1
|
Denesyuk AI, Denessiouk K, Johnson MS, Uversky VN. Structural Catalytic Core of the Members of the Superfamily of Acid Proteases. Molecules 2024; 29:3451. [PMID: 39124857 PMCID: PMC11313796 DOI: 10.3390/molecules29153451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
The superfamily of acid proteases has two catalytic aspartates for proteolysis of their peptide substrates. Here, we show a minimal structural scaffold, the structural catalytic core (SCC), which is conserved within each family of acid proteases, but varies between families, and thus can serve as a structural marker of four individual protease families. The SCC is a dimer of several structural blocks, such as the DD-link, D-loop, and G-loop, around two catalytic aspartates in each protease subunit or an individual chain. A dimer made of two (D-loop + DD-link) structural elements makes a DD-zone, and the D-loop + G-loop combination makes a psi-loop. These structural markers are useful for protein comparison, structure identification, protein family separation, and protein engineering.
Collapse
Affiliation(s)
- Alexander I. Denesyuk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Konstantin Denessiouk
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Mark S. Johnson
- Structural Bioinformatics Laboratory, Biochemistry, InFLAMES Research Flagship Center, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland; (K.D.); (M.S.J.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Li Q, Zeng Z, Zhao Y, Li J, Chen F, Wang C. Genome-wide association study and linkage mapping reveal TaqW-6B associated with water-extractable arabinoxylan content in wheat grain. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:166. [PMID: 38907845 DOI: 10.1007/s00122-024-04662-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/24/2024]
Abstract
KEY MESSAGE A novel QTL, TaqW-6B of water-extractable arabinoxylan content in the wheat grain on chromosome 6BL was identified and fine mapped in a narrow region 3.8 Mb. Water-extractable arabinoxylan (WE-AX), an important component of hemicellulose, is associated with various abundant health benefits. In this study, QTLs for WE-AX content were detected in two populations: (1) a recombinant inbred line (RIL) population with 164 lines derived from a cross between Avocet and Chilero (AC population) genotyped with diversity array technology (DArT), and (2) a natural population of 243 varieties (CH population) genotyped with the Axiom wheat 660 K single-nucleotide polymorphism (SNP) array. A stable QTL Qwe-ax.haust-6B, explaining 8.51-15.59% of the phenotypic variance, was mapped in the physical interval 459.38-572.09 Mb on the long arm of chromosome 6B in the AC population, tightly linked with DArT markers 3,944,740 and 4,991,038 under three experimental conditions. The Qwe-ax.haust-6B was further narrowed down to be delimited in the physical interval 516.47-571.58 Mb on chromosome 6BL, explaining 5.86-16.27% of the phenotypic variance in the CH population. Furthermore, we developed high-throughput kompetitive allele-specific PCR (KASP) markers to reconstruct the genetic linkage map in the AC population, and Qwe-ax.haust-6B was fine mapped into a narrow region named TaqW-6B, which was compressed between KASP-6B-3 and KASP-6B-6 at a physical distance of 3.8 Mb. In the meanwhile, the markers were also validated in a natural population of 160 wheat lines (NP population). Consequently, this study is of great importance to provide the theoretical basis for cloning the key gene and developing functional markers for molecular breeding.
Collapse
Affiliation(s)
- Qiong Li
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
- Zhoukou Academy of Agricultural Sciences, Zhoukou, 466001, Henan, China
| | - Zhankui Zeng
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Yue Zhao
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Jiachuang Li
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China
| | - Feng Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science/Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Longzihu College District, Zhengzhou, 450046, China.
| | - Chunping Wang
- College of Agronomy/Engineering Research Center for Utilization of Dryland Crop Germplasm Resources, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
- The Shennong Laboratory, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
3
|
Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, Wang R, Huang S, Han Z, Cervone F, Yin H, Qi T, Wang Y, Chai J. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. Science 2024; 383:732-739. [PMID: 38359129 DOI: 10.1126/science.adj9529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.
Collapse
Affiliation(s)
- Yu Xiao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Gao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhifu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
4
|
Amkul K, Laosatit K, Lin Y, Yuan X, Chen X, Somta P. A Gene Encoding Xylanase Inhibitor Is a Candidate Gene for Bruchid ( Callosobruchus spp.) Resistance in Zombi Pea ( Vigna vexillata (L.) A. Rich). PLANTS (BASEL, SWITZERLAND) 2023; 12:3602. [PMID: 37896065 PMCID: PMC10610162 DOI: 10.3390/plants12203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Two bruchid species, Callosobruchus maculatus and Callosobruchus chinensis, are the most significant stored insect pests of tropical legume crops. Previously, we identified a major QTL, qBr6.1, controlling seed resistance to these bruchids in the cultivated zombi pea (Vigna vexillata) accession 'TVNu 240'. In this study, we have narrowed down the qBr6.1 region and identified a candidate gene conferring this resistance. Fine mapping using F2 and F2:3 populations derived from a cross between TVNu 240 and TVNu 1623 (susceptible) revealed the existence of two tightly linked QTLs, designated qBr6.1-A and qBr6.1-B, within the qBr6.1. The QTLs qBr6.1-A and qBr6.1-B explained 37.46% and 10.63% of bruchid resistance variation, respectively. qBr6.1-A was mapped to a 28.24 kb region containing four genes, from which the gene VvTaXI encoding a xylanase inhibitor was selected as a candidate gene responsible for the resistance associated with the qBr6.1-A. Sequencing and sequence alignment of VvTaXI from TVNu 240 and TVNu 1623 revealed a 1-base-pair insertion/deletion and five single-nucleotide polymorphisms (SNPs) in the 5' UTR and 11 SNPs in the exon. Alignment of the VvTAXI protein sequences showed five amino acid changes between the TVNu 240 and TVNu 1623 sequences. Altogether, these results demonstrated that the VvTaXI encoding xylanase inhibitor is the candidate gene conferring bruchid resistance in the zombi pea accession TVNu 240. The gene VvTaXI will be useful for the molecular breeding of bruchid resistance in the zombi pea.
Collapse
Affiliation(s)
- Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| | - Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (Y.L.); (X.Y.)
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; (K.A.); (K.L.)
| |
Collapse
|
5
|
Zhang D, Huang J, Liu Y, Chen X, Gao T, Li N, Huang W, Wu M. Directed Modification of a GHF11 Thermostable Xylanase AusM for Enhancing Inhibitory Resistance towards SyXIP-I and Application of AusM PKK in Bread Making. Foods 2023; 12:3574. [PMID: 37835228 PMCID: PMC10572589 DOI: 10.3390/foods12193574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
To reduce the inhibition sensitivity of a thermoresistant xylanase AusM to xylanase inhibitor protein (XIP)-type in wheat flour, the site-directed mutagenesis was conducted based on the computer-aided redesign. First, fourteen single-site variants and one three-amino acid replacement variant in the thumb region of an AusM-encoding gene (AusM) were constructed and expressed in E. coli BL21(DE3), respectively, as predicted theoretically. At a molar ratio of 100:1 between SyXIP-I/xylanase, the majority of mutants were nearly completely inactivated by the inhibitor SyXIP-I, whereas AusMN127A retained 62.7% of its initial activity and AusMPKK retained 100% of its initial activity. The optimal temperature of the best mutant AusMPKK was 60 °C, as opposed to 60-65 °C for AusM, while it exhibited improved thermostability, retaining approximately 60% of its residual activity after heating at 80 °C for 60 min. Furthermore, AusMPKK at a dosage of 1000 U/kg was more effective than AusM at 4000 U/kg in increasing specific bread loaf volume and reducing hardness during bread production and storage. Directed evolution of AusM significantly reduces inhibition sensitivity, and the mutant enzyme AusMPKK is conducive to improving bread quality and extending its shelf life.
