Collapse
|
15
|
Hua L, Zhang X. MALAT1 regulates osteogenic differentiation of human periodontal ligament stem cells through mediating miR-155-5p/ETS1 axis. Tissue Cell 2021; 73:101619. [PMID: 34399118 DOI: 10.1016/j.tice.2021.101619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Osteogenic differentiation of human periodontal ligament stem cells is essential to periodontal regeneration treatment for periodontitis. This study investigated the mechanism of lncRNAs-related osteogenic differentiation. METHODS Human periodontal ligament stem cells were extracted from human periodontal ligament and identified via flow cytometry. After being induced into osteogenic differentiation for three weeks using osteoblast inducing conditional media, human periodontal ligament stem cells were transfected with siRNA-MALAT1, or miR-155-5p inhibitor. Human periodontal ligament stem cells osteogenesis was observed by alkaline phosphatase staining, followed by alizarin red staining for evaluating mineralized nodes formation. Runt-related gene 2, collagen-1 and osteocalcin expressions were assessed by western blot and qRT-PCR. RESULTS MALAT1 expression was assumed a negative correlation with miR-155-5p expression which was dropping over time in differentiating human periodontal ligament stem cells. MALAT1 could bind with miR-155-5p, and E26 transformation specific-1 (ETS1) was the targeted gene of miR-155-5p. Silenced MALAT1 suppressed ALP activity and mineralized nodes formation and inhibited the expressions of runt-related gene 2, collagen-1 and osteocalcin in differentiating human periodontal ligament stem cells, while miR-155-5p inhibitor reversed the effect of si-MALAT1 on differentiation of human periodontal ligament stem cells. CONCLUSION MALAT1 modulated differentiation of human periodontal ligament stem cells via regulating miR-155-5p.
Collapse
Affiliation(s)
- Li Hua
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China
| | - Xiaohong Zhang
- Department of Stomatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, 215006, China.
| |
Collapse
|
16
|
Nelakurti DD, Pappula AL, Rajasekaran S, Miles WO, Petreaca RC. Comprehensive Analysis of MEN1 Mutations and Their Role in Cancer. Cancers (Basel) 2020; 12:cancers12092616. [PMID: 32937789 PMCID: PMC7565326 DOI: 10.3390/cancers12092616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Cancers are characterized by accumulation of genetic mutations in key cell cycle regulators that alter or disable the function of these genes. Such mutations can be inherited or arise spontaneously during the life of the individual. The MEN1 gene prevents uncontrolled cell division and it is considered a tumor suppressor. Inherited MEN1 mutations are associated with certain parathyroid and pancreatic syndromes while spontaneous mutations have been detected in cancer cells. We investigated whether inherited mutations appear in cancer cells which would suggest that patients with parathyroid and pancreatic syndromes have a predisposition to develop cancer. We find a weak correlation between the spectrum of inherited mutations and those appearing spontaneously. Thus, inherited MEN1 mutations may not be a good predictor of tumorigenesis. Abstract MENIN is a scaffold protein encoded by the MEN1 gene that functions in multiple biological processes, including cell proliferation, migration, gene expression, and DNA damage repair. MEN1 is a tumor suppressor gene, and mutations that disrupts MEN1 function are common to many tumor types. Mutations within MEN1 may also be inherited (germline). Many of these inherited mutations are associated with a number of pathogenic syndromes of the parathyroid and pancreas, and some also predispose patients to hyperplasia. In this study, we cataloged the reported germline mutations from the ClinVar database and compared them with the somatic mutations detected in cancers from the Catalogue of Somatic Mutations in Cancer (COSMIC) database. We then used statistical software to determine the probability of mutations being pathogenic or driver. Our data show that many confirmed germline mutations do not appear in tumor samples. Thus, most mutations that disable MEN1 function in tumors are somatic in nature. Furthermore, of the germline mutations that do appear in tumors, only a fraction has the potential to be pathogenic or driver mutations.
Collapse
Affiliation(s)
- Devi D. Nelakurti
- Biomedical Science Undergraduate Program, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Amrit L. Pappula
- Computer Science and Engineering Undergraduate Program, The Ohio State University, Columbus, OH 43210, USA;
| | - Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
| | - Wayne O. Miles
- Department of Cancer Biology and Genetics, The Ohio State University Medical School, Columbus, OH 43210, USA;
| | - Ruben C. Petreaca
- Department of Molecular Genetics, The Ohio State University, Marion, OH 43302, USA
- Correspondence:
| |
Collapse
|
17
|
Slouma M, Abbes M, Dhahri R, Litaiem N, Gueddiche N, Mansouri N, Msekni I, Gharsallah I, Metoui L, Louzir B. Multiple endocrine neoplasia type 1 revealed by a hip pathologic fracture. Clin Rheumatol 2020; 40:775-782. [PMID: 32666178 DOI: 10.1007/s10067-020-05281-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 07/06/2020] [Indexed: 01/26/2023]
Abstract
Multiple endocrine neoplasia type 1 is a rare autosomal inherited syndrome that affects a variety of endocrine tissues such as the parathyroid, endocrine pancreas, and anterior pituitary. Osseous complications are often misdiagnosed. We presented a case of a 46-year-old woman with pathological fractures of the lower limb. She had a history of type 1 diabetes and galactorrhea. Laboratory examinations showed hypercalcemia and an increased level of parathyroid hormone related to hyperparathyroidism. Serum chromogranin A level was increased at 9369 ng/mL (N < 102). A somatostatin receptor scintigraphy (octreoscan) revealed pathological uptake in the gastric wall, later cave adenopathy, and liver. The diagnosis of multiple endocrine neoplasia type 1 was made based on radiological and histological findings. The patient underwent a subtotal parathyroidectomy associated with somatostatin analog treatment leading to significant improvement. A literature review was conducted by searching PubMed using these following terms: multiple endocrine neoplasia type 1, hyperparathyroidism, fracture, menin, osteoporosis. We emphasized bone involvement related to multiple endocrine neoplasia type 1 syndrome. This diagnosis should be considered when pathological fractures occur in young patients with a history of endocrine disorder. We highlighted the importance of imaging features in making the diagnosis of multiple endocrine neoplasia type 1. Early management of this disease is necessary. Treatment including parathyroidectomy and somatostatin analogs leads to bone preservation and functional improvement.
Collapse
Affiliation(s)
- Maroua Slouma
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia.
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia.
| | - Maissa Abbes
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rim Dhahri
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Noureddine Litaiem
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of Dermatology, Charles Nicolle Hospital, Tunis, Tunisia
| | - Nour Gueddiche
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Nada Mansouri
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of pathology, Military Hospital, Tunis, Tunisia
| | - Issam Msekni
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
- Department of pathology, Military Hospital, Tunis, Tunisia
| | - Imen Gharsallah
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Leila Metoui
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bassem Louzir
- Department of Internal Medicine, Military Hospital, 1007, Tunis, Tunisia
- Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
18
|
Cinque L, Pugliese F, Salcuni AS, Scillitani A, Guarnieri V. Molecular pathogenesis of parathyroid tumours. Best Pract Res Clin Endocrinol Metab 2018; 32:891-908. [PMID: 30477753 DOI: 10.1016/j.beem.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Parathyroid tumors represent an elusive endocrine neoplasia, which lead to primary hyperparathyroidism, pHPT, a common endocrine calcium disorder characterized by hypercalcemia and normal-high parathormone secretion. Parathyroid tumours are benign adenomas or multiple glands hyperplasia in the vast majority (>99% of cases), while malignant neoplasms are rare (less than 1%). Despite pHPT is a common disorder, our knowledge about the genetic predisposition and molecular pathophysiology is limited to the familial syndromic forms of parathyroid tumour, that, however, represent not more than the 10% of all the cases; instead, the pathophysiology of sporadic forms remains an open field, although data about epigenetic mechanisms or private genes have been supposed. Here we present an overview of more recent acquisitions about the genetic causes along with their molecular mechanisms of benign, but also, malignant parathyroid tumours either in sporadic and familial presentation.
