1
|
Petrillo N, Dinh K, Vogt KA, Ma S. Catalytic Mechanism of Human T-Cell Leukemia Virus Type 1 Protease Investigated by Combined QM/MM Molecular Dynamics Simulations. J Chem Inf Model 2023. [PMID: 37289654 DOI: 10.1021/acs.jcim.3c00440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations were performed to investigate the catalytic mechanism of human T-cell leukemia virus type 1 (HTLV-1) protease, a retroviral aspartic protease that is a potential therapeutic target for curing HTLV-1-associated diseases. To elucidate the proteolytic cleavage mechanism, we determined the two-dimensional free energy surfaces of the HTLV-1 protease-catalyzed reactions through various possible pathways. The free energy simulations suggest that the catalytic reactions of the HTLV-1 protease occur in the following sequential steps: (1) a proton is transferred from the lytic water to Asp32', followed by the nucleophilic addition of the resulting hydroxyl to the carbonyl carbon of the scissile bond, forming a tetrahedral oxyanion intermediate, and (2) a proton is transferred from Asp32 to the peptide nitrogen of the scissile bond, leading to the spontaneous breakage of the scissile bond. The rate-limiting step of this catalytic process is the proton transfer from Asp32 to the peptide nitrogen of the scissile bond, with a free energy of activation of 21.1 kcal/mol. This free energy barrier is close to the experimentally determined free energy of activation (16.3 kcal/mol) calculated from the measured catalytic rate constant (kcat). This mechanistic study provides detailed dynamic and structural information that will facilitate the design of mechanism-based inhibitors for the treatment of HTLV-1-associated diseases.
Collapse
Affiliation(s)
- Natalie Petrillo
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kim Dinh
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Kimberly A Vogt
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| | - Shuhua Ma
- Department of Chemistry, Jess and Mildred Fisher College of Science and Mathematics, Towson University, 8000 York Road, Towson, Maryland 21252, United States
| |
Collapse
|
2
|
Mótyán JA, Kassay N, Matúz K, Tőzsér J. Different Mutation Tolerance of Lentiviral (HIV-1) and Deltaretroviral (BLV and HTLV) Protease Precursors. Viruses 2022; 14:v14091888. [PMID: 36146695 PMCID: PMC9505669 DOI: 10.3390/v14091888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The bovine leukemia virus (BLV) and the human T-lymphothropic viruses (HTLVs) are members of the deltaretrovirus genus of Retroviridae family. An essential event of the retroviral life cycle is the processing of the polyproteins by the viral protease (PR); consequently, these enzymes became important therapeutic targets of the anti-retroviral drugs. As compared to human immunodeficiency viruses (HIVs), the deltaretroviruses have a different replication strategy, as they replicate predominantly in the DNA form, by forcing the infected cell to divide, unlike HIV-1, which replicates mainly by producing a vast number of progeny virions and by reinfection. Due to bypassing the error-prone reverse transcription step of replication, the PRs of deltaretroviruses did not undergo such extensive evolution as HIV PRs and remained more highly conserved. In this work, we studied the abilities of wild-type and modified BLV, HTLV (type 1, 2 and 3), and HIV-1 PRs (fused to an N-terminal MBP tag) for self-processing. We designed a cleavage site mutant MBP-fused BLV PR precursor as well, this recombinant enzyme was unable for self-proteolysis, the MBP fusion tag decreased its catalytic efficiency but showed an unusually low Ki for the IB-268 protease inhibitor. Our results show that the HTLV and BLV deltaretrovirus PRs exhibit lower mutation tolerance as compared to HIV-1 PR, and are less likely to retain their activity upon point mutations at various positions, indicating a higher flexibility of HIV-1 PR in tolerating mutations under selective pressure.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
3
|
Sohraby F, Aryapour H. Reconstruction of the binding pathway of an anti-HIV drug, Indinavir, in complex with the HTLV-1 protease using unaggregated unbiased molecular dynamics simulation. Comput Biol Chem 2021; 96:107616. [PMID: 34883394 DOI: 10.1016/j.compbiolchem.2021.107616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022]
Abstract
Retroviruses are a growing concern for the health of human beings, and one of the dangerous members of this family is the Human T-cell Leukemia Virus 1 (HTLV-1) virus. It has affected more than 20 million people so far, and since there are no registered treatments against it yet, urgent treatment solutions are needed. One of the most promising drug targets to fight this virus is the protease enzyme of the virus's protein machinery. In this study, by utilizing a computational method called Unaggregated Unbiased Molecular Dynamics (UUMD), we reconstructed the binding pathway of a HTLV-1 protease inhibitor, Indinavir, to find the details of the binding pathway, the influential residues, and also the stable states of the binding pathway. We achieved the native conformation of the inhibitor in 6 rounds, 360 replicas by performing over 4 micro-seconds of UMD simulations. We found 3 Intermediate states between the solvated state and the native conformation state in the binding pathway. We also discovered that aromatic residues such as Trp98 and Trp98', catalytic residues Asp32 and Asp32', and the flap region's residues have the most influential roles in the binding pathway and also have the most contribution to the total interaction energies. We believe that the details found in this study would be a great guide for developing new treatment solutions against the HTLV-1 virus by inhibiting the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Department of Biology, Faculty of Science, Golestan University, Gorgan, Iran.
| |
Collapse
|
4
|
Sohraby F, Aryapour H. Comparative analysis of the unbinding pathways of antiviral drug Indinavir from HIV and HTLV1 proteases by supervised molecular dynamics simulation. PLoS One 2021; 16:e0257916. [PMID: 34570822 PMCID: PMC8476009 DOI: 10.1371/journal.pone.0257916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Determining the unbinding pathways of potential small molecule compounds from their target proteins is of great significance for designing efficacious treatment solutions. One of these potential compounds is the approved HIV-1 protease inhibitor, Indinavir, which has a weak effect on the HTLV-1 protease. In this work, by employing the SuMD method, we reconstructed the unbinding pathways of Indinavir from HIV and HTLV-1 proteases to compare and understand the mechanism of the unbinding and to discover the reasons for the lack of inhibitory activity of Indinavir against the HTLV-1 protease. We achieved multiple unbinding events from both HIV and HTLV-1 proteases in which the RMSD values of Indinavir reached over 40 Å. Also, we found that the mobility and fluctuations of the flap region are higher in the HTLV-1 protease, making the drug less stable. We realized that critically positioned aromatic residues such as Trp98/Trp98' and Phe67/Phe67' in the HTLV-1 protease could make strong π-Stacking interactions with Indinavir in the unbinding pathway, which are unfavorable for the stability of Indinavir in the active site. The details found in this study can make a reasonable explanation for the lack of inhibitory activity of this drug against HTLV-1 protease. We believe the details discovered in this work can help design more effective and selective inhibitors for the HTLV-1 protease.