Collapse
Affiliation(s)
- Dong Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jing Huang
- State Key Laboratory of Food Science and Technology, and the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Youyi Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xingyi Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Tiecheng Gao
- Guangzhou Puratos Food Co., Ltd., Guangzhou 511400, China
| | - Ning Li
- Guangzhou Puratos Food Co., Ltd., Guangzhou 511400, China
| | - Weining Huang
- State Key Laboratory of Food Science and Technology, and the Laboratory of Baking and Fermentation Science, Cereals/Sourdough and Nutritional Functionality Research, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Minchen Wu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
6
|
Cathepsins Trigger Cell Death and Regulate Radioresistance in Glioblastoma. Cells 2022; 11:cells11244108. [PMID: 36552871 PMCID: PMC9777369 DOI: 10.3390/cells11244108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Treatment of glioblastoma (GBM) remains very challenging, and it is particularly important to find sensitive and specific molecular targets. In this work, we reveal the relationship between the expression of cathepsins and radioresistance in GBM. We analyzed cathepsins (cathepsin B, cathepsin D, cathepsin L, and cathepsin Z/X), which are highly associated with the radioresistance of GBM by regulating different types of cell death. Cathepsins could be potential targets for GBM treatment.
Collapse
|
7
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
8
|
Czubinski J. Influence of temperature on secretion and functionality of lupin seed γ-conglutin. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2773-2782. [PMID: 34719791 DOI: 10.1002/jsfa.11618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/25/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Basic 7S globulins, a group of proteins commonly found in legumes, undergo the intriguing phenomenon of release from the seeds into hot water. γ-Conglutin is a representative of this group of proteins found in lupin seeds. The physiological significance and the molecular mechanism of the selective release of γ-conglutin from lupin seeds remain unknown. Therefore, the presented study aimed to determine changes in the functionality of this protein in response to the high temperature occurring during lupin seed incubation. RESULTS It was confirmed that the main protein fraction released from the seeds during high-temperature incubation was γ-conglutin. The incubation condition favours the occurrence of this protein in a monomeric form, and the temperature used corresponds to its midpoint unfolding temperature. Subsequent analysis carried out on the γ-conglutin monomer revealed changes in its functionality after heat shock. The thermally treated protein shows a considerable increase in its interaction strength with flavonoids. Moreover, the inhibitory activity against glycoside hydrolases was enhanced when γ-conglutin monomer was exposed to specific temperatures. CONCLUSION The results of the present study provide a potential explanation of the physiological relevance of γ-conglutin and shed new light on a possible mechanism of its activation upon specific heat treatment. This knowledge will help characterise homologous proteins, which are commonly found in other legumes and undergo a similar heat-induced secretion phenomenon. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jaroslaw Czubinski
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Wojska Polskiego, Poland
| |
Collapse
|
9
|
Norero NS, Rey Burusco MF, D’Ippólito S, Décima Oneto CA, Massa GA, Castellote MA, Feingold SE, Guevara MG. Genome-Wide Analyses of Aspartic Proteases on Potato Genome ( Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040544. [PMID: 35214878 PMCID: PMC8875628 DOI: 10.3390/plants11040544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.
Collapse
Affiliation(s)
- Natalia Sigrid Norero
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Florencia Rey Burusco
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Sebastián D’Ippólito
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
| | - Cecilia Andrea Décima Oneto
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Gabriela Alejandra Massa
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Martín Alfredo Castellote
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Sergio Enrique Feingold
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Gabriela Guevara
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
- Correspondence: or
| |
Collapse
|
10
|
Qureshi KA, Imtiaz M, Parvez A, Rai PK, Jaremko M, Emwas AH, Bholay AD, Fatmi MQ. In Vitro and In Silico Approaches for the Evaluation of Antimicrobial Activity, Time-Kill Kinetics, and Anti-Biofilm Potential of Thymoquinone (2-Methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione) against Selected Human Pathogens. Antibiotics (Basel) 2022; 11:antibiotics11010079. [PMID: 35052956 PMCID: PMC8773234 DOI: 10.3390/antibiotics11010079] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/30/2021] [Accepted: 01/01/2022] [Indexed: 11/17/2022] Open
Abstract
Thymoquinone (2-methyl-5-propan-2-ylcyclohexa-2,5-diene-1,4-dione; TQ), a principal bioactive phytoconstituent of Nigella sativa essential oil, has been reported to have high antimicrobial potential. Thus, the current study evaluated TQ’s antimicrobial potential against a range of selected human pathogens using in vitro assays, including time-kill kinetics and anti-biofilm activity. In silico molecular docking of TQ against several antimicrobial target proteins and a detailed intermolecular interaction analysis was performed, including binding energies and docking feasibility. Of the tested bacteria and fungi, S. epidermidis ATCC 12228 and Candida albicans ATCC 10231 were the most susceptible to TQ, with 50.3 ± 0.3 mm and 21.1 ± 0.1 mm zones of inhibition, respectively. Minimum inhibitory concentration (MIC) values of TQ are in the range of 12.5–50 µg/mL, while minimum biocidal concentration (MBC) values are in the range of 25–100 µg/mL against the tested organisms. Time-kill kinetics of TQ revealed that the killing time for the tested bacteria is in the range of 1–6 h with the MBC of TQ. Anti-biofilm activity results demonstrate that the minimum biofilm inhibitory concentration (MBIC) values of TQ are in the range of 25–50 µg/mL, while the minimum biofilm eradication concentration (MBEC) values are in the range of 25–100 µg/mL, for the tested bacteria. In silico molecular docking studies revealed four preferred antibacterial and antifungal target proteins for TQ: D-alanyl-D-alanine synthetase (Ddl) from Thermus thermophilus, transcriptional regulator qacR from Staphylococcus aureus, N-myristoyltransferase from Candida albicans, and NADPH-dependent D-xylose reductase from Candida tenuis. In contrast, the nitroreductase family protein from Bacillus cereus and spore coat polysaccharide biosynthesis protein from Bacillus subtilis and UDP-N-acetylglucosamine pyrophosphorylase from Aspergillus fumigatus are the least preferred antibacterial and antifungal target proteins for TQ, respectively. Molecular dynamics (MD) simulations revealed that TQ could bind to all four target proteins, with Ddl and NADPH-dependent D-xylose reductase being the most efficient. Our findings corroborate TQ’s high antimicrobial potential, suggesting it may be a promising drug candidate for multi-drug resistant (MDR) pathogens, notably Gram-positive bacteria and Candida albicans.
Collapse
Affiliation(s)
- Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
- Correspondence: (K.A.Q.); (M.Q.F.)
| | - Mahrukh Imtiaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
| | - Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi 110062, India;
| | - Pankaj K. Rai
- Department of Biotechnology, Faculty of Biosciences, Invertis University, Bareilly 243123, India;
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia;
| | - Avinash D. Bholay
- Department of Microbiology, KTHM College, Savitribai Phule Pune University (SPPU), Nashik 422002, India;
| | - Muhammad Qaiser Fatmi
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45600, Pakistan;
- Correspondence: (K.A.Q.); (M.Q.F.)
| |
Collapse
|
11
|
Liu Y, Han N, Wang S, Chen C, Lu J, Riaz MW, Si H, Sun G, Ma C. Genome-Wide Identification of Triticum aestivum Xylanase Inhibitor Gene Family and Inhibitory Effects of XI-2 Subfamily Proteins on Fusarium graminearum GH11 Xylanase. FRONTIERS IN PLANT SCIENCE 2021; 12:665501. [PMID: 34381472 PMCID: PMC8350787 DOI: 10.3389/fpls.2021.665501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/21/2021] [Indexed: 06/13/2023]
Abstract
Triticum aestivum xylanase inhibitor (TaXI) gene plays an important role in plant defense. Recently, TaXI-III inhibitor has been shown to play a dual role in wheat resistance to Fusarium graminearum infection. Thus, identifying the members of the TaXI gene family and clarifying its role in wheat resistance to stresses are essential for wheat resistance breeding. However, to date, no comprehensive research on TaXIs in wheat (Triticum aestivum L.) has been conducted. In this study, a total of 277 TaXI genes, including six genes that we cloned, were identified from the recently released wheat genome database (IWGSC RefSeq v1.1), which were unevenly located on 21 chromosomes of wheat. Phylogenetic analysis divided these genes into six subfamilies, all the six genes we cloned belonged to XI-2 subfamily. The exon/intron structure of most TaXI genes and the conserved motifs of proteins in the same subfamily are similar. The TaXI gene family contains 92 homologous gene pairs or clusters, 63 and 193 genes were identified as tandem replication and segmentally duplicated genes, respectively. Analysis of the cis-acting elements in the promoter of TaXI genes showed that they are involved in wheat growth, hormone-mediated signal transduction, and response to biotic and abiotic stresses. RNA-seq data analysis revealed that TaXI genes exhibited expression preference or specificity in different organs and developmental stages, as well as in diverse stress responses, which can be regulated or induced by a variety of plant hormones and stresses. In addition, the qRT-PCR data and heterologous expression analysis of six TaXI genes revealed that the genes of XI-2 subfamily have double inhibitory effect on GH11 xylanase of F. graminearum, suggesting their potential important roles in wheat resistance to F. graminearum infection. The outcomes of this study not only enhance our understanding of the TaXI gene family in wheat, but also help us to screen more candidate genes for further exploring resistance mechanism in wheat.