Collapse
Affiliation(s)
- Luigia Cinque
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| | - Flavia Pugliese
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | | | - Alfredo Scillitani
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Unit of Endocrinology, San Giovanni Rotondo, FG, Italy.
| | - Vito Guarnieri
- Fondazione IRCCS Casa Sollievo della Sofferenza Hospital, Division of Medical Genetics, Italy.
| |
Collapse
|
19
|
Khatami F, Tavangar SM. Multiple Endocrine Neoplasia Syndromes from Genetic and Epigenetic Perspectives. Biomark Insights 2018; 13:1177271918785129. [PMID: 30013307 PMCID: PMC6043927 DOI: 10.1177/1177271918785129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Multiple endocrine neoplasia (MEN) syndromes are infrequent inherited disorders in which more than one endocrine glands develop noncancerous (benign) or cancerous (malignant) tumors or grow excessively without forming tumors. There are 3 famous and well-known forms of MEN syndromes (MEN 1, MEN 2A, and MEN 2B) and a newly documented one (MEN4). These syndromes are infrequent and occurred in all ages and both men and women. Usually, germ line mutations that can be resulted in neoplastic transformation of anterior pituitary, parathyroid glands, and pancreatic islets in addition to gastrointestinal tract can be an indicator for MEN1. The medullary thyroid cancer (MTC) in association with pheochromocytoma and/or multiple lesions of parathyroid glands with hyperparathyroidism can be pointer of MEN2 which can be subgrouped into the MEN 2A, MEN 2B, and familial MTC syndromes. There are no distinct biochemical markers that allow identification of familial versus nonfamilial forms of the tumors, but familial MTC usually happens at a younger age than sporadic MTC. The MEN1 gene (menin protein) is in charge of MEN 1 disease, CDNK1B for MEN 4, and RET proto-oncogene for MEN 2. The focus over the molecular targets can bring some hope for both diagnosis and management of MEN syndromes. In the current review, we look at this disease and responsible genes and their cell signaling pathway involved.
Collapse
Affiliation(s)
- Fatemeh Khatami
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Chronic Diseases Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pathology, Doctor Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Klar RM. The Induction of Bone Formation: The Translation Enigma. Front Bioeng Biotechnol 2018; 6:74. [PMID: 29938204 PMCID: PMC6002665 DOI: 10.3389/fbioe.2018.00074] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
A paradigmatic shift in the way of thinking is what bone tissue engineering science requires to decrypt the translation conundrum from animal models into human. The deductive work of Urist (1965), who discerned the principle of bone induction from the pioneering works of Senn, Huggins, Lacroix, Levander, and other bone regenerative scientists, provided the basis that has assisted future bone tissue regenerative scientists to extend the bone tissue engineering field and its potential uses for bone regenerative medicine in humans. However, major challenges remain that are preventing the formation of bone by induction clinically. Growing experimental evidence is indicating that bone inductive studies are non-translatable from animal models into a clinical environment. This is preventing bone tissue engineering from reaching the next phase in development. Countless studies are trying to discern how the formation of bone by induction functions mechanistically, so as to try and solve this enigmatic problem. However, are the correct questions being asked? Why do bone inductive animal studies not translate into humans? Why do bone induction principles not yield the same extent of bone formation as an autogenous bone graft? What are bone tissue engineering scientists missing? By critically re-assessing the past and present discoveries of the bone induction field, this review article attempts to re-discover the field of bone formation by induction, identifying some key features that may have been missed. These include a detailed library of all proteins in bones and their arrangement in the 3D superstructure of the bone together with some other important criteria not considered by tissue engineering scientists. The review therefore not only re-iterates possible avenues of research that need to be re-explored but also seeks to guide present and future scientists in how they assess their own research in light of experimental design and results. By addressing these issues bone formation by induction without autografts might finally become clinically viable.
Collapse
Affiliation(s)
- Roland M. Klar
- Laboratory of Biomechanics and Experimental Orthopaedics, Department of Orthopaedic Surgery, Physical Medicine and Rehabilitation, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
21
|
Svoboda LK, Teh SSK, Sud S, Kerk S, Zebolsky A, Treichel S, Thomas D, Halbrook CJ, Lee HJ, Kremer D, Zhang L, Klossowski S, Bankhead AR, Magnuson B, Ljungman M, Cierpicki T, Grembecka J, Lyssiotis CA, Lawlor ER. Menin regulates the serine biosynthetic pathway in Ewing sarcoma. J Pathol 2018; 245:324-336. [PMID: 29672864 DOI: 10.1002/path.5085] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/02/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Developmental transcription programs are epigenetically regulated by multi-protein complexes, including the menin- and MLL-containing trithorax (TrxG) complexes, which promote gene transcription by depositing the H3K4me3 activating mark at target gene promoters. We recently reported that in Ewing sarcoma, MLL1 (lysine methyltransferase 2A, KMT2A) and menin are overexpressed and function as oncogenes. Small molecule inhibition of the menin-MLL interaction leads to loss of menin and MLL1 protein expression, and to inhibition of growth and tumorigenicity. Here, we have investigated the mechanistic basis of menin-MLL-mediated oncogenic activity in Ewing sarcoma. Bromouridine sequencing (Bru-seq) was performed to identify changes in nascent gene transcription in Ewing sarcoma cells, following exposure to the menin-MLL interaction inhibitor MI-503. Menin-MLL inhibition resulted in early and widespread reprogramming of metabolic processes. In particular, the serine biosynthetic pathway (SSP) was the pathway most significantly affected by MI-503 treatment. Baseline expression of SSP genes and proteins (PHGDH, PSAT1, and PSPH), and metabolic flux through the SSP were confirmed to be high in Ewing sarcoma. In addition, inhibition of PHGDH resulted in reduced cell proliferation, viability, and tumor growth in vivo, revealing a key dependency of Ewing sarcoma on the SSP. Loss of function studies validated a mechanistic link between menin and the SSP. Specifically, inhibition of menin resulted in diminished expression of SSP genes, reduced H3K4me3 enrichment at the PHGDH promoter, and complete abrogation of de novo serine and glycine biosynthesis, as demonstrated by metabolic tracing studies with 13 C-labeled glucose. These data demonstrate that the SSP is highly active in Ewing sarcoma and that its oncogenic activation is maintained, at least in part, by menin-dependent epigenetic mechanisms involving trithorax complexes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Selina Shiqing K Teh
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sudha Sud
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Samuel Kerk
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Aaron Zebolsky
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sydney Treichel
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dafydd Thomas
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Christopher J Halbrook
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ho-Joon Lee
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel Kremer
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Zhang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Szymon Klossowski
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Armand R Bankhead
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Brian Magnuson
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Environmental Health Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, Division of Gastroenterology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Elizabeth R Lawlor
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
22
|
Newey PJ, Thakker RV. Multiple Endocrine Neoplasia Syndromes. GENETICS OF BONE BIOLOGY AND SKELETAL DISEASE 2018:699-732. [DOI: 10.1016/b978-0-12-804182-6.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Saul MJ, Groher F, Hegewald AB, Müller-McNicoll M, Marschalek R, Suess B, Steinhilber D. TGFβ/SMAD signalling modulates MLL and MLL-AF4 mediated 5-lipoxygenase promoter activation. Prostaglandins Other Lipid Mediat 2017; 133:60-67. [DOI: 10.1016/j.prostaglandins.2017.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 01/11/2023]
|
24
|
Dreijerink KMA, Timmers HTM, Brown M. Twenty years of menin: emerging opportunities for restoration of transcriptional regulation in MEN1. Endocr Relat Cancer 2017; 24:T135-T145. [PMID: 28811299 PMCID: PMC5609455 DOI: 10.1530/erc-17-0281] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022]
Abstract
Since the discovery of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997, elucidation of the molecular function of its protein product, menin, has been a challenge. Biochemical, proteomics, genetics and genomics approaches have identified various potential roles, which converge on gene expression regulation. The most consistent findings show that menin connects transcription factors and chromatin-modifying enzymes, in particular, the histone H3K4 methyltransferase complexes MLL1 and MLL2. Chromatin immunoprecipitation combined with next-generation sequencing has enabled studying genome-wide dynamics of chromatin binding by menin. We propose that menin regulates cell type-specific transcriptional programs by linking chromatin regulatory complexes to specific transcription factors. In this fashion, the MEN1 gene is a tumor suppressor gene in the endocrine tissues that are affected in MEN1. Recent studies have hinted at possibilities to pharmacologically restore the epigenetic changes caused by loss of menin function as therapeutic strategies for MEN1, for example, by inhibition of histone demethylases. The current lack of appropriate cellular model systems for MEN1-associated tumors is a limitation for compound testing, which needs to be addressed in the near future. In this review, we look back at the past twenty years of research on menin and the mechanism of disease of MEN1. In addition, we discuss how the current understanding of the molecular function of menin offers future directions to develop novel treatments for MEN1-associated endocrine tumors.