Collapse
Affiliation(s)
- Farzin Sohraby
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
| | - Hassan Aryapour
- Faculty of Science, Department of Biology, Golestan University, Gorgan, Iran
- * E-mail:
| |
Collapse
|
5
|
Weber IT, Wang YF, Harrison RW. HIV Protease: Historical Perspective and Current Research. Viruses 2021; 13:v13050839. [PMID: 34066370 PMCID: PMC8148205 DOI: 10.3390/v13050839] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/15/2022] Open
Abstract
The retroviral protease of human immunodeficiency virus (HIV) is an excellent target for antiviral inhibitors for treating HIV/AIDS. Despite the efficacy of therapy, current efforts to control the disease are undermined by the growing threat posed by drug resistance. This review covers the historical background of studies on the structure and function of HIV protease, the subsequent development of antiviral inhibitors, and recent studies on drug-resistant protease variants. We highlight the important contributions of Dr. Stephen Oroszlan to fundamental knowledge about the function of the HIV protease and other retroviral proteases. These studies, along with those of his colleagues, laid the foundations for the design of clinical inhibitors of HIV protease. The drug-resistant protease variants also provide an excellent model for investigating the molecular mechanisms and evolution of resistance.
Collapse
Affiliation(s)
- Irene T. Weber
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
- Correspondence:
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA 30302, USA;
| | - Robert W. Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA 30302, USA;
| |
Collapse
|
6
|
Lockbaum GJ, Henes M, Talledge N, Rusere LN, Kosovrasti K, Nalivaika EA, Somasundaran M, Ali A, Mansky LM, Yilmaz NK, Schiffer CA. Inhibiting HTLV-1 Protease: A Viable Antiviral Target. ACS Chem Biol 2021; 16:529-538. [PMID: 33619959 PMCID: PMC8126997 DOI: 10.1021/acschembio.0c00975] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Human T-cell lymphotropic virus type 1 (HTLV-1) is a retrovirus that can cause severe paralytic neurologic disease and immune disorders as well as cancer. An estimated 20 million people worldwide are infected with HTLV-1, with prevalence reaching 30% in some parts of the world. In stark contrast to HIV-1, no direct acting antivirals (DAAs) exist against HTLV-1. The aspartyl protease of HTLV-1 is a dimer similar to that of HIV-1 and processes the viral polyprotein to permit viral maturation. We report that the FDA-approved HIV-1 protease inhibitor darunavir (DRV) inhibits the enzyme with 0.8 μM potency and provides a scaffold for drug design against HTLV-1. Analogs of DRV that we designed and synthesized achieved submicromolar inhibition against HTLV-1 protease and inhibited Gag processing in viral maturation assays and in a chronically HTLV-1 infected cell line. Cocrystal structures of these inhibitors with HTLV-1 protease highlight opportunities for future inhibitor design. Our results show promise toward developing highly potent HTLV-1 protease inhibitors as therapeutic agents against HTLV-1 infections.
Collapse
Affiliation(s)
- Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nathaniel Talledge
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Klajdi Kosovrasti
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mohan Somasundaran
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Louis M. Mansky
- Institute for Molecular Virology, Masonic Cancer Center, University of Minnesota – Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
7
|
Kassay N, Mótyán JA, Matúz K, Golda M, Tőzsér J. Biochemical Characterization, Specificity and Inhibition Studies of HTLV-1, HTLV-2, and HTLV-3 Proteases. Life (Basel) 2021; 11:life11020127. [PMID: 33562087 PMCID: PMC7915765 DOI: 10.3390/life11020127] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 01/03/2023] Open
Abstract
The human T-lymphotropic viruses (HTLVs) are causative agents of severe diseases including adult T-cell leukemia. Similar to human immunodeficiency viruses (HIVs), the viral protease (PR) plays a crucial role in the viral life-cycle via the processing of the viral polyproteins. Thus, it is a potential target of anti-retroviral therapies. In this study, we performed in vitro comparative analysis of human T-cell leukemia virus type 1, 2, and 3 (HTLV-1, -2, and -3) proteases. Amino acid preferences of S4 to S1′ subsites were studied by using a series of synthetic oligopeptide substrates representing the natural and modified cleavage site sequences of the proteases. Biochemical characteristics of the different PRs were also determined, including catalytic efficiencies and dependence of activity on pH, temperature, and ionic strength. We investigated the effects of different HIV-1 PR inhibitors (atazanavir, darunavir, DMP-323, indinavir, ritonavir, and saquinavir) on enzyme activities, and inhibitory potentials of IB-268 and IB-269 inhibitors that were previously designed against HTLV-1 PR. Comparative biochemical analysis of HTLV-1, -2, and -3 PRs may help understand the characteristic similarities and differences between these enzymes in order to estimate the potential of the appearance of drug-resistance against specific HTLV-1 PR inhibitors.
Collapse
Affiliation(s)
- Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
| | - Mária Golda
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (N.K.); (K.M.); (M.G.)
- Correspondence: (J.A.M.); (J.T.); Tel.: +36-52-512-900 (J.A.M. & J.T.)
| |
Collapse
|
8
|
McNay EC, Pearson-Leary J. GluT4: A central player in hippocampal memory and brain insulin resistance. Exp Neurol 2020; 323:113076. [PMID: 31614121 PMCID: PMC6936336 DOI: 10.1016/j.expneurol.2019.113076] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 10/01/2019] [Indexed: 12/24/2022]
Abstract
Insulin is now well-established as playing multiple roles within the brain, and specifically as regulating hippocampal cognitive processes and metabolism. Impairments to insulin signaling, such as those seen in type 2 diabetes and Alzheimer's disease, are associated with brain hypometabolism and cognitive impairment, but the mechanisms of insulin's central effects are not determined. Several lines of research converge to suggest that the insulin-responsive glucose transporter GluT4 plays a central role in hippocampal memory processes, and that reduced activation of this transporter may underpin the cognitive impairments seen as a consequence of insulin resistance.