Collapse
Affiliation(s)
- Yang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Nannan Han
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Sheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Can Chen
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Jie Lu
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Muhammad Waheed Riaz
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Hongqi Si
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Genlou Sun
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Biology Department, Saint Mary’s University, Halifax, NS, Canada
| | - Chuanxi Ma
- College of Agronomy, Anhui Agricultural University, Hefei, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southern Yellow and Huai River Valley, Ministry of Agriculture and Rural Affairs, Hefei, China
- National United Engineering Laboratory for Crop Stress Resistance Breeding, Hefei, China
- Anhui Key Laboratory of Crop Biology, Hefei, China
| |
Collapse
|
12
|
Hirano H. Basic 7S globulin in plants. J Proteomics 2021; 240:104209. [PMID: 33794343 DOI: 10.1016/j.jprot.2021.104209] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023]
Abstract
Soybean seed basic 7S globulin (Bg7S)-like proteins are found in many plant species. Bg7S was originally thought to be a major seed storage protein but was later found to be multifunctional, with stress response, antibacterial activity, hormone receptor-like activity. Moreover, functional differences between Bg7S proteins from legumes and other plants have been revealed. In non-leguminous plants, Bg7S molecules inhibit the invasion of pathogenic microorganisms. However, although leguminous plants have a peptide called leg-insulin that can bind to Bg7S, non-leguminous plants do not have leginsulin. Bg7S in leguminous plants and other plants may have evolved in functionally different directions. Several homologs of Bg7S in plants are reported, but there is no homolog of this protein in peas, suggesting that the pea evolution might have followed a different route when compared to other leguminous plants. Although the functions of Bg7S are well documented in plants, recent studies suggest that this protein is also important in controlling blood glucose level, blood pressure and plasma cholesterol level, and cancer cell antiproliferative actions.
Collapse
Affiliation(s)
- Hisashi Hirano
- Advanced Medical Science Research Center, Gunma Paz University, Shibukawa 1338-4, Shibukawa, Gunma 377-0008, Japan; Institute for Molecular and Cellular Regulation, Gunma University, Showa 3-39-15, Maebashi 371-8512, Japan.
| |
Collapse
|
13
|
Host Cell Wall Damage during Pathogen Infection: Mechanisms of Perception and Role in Plant-Pathogen Interactions. PLANTS 2021; 10:plants10020399. [PMID: 33669710 PMCID: PMC7921929 DOI: 10.3390/plants10020399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
The plant cell wall (CW) is a complex structure that acts as a mechanical barrier, restricting the access to most microbes. Phytopathogenic microorganisms can deploy an arsenal of CW-degrading enzymes (CWDEs) that are required for virulence. In turn, plants have evolved proteins able to inhibit the activity of specific microbial CWDEs, reducing CW damage and favoring the accumulation of CW-derived fragments that act as damage-associated molecular patterns (DAMPs) and trigger an immune response in the host. CW-derived DAMPs might be a component of the complex system of surveillance of CW integrity (CWI), that plants have evolved to detect changes in CW properties. Microbial CWDEs can activate the plant CWI maintenance system and induce compensatory responses to reinforce CWs during infection. Recent evidence indicates that the CWI surveillance system interacts in a complex way with the innate immune system to fine-tune downstream responses and strike a balance between defense and growth.
Collapse
|
14
|
Liang Y, Wang S, Zhao C, Ma X, Zhao Y, Shao J, Li Y, Li H, Song H, Ma H, Li H, Zhang B, Zhang L. Transcriptional regulation of bark freezing tolerance in apple (Malus domestica Borkh.). HORTICULTURE RESEARCH 2020; 7:205. [PMID: 33328456 PMCID: PMC7705664 DOI: 10.1038/s41438-020-00432-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 05/22/2023]
Abstract
Freezing tolerance is a significant trait in plants that grow in cold environments and survive through the winter. Apple (Malus domestica Borkh.) is a cold-tolerant fruit tree, and the cold tolerance of its bark is important for its survival at low temperatures. However, little is known about the gene activity related to its freezing tolerance. To better understand the gene expression and regulation properties of freezing tolerance in dormant apple trees, we analyzed the transcriptomic divergences in the bark from 1-year-old branches of two apple cultivars, "Golden Delicious" (G) and "Jinhong" (H), which have different levels of cold resistance, under chilling and freezing treatments. "H" can safely overwinter below -30 °C in extremely low-temperature regions, whereas "G" experiences severe freezing damage and death in similar environments. Based on 28 bark transcriptomes (from the epidermis, phloem, and cambium) from 1-year-old branches under seven temperature treatments (from 4 to -29 °C), we identified 4173 and 7734 differentially expressed genes (DEGs) in "G" and "H", respectively, between the chilling and freezing treatments. A gene coexpression network was constructed according to this expression information using weighted gene correlation network analysis (WGCNA), and seven biologically meaningful coexpression modules were identified from the network. The expression profiles of the genes from these modules suggested the gene regulatory pathways that are responsible for the chilling and freezing stress responses of "G" and/or "H." Module 7 was probably related to freezing acclimation and freezing damage in "H" at the lower temperatures. This module contained more interconnected hub transcription factors (TFs) and cold-responsive genes (CORs). Modules 6 and 7 contained C-repeat binding factor (CBF) TFs, and many CBF-dependent homologs were identified as hub genes. We also found that some hub TFs had higher intramodular connectivity (KME) and gene significance (GS) than CBFs. Specifically, most hub TFs in modules 6 and 7 were activated at the beginning of the early freezing stress phase and maintained upregulated expression during the whole freezing stress period in "G" and "H". The upregulation of DEGs related to methionine and carbohydrate biosynthetic processes in "H" under more severe freezing stress supported the maintenance of homeostasis in the cellular membrane. This study improves our understanding of the transcriptional regulation patterns underlying freezing tolerance in the bark of apple branches.
Collapse
Affiliation(s)
- Yinghai Liang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Shanshan Wang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Chenhui Zhao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Xinwei Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yiyong Zhao
- Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Collaborative Innovation Center for Genetics and Development, Institute of Biodiversity Sciences, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, 200438, Shanghai, People's Republic of China
| | - Jing Shao
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Yuebo Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Honglian Li
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Hongwei Song
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China
| | - Hong Ma
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Hao Li
- Department of Biology, Eberly College of Science, and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Bingbing Zhang
- Institute of Pomology, Jilin Academy of Agricultural Sciences, 136100, Gongzhuling, People's Republic of China.