Collapse
Affiliation(s)
- Koen M A Dreijerink
- Department of EndocrinologyVU University Medical Center, Amsterdam, The Netherlands
| | - H T Marc Timmers
- German Cancer Consortium (DKTK) partner site FreiburgGerman Cancer Research Center (DKFZ) and Department of Urology, Medical Center-University of Freiburg, Freiburg, Germany
| | - Myles Brown
- Department of Medical OncologyDana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Agarwal SK. The future: genetics advances in MEN1 therapeutic approaches and management strategies. Endocr Relat Cancer 2017; 24:T119-T134. [PMID: 28899949 PMCID: PMC5679100 DOI: 10.1530/erc-17-0199] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 02/01/2023]
Abstract
The identification of the multiple endocrine neoplasia type 1 (MEN1) gene in 1997 has shown that germline heterozygous mutations in the MEN1 gene located on chromosome 11q13 predisposes to the development of tumors in the MEN1 syndrome. Tumor development occurs upon loss of the remaining normal copy of the MEN1 gene in MEN1-target tissues. Therefore, MEN1 is a classic tumor suppressor gene in the context of MEN1. This tumor suppressor role of the protein encoded by the MEN1 gene, menin, holds true in mouse models with germline heterozygous Men1 loss, wherein MEN1-associated tumors develop in adult mice after spontaneous loss of the remaining non-targeted copy of the Men1 gene. The availability of genetic testing for mutations in the MEN1 gene has become an essential part of the diagnosis and management of MEN1. Genetic testing is also helping to exclude mutation-negative cases in MEN1 families from the burden of lifelong clinical screening. In the past 20 years, efforts of various groups world-wide have been directed at mutation analysis, molecular genetic studies, mouse models, gene expression studies, epigenetic regulation analysis, biochemical studies and anti-tumor effects of candidate therapies in mouse models. This review will focus on the findings and advances from these studies to identify MEN1 germline and somatic mutations, the genetics of MEN1-related states, several protein partners of menin, the three-dimensional structure of menin and menin-dependent target genes. The ongoing impact of all these studies on disease prediction, management and outcomes will continue in the years to come.
Collapse
Affiliation(s)
- Sunita K Agarwal
- Metabolic Diseases BranchNational Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
26
|
Liu P, Lee S, Knoll J, Rauch A, Ostermay S, Luther J, Malkusch N, Lerner UH, Zaiss MM, Neven M, Wittig R, Rauner M, David JP, Bertolino P, Zhang CX, Tuckermann JP. Loss of menin in osteoblast lineage affects osteocyte-osteoclast crosstalk causing osteoporosis. Cell Death Differ 2017; 24:672-682. [PMID: 28106886 PMCID: PMC5384024 DOI: 10.1038/cdd.2016.165] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 12/21/2022] Open
Abstract
During osteoporosis bone formation by osteoblasts is reduced and/or bone resorption by osteoclasts is enhanced. Currently, only a few factors have been identified in the regulation of bone integrity by osteoblast-derived osteocytes. In this study, we show that specific disruption of menin, encoded by multiple endocrine neoplasia type 1 (Men1), in osteoblasts and osteocytes caused osteoporosis despite the preservation of osteoblast differentiation and the bone formation rate. Instead, an increase in osteoclast numbers and bone resorption was detected that persisted even when the deletion of Men1 was restricted to osteocytes. We demonstrate that isolated Men1-deficient osteocytes expressed numerous soluble mediators, such as C-X-C motif chemokine 10 (CXCL10), and that CXCL10-mediated osteoclastogenesis was reduced by CXCL10-neutralizing antibodies. Collectively, our data reveal a novel role for Men1 in osteocyte–osteoclast crosstalk by controlling osteoclastogenesis through the action of soluble factors. A role for Men1 in maintaining bone integrity and thereby preventing osteoporosis is proposed.
Collapse
Affiliation(s)
- Peng Liu
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Sooyeon Lee
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Jeanette Knoll
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Alexander Rauch
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Susanne Ostermay
- Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| | - Julia Luther
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Nicole Malkusch
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany
| | - Ulf H Lerner
- Centre for Bone and Arthritis Research, Department of Internal Medicine and Clinical Nutrition at Institute for Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg SE-41345, Sweden
| | - Mario M Zaiss
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen D-91054, Germany
| | - Mona Neven
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany
| | - Rainer Wittig
- Institute for Laser Technologies in Medicine and Metrology at Ulm University, Ulm D-89081, Germany
| | - Martina Rauner
- Division of Endocrinology and Bone Diseases, Department of Medicine III, TU Dresden, Dresden D-01307, Germany
| | - Jean-Pierre David
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg D-20246, Germany.,Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen D-91054, Germany
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Lyon 1, Lyon F-69000, France
| | - Chang X Zhang
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université Lyon 1, Lyon F-69000, France
| | - Jan P Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm D-89081, Germany.,Tissue-specific Hormone Action, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena D-07745, Germany
| |
Collapse
|
27
|
Varanasi VG, Odatsu T, Bishop T, Chang J, Owyoung J, Loomer PM. Enhanced osteoprogenitor elongated collagen fiber matrix formation by bioactive glass ionic silicon dependent on Sp7 (osterix) transcription. J Biomed Mater Res A 2016; 104:2604-15. [PMID: 27279631 DOI: 10.1002/jbm.a.35795] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 11/07/2022]
Abstract
Bioactive glasses release ions, those enhance osteoblast collagen matrix synthesis and osteogenic marker expression during bone healing. Collagen matrix density and osteogenic marker expression depend on osteogenic transcription factors, (e.g., Osterix (OSX)). We hypothesize that enhanced expression and formation of collagen by Si(4+) depends on enhanced expression of OSX transcription. Experimental bioactive glass (6P53-b) and commercial Bioglass(TM) (45S5) were dissolved in basal medium to make glass conditioned medium (GCM). ICP-MS analysis was used to measure bioactive glass ion release rates. MC3T3-E1 cells were cultured for 20 days, and gene expression and extracellular matrix collagen formation was analyzed. In a separate study, siRNA was used to determine the effect of OSX knockdown on impacting the effect of Si(4+) on osteogenic markers and matrix collagen formation. Each bioactive glass exhibited similar ion release rates for all ions, except Mg(2+) released by 6P53-b. Gene expression results showed that GCM markedly enhanced many osteogenic markers, and 45S5 GCM showed higher levels of expression and collagen matrix fiber bundle density than 6P53-b GCM. Upon knockdown of OSX transcription, collagen type 5, alkaline phosphatase, and matrix density were not enhanced as compared to wild type cells. This study illustrates that the enhancement of elongated collagen fiber matrix formation by Si(±) depends on OSX transcription. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2604-2615, 2016.
