1
|
Nonaka S, Sono M, Hoshi C, Kanetani T, Nakayama H, Dohmae N, Nakanishi Y. Transcription repressor-mediated control of engulfment receptor expression in Drosophila phagocytes. Exp Cell Res 2019; 381:10-17. [DOI: 10.1016/j.yexcr.2019.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 01/04/2023]
|
2
|
Field A, Xiang J, Anderson WR, Graham P, Pick L. Activation of Ftz-F1-Responsive Genes through Ftz/Ftz-F1 Dependent Enhancers. PLoS One 2016; 11:e0163128. [PMID: 27723822 PMCID: PMC5056698 DOI: 10.1371/journal.pone.0163128] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/03/2016] [Indexed: 12/11/2022] Open
Abstract
The orphan nuclear receptor Ftz-F1 is expressed in all somatic nuclei in Drosophila embryos, but mutations result in a pair-rule phenotype. This was explained by the interaction of Ftz-F1 with the homeodomain protein Ftz that is expressed in stripes in the primordia of segments missing in either ftz-f1 or ftz mutants. Ftz-F1 and Ftz were shown to physically interact and coordinately activate the expression of ftz itself and engrailed by synergistic binding to composite Ftz-F1/Ftz binding sites. However, attempts to identify additional target genes on the basis of Ftz-F1/ Ftz binding alone has met with only limited success. To discern rules for Ftz-F1 target site selection in vivo and to identify additional target genes, a microarray analysis was performed comparing wildtype and ftz-f1 mutant embryos. Ftz-F1-responsive genes most highly regulated included engrailed and nine additional genes expressed in patterns dependent on both ftz and ftz-f1. Candidate enhancers for these genes were identified by combining BDTNP Ftz ChIP-chip data with a computational search for Ftz-F1 binding sites. Of eight enhancer reporter genes tested in transgenic embryos, six generated expression patterns similar to the corresponding endogenous gene and expression was lost in ftz mutants. These studies identified a new set of Ftz-F1 targets, all of which are co-regulated by Ftz. Comparative analysis of enhancers containing Ftz/Ftz-F1 binding sites that were or were not bona fide targets in vivo suggested that GAF negatively regulates enhancers that contain Ftz/Ftz-F1 binding sites but are not actually utilized. These targets include other regulatory factors as well as genes involved directly in morphogenesis, providing insight into how pair-rule genes establish the body pattern.
Collapse
Affiliation(s)
- Amanda Field
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Jie Xiang
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - W. Ray Anderson
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Patricia Graham
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, Maryland, 20742, United States of America
- * E-mail:
| |
Collapse
|
3
|
Constraints, independence, and evolution of thermal plasticity: probing genetic architecture of long- and short-term thermal acclimation. Proc Natl Acad Sci U S A 2015; 112:4399-404. [PMID: 25805817 DOI: 10.1073/pnas.1503456112] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Seasonal and daily thermal variation can limit species distributions because of physiological tolerances. Low temperatures are particularly challenging for ectotherms, which use both basal thermotolerance and acclimation, an adaptive plastic response, to mitigate thermal stress. Both basal thermotolerance and acclimation are thought to be important for local adaptation and persistence in the face of climate change. However, the evolutionary independence of basal and plastic tolerances remains unclear. Acclimation can occur over longer (seasonal) or shorter (hours to days) time scales, and the degree of mechanistic overlap is unresolved. Using a midlatitude population of Drosophila melanogaster, we show substantial heritable variation in both short- and long-term acclimation. Rapid cold hardening (short-term plasticity) and developmental acclimation (long-term plasticity) are positively correlated, suggesting shared mechanisms. However, there are independent components of these traits, because developmentally acclimated flies respond positively to short-term acclimation. A strong negative correlation between basal cold tolerance and developmental acclimation suggests that basal cold tolerance may constrain developmental acclimation, whereas a weaker negative correlation between basal cold tolerance and short-term acclimation suggests less constraint. Using genome-wide association mapping, we show the genetic architecture of rapid cold hardening and developmental acclimation responses are nonoverlapping at the SNP and corresponding gene level. However, genes associated with each trait share functional similarities, including genes involved in apoptosis and autophagy, cytoskeletal and membrane structural components, and ion binding and transport. These results indicate substantial opportunity for short-term and long-term acclimation responses to evolve separately from each other and for short-term acclimation to evolve separately from basal thermotolerance.