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, 310058, Hangzhou, People's Republic of China.
| |
Collapse
|
15
|
Lupinus albus γ-Conglutin, a Protein Structurally Related to GH12 Xyloglucan-Specific Endo-Glucanase Inhibitor Proteins (XEGIPs), Shows Inhibitory Activity against GH2 β-Mannosidase. Int J Mol Sci 2020; 21:ijms21197305. [PMID: 33022933 PMCID: PMC7583008 DOI: 10.3390/ijms21197305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
γ-conglutin (γC) is a major protein of Lupinus albus seeds, but its function is still unknown. It shares high structural similarity with xyloglucan-specific endo-glucanase inhibitor proteins (XEGIPs) and, to a lesser extent, with Triticum aestivum endoxylanase inhibitors (TAXI-I), active against fungal glycoside hydrolases GH12 and GH11, respectively. However, γC lacks both these inhibitory activities. Since β-galactomannans are major components of the cell walls of endosperm in several legume plants, we tested the inhibitory activity of γC against a GH2 β-mannosidase (EC 3.2.1.25). γC was actually able to inhibit the enzyme, and this effect was enhanced by the presence of zinc ions. The stoichiometry of the γC/enzyme interaction was 1:1, and the calculated Ki was 1.55 μM. To obtain further insights into the interaction between γC and β-mannosidase, an in silico structural bioinformatic approach was followed, including some docking analyses. By and large, this work describes experimental findings that highlight new scenarios for understanding the natural role of γC. Although structural predictions can leave space for speculative interpretations, the full complexity of the data reported in this work allows one to hypothesize mechanisms of action for the basis of inhibition. At least two mechanisms seem plausible, both involving lupin-γC-peculiar structures.
Collapse
|
16
|
Niu J, Zheng S, Shi X, Si Y, Tian S, He Y, Ling HQ. Fine mapping and characterization of the awn inhibitor B1 locus in common wheat (Triticum aestivum L.). ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.cj.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Bekalu ZE, Dionisio G, Brinch-Pedersen H. Molecular Properties and New Potentials of Plant Nepenthesins. PLANTS (BASEL, SWITZERLAND) 2020; 9:E570. [PMID: 32365700 PMCID: PMC7284499 DOI: 10.3390/plants9050570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022]
Abstract
Nepenthesins are aspartic proteases (APs) categorized under the A1B subfamily. Due to nepenthesin-specific sequence features, the A1B subfamily is also named nepenthesin-type aspartic proteases (NEPs). Nepenthesins are mostly known from the pitcher fluid of the carnivorous plant Nepenthes, where they are availed for the hydrolyzation of insect protein required for the assimilation of insect nitrogen resources. However, nepenthesins are widely distributed within the plant kingdom and play significant roles in plant species other than Nepenthes. Although they have received limited attention when compared to other members of the subfamily, current data indicates that they have exceptional molecular and biochemical properties and new potentials as fungal-resistance genes. In the current review, we provide insights into the current knowledge on the molecular and biochemical properties of plant nepenthesins and highlights that future focus on them may have strong potentials for industrial applications and crop trait improvement.
Collapse
Affiliation(s)
- Zelalem Eshetu Bekalu
- Department of Agroecology, Research Center Flakkebjerg, Aarhus University, DK-4200 Slagelse, Denmark; (G.D.); (H.B.-P.)
| | | | | |
Collapse
|
18
|
Bahaman AH, Wahab RA, Abdul Hamid AA, Abd Halim KB, Kaya Y. Molecular docking and molecular dynamics simulations studies on β-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparation. J Biomol Struct Dyn 2020; 39:2628-2641. [DOI: 10.1080/07391102.2020.1751713] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Aina Hazimah Bahaman
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
- Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, UTM Johor Bahru, Johor, Malaysia
| | - Azzmer Azzar Abdul Hamid
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Khairul Bariyyah Abd Halim
- Department of Biotechnology, Kuliyyah of Science, International Islamic University Malaysia, Kuantan, Malaysia
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Pahang, Malaysia
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey
- Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| |
Collapse
|
19
|
Hoernstein SNW, Fode B, Wiedemann G, Lang D, Niederkrüger H, Berg B, Schaaf A, Frischmuth T, Schlosser A, Decker EL, Reski R. Host Cell Proteome of Physcomitrella patens Harbors Proteases and Protease Inhibitors under Bioproduction Conditions. J Proteome Res 2018; 17:3749-3760. [PMID: 30226384 DOI: 10.1021/acs.jproteome.8b00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host cell proteins are inevitable contaminants of biopharmaceuticals. Here, we performed detailed analyses of the host cell proteome of moss ( Physcomitrella patens) bioreactor supernatants using mass spectrometry and subsequent bioinformatics analysis. Distinguishing between the apparent secretome and intracellular contaminants, a complex extracellular proteolytic network including subtilisin-like proteases, metallo-proteases, and aspartic proteases was identified. Knockout of a subtilisin-like protease affected the overall extracellular proteolytic activity. Besides proteases, also secreted protease-inhibiting proteins such as serpins were identified. Further, we confirmed predicted cleavage sites of 40 endogenous signal peptides employing an N-terminomics approach. The present data provide novel aspects to optimize both product stability of recombinant biopharmaceuticals as well as their maturation along the secretory pathway. Data are available via ProteomeXchange with identifier PXD009517.
Collapse
Affiliation(s)
- Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Benjamin Fode
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,Plant Genome and System Biology , Helmholtz Center Munich , D-85764 Neuherberg , Germany
| | - Holger Niederkrüger
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Birgit Berg
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schaaf
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Thomas Frischmuth
- Greenovation Biotech GmbH , Hans-Bunte-Strasse 19 , D-79108 Freiburg , Germany
| | - Andreas Schlosser
- Rudolf-Virchow-Center for Experimental Biomedicine , University of Wuerzburg , D-97080 Wuerzburg , Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology , University of Freiburg , Schaenzlestrasse 1 , D-79104 Freiburg , Germany.,BIOSS - Centre for Biological Signalling Studies , University of Freiburg , D-79104 Freiburg , Germany
| |
Collapse
|
20
|
Grosse‐Holz F, Kelly S, Blaskowski S, Kaschani F, Kaiser M, van der Hoorn RA. The transcriptome, extracellular proteome and active secretome of agroinfiltrated Nicotiana benthamiana uncover a large, diverse protease repertoire. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1068-1084. [PMID: 29055088 PMCID: PMC5902771 DOI: 10.1111/pbi.12852] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/06/2017] [Accepted: 10/15/2017] [Indexed: 05/06/2023]
Abstract
Infiltration of disarmed Agrobacterium tumefaciens into leaves of Nicotiana benthamiana (agroinfiltration) facilitates quick and safe production of antibodies, vaccines, enzymes and metabolites for industrial use (molecular farming). However, yield and purity of proteins produced by agroinfiltration are hampered by unintended proteolysis, restricting industrial viability of the agroinfiltration platform. Proteolysis may be linked to an immune response to agroinfiltration, but understanding of the response to agroinfiltration is limited. To identify the proteases, we studied the transcriptome, extracellular proteome and active secretome of agroinfiltrated leaves over a time course, with and without the P19 silencing inhibitor. Remarkably, the P19 expression had little effect on the leaf transcriptome and no effect on the extracellular proteome. 25% of the detected transcripts changed in abundance upon agroinfiltration, associated with a gradual up-regulation of immunity at the expense of photosynthesis. By contrast, 70% of the extracellular proteins increased in abundance, in many cases associated with increased efficiency of extracellular delivery. We detect a dynamic reprogramming of the proteolytic machinery upon agroinfiltration by detecting transcripts encoding for 975 different proteases and protease homologs. The extracellular proteome contains peptides derived from 196 proteases and protease homologs, and activity-based proteomics displayed 17 active extracellular Ser and Cys proteases in agroinfiltrated leaves. We discuss unique features of the N. benthamiana protease repertoire and highlight abundant extracellular proteases in agroinfiltrated leaves, being targets for reverse genetics. This data set increases our understanding of the plant response to agroinfiltration and indicates ways to improve a key expression platform for both plant science and molecular farming.