Collapse
Affiliation(s)
- Venu G Varanasi
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, Texas, 75246
| | - Tetsurou Odatsu
- Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1, Sakamoto, Nagasaki, 852-8588, Japan
| | - Timothy Bishop
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Joyce Chang
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Jeremy Owyoung
- Division of Periodontology, University of California, San Francisco, California, 94143
| | - Peter M Loomer
- Department of Periodontology and Implant Dentistry, College of Dentistry, New York University, New York, New York, 10010
| |
Collapse
|
28
|
Affiliation(s)
- Jyotshna Kanungo
- Division of Neurotoxicology, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| |
Collapse
|
29
|
Rahman MS, Akhtar N, Jamil HM, Banik RS, Asaduzzaman SM. TGF-β/BMP signaling and other molecular events: regulation of osteoblastogenesis and bone formation. Bone Res 2015; 3:15005. [PMID: 26273537 PMCID: PMC4472151 DOI: 10.1038/boneres.2015.5] [Citation(s) in RCA: 410] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/26/2015] [Accepted: 02/27/2015] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor-beta (TGF-β)/bone morphogenetic protein (BMP) plays a fundamental role in the regulation of bone organogenesis through the activation of receptor serine/threonine kinases. Perturbations of TGF-β/BMP activity are almost invariably linked to a wide variety of clinical outcomes, i.e., skeletal, extra skeletal anomalies, autoimmune, cancer, and cardiovascular diseases. Phosphorylation of TGF-β (I/II) or BMP receptors activates intracellular downstream Smads, the transducer of TGF-β/BMP signals. This signaling is modulated by various factors and pathways, including transcription factor Runx2. The signaling network in skeletal development and bone formation is overwhelmingly complex and highly time and space specific. Additive, positive, negative, or synergistic effects are observed when TGF-β/BMP interacts with the pathways of MAPK, Wnt, Hedgehog (Hh), Notch, Akt/mTOR, and miRNA to regulate the effects of BMP-induced signaling in bone dynamics. Accumulating evidence indicates that Runx2 is the key integrator, whereas Hh is a possible modulator, miRNAs are regulators, and β-catenin is a mediator/regulator within the extensive intracellular network. This review focuses on the activation of BMP signaling and interaction with other regulatory components and pathways highlighting the molecular mechanisms regarding TGF-β/BMP function and regulation that could allow understanding the complexity of bone tissue dynamics.
Collapse
Affiliation(s)
- Md Shaifur Rahman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Naznin Akhtar
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Hossen Mohammad Jamil
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| | - Rajat Suvra Banik
- Lab of Network Biology, Biotechnology and Genetic Engineering Discipline, Khulna University , Khulna 9208, Bangladesh
| | - Sikder M Asaduzzaman
- Tissue Banking and Biomaterial Research Unit, Atomic Energy Research Establishment , Dhaka 1349, Bangladesh
| |
Collapse
|
30
|
Kanazawa I, Canaff L, Abi Rafeh J, Angrula A, Li J, Riddle RC, Boraschi-Diaz I, Komarova SV, Clemens TL, Murshed M, Hendy GN. Osteoblast menin regulates bone mass in vivo. J Biol Chem 2015; 290:3910-24. [PMID: 25538250 PMCID: PMC4326801 DOI: 10.1074/jbc.m114.629899] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 11/06/2022] Open
Abstract
Menin, the product of the multiple endocrine neoplasia type 1 (Men1) tumor suppressor gene, mediates the cell proliferation and differentiation actions of transforming growth factor-β (TGF-β) ligand family members. In vitro, menin modulates osteoblastogenesis and osteoblast differentiation promoted and sustained by bone morphogenetic protein-2 (BMP-2) and TGF-β, respectively. To examine the in vivo function of menin in bone, we conditionally inactivated Men1 in mature osteoblasts by crossing osteocalcin (OC)-Cre mice with floxed Men1 (Men1(f/f)) mice to generate mice lacking menin in differentiating osteoblasts (OC-Cre;Men1(f/f) mice). These mice displayed significant reduction in bone mineral density, trabecular bone volume, and cortical bone thickness compared with control littermates. Osteoblast and osteoclast number as well as mineral apposition rate were significantly reduced, whereas osteocyte number was increased. Primary calvarial osteoblasts proliferated more quickly but had deficient mineral apposition and alkaline phosphatase activity. Although the mRNA expression of osteoblast marker and cyclin-dependent kinase inhibitor genes were all reduced, that of cyclin-dependent kinase, osteocyte marker, and pro-apoptotic genes were increased in isolated Men1 knock-out osteoblasts compared with controls. In contrast to the knock-out mice, transgenic mice overexpressing a human menin cDNA in osteoblasts driven by the 2.3-kb Col1a1 promoter, showed a gain of bone mass relative to control littermates. Osteoblast number and mineral apposition rate were significantly increased in the Col1a1-Menin-Tg mice. Therefore, osteoblast menin plays a key role in bone development, remodeling, and maintenance.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryan C Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | | | - Thomas L Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, and the Veterans Administration Medical Center, Baltimore, Maryland 21201
| | | | - Geoffrey N Hendy
- From the Departments of Medicine, Physiology, Human Genetics, and Calcium Research Laboratory, and Hormones and Cancer Research Unit, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada,
| |
Collapse
|
31
|
Lecoq AL, Kamenický P, Guiochon-Mantel A, Chanson P. Genetic mutations in sporadic pituitary adenomas--what to screen for? Nat Rev Endocrinol 2015; 11:43-54. [PMID: 25350067 DOI: 10.1038/nrendo.2014.181] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pituitary adenomas are benign intracranial neoplasms that can result in morbidity owing to local invasion and/or excessive or deficient hormone production. The prevalence of symptomatic pituitary adenomas is approximately 1:1,000 in the general population. The vast majority of these tumours occur sporadically and are not part of syndromic disorders. However, germline mutations in genes known to predispose individuals to familial pituitary adenomas are found in a few patients with sporadic pituitary adenomas. Mutations in AIP (encoding aryl-hydrocarbon receptor-interacting protein) are the most frequently observed germline mutations. The prevalence of these mutations in patients with sporadic pituitary adenomas is ∼4%, but can increase to 8-20% in young adults with macroadenomas or gigantism, and also in children. Germline mutations in MEN1 (encoding menin) result in multiple endocrine neoplasia type 1 and are found in very young patients with isolated sporadic pituitary adenomas, which highlights the importance of the chromosome 11q13 locus in pituitary tumorigenesis. In this Review, we describe the clinical features of patients with sporadic pituitary adenomas that are associated with AIP or MEN1 mutations, and discuss the molecular mechanisms that might be involved in pituitary adenoma tumorigenesis. We also discuss genetic screening of patients with sporadic pituitary adenomas and investigations of relatives of these patients who also have the same genetic mutations.
Collapse
Affiliation(s)
- Anne-Lise Lecoq
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Peter Kamenický
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Anne Guiochon-Mantel
- Laboratoire de Génétique Moléculaire, Pharmacogénétique et Hormonologie, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Chanson
- Service d'Endocrinologie et des Maladies de la Reproduction, AP-HP, Hôpitaux Universitaires Paris-Sud (site Bicêtre), 78 Rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Li N, Lee WYW, Lin SE, Ni M, Zhang T, Huang XR, Lan HY, Li G. Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Bone 2014; 67:46-55. [PMID: 24998669 DOI: 10.1016/j.bone.2014.06.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 11/20/2022]
Abstract
Smad7 is well demonstrated as a negative regulator of TGF-β signaling. Its alteration in expression often results in diseases such as cancer and fibrosis. However, the exact role of Smad7 in regulating bone remodeling during mammalian development has not been properly delineated. In this study we performed experiments to clarify the involvement of Smad7 in regulating osteogenesis and osteoclastogenesis both invivo and invitro. Genetically engineered Smad7(ΔE1) (KO) mice were used, whereby partial functional of Smad7 is lost by deleting exon I of the Smad7 gene and the truncated proteins cause a hypomorphic allele. Analysis with μCT imagery and bone histomorphometry showed that the KO mice had lower TbN, TbTh, higher TbSp in the metaphysic region of the femurs at 6, 12, 24weeks from birth, as well as decreased MAR and increased osteoclast surface compared with the WT mice. In vitro BM-MSC multi-lineage differentiation evaluation showed that the KO group had reduced osteogenic potential, fewer mineralized nodules, lower ALP activity, and reduced gene expression of Col1A1, Runx2 and OCN. The adipogenic potential was elevated in the KO group with more formation of lipid droplets, and increased gene expression of Adipsin and C/EBPα. The osteoclastogenic potential of KO mice BMMs was elevate, with emergence of more osteoclasts, larger resorptive areas, and increased gene expression of TRAP and CTR. Our results indicate that partial loss of Smad7 function in mice leads to compromised bone formation and enhanced bone resorption. Thus, Smad7 is acknowledged as a novel key regulator between osteogenesis and osteoclastogenesis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-En Lin
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ming Ni
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ting Zhang
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Department of Medicine & Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Gang Li
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, China.