Collapse
Affiliation(s)
- Ewan C McNay
- Behavioral Neuroscience, University at Albany, Albany, NY, USA.
| | - Jiah Pearson-Leary
- Department of Anesthesiology, Abramson Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
9
|
Arora K, Panda KK, Mittal S, Mallikarjuna MG, Thirunavukkarasu N. In Silico Characterization and Functional Validation of Cell Wall Modification Genes Imparting Waterlogging Tolerance in Maize. Bioinform Biol Insights 2017; 11:1177932217747277. [PMID: 29317803 PMCID: PMC5753887 DOI: 10.1177/1177932217747277] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/11/2017] [Indexed: 01/10/2023] Open
Abstract
Cell wall modification (CWM) promotes the formation of aerenchyma in roots under waterlogging conditions as an adaptive mechanism. Lysigenous aerenchyma formation in roots improves oxygen transfer in plants, which highlights the importance of CWM as a focal point in waterlogging stress tolerance. We investigated the structural and functional compositions of CWM genes and their expression patterns under waterlogging conditions in maize. Cell wall modification genes were identified for 3 known waterlogging-responsive cis-acting regulatory elements, namely, GC motif, anaerobic response elements, and G-box, and 2 unnamed elements. Structural motifs mapped in CWM genes were represented in genes regulating waterlogging stress-tolerant pathways, including fermentation, glycolysis, programmed cell death, and reactive oxygen species signaling. The highly aligned regions of characterized and uncharacterized CWM proteins revealed common structural domains amongst them. Membrane spanning regions present in the protein structures revealed transmembrane activity of CWM proteins in the plant cell wall. Cell wall modification proteins had interacted with ethylene-responsive pathway regulating genes (E3 ubiquitin ligases RNG finger and F-box) in a maize protein-protein interaction network. Cell wall modification genes had also coexpressed with energy metabolism, programmed cell death, and reactive oxygen species signaling, regulating genes in a single coexpression cluster. These configurations of CWM genes can be used to modify the protein expression in maize under waterlogging stress condition. Our study established the importance of CWM genes in waterlogging tolerance, and these genes can be used as candidates in introgression breeding and genome editing experiments to impart tolerance in maize hybrids.
Collapse
Affiliation(s)
- Kanika Arora
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kusuma Kumari Panda
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Shikha Mittal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Nepolean Thirunavukkarasu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Maize Research Lab, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Kuhnert M, Blum A, Steuber H, Diederich WE. Privileged Structures Meet Human T-Cell Leukemia Virus-1 (HTLV-1): C2-Symmetric 3,4-Disubstituted Pyrrolidines as Nonpeptidic HTLV-1 Protease Inhibitors. J Med Chem 2015; 58:4845-50. [PMID: 26000468 DOI: 10.1021/acs.jmedchem.5b00346] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-disubstituted pyrrolidines originally designed to inhibit the closely related HIV-1 protease were evaluated as privileged structures against HTLV-1 protease (HTLV-1 PR). The most potent inhibitor of this series exhibits two-digit nanomolar affinity and represents, to the best of our knowledge, the most potent nonpeptidic inhibitor of HTLV-1 PR described so far. The X-ray structures of two representatives bound to HTLV-1 PR were determined, and the structural basis of their affinity is discussed.
Collapse
Affiliation(s)
- Maren Kuhnert
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Andreas Blum
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| | - Holger Steuber
- ‡LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität Marburg, Hans-Meerwein-Straße, 35043 Marburg, Germany
| | - Wibke E Diederich
- †Institut für Pharmazeutische Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
11
|
Characterizing the protonation states of the catalytic residues in apo and substrate-bound human T-cell leukemia virus type 1 protease. Comput Biol Chem 2015; 56:61-70. [PMID: 25889320 DOI: 10.1016/j.compbiolchem.2015.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/22/2015] [Accepted: 04/03/2015] [Indexed: 11/23/2022]
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) protease is an attractive target when developing inhibitors to treat HTLV-1 associated diseases. To study the catalytic mechanism and design novel HTLV-1 protease inhibitors, the protonation states of the two catalytic aspartic acid residues must be determined. Free energy simulations have been conducted to study the proton transfer reaction between the catalytic residues of HTLV-1 protease using a combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulation. The free energy profiles for the reaction in the apo-enzyme and in an enzyme - substrate complex have been obtained. In the apo-enzyme, the two catalytic residues are chemically equivalent and are expected to be both unprotonated. Upon substrate binding, the catalytic residues of HTLV-1 protease evolve to a singly protonated state, in which the OD1 of Asp32 is protonated and forms a hydrogen bond with the OD1 of Asp32', which is unprotonated. The HTLV-1 protease-substrate complex structure obtained from this simulation can serve as the Michaelis complex structure for further mechanistic studies of HTLV-1 protease while providing a receptor structure with the correct protonation states for the active site residues toward the design of novel HTLV-1 protease inhibitors through virtual screening.
Collapse
|
12
|
Rögnvaldsson T, You L, Garwicz D. State of the art prediction of HIV-1 protease cleavage sites. Bioinformatics 2014; 31:1204-10. [PMID: 25504647 DOI: 10.1093/bioinformatics/btu810] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/04/2014] [Indexed: 02/01/2023] Open
Abstract
MOTIVATION Understanding the substrate specificity of human immunodeficiency virus (HIV)-1 protease is important when designing effective HIV-1 protease inhibitors. Furthermore, characterizing and predicting the cleavage profile of HIV-1 protease is essential to generate and test hypotheses of how HIV-1 affects proteins of the human host. Currently available tools for predicting cleavage by HIV-1 protease can be improved. RESULTS The linear support vector machine with orthogonal encoding is shown to be the best predictor for HIV-1 protease cleavage. It is considerably better than current publicly available predictor services. It is also found that schemes using physicochemical properties do not improve over the standard orthogonal encoding scheme. Some issues with the currently available data are discussed. AVAILABILITY AND IMPLEMENTATION The datasets used, which are the most important part, are available at the UCI Machine Learning Repository. The tools used are all standard and easily available. CONTACT thorsteinn.rognvaldsson@hh.se.