Collapse
Affiliation(s)
| | - Steven Kelly
- Department of Plant SciencesUniversity of OxfordOxfordUK
| | - Svenja Blaskowski
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Farnusch Kaschani
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | - Markus Kaiser
- Chemische BiologieZentrum für Medizinische BiotechnologieFakultät für BiologieUniversität Duisburg‐EssenEssenGermany
| | | |
Collapse
|
21
|
Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence. PLoS Pathog 2016; 12:e1006051. [PMID: 27977806 PMCID: PMC5158083 DOI: 10.1371/journal.ppat.1006051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/09/2016] [Indexed: 12/29/2022] Open
Abstract
The opportunistic fungal pathogen Cryptococcus neoformans is a major cause of mortality in immunocompromised individuals, resulting in more than 600,000 deaths per year. Many human fungal pathogens secrete peptidases that influence virulence, but in most cases the substrate specificity and regulation of these enzymes remains poorly understood. The paucity of such information is a roadblock to our understanding of the biological functions of peptidases and whether or not these enzymes are viable therapeutic targets. We report here an unbiased analysis of secreted peptidase activity and specificity in C. neoformans using a mass spectrometry-based substrate profiling strategy and subsequent functional investigations. Our initial studies revealed that global peptidase activity and specificity are dramatically altered by environmental conditions. To uncover the substrate preferences of individual enzymes and interrogate their biological functions, we constructed and profiled a ten-member gene deletion collection of candidate secreted peptidases. Through this deletion approach, we characterized the substrate specificity of three peptidases within the context of the C. neoformans secretome, including an enzyme known to be important for fungal entry into the brain. We selected a previously uncharacterized peptidase, which we term Major aspartyl peptidase 1 (May1), for detailed study due to its substantial contribution to extracellular proteolytic activity. Based on the preference of May1 for proteolysis between hydrophobic amino acids, we screened a focused library of aspartyl peptidase inhibitors and identified four high-affinity antagonists. Finally, we tested may1Δ strains in a mouse model of C. neoformans infection and found that strains lacking this enzyme are significantly attenuated for virulence. Our study reveals the secreted peptidase activity and specificity of an important human fungal pathogen, identifies responsible enzymes through genetic tests of their function, and demonstrates how this information can guide the development of high affinity small molecule inhibitors. Many pathogenic organisms secrete peptidases. The activity of these enzymes often contributes to virulence, making their study crucial for understanding host-pathogen biology and developing therapeutics. In this report, we employed an unbiased, activity-based profiling assay to examine the secreted peptidases of a fungal pathogen, Cryptococcus neoformans, which is responsible for 40% of AIDS-related deaths. We discovered which peptidases are secreted, identified their substrate specificity, and interrogated their biological functions. Through this analysis, we identified a principal enzyme responsible for the extracellular peptidase activity of C. neoformans, May1, and demonstrated its importance for growth in acidic environments. Characterization of its substrate preferences allowed us to identify compounds that are potent substrate-based inhibitors of May1 activity. Finally, we found that the presence of this enzyme promotes virulence in a mouse model of infection. Our comprehensive study reveals the expression, regulation and function of C. neoformans secreted peptidases, including evidence for the role of a novel aspartyl peptidase in virulence.
Collapse
|
22
|
Liu M, Duan L, Wang M, Zeng H, Liu X, Qiu D. Crystal Structure Analysis and the Identification of Distinctive Functional Regions of the Protein Elicitor Mohrip2. FRONTIERS IN PLANT SCIENCE 2016; 7:1103. [PMID: 27507984 PMCID: PMC4960229 DOI: 10.3389/fpls.2016.01103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/12/2016] [Indexed: 05/31/2023]
Abstract
The protein elicitor MoHrip2, which was extracted from Magnaporthe oryzae as an exocrine protein, triggers the tobacco immune system and enhances blast resistance in rice. However, the detailed mechanisms by which MoHrip2 acts as an elicitor remain unclear. Here, we investigated the structure of MoHrip2 to elucidate its functions based on molecular structure. The three-dimensional structure of MoHrip2 was obtained. Overall, the crystal structure formed a β-barrel structure and showed high similarity to the pathogenesis-related (PR) thaumatin superfamily protein thaumatin-like xylanase inhibitor (TL-XI). To investigate the functional regions responsible for MoHrip2 elicitor activities, the full length and eight truncated proteins were expressed in Escherichia coli and were evaluated for elicitor activity in tobacco. Biological function analysis showed that MoHrip2 triggered the defense system against Botrytis cinerea in tobacco. Moreover, only MoHrip2M14 and other fragments containing the 14 amino acids residues in the middle region of the protein showed the elicitor activity of inducing a hypersensitive response and resistance related pathways, which were similar to that of full-length MoHrip2. These results revealed that the central 14 amino acid residues were essential for anti-pathogenic activity.
Collapse
Affiliation(s)
- Mengjie Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Liangwei Duan
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Meifang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Hongmei Zeng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| | - Xinqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Dewen Qiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection – Chinese Academy of Agricultural SciencesBeijing, China
| |
Collapse
|
23
|
Scarafoni A, Consonni A, Pessina S, Balzaretti S, Capraro J, Galanti E, Duranti M. Structural basis of the lack of endo-glucanase inhibitory activity of Lupinus albus γ-conglutin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 99:79-85. [PMID: 26741537 DOI: 10.1016/j.plaphy.2015.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/30/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
Lupin γ-conglutin and soybean BG7S are two legume seed proteins strongly similar to plant endo-β-glucanases inhibitors acting against fungal GH11 and GH12 glycoside hydrolase. However these proteins lack inhibitory activity. Here we describe the conversion of lupin γ-conglutin to an active inhibitor of endo-β-glucanases belonging to GH11 family. A set of γ-conglutin mutants was designed and expressed in Pichia pastoris, along with the wild-type protein. Unexpectedly, this latter was able to inhibit a GH11 enzyme, but not GH12, whereas the mutants were able to modulate the inhibition capacity. In lupin, γ-conglutin is naturally cleaved in two subunits, whereas in P. pastoris it is not. The lack of proteolytic cleavage is one of the reasons at the basis of the inhibitory activity of recombinant γ-conglutin. The results provide new insights about structural features at the basis of the lack of inhibitory activity of wild-type γ-conglutin and its legume homologues.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Alessandro Consonni
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Stefano Pessina
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Silvia Balzaretti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Jessica Capraro
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Elisabetta Galanti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Marcello Duranti
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
24
|
Qiu J, Han H, Sun B, Chen L, Yu C, Peng R, Yao Q. Residue mutations of xylanase in Aspergillus kawachii alter its optimum pH. Microbiol Res 2015; 182:1-7. [PMID: 26686608 DOI: 10.1016/j.micres.2015.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/17/2015] [Accepted: 09/06/2015] [Indexed: 12/18/2022]
Abstract
Aspergillus kawachii and Aspergillus niger have been traditionally used as molds for commercial microbial fermentation because of their capability to grow in extremely acidic environments and produce acid-stable enzymes. Endo-1,4-β-xylanase cleaves the glycosidic bonds in the xylan backbone, consequently reducing the degree of polymerization of the substrate. The amino acid sequences of xylanases from A. kawachii and A. niger only differ in one amino acid residue. However, the xylanases from A. kawachii and A. niger show different optimum pH values of 2.0 and 3.0, respectively. In this study, we synthesized the A. kawachii xylanase gene (XynC) on the basis of the bias codon of yeast and mutated the gene in the dominating region related to optimum pH shifting during gene synthesis. After the overexpression of this gene in Pichia pastoris G115, the mutant (Thr64Ser) enzyme (XynC-C) showed an optimum pH of 3.8, which indicated partial alkalinity compared with the original xylanase from A. kawachii. Similar to that of the enzyme with one residue mutation (Asp48Asn), the optimum pH of the enzyme with two residue mutations (Thr64Ser and Asp48Asn) shifted to 5.0. The result indicated that mutation Asp48 was more important than mutation Thr64 in optimum pH shifting. We proposed a model that explains the lower optimum pH of XynC-C than other members of the xylanase family G. XynC-C showed similar proteolytic resistance and Km and Vmax values for beechwood xylan to other xylanases.