Collapse
|
4
|
Navarro C, Lopez FJ, Cano C, Garcia-Alcalde F, Blanco A. CisMiner: genome-wide in-silico cis-regulatory module prediction by fuzzy itemset mining. PLoS One 2014; 9:e108065. [PMID: 25268582 PMCID: PMC4182448 DOI: 10.1371/journal.pone.0108065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/25/2014] [Indexed: 01/18/2023] Open
Abstract
Eukaryotic gene control regions are known to be spread throughout non-coding DNA sequences which may appear distant from the gene promoter. Transcription factors are proteins that coordinately bind to these regions at transcription factor binding sites to regulate gene expression. Several tools allow to detect significant co-occurrences of closely located binding sites (cis-regulatory modules, CRMs). However, these tools present at least one of the following limitations: 1) scope limited to promoter or conserved regions of the genome; 2) do not allow to identify combinations involving more than two motifs; 3) require prior information about target motifs. In this work we present CisMiner, a novel methodology to detect putative CRMs by means of a fuzzy itemset mining approach able to operate at genome-wide scale. CisMiner allows to perform a blind search of CRMs without any prior information about target CRMs nor limitation in the number of motifs. CisMiner tackles the combinatorial complexity of genome-wide cis-regulatory module extraction using a natural representation of motif combinations as itemsets and applying the Top-Down Fuzzy Frequent- Pattern Tree algorithm to identify significant itemsets. Fuzzy technology allows CisMiner to better handle the imprecision and noise inherent to regulatory processes. Results obtained for a set of well-known binding sites in the S. cerevisiae genome show that our method yields highly reliable predictions. Furthermore, CisMiner was also applied to putative in-silico predicted transcription factor binding sites to identify significant combinations in S. cerevisiae and D. melanogaster, proving that our approach can be further applied genome-wide to more complex genomes. CisMiner is freely accesible at: http://genome2.ugr.es/cisminer. CisMiner can be queried for the results presented in this work and can also perform a customized cis-regulatory module prediction on a query set of transcription factor binding sites provided by the user.
Collapse
Affiliation(s)
- Carmen Navarro
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | - Francisco J. Lopez
- Andalusian Human Genome Sequencing Centre (CASEGH), Medical Genome Project (MGP), Sevilla, Spain
| | - Carlos Cano
- Department of Computer Science and AI, University of Granada, Granada, Spain
| | | | - Armando Blanco
- Department of Computer Science and AI, University of Granada, Granada, Spain
| |
Collapse
|
5
|
Sandmann T, Girardot C, Brehme M, Tongprasit W, Stolc V, Furlong EE. A core transcriptional network for early mesoderm development in Drosophila melanogaster. Genes Dev 2007; 21:436-49. [PMID: 17322403 PMCID: PMC1804332 DOI: 10.1101/gad.1509007] [Citation(s) in RCA: 255] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Embryogenesis is controlled by large gene-regulatory networks, which generate spatially and temporally refined patterns of gene expression. Here, we report the characteristics of the regulatory network orchestrating early mesodermal development in the fruitfly Drosophila, where the transcription factor Twist is both necessary and sufficient to drive development. Through the integration of chromatin immunoprecipitation followed by microarray analysis (ChIP-on-chip) experiments during discrete time periods with computational approaches, we identified >2000 Twist-bound cis-regulatory modules (CRMs) and almost 500 direct target genes. Unexpectedly, Twist regulates an almost complete cassette of genes required for cell proliferation in addition to genes essential for morophogenesis and cell migration. Twist targets almost 25% of all annotated Drosophila transcription factors, which may represent the entire set of regulators necessary for the early development of this system. By combining in vivo binding data from Twist, Mef2, Tinman, and Dorsal we have constructed an initial transcriptional network of early mesoderm development. The network topology reveals extensive combinatorial binding, feed-forward regulation, and complex logical outputs as prevalent features. In addition to binary activation and repression, we suggest that Twist binds to almost all mesodermal CRMs to provide the competence to integrate inputs from more specialized transcription factors.
Collapse
Affiliation(s)
- Thomas Sandmann
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Marc Brehme
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | - Waraporn Tongprasit
- Genome Research Facility, NASA Ames Research Center, Moffet Field, California 94035, USA
| | - Viktor Stolc
- Genome Research Facility, NASA Ames Research Center, Moffet Field, California 94035, USA
| | - Eileen E.M. Furlong
- European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
- Corresponding author.E-MAIL ; FAX 49-6221-387166
| |
Collapse
|
6
|
Girard F, Joly W, Savare J, Bonneaud N, Ferraz C, Maschat F. Chromatin immunoprecipitation reveals a novel role for the Drosophila SoxNeuro transcription factor in axonal patterning. Dev Biol 2006; 299:530-42. [PMID: 16979619 DOI: 10.1016/j.ydbio.2006.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 07/31/2006] [Accepted: 08/06/2006] [Indexed: 02/07/2023]
Abstract
In all metazoans, the expression of group B HMG domain Sox transcription factors is associated with the earliest stages of CNS development. In Drosophila, SoxNeuro (SoxN) is involved in dorso-ventral patterning of the neuroectoderm, and in the formation and segregation of neuroblasts. In this report, we show that SoxN expression persists in a subset of neurons and glial cells of the ventral nerve cord at embryonic stages 15/16. In an attempt to address SoxN function in late stages of CNS development, we have used a chromatin immunoprecipitation approach to isolate genomic regions bound in vivo by SoxN. We identified several genes involved in the regulation of axon scaffolding as potential direct target genes of SoxN, including beat1a, semaphorin2a, fasciclin2, longitudinal lacking and tailup/islet. We present genetic evidence for a direct involvement of SoxN in axonal patterning. Indeed, overexpressing a transcriptionally hyperactive mutated SoxN protein in neurons results in specific defects in axon scaffolding, which are also observed in transheterozygous combinations of SoxN null mutation and mutations in its target genes.