Collapse
Affiliation(s)
- Thorsteinn Rögnvaldsson
- CAISR, School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden and Division of Clinical Chemistry and Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Liwen You
- CAISR, School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden and Division of Clinical Chemistry and Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Daniel Garwicz
- CAISR, School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden and Division of Clinical Chemistry and Pharmacology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Selvaraj C, Omer A, Singh P, Singh SK. Molecular insights of protein contour recognition with ligand pharmacophoric sites through combinatorial library design and MD simulation in validating HTLV-1 PR inhibitors. MOLECULAR BIOSYSTEMS 2014; 11:178-89. [PMID: 25335799 DOI: 10.1039/c4mb00486h] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Retroviruses HIV-1 and HTLV-1 are chiefly considered to be the most dangerous pathogens in Homo sapiens. These two viruses have structurally unique protease (PR) enzymes, which are having common function of its replication mechanism. Though HIV PR drugs failed to inhibit HTLV-1 infections, they emphatically emphasise the need for designing new lead compounds against HTLV-1 PR. Therefore, we tried to understand the binding level interactions through the charge environment present in both ligand and protein active sites. The domino effect illustrates that libraries of purvalanol-A are attuned to fill allosteric binding site of HTLV-1 PR through molecular recognition and shows proper binding of ligand pharmacophoric features in receptor contours. Our screening evaluates seven compounds from purvalanol-A libraries, and these compounds' pharmacophore searches for an appropriate place in the binding site and it places well according to respective receptor contour surfaces. Thus our result provides a platform for the progress of more effective compounds, which are better in free energy calculation, molecular docking, ADME and molecular dynamics studies. Finally, this research provided novel chemical scaffolds for HTLV-1 drug discovery.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi-630004, Tamilnadu, India.
| | | | | | | |
Collapse
|
14
|
Kuhnert M, Steuber H, Diederich WE. Structural basis for HTLV-1 protease inhibition by the HIV-1 protease inhibitor indinavir. J Med Chem 2014; 57:6266-72. [PMID: 25006983 DOI: 10.1021/jm500402c] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
HTLV-1 protease (HTLV-1 PR) is an aspartic protease which represents a promising drug target for the discovery of novel anti-HTLV-1 drugs. The X-ray structure of HTLV-1 PR in complex with the well-known and approved HIV-1 PR inhibitor Indinavir was determined at 2.40 Å resolution. In this contribution, we describe the first crystal structure in complex with a nonpeptidic inhibitor that accounts for rationalizing the rather moderate affinity of Indinavir against HTLV-1 PR and provides the basis for further structure-guided optimization strategies.
Collapse
Affiliation(s)
- Maren Kuhnert
- Institut für Pharmazeutische Chemie, Philipps-Universität Marburg , Marbacher Weg 6, 35032 Marburg, Germany
| | | | | |
Collapse
|
15
|
Selvaraj C, Singh P, Singh SK. Molecular modeling studies and comparative analysis on structurally similar HTLV and HIV protease using HIV-PR inhibitors. J Recept Signal Transduct Res 2014; 34:361-71. [PMID: 24694004 DOI: 10.3109/10799893.2014.898659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Retroviruses are most perilous viral family, which cause much damage to the Homo sapiens. HTLV-1 mechanism found to more similar with HIV-1 and both retroviruses are causative agents of severe and fatal diseases including adult T-cell leukemia (ATL) and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease (PR) that is essential for replication and therefore represents a key target for drugs interfering with viral infection. In this work, the comparative study of HIV-1 and HTLV-1 PR enzymes through sequence and structural analysis is reported along with approved drugs of HIV-PR. Conformation of each HIV PR drugs have been examined with different parameters of interactions and energy scorings parameters. MD simulations with respect to timescale event of 20 ns favors that, few HIV-PR inhibitors can be more active inside the HTLV-1 PR binding pocket. Overall results suggest that, some of HIV inhibitors like Tipranavir, Indinavir, Darunavir and Amprenavir are having good energy levels with HTLV-1. Due to absence of interactions with MET37, here we report that derivatives of these compounds can be much better inhibitors for targeting HTLV-1 proteolytic activity.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer-Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Alagappa University , Karaikudi, Tamil Nadu , India and
| | | | | |
Collapse
|
16
|
Singh P, Singh SK, Selvaraj C, Singh RK. 195In silicostudy on HIV-PRIs substructures to terminate proteolytic activity in HTLV. J Biomol Struct Dyn 2013. [DOI: 10.1080/07391102.2013.786437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Demir A, Oguariri RM, Magis A, Ostrov DA, Imamichi T, Dunn BM. Kinetic characterization of newly discovered inhibitors of various constructs of human T-cell leukemia virus-1 (HTLV-1) protease and their effect on HTLV-1-infected cells. Antivir Ther 2012; 17:883-92. [PMID: 22436331 DOI: 10.3851/imp2090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 10/28/2022]
Abstract
BACKGROUND Human T-cell leukemia virus-1 (HTLV-1) was the first identified human retrovirus and was shown to be associated with diseases such as adult T-cell leukemia lymphoma and tropical spastic paraparesis/HTLV-1 associated myelopathy. Retroviral proteases (PRs) are essential for viral replication by processing viral Gag and Gag-(Pro)-Pol polyproteins during maturation. Full-length HTLV-1 PR is 125 residues long; whether the C-terminal region is required for catalytic activity is still controversial. In this study, we characterized the effect of C-terminal amino acids of HTLV-1 PR for PR activity and examined the binding of compounds identified by in silico screening. One compound showed inhibition against the virus in infected cells. METHODS Truncated (116-, 121- and 122-residue) forms of HTLV-1 PR were prepared and proteins from expression of the genes were purified. In silico screening was performed by docking small molecules into the active site of HTLV-1 PR. The kinetic constants k(cat), K(m), k(cat)/K(m) and inhibition constants K(i) for inhibitors identified by the computational screening were determined. Western blot and ELISA analyses were used to determine the effect of the most potent PR inhibitors on HTLV-1 protein processing in infected cells. RESULTS The constructs showed similar catalytic efficiency constants (k(cat)/K(m)); thus HTLV-1 PR C-terminal amino acids are not essential for full activity. Computational screening revealed new PR inhibitors and some were shown to be inhibitory in enzyme assays. In HTLV-1-infected cells, one of the small molecules inhibited HTLV-1 gag cleavage and decreased the amount of HTLV-1 p19 produced in the cells. CONCLUSIONS We have identified an HTLV-1 PR inhibitor that is biologically functional. Inhibitor screening will continue to develop possible drugs for therapy of HTLV-1 infection.