Collapse
Affiliation(s)
- Jin Qiu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Hongjuan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Baihui Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Lei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Chengye Yu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China; College of Food Science and Technology, Shanghai Ocean University, 999 Huchenghuan Rd, Shanghai 210306, PR China.
| |
Collapse
|
25
|
Sudha G, Singh P, Swapna LS, Srinivasan N. Weak conservation of structural features in the interfaces of homologous transient protein-protein complexes. Protein Sci 2015; 24:1856-73. [PMID: 26311309 DOI: 10.1002/pro.2792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
Residue types at the interface of protein-protein complexes (PPCs) are known to be reasonably well conserved. However, we show, using a dataset of known 3-D structures of homologous transient PPCs, that the 3-D location of interfacial residues and their interaction patterns are only moderately and poorly conserved, respectively. Another surprising observation is that a residue at the interface that is conserved is not necessarily in the interface in the homolog. Such differences in homologous complexes are manifested by substitution of the residues that are spatially proximal to the conserved residue and structural differences at the interfaces as well as differences in spatial orientations of the interacting proteins. Conservation of interface location and the interaction pattern at the core of the interfaces is higher than at the periphery of the interface patch. Extents of variability of various structural features reported here for homologous transient PPCs are higher than the variation in homologous permanent homomers. Our findings suggest that straightforward extrapolation of interfacial nature and inter-residue interaction patterns from template to target could lead to serious errors in the modeled complex structure. Understanding the evolution of interfaces provides insights to improve comparative modeling of PPC structures.
Collapse
Affiliation(s)
- Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Prashant Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Lakshmipuram S Swapna
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | | |
Collapse
|
26
|
Czubinski J, Barciszewski J, Gilski M, Szpotkowski K, Debski J, Lampart-Szczapa E, Jaskolski M. Structure of γ-conglutin: insight into the quaternary structure of 7S basic globulins from legumes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2015; 71:224-38. [PMID: 25664733 DOI: 10.1107/s1399004714025073] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/15/2014] [Indexed: 11/10/2022]
Abstract
γ-Conglutin from lupin seeds is an unusual 7S basic globulin protein. It is capable of reducing glycaemia in mammals, but the structural basis of this activity is not known. γ-Conglutin shares a high level of structural homology with glycoside hydrolase inhibitor proteins, although it lacks any kind of inhibitory activity against plant cell-wall degradation enzymes. In addition, γ-conglutin displays a less pronounced structural similarity to pepsin-like aspartic proteases, but it is proteolytically dysfunctional. Only one structural study of a legume 7S basic globulin, that isolated from soybean, has been reported to date. The quaternary assembly of soybean 7S basic globulin (Bg7S) is arranged as a cruciform-shaped tetramer comprised of two superposed dimers. Here, the crystal structure of γ-conglutin isolated from Lupinus angustifolius seeds (LangC) is presented. The polypeptide chain of LangC is post-translationally cleaved into α and β subunits but retains its covalent integrity owing to a disulfide bridge. The protomers of LangC undergo an intricate quaternary assembly, resulting in a ring-like hexamer with noncrystallographic D3 symmetry. The twofold-related dimers are similar to those in Bg7S but their assembly is different as a consequence of mutations in a β-strand that is involved in intermolecular β-sheet formation in γ-conglutin. Structural elucidation of γ-conglutin will help to explain its physiological role, especially in the evolutionary context, and will guide further research into the hypoglycaemic activity of this protein in humans, with potential consequences for novel antidiabetic therapies.
Collapse
Affiliation(s)
- Jaroslaw Czubinski
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Poznan, Poland
| | - Jakub Barciszewski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Kamil Szpotkowski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Janusz Debski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Eleonora Lampart-Szczapa
- Department of Food Biochemistry and Analysis, Poznan University of Life Sciences, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
27
|
Fu X, Wu X, Zhou X, Liu S, Shen Y, Wu F. Companion cropping with potato onion enhances the disease resistance of tomato against Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2015; 6:726. [PMID: 26442040 PMCID: PMC4566073 DOI: 10.3389/fpls.2015.00726] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/28/2015] [Indexed: 05/07/2023]
Abstract
Intercropping could alleviate soil-borne diseases, however, few studies focused on the immunity of the host plant induced by the interspecific interactions. To test whether or not intercropping could enhance the disease resistance of host plant, we investigated the effect of companion cropping with potato onion on tomato Verticillium wilt caused by Verticillium dahliae (V. dahliae). To investigate the mechanisms, the root exudates were collected from tomato and potato onion which were grown together or separately, and were used to examine the antifungal activities against V. dahliae in vitro, respectively. Furthermore, RNA-seq was used to examine the expression pattern of genes related to disease resistance in tomato companied with potato onion compared to that in tomato grown alone, under the condition of infection with V. dahliae. The results showed that companion cropping with potato onion could alleviate the incidence and severity of tomato Verticillium wilt. The further studies revealed that the root exudates from tomato companied with potato onion significantly inhibited the mycelia growth and spore germination of V. dahliae. However, there were no significant effects on these two measurements for the root exudates from potato onion grown alone or from potato onion grown with tomato. RNA-seq data analysis showed the disease defense genes associated with pathogenesis-related proteins, biosynthesis of lignin, hormone metabolism and signal transduction were expressed much higher in the tomato companied with potato onion than those in the tomato grown alone, which indicated that these defense genes play important roles in tomato against V. dahliae infection, and meant that the disease resistance of tomato against V. dahliae was enhanced in the companion copping with potato onion. We proposed that companion cropping with potato onion could enhance the disease resistance of tomato against V. dahliae by regulating the expression of genes related to disease resistance response. This may be a potential mechanism for the management of soil-borne plant diseases in the intercropping system.
Collapse
Affiliation(s)
- Xuepeng Fu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Department of Life Science and Agroforestry, Qiqihar UniversityQiqihar, China
| | - Xia Wu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- Department of Horticulture, Heilongjiang Bayi Agricultural UniversityDaqing, China
| | - Xingang Zhou
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Shouwei Liu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Yanhui Shen
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural UniversityHarbin, China
- *Correspondence: Fengzhi Wu, Department of Horticulture, Northeast Agricultural University, No. 59 Mucai Street, XiangFang District, Harbin 150030, China
| |
Collapse
|
28
|
Guyon K, Balagué C, Roby D, Raffaele S. Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum. BMC Genomics 2014; 15:336. [PMID: 24886033 PMCID: PMC4039746 DOI: 10.1186/1471-2164-15-336] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/27/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The white mold fungus Sclerotinia sclerotiorum is a devastating necrotrophic plant pathogen with a remarkably broad host range. The interaction of necrotrophs with their hosts is more complex than initially thought, and still poorly understood. RESULTS We combined bioinformatics approaches to determine the repertoire of S. sclerotiorum effector candidates and conducted detailed sequence and expression analyses on selected candidates. We identified 486 S. sclerotiorum secreted protein genes expressed in planta, many of which have no predicted enzymatic activity and may be involved in the interaction between the fungus and its hosts. We focused on those showing (i) protein domains and motifs found in known fungal effectors, (ii) signatures of positive selection, (iii) recent gene duplication, or (iv) being S. sclerotiorum-specific. We identified 78 effector candidates based on these properties. We analyzed the expression pattern of 16 representative effector candidate genes on four host plants and revealed diverse expression patterns. CONCLUSIONS These results reveal diverse predicted functions and expression patterns in the repertoire of S. sclerotiorum effector candidates. They will facilitate the functional analysis of fungal pathogenicity determinants and should prove useful in the search for plant quantitative disease resistance components active against the white mold.