| |
Collapse
|
33
|
Thakker RV. Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014; 386:2-15. [PMID: 23933118 PMCID: PMC4082531 DOI: 10.1016/j.mce.2013.08.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 01/03/2023]
Abstract
Multiple endocrine neoplasia (MEN) is characterized by the occurrence of tumors involving two or more endocrine glands within a single patient. Four major forms of MEN, which are autosomal dominant disorders, are recognized and referred to as: MEN type 1 (MEN1), due to menin mutations; MEN2 (previously MEN2A) due to mutations of a tyrosine kinase receptor encoded by the rearranged during transfection (RET) protoncogene; MEN3 (previously MEN2B) due to RET mutations; and MEN4 due to cyclin-dependent kinase inhibitor (CDNK1B) mutations. Each MEN type is associated with the occurrence of specific tumors. Thus, MEN1 is characterized by the occurrence of parathyroid, pancreatic islet and anterior pituitary tumors; MEN2 is characterized by the occurrence of medullary thyroid carcinoma (MTC) in association with phaeochromocytoma and parathyroid tumors; MEN3 is characterized by the occurrence of MTC and phaeochromocytoma in association with a marfanoid habitus, mucosal neuromas, medullated corneal fibers and intestinal autonomic ganglion dysfunction, leading to megacolon; and MEN4, which is also referred to as MENX, is characterized by the occurrence of parathyroid and anterior pituitary tumors in possible association with tumors of the adrenals, kidneys, and reproductive organs. This review will focus on the clinical and molecular details of the MEN1 and MEN4 syndromes. The gene causing MEN1 is located on chromosome 11q13, and encodes a 610 amino-acid protein, menin, which has functions in cell division, genome stability, and transcription regulation. Menin, which acts as scaffold protein, may increase or decrease gene expression by epigenetic regulation of gene expression via histone methylation. Thus, menin by forming a subunit of the mixed lineage leukemia (MLL) complexes that trimethylate histone H3 at lysine 4 (H3K4), facilitates activation of transcriptional activity in target genes such as cyclin-dependent kinase (CDK) inhibitors; and by interacting with the suppressor of variegation 3-9 homolog family protein (SUV39H1) to mediate H3K methylation, thereby silencing transcriptional activity of target genes. MEN1-associated tumors harbor germline and somatic mutations, consistent with Knudson's two-hit hypothesis. Genetic diagnosis to identify individuals with germline MEN1 mutations has facilitated appropriate targeting of clinical, biochemical and radiological screening for this high risk group of patients for whom earlier implementation of treatments can then be considered. MEN4 is caused by heterozygous mutations of CDNK1B which encodes the 196 amino-acid CDK1 p27Kip1, which is activated by H3K4 methylation.
Collapse
Affiliation(s)
- Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), Churchill Hospital, Headington, Oxford OX3 7LJ, United Kingdom.
| |
Collapse
|
34
|
Gao J, Liu Q, Liu X, Ji C, Qu S, Wang S, Luo Y. Cyclin G2 suppresses estrogen-mediated osteogenesis through inhibition of Wnt/β-catenin signaling. PLoS One 2014; 9:e89884. [PMID: 24595300 PMCID: PMC3940656 DOI: 10.1371/journal.pone.0089884] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/27/2014] [Indexed: 11/18/2022] Open
Abstract
Estrogen plays an important role in the maintenance of bone formation, and deficiency in the production of estrogen is directly linked to postmenopausal osteoporosis. To date, the underlying mechanisms of estrogen-mediated osteogenic differentiation are not well understood. In this study, a pluripotent mesenchymal precursor cell line C2C12 was used to induce osteogenic differentiation and subjected to detection of gene expressions or to manipulation of cyclin G2 expressions. C57BL/6 mice were used to generate bilateral ovariectomized and sham-operated mice for analysis of bone mineral density and protein expression. We identified cyclin G2, an unconventional member of cyclin, is involved in osteoblast differentiation regulated by estrogen in vivo and in vitro. In addition, the data showed that ectopic expression of cyclin G2 suppressed expression of osteoblast transcription factor Runx2 and osteogenic differentiation marker genes, as well as ALP activity and in vitro extracellular matrix mineralization. Mechanistically, Wnt/β-catenin signaling pathway is essential for cyclin G2 to inhibit osteogenic differentiation. To the best of our knowledge, the current study presents the first evidence that cyclin G2 serves as a negative regulator of both osteogenesis and Wnt/β-catenin signaling. Most importantly, the basal and 17β-estradiol-induced osteogenic differentiation was restored by overexpression of cyclin G2. These results taken together suggest that cyclin G2 may function as an endogenous suppressor of estrogen-induced osteogenic differentiation through inhibition of Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Jinlan Gao
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Qi Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xing Liu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Chunyan Ji
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shengqiang Qu
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Shusen Wang
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yang Luo
- The Research Center for Medical Genomics, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
35
|
Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013; 5:136-148. [PMID: 24179602 PMCID: PMC3812518 DOI: 10.4252/wjsc.v5.i4.136] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic tissue that is constantly renewed by the coordinated action of two cell types, i.e., the bone-resorbing osteoclasts and the bone-forming osteoblasts. However, in some circumstances, bone regeneration exceeds bone self repair capacities. This is notably often the case after bone fractures, osteolytic bone tumor surgery, or osteonecrosis. In this regard, bone tissue engineering with autologous or allogenic mesenchymal stem cells (MSCs) is been widely developed. MSCs can be isolated from bone marrow or other tissues such as adipose tissue or umbilical cord, and can be implanted in bone defects with or without prior amplification and stimulation. However, the outcome of most pre-clinical studies remains relatively disappointing. A better understanding of the successive steps and molecular mechanisms involved in MSC-osteoblastic differentiation appears to be crucial to optimize MSC-bone therapy. In this review, we first present the important growth factors that stimulate osteoblastogenesis. Then we review the main transcription factors that modulate osteoblast differentiation, and the microRNAs (miRs) that inhibit their expression. Finally, we also discuss articles dealing with the use of these factors and miRs in the development of new bone MSC therapy strategies. We particularly focus on the studies using human MSCs, since significant differences exist between osteoblast differentiation mechanisms in humans and mice for instance.