Collapse
Affiliation(s)
- Franck Girard
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique UPR1142, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | | | | | | | | | |
Collapse
|
7
|
Junion G, Jagla T, Duplant S, Tapin R, Da Ponte JP, Jagla K. Mapping Dmef2-binding regulatory modules by using a ChIP-enriched in silico targets approach. Proc Natl Acad Sci U S A 2005; 102:18479-84. [PMID: 16339902 PMCID: PMC1317932 DOI: 10.1073/pnas.0507030102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Accepted: 10/27/2005] [Indexed: 11/18/2022] Open
Abstract
Mapping the regulatory modules to which transcription factors bind in vivo is a key step toward understanding of global gene expression programs. We have developed a chromatin immunoprecipitation (ChIP)-chip strategy for identifying factor-specific regulatory regions acting in vivo. This method, called the ChIP-enriched in silico targets (ChEST) approach, combines immunoprecipitation of cross-linked protein-DNA complexes (X-ChIP) with in silico prediction of targets and generation of computed DNA microarrays. We report the use of ChEST in Drosophila to identify several previously unknown targets of myocyte enhancer factor 2 (MEF2), a key regulator of myogenic differentiation. Our approach was validated by demonstrating that the identified sequences act as enhancers in vivo and are able to drive reporter gene expression specifically in MEF2-positive muscle cells. Presented here, the ChEST strategy was originally designed to identify regulatory modules in Drosophila, but it can be adapted for any sequenced and annotated genome.
Collapse
Affiliation(s)
- Guillaume Junion
- Institut National de la Santé et de la Recherche Médicale Unité 384, Faculté de Médecine, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
8
|
Vavouri T, Elgar G. Prediction of cis-regulatory elements using binding site matrices--the successes, the failures and the reasons for both. Curr Opin Genet Dev 2005; 15:395-402. [PMID: 15950456 DOI: 10.1016/j.gde.2005.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Accepted: 05/23/2005] [Indexed: 01/02/2023]
Abstract
Protein-DNA interactions control many aspects of animal development and cellular responses to the environment. Although profiling of individual transcription factor binding sites is not a reliable guide for predicting the position of cis-regulatory elements in large genomes, modelling the evolution and the organization of regulatory elements has provided enough information to make some successful predictions. For vertebrate genomes, the field is limited by the lack of sufficient experimental data upon which to build reliable models. Nonetheless, a combination of experimental, computational and comparative data is likely to reveal aspects of complex regulatory networks in vertebrates, just as it has already done for simple eukaryotic genomes.
Collapse
Affiliation(s)
- Tanya Vavouri
- Comparative Genomics Group, MRC Rosalind Franklin Centre for Genomics Research, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SB, UK
| | | |
Collapse
|
9
|
Wang LH, Chmelik R, Tang D, Nirenberg M. Identification and analysis of vnd/NK-2 homeodomain binding sites in genomic DNA. Proc Natl Acad Sci U S A 2005; 102:7097-102. [PMID: 15870192 PMCID: PMC1129122 DOI: 10.1073/pnas.0502261102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vnd/NK-2 homeodomain affinity column chromatography was used to purify Drosophila DNA fragments bound by the vnd/NK-2 homeodomain. Sequencing the selected genomic DNA fragments led to the identification of 77 Drosophila DNA fragments that were grouped into 42 vnd/NK-2 homeodomain-binding loci. Most loci were within upstream or intronic regions, especially first introns. Nineteen of the Drosophila DNA fragments cloned correspond to one locus, termed Clone A, which is 312 bp in length and contains five vnd/NK-2 homeodomain core consensus binding sites, 5'-AAGTG, and is part of the first intron of the Beadex gene. We further analyzed the interactions between Clone A and vnd/NK-2 homeodomain protein by mobility-shift assay, DNase I footprinting, methylation interference, and ethylation interference. The DNase I footprinting analysis of Clone A with vnd/NK-2 homeodomain protein revealed three strong binding sites and one weak binding site between 15 and 130 bp of Clone A. We also analyzed binding of the vnd/NK-2 homeodomain to the 5'-flanking sequence of vnd/NK-2 genomic DNA. The DNase I footprinting result showed that there are two strong binding sites and five weak binding sites in the fragment between -385 and -675 bp from the transcription start site of the vnd/NK-2 gene.
Collapse
Affiliation(s)
- Lan-Hsiang Wang
- Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1654, USA
| | | | | | | |
Collapse
|
10
|
Current Awareness on Comparative and Functional Genomics. Comp Funct Genomics 2005. [PMCID: PMC2448604 DOI: 10.1002/cfg.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|