Collapse
Affiliation(s)
| | | | | | - Sylvain Raffaele
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France.
| |
Collapse
|
29
|
Rodrigues JPGLM, Melquiond ASJ, Karaca E, Trellet M, van Dijk M, van Zundert GCP, Schmitz C, de Vries SJ, Bordogna A, Bonati L, Kastritis PL, Bonvin AMJJ. Defining the limits of homology modeling in information-driven protein docking. Proteins 2013; 81:2119-28. [PMID: 23913867 DOI: 10.1002/prot.24382] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/16/2013] [Accepted: 07/25/2013] [Indexed: 12/28/2022]
Abstract
Information-driven docking is currently one of the most successful approaches to obtain structural models of protein interactions as demonstrated in the latest round of CAPRI. While various experimental and computational techniques can be used to retrieve information about the binding mode, the availability of three-dimensional structures of the interacting partners remains a limiting factor. Fortunately, the wealth of structural information gathered by large-scale initiatives allows for homology-based modeling of a significant fraction of the protein universe. Defining the limits of information-driven docking based on such homology models is therefore highly relevant. Here we show, using previous CAPRI targets, that out of a variety of measures, the global sequence identity between template and target is a simple but reliable predictor of the achievable quality of the docking models. This indicates that a well-defined overall fold is critical for the interaction. Furthermore, the quality of the data at our disposal to characterize the interaction plays a determinant role in the success of the docking. Given reliable interface information we can obtain acceptable predictions even at low global sequence identity. These results, which define the boundaries between trustworthy and unreliable predictions, should guide both experts and nonexperts in defining the limits of what is achievable by docking. This is highly relevant considering that the fraction of the interactome amenable for docking is only bound to grow as the number of experimentally solved structures increases.
Collapse
Affiliation(s)
- J P G L M Rodrigues
- Faculty of Science/Chemistry, Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584CH, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Driss D, Berrin JG, Juge N, Bhiri F, Ghorbel R, Chaabouni SE. Functional characterization of Penicillium occitanis Pol6 and Penicillium funiculosum GH11 xylanases. Protein Expr Purif 2013; 90:195-201. [DOI: 10.1016/j.pep.2013.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/05/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
31
|
Wu J, Wang Y, Kim ST, Kim SG, Kang KY. Characterization of a newly identified rice chitinase-like protein (OsCLP) homologous to xylanase inhibitor. BMC Biotechnol 2013; 13:4. [PMID: 23331415 PMCID: PMC3571981 DOI: 10.1186/1472-6750-13-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Accepted: 12/26/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND During rice blast fungal attack, plant xylanase inhibitor proteins (XIPs) that inhibit fungal xylanase activity are believed to act as a defensive barrier against fungal pathogens. To understand the role of XIPs in rice, a xylanase inhibitor was cloned from rice. The expression of this gene was examined at the transcriptional/translational levels during compatible and incompatible interactions, and the biochemical activity of this protein was also examined. RESULTS Sequence alignment revealed that the deduced amino acid sequence of OsCLP shares a high degree of similarity with that of other plant TAXI-type XIPs. However, recombinant OsCLP did not display inhibitory activity against endo-1,4-β-xylanase enzymes from Aureobasidium pullulans (A. pullulans) or Trichoderma viride (T. viride). Instead, an in-gel activity assay revealed strong chitinase activity. The transcription and translation of OsCLP were highly induced when rice was exposed to pathogens in an incompatible interaction. In addition, exogenous treatment with OsCLP affected the growth of the basidiomycete fungus Rhizoctonia solani through degradation of the hyphal cell wall. These data suggest that OsCLP, which has chitinase activity, may play an important role in plant defenses against pathogens. CONCLUSIONS Taken together, our results demonstrate that OsCLP may have antifungal activity. This protein may directly inhibit pathogen growth by degrading fungal cell wall components through chitinase activity.
Collapse
Affiliation(s)
- Jingni Wu
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
| | - Yiming Wang
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Sun Tae Kim
- Department of Plant Bioscience, Pusan National University, Miryang, 627-706, South Korea
| | - Sang Gon Kim
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| | - Kyu Young Kang
- Division of Applied Life Science (BK21 program), Gyeongsang National University, Jinju, 660-701, South Korea
- Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 660-701, South Korea
| |
Collapse
|
32
|
Schulze WX, Sanggaard KW, Kreuzer I, Knudsen AD, Bemm F, Thøgersen IB, Bräutigam A, Thomsen LR, Schliesky S, Dyrlund TF, Escalante-Perez M, Becker D, Schultz J, Karring H, Weber A, Højrup P, Hedrich R, Enghild JJ. The protein composition of the digestive fluid from the venus flytrap sheds light on prey digestion mechanisms. Mol Cell Proteomics 2012; 11:1306-19. [PMID: 22891002 PMCID: PMC3494193 DOI: 10.1074/mcp.m112.021006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/26/2012] [Indexed: 11/06/2022] Open
Abstract
The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition.
Collapse
Affiliation(s)
- Waltraud X. Schulze
- From the ‡Max Planck Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kristian W. Sanggaard
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Ines Kreuzer
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Anders D. Knudsen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Felix Bemm
- ‖Department of Bioinformatics, Biozentrum, Am Hubland, Universität Würzburg, D-97074 Wuerzburg, Germany
| | - Ida B. Thøgersen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Andrea Bräutigam
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Line R. Thomsen
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Simon Schliesky
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Thomas F. Dyrlund
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| | - Maria Escalante-Perez
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Dirk Becker
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Jörg Schultz
- ‖Department of Bioinformatics, Biozentrum, Am Hubland, Universität Würzburg, D-97074 Wuerzburg, Germany
| | - Henrik Karring
- §§University of Southern Denmark, Institute of Chemical Engineering, Biotechnology and Environmental Technology, Niels Bohrs Allé 1, 5230 Odense M, Denmark
| | - Andreas Weber
- ‡‡Department of Plant Biochemistry, Heinrich-Heine-Universitaet Duesseldorf, Universitaetsstrasse 1, 40225 Duesseldorf, Germany
| | - Peter Højrup
- ¶¶Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Rainer Hedrich
- ¶Department of Molecular Plant Physiology & Biophysics, Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
- ‖‖Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jan J. Enghild
- §Department of Molecular Biology and Genetics, Aarhus University, Gustav Wiedsvej 10C, 8000 Aarhus C, Denmark
| |
Collapse
|
33
|
Yoshizawa T, Shimizu T, Hirano H, Sato M, Hashimoto H. Structural basis for inhibition of xyloglucan-specific endo-β-1,4-glucanase (XEG) by XEG-protein inhibitor. J Biol Chem 2012; 287:18710-6. [PMID: 22496365 DOI: 10.1074/jbc.m112.350520] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Microorganisms such as plant pathogens secrete glycoside hydrolases (GHs) to digest the polysaccharide chains of plant cell walls. The degradation of cell walls by these enzymes is a crucial step for nutrition and invasion. To protect the cell wall from these enzymes, plants secrete glycoside hydrolase inhibitor proteins (GHIPs). Xyloglucan-specific endo-β-1,4-glucanase (XEG), a member of GH family 12 (GH12), could be a great threat to many plants because xyloglucan is a major component of the cell wall in most plants. Understanding the inhibition mechanism of XEG by GHIP is therefore of great importance in the field of plant defense, but to date the mechanism and specificity of GHIPs remain unclear. We have determined the crystal structure of XEG in complex with extracellular dermal glycoprotein (EDGP), a carrot GHIP that inhibits XEG. The structure reveals that the conserved arginines of EDGP intrude into the active site of XEG and interact with the catalytic glutamates of the enzyme. We have also determined the crystal structure of the XEG-xyloglucan complex. These structures show that EDGP closely mimics the XEG-xyloglucan interaction. Although EDGP shares structural similarity to a wheat GHIP (Triticum aestivum xylanase inhibitor-IA (TAXI-IA)) that inhibits GH11 family xylanases, the arrangement of GH and GHIP in the XEG-EDGP complex is distinct from that in the xylanase-TAXI-IA complex. Our findings imply that plants have evolved structures of GHIPs to inhibit different GH family members that attack their cell walls.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Graduate School of Nanobioscience, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | | | | |
Collapse
|
34
|
Paës G, Berrin JG, Beaugrand J. GH11 xylanases: Structure/function/properties relationships and applications. Biotechnol Adv 2011; 30:564-92. [PMID: 22067746 DOI: 10.1016/j.biotechadv.2011.10.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 01/02/2023]
Abstract
For technical, environmental and economical reasons, industrial demands for process-fitted enzymes have evolved drastically in the last decade. Therefore, continuous efforts are made in order to get insights into enzyme structure/function relationships to create improved biocatalysts. Xylanases are hemicellulolytic enzymes, which are responsible for the degradation of the heteroxylans constituting the lignocellulosic plant cell wall. Due to their variety, xylanases have been classified in glycoside hydrolase families GH5, GH8, GH10, GH11, GH30 and GH43 in the CAZy database. In this review, we focus on GH11 family, which is one of the best characterized GH families with bacterial and fungal members considered as true xylanases compared to the other families because of their high substrate specificity. Based on an exhaustive analysis of the sequences and 3D structures available so far, in relation with biochemical properties, we assess biochemical aspects of GH11 xylanases: structure, catalytic machinery, focus on their "thumb" loop of major importance in catalytic efficiency and substrate selectivity, inhibition, stability to pH and temperature. GH11 xylanases have for a long time been used as biotechnological tools in various industrial applications and represent in addition promising candidates for future other uses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR614 FARE, 2 esplanade Roland-Garros, F-51686 Reims, France.