Collapse
Affiliation(s)
- Ahu Demir
- University of Florida College of Medicine Biochemistry and Molecular Biology, Gainesville, FL, USA
| | | | | | | | | | | |
Collapse
|
18
|
Kumada HO, Nguyen JT, Kakizawa T, Hidaka K, Kimura T, Hayashi Y, Kiso Y. Development of [Ile40]HTLV-I protease inhibition assay using novel fluorogenic and chromogenic substrate. J Pept Sci 2011; 17:569-75. [DOI: 10.1002/psc.1375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/09/2011] [Accepted: 03/11/2011] [Indexed: 11/07/2022]
|
19
|
Nguyen JT, Kato K, Hidaka K, Kumada HO, Kimura T, Kiso Y. Design and synthesis of several small-size HTLV-I protease inhibitors with different hydrophilicity profiles. Bioorg Med Chem Lett 2011; 21:2425-9. [PMID: 21392990 DOI: 10.1016/j.bmcl.2011.02.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/10/2011] [Accepted: 02/15/2011] [Indexed: 11/29/2022]
Abstract
The human T cell leukemia/lymphotropic virus type 1 (HTLV-I) is clinically associated with adult T cell leukemia/lymphoma, HTLV-I associated myelopathy/tropical spastic paraparesis, and a number of other chronic inflammatory diseases. To stop the replication of the virus, we developed highly potent tetrapeptidic HTLV-I protease inhibitors. In a recent X-ray crystallography study, several of our inhibitors could not form co-crystal complexes with the protease due to their high hydrophobicity. In the current study, we designed, synthesized and evaluated the HTLV-I protease inhibition potency of compounds with hydrophilic end-capping moieties with the aim of improving pharmaceutic and pharmacokinetic properties.
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | |
Collapse
|
20
|
A comparative study of HIV-1 and HTLV-I protease structure and dynamics reveals a conserved residue interaction network. J Mol Model 2011; 17:2693-705. [PMID: 21279524 DOI: 10.1007/s00894-011-0971-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 01/11/2011] [Indexed: 12/14/2022]
Abstract
The two retroviruses human T-lymphotropic virus type I (HTLV-I) and human immunodeficiency virus type 1 (HIV-1) are the causative agents of severe and fatal diseases including adult T-cell leukemia and the acquired immune deficiency syndrome (AIDS). Both viruses code for a protease that is essential for replication and therefore represents a key target for drugs interfering with viral infection. The retroviral proteases from HIV-1 and HTLV-I share 31% sequence identity and high structural similarities. Yet, their substrate specificities and inhibition profiles differ substantially. In this study, we performed all-atom molecular dynamics (MD) simulations for both enzymes in their ligand-free states and in complex with model substrates in order to compare their dynamic behaviors and enhance our understanding of the correlation between sequence, structure, and dynamics in this protein family. We found extensive similarities in both local and overall protein dynamics, as well as in the energetics of their interactions with model substrates. Interestingly, those residues that are important for strong ligand binding are frequently not conserved in sequence, thereby offering an explanation for the differences in binding specificity. Moreover, we identified an interaction network of contacts between conserved residues that interconnects secondary structure elements and serves as a scaffold for the protein fold. This interaction network is conformationally stable over time and may provide an explanation for the highly similar dynamic behavior of the two retroviral proteases, even in the light of their rather low overall sequence identity.
Collapse
|
21
|
Nguyen JT, Kato K, Kumada HO, Hidaka K, Kimura T, Kiso Y. Maintaining potent HTLV-I protease inhibition without the P3-cap moiety in small tetrapeptidic inhibitors. Bioorg Med Chem Lett 2011; 21:1832-7. [PMID: 21316958 DOI: 10.1016/j.bmcl.2011.01.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 10/18/2022]
Abstract
The human T cell lymphotropic/leukemia virus type 1 (HTLV-I) causes adult T cell lymphoma/leukemia. The virus is also responsible for chronic progressive myelopathy and several inflammatory diseases. To stop the manufacturing of new viral components, in our previous reports, we derived small tetrapeptidic HTLV-I protease inhibitors with an important amide-capping moiety at the P(3) residue. In the current study, we removed the P(3)-cap moiety and, with great difficulty, optimized the P(3) residue for HTLV-I protease inhibition potency. We discovered a very potent and small tetrapeptidic HTLV-I protease inhibitor (KNI-10774a, IC(50)=13 nM).
Collapse
Affiliation(s)
- Jeffrey-Tri Nguyen
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Austin BP, Tözsér J, Bagossi P, Tropea JE, Waugh DS. The substrate specificity of Metarhizium anisopliae and Bos taurus carboxypeptidases A: insights into their use as tools for the removal of affinity tags. Protein Expr Purif 2010; 77:53-61. [PMID: 21073956 DOI: 10.1016/j.pep.2010.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 11/05/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023]
Abstract
Carboxypeptidases may serve as tools for removal of C-terminal affinity tags. In the present study, we describe the expression and purification of an A-type carboxypeptidase from the fungal pathogen Metarhizium anisopliae (MeCPA) that has been genetically engineered to facilitate the removal of polyhistidine tags from the C-termini of recombinant proteins. A complete, systematic analysis of the specificity of MeCPA in comparison with that of bovine carboxypeptidase A (BoCPA) was carried out. Our results indicate that the specificity of the two enzymes is similar but not identical. Histidine residues are removed more efficiently by MeCPA. The very inefficient digestion of peptides with C-terminal lysine or arginine residues, along with the complete inability of the enzyme to remove a C-terminal proline, suggests a strategy for designing C-terminal affinity tags that can be trimmed by MeCPA (or BoCPA) to produce a digestion product with a homogeneous endpoint.