Collapse
|
36
|
Angevine K, Wuescher L, Mensah-Osman E. Loss of menin mediated by endothelial cells treated with CoPP is associated with increased maturation of adipocytes. Adipocyte 2013; 2:207-16. [PMID: 24052896 PMCID: PMC3774696 DOI: 10.4161/adip.24722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 12/16/2022] Open
Abstract
Oxidative stress is caused by an increase in reactive oxygen species (ROS) relative to the antioxidant defense system. An increase in ROS is known to decrease vascular function, increase inflammatory cytokines, and promote adipocyte hypertrophy. A known regulator of the oxidative stress response is the heat shock protein, heme-oxygenase 1 (HO-1), which is induced by cobalt protoporphyrin IX (CoPP). Menin was recently found to promote the sustained expression of heat shock proteins and is implicated in the regulation of oxidative stress. In this study, we investigated how changes in menin expression affected adipogenesis via the interaction between endothelial cells and adipocytes in response to CoPP treatment during oxidative stress. Using angiotensin II (Ang II) to induce oxidative stress in endothelial cells and adipocytes, we observed the induction of various cytokines including EGF, VEGF, angiogenin, IL-6, and MCP-1. Preadipocytes cultured in endothelial cell conditioned media treated with Ang II showed no changes in differentiation markers. Preadipocytes treated with the endothelial cell-conditioned media pretreated with CoPP resulted in an increase in the number of adipocytes, which expressed higher levels of adipocyte differentiation markers in direct correlation with the complete downregulation of the stress response regulator, menin. This change was not detected in adipocytes directly treated with CoPP alone. Therefore, we concluded that loss of menin is associated with the maturation of adipocytes induced by conditioned media from endothelial cells treated with CoPP.
Collapse
|
37
|
Menin: a scaffold protein that controls gene expression and cell signaling. Trends Biochem Sci 2013; 38:394-402. [PMID: 23850066 DOI: 10.1016/j.tibs.2013.05.005] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/22/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
Abstract
The protein menin is encoded by the MEN1 gene, which is mutated in patients with multiple endocrine neoplasia type 1 (MEN1) syndrome. Although menin acts as a tumor suppressor in endocrine organs, it is required for leukemic transformation in mouse models. Menin possesses these dichotomous functions probably because it can both positively and negatively regulate gene expression, as well as interact with a multitude of proteins with diverse functions. Here, we review the recent progress in understanding the molecular mechanisms by which menin functions. The crystal structures of menin with different binding partners reveal that menin is a key scaffold protein that functionally crosstalks with various partners to regulate gene transcription and interplay with multiple signaling pathways.
Collapse
|
38
|
Trompeter HI, Dreesen J, Hermann E, Iwaniuk KM, Hafner M, Renwick N, Tuschl T, Wernet P. MicroRNAs miR-26a, miR-26b, and miR-29b accelerate osteogenic differentiation of unrestricted somatic stem cells from human cord blood. BMC Genomics 2013; 14:111. [PMID: 23418963 PMCID: PMC3637629 DOI: 10.1186/1471-2164-14-111] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 02/07/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MicroRNAs are a population of short non-coding RNAs with widespread negative regulatory impact on mRNA translation. Unrestricted somatic stem cells (USSC) are a rare population in human cord blood that can be induced into cells representative of all three germinal layers. Here we analyzed the functional impact of miRNAs on the osteogenic differentiation in USSC. RESULTS Gene expression profiling identified 20 microRNAs that were consistently upregulated during osteogenic differentiation of two different USSC cell lines (SA5/73 and SA8/25). Bioinformatic target gene prediction indicated that among these microRNAs, miR-10a, -22, -26a, -26b, and -29b recognize transcripts that encode a set of proteins inhibiting osteogenesis. We subsequently verified osteo-inhibitory CDK6, CTNNBIP1, HDAC4, and TOB1 and osteo-promoting SMAD1 as targets of these microRNAs. In Western blot analyses demonstrated that endogenous levels of CDK6 and HDAC4 were downregulated during osteogenic differentiation of USSC and reduced following ectopic expression of miR-26a/b and miR-29b. In contrast, endogenous expression of SMAD1, targeted by miR-26a/b, was unaltered during osteogenic differentiation of USSC or following ectopic expression of miR-26a/b. Functional overexpression analyses using microRNA mimics revealed that miR-26a/b, as well as miR-29b strongly accelerated osteogenic differentiation of USSC as assessed by Alizarin-Red staining and calcium-release assays. CONCLUSIONS miR-26a/b and miR-29b are upregulated during osteogenic differentiation of USSC and share target genes inhibiting osteogenesis. Furthermore, these microRNAs accelerate osteogenic differentiation, likely mediated by osteo-inhibitory proteins such as CDK6 and HDAC4.
Collapse
Affiliation(s)
- Hans-Ingo Trompeter
- University Düsseldorf, Medical Faculty, Institute for Transplantation Diagnostics and Cell Therapeutics (ITZ), Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Orlando B, Giacomelli L, Ricci M, Barone A, Covani U. Leader genes in osteogenesis: a theoretical study. Arch Oral Biol 2012; 58:42-9. [PMID: 22884391 DOI: 10.1016/j.archoralbio.2012.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/25/2012] [Accepted: 07/22/2012] [Indexed: 01/13/2023]
Abstract
Little is still known about the molecular mechanisms involved in the process of osteogenesis. In this paper, the leader genes approach, a new bioinformatics method which has already been experimentally validated, is adopted in order to identify the genes involved in human osteogenesis. Interactions among genes are then calculated and genes are ranked according to their relative importance in this process. In total, 167 genes were identified as being involved in osteogenesis. Genes were divided into 4 groups, according to their main function in the osteogenic processes: skeletal development; cell adhesion and proliferation; ossification; and calcium ion binding. Seven genes were consistently identified as leader genes (i.e. the genes with the greatest importance in osteogenesis), while 14 were found to have slightly less importance (class B genes). It was interesting to notice that the larger part of leader and class B genes belonged to the cell adhesion and proliferation or to the ossification sub-groups. This finding suggested that these two particular sub-processes could play a more important role in osteogenesis. Moreover, among the 7 leader genes, it is interesting to notice that RUNX2, BMP2, SPARC, PTH play a direct role in bone formation, while the 3 other leader genes (VEGF, IL6, FGF2) seem to be more connected with an angiogenetic process. Twenty-nine genes have no known interactions (orphan genes). From these results, it may be possible to plan an ad hoc experimentation, for instance by microarray analyses, focused on leader, class B and orphan genes, with the aim to shed new light on the molecular mechanisms underlying osteogenesis.
Collapse
Affiliation(s)
- Bruno Orlando
- Laboratories of Biophysics and Nanobiotechnology, Department of Medical Science, University of Genova, Italy.
| | | | | | | | | |
Collapse
|
40
|
Osteoblasts can induce dental pulp stem cells to undergo osteogenic differentiation. Cytotechnology 2012; 65:223-31. [PMID: 22806484 DOI: 10.1007/s10616-012-9479-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 06/21/2012] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that, in numerous species, systemically administered bone marrow-derived mesenchymal stem cells undergo site-specific differentiation. This suggests that osteoblasts, by means of cytokine secretion, may promote dental pulp stem cells (DPSCs) to undergo osteogenesis. The objective of this study was to assess the potential synergistic interaction effect of osteoblasts on DPSCs for promotion of osteogenesis. Stem cells, derived from dental pulp of healthy human donors, were co-cultured with calvaria osteoblasts using a culture insert system. The proliferation rate, calcium deposition, osteogenic-related gene expression of induced DPSCs, including Runx-2, bone sialoprotein, osteocalcin and collagen-1, were assayed using MTT, Alizarin Red S staining and reverse transcriptase polymerase chain reaction, respectively. Co-cultured DPSCs had the highest rate of proliferation compared with those cultured in absence of osteoblasts. The morphology and ultrastructure of DPSCs in the co-cultures showed improvement, with co-cultured DPSCs becoming more osteoblast-like as compared with DPSCs cultured alone, and the mineralization potential of co-cultured DPSCs was enhanced compared with DPSCs cultured alone. Furthermore, osteogenic-related genes were significantly over-expressed in co-cultured DPSCs after osteogenic induction. The results demonstrate that DPSCs successfully differentiate towards osteoblasts and that the paracrine interaction of osteoblasts is likely to contribute to DPSC differentiation. It is believed that this study demonstrates certain useful applications for DPSCs in bone tissue engineering.