Collapse
Affiliation(s)
- Brian P Austin
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
23
|
Li C, Li X, Lu W. Total chemical synthesis of human T-cell leukemia virus type 1 protease via native chemical ligation. Biopolymers 2010; 94:487-94. [PMID: 20593478 DOI: 10.1002/bip.21375] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human T-cell leukemia virus 1 (HTLV-1) protease, a member of the aspartic acid protease family, plays critical roles in the pathogenesis of the virus and is an attractive viral target for therapeutic intervention. HTLV-1 protease consists of 125 amino acid residues and functions as a homodimer stabilized in part by a four-stranded beta-sheet comprising the N- and C-termini. Compared with many other viral proteases such as HIV-1 protease, HTLV-1 protease is elongated by an extra 10 amino acid residue "tail" at the C-terminus. The structural and functional role of the extra C-terminal residues in the catalysis of HTLV-1 protease has been a subject of debate for years. Using the native chemical ligation technique pioneered by Kent and coworkers, we chemically synthesized a full-length HTLV protease and a C-terminally truncated form encompassing residues 1-116. Enzyme kinetic analysis using three different peptide substrates indicated that truncation of the C-terminal tail lowered the turnover number of the viral enzyme by a factor of 2 and its catalytic efficiency by roughly 10-fold. Our findings differ from the two extreme views that the C-terminal tail of HTLV-1 protease is either fully dispensable or totally required for enzyme dimerization and/or catalysis.
Collapse
Affiliation(s)
- Changqing Li
- Institute of Human Virology, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
24
|
Law SKY, Wang RR, Mak ANS, Wong KB, Zheng YT, Shaw PC. A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells. Nucleic Acids Res 2010; 38:6803-12. [PMID: 20558598 PMCID: PMC2965250 DOI: 10.1093/nar/gkq551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the α-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
Collapse
Affiliation(s)
- Sue Ka-Yee Law
- Department of Biochemistry and Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
25
|
Bagossi P, Bander P, Bozóki B, Tözsér J. Discovery and significance of new human T-lymphotropic viruses: HTLV-3 and HTLV-4. Expert Rev Anti Infect Ther 2010; 7:1235-49. [PMID: 19968515 DOI: 10.1586/eri.09.97] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Human T-lymphotropic virus type 1 (HTLV-1) and type 2 (HTLV-2) were discovered approximately 30 years ago and they are associated with various lymphoproliferative and neurological diseases. The estimated number of infected people is 10-20 million worldwide. In 2005, two new HTLV-1/HTLV-2-related viruses were detected, HTLV-3 and HTLV-4, from the same geographical area of Africa. In the last 4 years, their complete genomic sequences were determined and some of their characteristic features were studied in detail. These newly discovered retroviruses alongside their human (HTLV-1 and -2) and animal relatives (simian T-lymphotropic virus type 1-3) are reviewed. The potential risks associated with these viruses and the potential antiretroviral therapies are also discussed.
Collapse
Affiliation(s)
- Péter Bagossi
- Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary.
| | | | | | | |
Collapse
|
26
|
Comparative studies on retroviral proteases: substrate specificity. Viruses 2010; 2:147-165. [PMID: 21994605 PMCID: PMC3185560 DOI: 10.3390/v2010147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/12/2010] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Exogenous retroviruses are subclassified into seven genera and include viruses that cause diseases in humans. The viral Gag and Gag-Pro-Pol polyproteins are processed by the retroviral protease in the last stage of replication and inhibitors of the HIV-1 protease are widely used in AIDS therapy. Resistant mutations occur in response to the drug therapy introducing residues that are frequently found in the equivalent position of other retroviral proteases. Therefore, besides helping to understand the general and specific features of these enzymes, comparative studies of retroviral proteases may help to understand the mutational capacity of the HIV-1 protease.
Collapse
|
27
|
Kádas J, Boross P, Weber IT, Bagossi P, Matúz K, Tözsér J. C-terminal residues of mature human T-lymphotropic virus type 1 protease are critical for dimerization and catalytic activity. Biochem J 2008; 416:357-64. [PMID: 18636969 PMCID: PMC2778851 DOI: 10.1042/bj20071132] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HTLV-1 [HTLV (human T-cell lymphotrophic virus) type 1] is associated with a number of human diseases. HTLV-1 protease is essential for virus replication, and similarly to HIV-1 protease, it is a potential target for chemotherapy. The primary sequence of HTLV-1 protease is substantially longer compared with that of HIV-1 protease, and the role of the ten C-terminal residues is controversial. We have expressed C-terminally-truncated forms of HTLV-1 protease with and without N-terminal His tags. Removal of five of the C-terminal residues caused a 4-40-fold decrease in specificity constants, whereas the removal of an additional five C-terminal residues rendered the protease completely inactive. The addition of the N-terminal His tag dramatically decreased the activity of HTLV-1 protease forms. Pull-down experiments carried out with His-tagged forms, gel-filtration experiments and dimerization assays provided the first unequivocal experimental results for the role of the C-terminal residues in dimerization of the enzyme. There is a hydrophobic tunnel on the surface of HTLV-1 protease close to the C-terminal ends that is absent in the HIV-1 protease. This hydrophobic tunnel can accommodate the extra C-terminal residues of HTLV-1 protease, which was predicted to stabilize the dimer of the full-length enzyme and provides an alternative target site for protease inhibition.
Collapse
Affiliation(s)
- János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Péter Boross
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Irene T. Weber
- Department of Biology, Molecular Basis of Disease Program, Georgia State University, Atlanta, Georgia 30303
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen H-4012, Hungary
| |
Collapse
|
28
|
Zhang M, Nguyen JT, Kumada HO, Kimura T, Cheng M, Hayashi Y, Kiso Y. Locking the two ends of tetrapeptidic HTLV-I protease inhibitors inside the enzyme. Bioorg Med Chem 2008; 16:6880-90. [PMID: 18558491 DOI: 10.1016/j.bmc.2008.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
Adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy are only some of the more common end results of an infection with a human T-cell leukemia virus type 1 (HTLV-I). Expanding from our previous reports, we synthesized all different permutations of tetrapeptidic HTLV-I protease inhibitors using at least eight P(3)-cap and five P(1)(')-cap moieties. The inhibitors exhibited over 97% inhibition against HIV-1 protease and a wide range of inhibitory activity against HTLV-I protease.
Collapse
Affiliation(s)
- Meihui Zhang
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Synthesis and activity of tetrapeptidic HTLV-I protease inhibitors possessing different P3-cap moieties. Bioorg Med Chem 2008; 16:5795-802. [PMID: 18400502 DOI: 10.1016/j.bmc.2008.03.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 03/21/2008] [Accepted: 03/22/2008] [Indexed: 11/24/2022]
Abstract
The causative agent behind adult T-cell leukemia and tropical spastic paraparesis/HTLV-I-associated myelopathy is the human T-cell leukemia virus type 1 (HTLV-I). Tetrapeptidic HTLV-I protease inhibitors were designed on a previously reported potent inhibitor KNI-10516, with modifications at the P(3)-cap moieties. All the inhibitors showed high HIV-1 protease inhibitory activity (over 98% inhibition at 50nM) and most exhibited highly potent inhibition against HTLV-I protease (IC(50) values were less than 100nM).
Collapse
|
30
|
Sperka T, Miklóssy G, Tie Y, Bagossi P, Zahuczky G, Boross P, Matúz K, Harrison RW, Weber IT, Tözsér J. Bovine leukemia virus protease: comparison with human T-lymphotropic virus and human immunodeficiency virus proteases. J Gen Virol 2007; 88:2052-2063. [PMID: 17554040 DOI: 10.1099/vir.0.82704-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Bovine leukemia virus (BLV) is a valuable model system for understanding human T-lymphotropic virus 1 (HTLV-1); the availability of an infectious BLV clone, together with animal-model systems, will help to explore anti-HTLV-1 strategies. Nevertheless, the specificity and inhibitor sensitivity of the BLV protease (PR) have not been characterized in detail. To facilitate such studies, a molecular model for the enzyme was built. The specificity of the BLV PR was studied with a set of oligopeptides representing naturally occurring cleavage sites in various retroviruses. Unlike HTLV-1 PR, but similar to the human immunodeficiency virus 1 (HIV-1) enzyme, BLV PR was able to hydrolyse the majority of the peptides, mostly at the same position as did their respective host PRs, indicating a broad specificity. When amino acid residues of the BLV PR substrate-binding sites were replaced by equivalent ones of the HIV-1 PR, many substitutions resulted in inactive protein, indicating a great sensitivity to mutations, as observed previously for the HTLV-1 PR. The specificity of the enzyme was studied further by using a series of peptides containing amino acid substitutions in a sequence representing a naturally occurring HTLV-1 PR cleavage site. Also, inhibitors of HIV-1 PR, HTLV-1 PR and other retroviral proteases were tested on the BLV PR. Interestingly, the BLV PR was more susceptible than the HTLV-1 PR to the inhibitors tested. Therefore, despite the specificity differences, in terms of mutation intolerance and inhibitor susceptibility of the PR, BLV and the corresponding animal-model systems may provide good models for testing of PR inhibitors that target HTLV-1.
Collapse
Affiliation(s)
- Tamás Sperka
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Yunfeng Tie
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Gábor Zahuczky
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Péter Boross
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Krisztina Matúz
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| | - Robert W Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA, USA
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, USA
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, Hungary
| |
Collapse
|
31
|
Kimura T, Nguyen JT, Maegawa H, Nishiyama K, Arii Y, Matsui Y, Hayashi Y, Kiso Y. Chipping at large, potent human T-cell leukemia virus type 1 protease inhibitors to uncover smaller, equipotent inhibitors. Bioorg Med Chem Lett 2007; 17:3276-80. [PMID: 17448657 DOI: 10.1016/j.bmcl.2007.04.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 03/20/2007] [Accepted: 04/04/2007] [Indexed: 11/30/2022]
Abstract
The human T-cell leukemia virus type 1 (HTLV-I) causes adult T-cell leukemia and several severe chronic diseases. HTLV-I protease (PR) inhibition stops the propagation of the virus. Herein, truncation studies were performed on potent octapeptidic HTLV-I PR inhibitor KNI-10161 to derive small hexapeptide KNI-10127 with some loss in activity. After performing residue-substitution studies on compound KNI-10127, HTLV-I PR inhibitory activity was recovered in inhibitor KNI-10166.
Collapse
Affiliation(s)
- Tooru Kimura
- Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science and 21st Century COE Program, Kyoto Pharmaceutical University, Kyoto 607-8412, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Kontijevskis A, Wikberg JES, Komorowski J. Computational proteomics analysis of HIV-1 protease interactome. Proteins 2007; 68:305-12. [PMID: 17427231 DOI: 10.1002/prot.21415] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
HIV-1 protease is a small homodimeric enzyme that ensures maturation of HIV virions by cleaving the viral precursor Gag and Gag-Pol polyproteins into structural and functional elements. The cleavage sites in the viral polyproteins share neither sequence homology nor binding motif and the specificity of the HIV-1 protease is therefore only partially understood. Using an extensive data set collected from 16 years of HIV proteome research we have here created a general and predictive rule-based model for HIV-1 protease specificity based on rough sets. We demonstrate that HIV-1 protease specificity is much more complex than previously anticipated, which cannot be defined based solely on the amino acids at the substrate's scissile bond or by any other single substrate amino acid position only. Our results show that the combination of at least three particular amino acids is needed in the substrate for a cleavage event to occur. Only by combining and analyzing massive amounts of HIV proteome data it was possible to discover these novel and general patterns of physico-chemical substrate cleavage determinants. Our study is an example how computational biology methods can advance the understanding of the viral interactomes.
Collapse
|
33
|
Kontijevskis A, Prusis P, Petrovska R, Yahorava S, Mutulis F, Mutule I, Komorowski J, Wikberg JES. A look inside HIV resistance through retroviral protease interaction maps. PLoS Comput Biol 2007; 3:e48. [PMID: 17352531 PMCID: PMC1817660 DOI: 10.1371/journal.pcbi.0030048] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Accepted: 01/24/2007] [Indexed: 11/19/2022] Open
Abstract
Retroviruses affect a large number of species, from fish and birds to mammals and humans, with global socioeconomic negative impacts. Here the authors report and experimentally validate a novel approach for the analysis of the molecular networks that are involved in the recognition of substrates by retroviral proteases. Using multivariate analysis of the sequence-based physiochemical descriptions of 61 retroviral proteases comprising wild-type proteases, natural mutants, and drug-resistant forms of proteases from nine different viral species in relation to their ability to cleave 299 substrates, the authors mapped the physicochemical properties and cross-dependencies of the amino acids of the proteases and their substrates, which revealed a complex molecular interaction network of substrate recognition and cleavage. The approach allowed a detailed analysis of the molecular-chemical mechanisms involved in substrate cleavage by retroviral proteases.