Collapse
|
41
|
Tanaka KI, Inoue Y, Hendy GN, Canaff L, Katagiri T, Kitazawa R, Komori T, Sugimoto T, Seino S, Kaji H. Interaction of Tmem119 and the bone morphogenetic protein pathway in the commitment of myoblastic into osteoblastic cells. Bone 2012; 51:158-67. [PMID: 22579779 DOI: 10.1016/j.bone.2012.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 01/23/2012] [Accepted: 04/15/2012] [Indexed: 11/23/2022]
Abstract
Bone morphogenetic proteins (BMPs) are critical for bone regeneration and induce ectopic bone formation in vivo. The constitutively activating mutation (R206H) of the BMP type 1 receptor, activin A type 1 receptor/activin-like kinase 2 (ACVR1/ALK2), underlies the molecular pathogenesis of fibrodysplasia ossificans progressiva (FOP) in which heterotopic ossification occurs in muscle tissue. In the present study, we performed a comparative DNA microarray analysis between stable empty vector- and ALK2(R206H)-transfected mouse myoblastic C2C12 cells. Forty genes were identified whose expression was increased >3.5 times in the experimental group versus the control. The bone formation-related factor, Tmem119, was included in this group. Osteoblast differentiation markers and mineralization were enhanced in C2C12 cells stably expressing Tmem119. Differentiation of myoblastic cells into myotubes was suppressed but differentiation into chondrocytes was little affected. Transcriptional activity of the BMP-2 signaling molecules, Smad1/5, was increased even in the absence of exogenous BMP-2. Endogenous BMP-2 levels positively correlated with Tmem119 levels. A BMP-2/4 neutralizing antibody and dorsomorphin, an ALK2 inhibitor, antagonized Tmem119-enhanced alkaline phosphatase (ALP) levels. Tmem119 siRNA antagonized the BMP-2-induced ALP and osteocalcin, but not Runx2 and Osterix, mRNAs, in C2C12 cells. In conclusion, Tmem119 levels were increased by the FOP-associated constitutively activating ALK2 mutation in myoblasts. The data show that Tmem119 promotes the differentiation of myoblasts into osteoblasts and the interaction with the BMP signaling pathway likely occurs downstream of Runx2 and Osterix in myoblasts. Tmem119 may play a critical role in the commitment of myoprogenitor cells to the osteoblast lineage.
Collapse
Affiliation(s)
- Ken-ichiro Tanaka
- Division of Diabetes, and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Menin, a product of the MEN1 gene, is related to the ontogeny of several cancers such as MEN1 and sporadic endocrine tumors, although it is considered to be a tumor suppressor. Many proteins interact with menin, and it is involved in various biological functions in several tissues. Menin plays some physiological and pathological roles related to transforming growth factor-beta (TGF-β) signaling pathway in the parathyroid, and it is implicated in the tumorigenesis of parathyroid tumors. In bone, the bone phenotype was observed in some menin-deleted mice. Menin is considered to support BMP-2- and Runx2-induced differentiation of mesenchymal cells into osteoblasts by interacting with Smad1/5, Runx2, β-catenin and LEF-1, although it has different effects on osteoblasts at later differentiation stages through TGF-β-Smad3 and AP-1 pathways. Further research is expected to shed more light on the role of menin in bone.
Collapse
Affiliation(s)
- Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
43
|
Ren F, Xu HW, Hu Y, Yan SH, Wang F, Su BW, Zhao Q. Expression and subcellular localization of menin in human cancer cells. Exp Ther Med 2012; 3:1087-1091. [PMID: 22970022 DOI: 10.3892/etm.2012.530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 03/21/2012] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to elucidate the expression and localization of menin, a protein encoded by the multiple endocrine neoplasia type I (MEN1) gene, in 13 human cancer cell lines. Reverse transcription-polymerase chain reaction (RT-PCR) was used to determine the expression of the menin gene. The localization of the menin protein was detected by immunofluorescence microscopy. Western blotting was used to determine the quantity of menin in the nucleus, cytosol and membrane of the cells. RT-PCR revealed that menin was expressed in all the cell lines examined in this study. Immunofluorescence microscopy revealed that menin was located primarily in the nucleus. In the GES-1 (transformed human gastric epithelium), MCF-7 (breast cancer), SGH44 (brain glioma) and HeLa (cervical cancer) cell lines, menin was also found to be localized to the membrane, cytosol and nucleus. Moreover, in SGH44 cells more menin was located in the cytosol than the nucleus. Similar findings were obtained by western blotting. In the GES-1 and MKN-28 cells undergoing octreotide treatment, cytoplasmic menin was significantly increased compared with the control groups. Therefore, we suggest that menin is expressed in a number of human cancer cell lines and that the cytosolic distribution increases when the cells undergo octreotide treatment, indicating a new role for menin.
Collapse
Affiliation(s)
- Feng Ren
- Departments of Clinical Laboratory, and
| | | | | | | | | | | | | |
Collapse
|
44
|
Tanaka KI, Matsumoto E, Higashimaki Y, Katagiri T, Sugimoto T, Seino S, Kaji H. Role of osteoglycin in the linkage between muscle and bone. J Biol Chem 2012; 287:11616-28. [PMID: 22351757 DOI: 10.1074/jbc.m111.292193] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction between muscle tissues and bone metabolism is incompletely understood. We hypothesized that there might be some humoral factors that are produced in muscle tissues and exhibit bone anabolic activity. We, therefore, performed comparative DNA microarray analysis between mouse myoblastic C2C12 cells transfected with either stable empty vector or ALK2 (R206H), the mutation that constitutively activates the bone morphogenetic protein (BMP) receptor, to search for muscle-derived bone anabolic factors. Twenty-five genes whose expression was decreased to <1/4, were identified; these included osteoglycin (OGN). Stable overexpression of OGN significantly decreased the levels of Runx2 and Osterix mRNA compared with those in cells transfected with vector alone in MC3T3-E1 cells. On the other hand, it significantly enhanced the levels of alkaline phosphatase (ALP), type I collagen (Col1), and osteocalcin (OCN) mRNA as well as β-catenin and mineralization. A reduction in endogenous OGN level showed the opposite effects to those of OGN overexpression in MC3T3-E1 and mouse calvarial osteoblastic cells. Transient OGN overexpression significantly suppressed the levels of Runx2, Osterix, ALP, Col1, and OCN mRNA induced by BMP-2 in C2C12 cells. The conditioned medium from OGN-overexpressed and OGN-suppressed myoblastic cells enhanced and decreased, respectively, the levels of ALP, Col1, and β-catenin in MC3T3-E1 cells. Moreover, OGN increased Smad3/4-responsive transcriptional activity as well as Col1 mRNA levels independently of endogenous TGF-β in these cells. In conclusion, this study suggests that OGN may be a crucial humoral bone anabolic factor that is produced by muscle tissues.
Collapse
Affiliation(s)
- Ken-ichiro Tanaka
- Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
45
|
Canaff L, Vanbellinghen JF, Kaji H, Goltzman D, Hendy GN. Impaired transforming growth factor-β (TGF-β) transcriptional activity and cell proliferation control of a menin in-frame deletion mutant associated with multiple endocrine neoplasia type 1 (MEN1). J Biol Chem 2012; 287:8584-97. [PMID: 22275377 DOI: 10.1074/jbc.m112.341958] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is characterized by tumors of the parathyroid, enteropancreas, and anterior pituitary. The MEN1 gene encodes the tumor suppressor menin of 610 amino acids that has multiple protein partners and activities. The particular pathways that, when lost, lead to tumorigenesis are not known. We demonstrated that members of a three-generation MEN1 kindred are heterozygous for a donor splice site mutation at the beginning of intron 3 (IVS3 + 1G→A). Lymphoblastoid cells of a mutant gene carrier had, in addition to the wild-type menin transcript, an aberrant transcript resulting from use of a cryptic splice site within exon III that splices to the start of exon IV. The predicted menin Δ(184-218) mutant has an in-frame deletion of 35 amino acids but is otherwise of wild-type sequence. The transfected menin Δ(184-218) mutant was well expressed and fully able to mediate the normal inhibition of the activity of the transcriptional regulators JunD and NF-κB. However, it was defective in mediating TGF-β-stimulated Smad3 action in promoter-reporter assays in insulinoma cells. Importantly, lymphoblastoid cells from an individual heterozygous for the mutation had reduced TGF-β-induced (Smad3) transcriptional activity but normal JunD and NF-κB function. In addition, the mutant gene carrier lymphoblastoid cells proliferated faster and were less responsive to the cytostatic effects of TGF-β than cells from an unaffected family member. In conclusion, the menin mutant exhibits selective loss of the TGF-β signaling pathway and loss of cell proliferation control contributing to the development of MEN1.
Collapse
Affiliation(s)
- Lucie Canaff
- Department of Medicine, Royal Victoria Hospital, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | |
Collapse
|
46
|
Kanungo J, Chandrasekharappa SC. Menin induces endodermal differentiation in aggregated P19 stem cells by modulating the retinoic acid receptors. Mol Cell Biochem 2012; 359:95-104. [PMID: 21833538 PMCID: PMC3412628 DOI: 10.1007/s11010-011-1003-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 07/19/2011] [Indexed: 10/17/2022]
Abstract
Menin, a ubiquitously expressed protein, is the product of the multiple endocrine neoplasia type I (Men1) gene, mutations of which cause tumors primarily of the parathyroid, endocrine pancreas, and anterior pituitary. Menin-null mice display early embryonic lethality, and thus imply a critical role for menin in early development. In this study, using the P19 embryonic carcinoma stem cells, we studied menin's role in cell differentiation. Menin expression is induced in P19 cell aggregates by retinoic acid (RA). Menin over-expressing stable clones proliferated in a significantly reduced rate compared to the empty vector harboring cells. RA induced cell death in aggregated menin over-expressing cells. However, in the absence of RA, specific populations of the aggregated menin over-expressing cells displayed the characteristic of an endodermal phenotype by the acquisition of cytokeratin Endo A expression (TROMA-1), a marker for the primitive endoderm, with a concomitant loss of the stem cell marker SSEA-1. Menin's ability to induce endodermal differentiation in specific populations of the aggregated cells in the absence of RA implied that menin could substitute RA by inducing a set of target genes that are RA responsive. Menin over-expressing cells upon aggregation showed a robust expression of RA receptors (RAR), RARα, β, and γ relative to the empty vector-harboring cells. Moreover, endodermal differentiation was inhibited by the pan-RAR antagonist Ro41-5253, suggesting that menin could induce endodermal differentiation of uncommitted cells by functionally modulating the RARs.
Collapse
Affiliation(s)
- Jyotshnabala Kanungo
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, 50 South Dr, Bldg 50, Room 5232, Bethesda, MD 20892, USA.
| | | |
Collapse
|
47
|
Coutinho FL, Lourenco DM, Toledo RA, Montenegro FLM, Toledo SPA. Post-surgical follow-up of primary hyperparathyroidism associated with multiple endocrine neoplasia type 1. Clinics (Sao Paulo) 2012; 67 Suppl 1:169-72. [PMID: 22584724 PMCID: PMC3328812 DOI: 10.6061/clinics/2012(sup01)28] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bone mineral density increments in patients with sporadic primary hyperparathyroidism after parathyroidectomy have been studied by several investigators, but few have investigated this topic in primary hyperparathyroidism associated with multiple endocrine neoplasia type 1. Further, as far as we know, only two studies have consistently evaluated bone mineral density values after parathyroidectomy in cases of primary hyperparathyroidism associated with multiple endocrine neoplasia type 1. Here we revised the impact of parathyroidectomy (particularly total parathyroidectomy followed by autologous parathyroid implant into the forearm) on bone mineral density values in patients with primary hyperparathyroidism associated with multiple endocrine neoplasia type 1. Significant increases in bone mineral density in the lumbar spine and femoral neck values were found, although no short-term (15 months) improvement in bone mineral density at the proximal third of the distal radius was observed. Additionally, short-term and medium-term calcium and parathyroid hormone values after parathyroidectomy in patients with primary hyperparathyroidism associated with multiple endocrine neoplasia type 1 are discussed. In most cases, this surgical approach was able to restore normal calcium/parathyroid hormone levels and ultimately lead to discontinuation of calcium and calcitriol supplementation.
Collapse
Affiliation(s)
- Flavia L Coutinho
- Endocrine Genetics Unit (LIM-25), Endocrinology Division, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
48
|
Kim IS, Jeong SJ, Kim SH, Jung JH, Park YG, Kim SH. Special AT-rich sequence-binding protein 2 and its related genes play key roles in the differentiation of MC3T3-E1 osteoblast like cells. Biochem Biophys Res Commun 2011; 417:697-703. [PMID: 22166200 DOI: 10.1016/j.bbrc.2011.11.157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Special AT-rich sequence-binding protein (SATB) plays a critical role in bone generation and osteoblast differentiation. In the present study, the differentially expressed genes by SATB2 overexpression were analyzed in MC3T3-E1 osteoblast-like cells using Alizarin red S staining, wound healing assay and Agilent's Human Oligo Microarray. Calcium mineralization and motility were significantly enhanced in SATB2-overexpressed cells compared with untreated control. In addition, using the GeneSpringGX 7.3 program to compare the identified genes expressed in SATB2-overexpresed cells with untreated control, we found several unique genes closely associated with osteoblast differentiation, including SOX2, MBP2, WNT11 and MEN1 (up-regulated genes), and ILK, FGF23, FGFR2, and SNAI1 (down-regulated genes). Consistent with microarray data, real-time RT-PCR confirmed the significant up- and down-regulation of these genes at mRNA level in SATB2-overexpressed MC3T3-E1 cells. Overall, our findings suggest that the molecular regulation of SATB2 can be an attractive approach to develop a novel therapeutic strategy for bone-related diseases.
Collapse
Affiliation(s)
- In-Suk Kim
- Department of Orthodontics, Kyung-Hee University College of Dental Medicine, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
49
|
Pneumaticos SG, Triantafyllopoulos GK, Basdra EK, Papavassiliou AG. Segmental bone defects: from cellular and molecular pathways to the development of novel biological treatments. J Cell Mol Med 2011; 14:2561-9. [PMID: 20345845 PMCID: PMC4373476 DOI: 10.1111/j.1582-4934.2010.01062.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Several conditions in clinical orthopaedic practice can lead to the development of a diaphyseal segmental bone defect, which cannot heal without intervention. Segmental bone defects have been traditionally treated with bone grafting and/or distraction osteogenesis, methods that have many advantages, but also major drawbacks, such as limited availability, risk of disease transmission and prolonged treatment. In order to overcome such limitations, biological treatments have been developed based on specific pathways of bone physiology and healing. Bone tissue engineering is a dynamic field of research, combining osteogenic cells, osteoinductive factors, such as bone morphogenetic proteins, and scaffolds with osteoconductive and osteoinductive attributes, to produce constructs that could be used as bone graft substitutes for the treatment of segmental bone defects. Scaffolds are usually made of ceramic or polymeric biomaterials, or combinations of both in composite materials. The purpose of the present review is to discuss in detail the molecular and cellular basis for the development of bone tissue engineering constructs.
Collapse
Affiliation(s)
- Spyros G Pneumaticos
- Third Department of Orthopaedic Surgery, Medical School, University of Athens, 'KAT' Accident's Hospital, Athens, Greece
| | | | | | | |
Collapse
|
50
|
Kawakatsu M, Kanno S, Gui T, Gai Z, Itoh S, Tanishima H, Oikawa K, Muragaki Y. Loss of Smad3 gives rise to poor soft callus formation and accelerates early fracture healing. Exp Mol Pathol 2011; 90:107-15. [DOI: 10.1016/j.yexmp.2010.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 10/14/2010] [Accepted: 10/20/2010] [Indexed: 11/27/2022]
|