Collapse
Affiliation(s)
- Aleksejs Kontijevskis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Peteris Prusis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ramona Petrovska
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Sviatlana Yahorava
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Felikss Mutulis
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Ilze Mutule
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Jan Komorowski
- Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden
| | - Jarl E. S Wikberg
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Naka H, Teruya K, Bang JK, Aimoto S, Tatsumi T, Konno H, Nosaka K, Akaji K. Evaluations of substrate specificity and inhibition at PR/p3 cleavage site of HTLV-1 protease. Bioorg Med Chem Lett 2006; 16:3761-4. [PMID: 16682197 DOI: 10.1016/j.bmcl.2006.04.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/08/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
Core sequences necessary for substrate recognition and its inhibition at the PR/p3 site of HTLV-1 protease were clarified for the first time. From the cleavage rates of peptides containing a part of the PR/p3 site, a heptapeptide was found to be the minimal sequence required for substrate recognition. The use of synthetic inhibitors containing hydroxyethylamine dipeptide isostere indicated that a tetrapeptide sequence was necessary to achieve potent inhibition.
Collapse
Affiliation(s)
- Hiromi Naka
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Mitchell MS, Tözsér J, Princler G, Lloyd PA, Auth A, Derse D. Synthesis, processing, and composition of the virion-associated HTLV-1 reverse transcriptase. J Biol Chem 2005; 281:3964-71. [PMID: 16368688 DOI: 10.1074/jbc.m507660200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is not known whether the low infectivity and low virion-associated polymerase activity of human T-cell lymphotropic virus type-1 (HTLV-1) are due to the quantity or quality of the reverse transcriptase (RT), because the protein has not yet been fully characterized. We have developed anti-RT antibodies and constructed HTLV-1 expression plasmids that express truncated or hemagglutinin-tagged Pol polyproteins to examine the maturation and composition of HTLV-1 RT. We detected virion-associated proteins corresponding to RT-integrase (IN) (pr98) and RT (p62) as well as smaller proteins containing the polymerase (p49) or RNase H domains. We have identified the amino acid sequences in the Pol polyprotein that are cleaved by HTLV-1 protease to yield RT and IN. We have also identified the cleavage sites within RT that give rise to the p49 polymerase fragment. Immunoprecipitation of an epitope-tagged p62 subunit coprecipitated p49, indicating that the HTLV-1 RT complex can exist as a p62/p49 heterodimer analogous to the RT of HIV-1 (p66/p51).
Collapse
|
36
|
Li M, Laco GS, Jaskolski M, Rozycki J, Alexandratos J, Wlodawer A, Gustchina A. Crystal structure of human T cell leukemia virus protease, a novel target for anticancer drug design. Proc Natl Acad Sci U S A 2005; 102:18332-7. [PMID: 16352712 PMCID: PMC1317974 DOI: 10.1073/pnas.0509335102] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The successful development of a number of HIV-1 protease (PR) inhibitors for the treatment of AIDS has validated the utilization of retroviral PRs as drug targets and necessitated their detailed structural study. Here we report the structure of a complex of human T cell leukemia virus type 1 (HTLV-1) PR with a substrate-based inhibitor bound in subsites P5 through P5'. Although HTLV-1 PR exhibits an overall fold similar to other retroviral PRs, significant structural differences are present in several loop areas, which include the functionally important flaps, previously considered to be structurally highly conserved. Potential key residues responsible for the resistance of HTLV-1 PR to anti-HIV drugs are identified. We expect that the knowledge accumulated during the development of anti-HIV drugs, particularly in overcoming drug resistance, will help in designing a novel class of antileukemia drugs targeting HTLV-1 PR and in predicting their drug-resistance profile. The structure presented here can be used as a starting point for the development of such anticancer therapies.
Collapse
Affiliation(s)
- Mi Li
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Bang JK, Naka H, Teruya K, Aimoto S, Konno H, Nosaka K, Tatsumi T, Akaji K. Solid-Phase Syntheses of Olefin-Containing Inhibitors for HTLV-1 Protease Using the Horner−Emmons Reaction. J Org Chem 2005; 70:10596-9. [PMID: 16323881 DOI: 10.1021/jo051872s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] The solid-phase Horner-Emmons reaction was successfully applied for the convenient syntheses of olefin-containing protease inhibitors. The isomerization during the solid-phase Horner-Emmons reaction can be minimized simply by the use of an appropriate amount of the base. The synthesized olefin peptides, which have an olefin gamma-amino acid at the scissile site, were found to act as effective inhibitors for the HTLV-1 protease for the first time.
Collapse
Affiliation(s)
- Jeong Kyu Bang
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
38
|
You L, Garwicz D, Rögnvaldsson T. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. J Virol 2005; 79:12477-86. [PMID: 16160175 PMCID: PMC1211560 DOI: 10.1128/jvi.79.19.12477-12486.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2004] [Accepted: 07/01/2005] [Indexed: 11/20/2022] Open
Abstract
Rapidly developing viral resistance to licensed human immunodeficiency virus type 1 (HIV-1) protease inhibitors is an increasing problem in the treatment of HIV-infected individuals and AIDS patients. A rational design of more effective protease inhibitors and discovery of potential biological substrates for the HIV-1 protease require accurate models for protease cleavage specificity. In this study, several popular bioinformatic machine learning methods, including support vector machines and artificial neural networks, were used to analyze the specificity of the HIV-1 protease. A new, extensive data set (746 peptides that have been experimentally tested for cleavage by the HIV-1 protease) was compiled, and the data were used to construct different classifiers that predicted whether the protease would cleave a given peptide substrate or not. The best predictor was a nonlinear predictor using two physicochemical parameters (hydrophobicity, or alternatively polarity, and size) for the amino acids, indicating that these properties are the key features recognized by the HIV-1 protease. The present in silico study provides new and important insights into the workings of the HIV-1 protease at the molecular level, supporting the recent hypothesis that the protease primarily recognizes a conformation rather than a specific amino acid sequence. Furthermore, we demonstrate that the presence of 1 to 2 lysine residues near the cleavage site of octameric peptide substrates seems to prevent cleavage efficiently, suggesting that this positively charged amino acid plays an important role in hindering the activity of the HIV-1 protease.
Collapse
Affiliation(s)
- Liwen You
- School of Information Science, Computer and Electrical Engineering, Halmstad University, Halmstad, Sweden
| | | | | |
Collapse
|