| | | | | |
Collapse
|
35
|
Finnie C, Sultan A, Grasser KD. From protein catalogues towards targeted proteomics approaches in cereal grains. PHYTOCHEMISTRY 2011; 72:1145-1153. [PMID: 21134685 DOI: 10.1016/j.phytochem.2010.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/09/2010] [Accepted: 11/11/2010] [Indexed: 05/27/2023]
Abstract
Due to their importance for human nutrition, the protein content of cereal grains has been a subject of intense study for over a century and cereal grains were not surprisingly one of the earliest subjects for 2D-gel-based proteome analysis. Over the last two decades, countless cereal grain proteomes, mostly derived using 2D-gel based technologies, have been described and hundreds of proteins identified. However, very little is still known about post-translational modifications, subcellular proteomes, and protein-protein interactions in cereal grains. Development of techniques for improved extraction, separation and identification of proteins and peptides is facilitating functional proteomics and analysis of sub-proteomes from small amounts of starting material, such as seed tissues. The combination of proteomics with structural and functional analysis is increasingly applied to target subsets of proteins. These "next-generation" proteomics studies will vastly increase our depth of knowledge about the processes controlling cereal grain development, nutritional and processing characteristics.
Collapse
Affiliation(s)
- Christine Finnie
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Bldg 224, DK-2800 Kgs. Lyngby, Denmark.
| | | | | |
Collapse
|
36
|
Yoshizawa T, Shimizu T, Hirano H, Sato M, Hashimoto H. Purification, crystallization and X-ray diffraction study of extracellular dermal glycoprotein from carrot and the inhibition complex that it forms with an endo-β-glucanase from Aspergillus aculeatus. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:830-2. [PMID: 21795806 DOI: 10.1107/s1744309111020045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 05/26/2011] [Indexed: 11/11/2022]
Abstract
Extracellular dermal glycoprotein (EDGP) may play an important role in the plant defence system of the carrot (Daucus carota) as it has inhibitory activity against endo-β-glucanase produced by invading pathogens. Here, EDGP and the inhibition complex that it forms with FI-CMCase, a carboxyl methyl cellulase from Aspergillus aculeatus, were successfully crystallized. The hexagonal crystal of EDGP belonged to space group P6(2), with unit-cell parameters a=b=130.4, c=44.5 Å, γ=120°. The monoclinic crystal of the complex of EDGP with FI-CMCase belonged to space group C2, with unit-cell parameters a=169.5, b=143.0, c=63.0 Å, β=110.9°.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Graduate School of Nanobioscience, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | |
Collapse
|
37
|
Yoshizawa T, Shimizu T, Yamabe M, Taichi M, Nishiuchi Y, Shichijo N, Unzai S, Hirano H, Sato M, Hashimoto H. Crystal structure of basic 7S globulin, a xyloglucan-specific endo-β-1,4-glucanase inhibitor protein-like protein from soybean lacking inhibitory activity against endo-β-glucanase. FEBS J 2011; 278:1944-54. [PMID: 21457461 DOI: 10.1111/j.1742-4658.2011.08111.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
β-Linked glucans such as cellulose and xyloglucan are important components of the cell walls of most dicotyledonous plants. These β-linked glucans are constantly exposed to degradation by various endo-β-glucanases from pathogenic bacteria and fungi. To protect the cell wall from degradation by such enzymes, plants secrete proteinaceous endo-β-glucanases inhibitors, such as xyloglucan-specific endo-β-1,4-glucanase inhibitor protein (XEGIP) in tomato. XEGIPs typically inhibit xyloglucanase, a member of the glycoside hydrolase (GH)12 family. XEGIPs are also found in legumes, including soybean and lupin. To date, tomato XEGIP has been well studied, whereas XEGIPs from legumes are less well understood. Here, we determined the crystal structure of basic 7S globulin (Bg7S), a XEGIP from soybean, which represents the first three-dimensional structure of XEGIP. Bg7S formed a tetramer with pseudo-222 symmetry. Analytical centrifugation and size exclusion chromatography experiments revealed that the assembly of Bg7S in solution depended on pH. The structure of Bg7S was similar to that of a xylanase inhibitor protein from wheat (Tritinum aestivum xylanase inhibitor) that inhibits GH11 xylanase. Surprisingly, Bg7S lacked inhibitory activity against not only GH11 but also GH12 enzymes. In addition, we found that XEGIPs from azukibean, yardlongbean and mungbean also had no impact on the activity of either GH12 or GH11 enzymes, indicating that legume XEGIPs generally do not inhibit these enzymes. We reveal the structural basis of why legume XEGIPs lack this inhibitory activity. This study will provide significant clues for understanding the physiological role of Bg7S.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Graduate School of Nanobioscience, Yokohama City University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
|
39
|
Gusakov AV. Proteinaceous inhibitors of microbial xylanases. BIOCHEMISTRY (MOSCOW) 2010; 75:1185-99. [DOI: 10.1134/s0006297910100019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Vandermarliere E, Lammens W, Schoepe J, Rombouts S, Fierens E, Gebruers K, Volckaert G, Rabijns A, Delcour JA, Strelkov SV, Courtin CM. Crystal structure of the noncompetitive xylanase inhibitor TLXI, member of the small thaumatin-like protein family. Proteins 2010; 78:2391-4. [PMID: 20544973 DOI: 10.1002/prot.22737] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Elien Vandermarliere
- Department of Pharmaceutical Sciences, Laboratory for Biocrystallography, Leuven 3000, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Shutov AD, Prak K, Fukuda T, Rudakov SV, Rudakova AS, Tandang-Silvas MR, Fujiwara K, Mikami B, Utsumi S, Maruyama N. Soybean basic 7S globulin: subunit heterogeneity and molecular evolution. Biosci Biotechnol Biochem 2010; 74:1631-4. [PMID: 20699573 DOI: 10.1271/bbb.100234] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Basic 7S globulin, a cysteine-rich protein from soybean seeds, consists of subunits containing 27 kD and 16 kD chains linked by disulfide bonding. Three differently sized subunits of the basic 7S globulin were detected and partially separated by SP Sepharose chromatography. The basic 7S globulin was characterized as a member of a superfamily of structurally related but functionally distinct proteins descended from a specific group of plant aspartic proteinases.
Collapse
Affiliation(s)
- Andrei D Shutov
- Laboratory of Plant Biochemistry, State University of Moldova, Mateevicii str, Chişinău, Moldova
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Rasmussen LE, Sørensen JF, Meyer AS. Kinetics and substrate selectivity of a Triticum aestivum xylanase inhibitor (TAXI) resistant D11F/R122D variant of Bacillus subtilis XynA xylanase. J Biotechnol 2010; 146:207-14. [DOI: 10.1016/j.jbiotec.2010.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 02/13/2010] [Accepted: 02/16/2010] [Indexed: 11/28/2022]
|
43
|
Scarafoni A, Ronchi A, Duranti M. gamma-Conglutin, the Lupinus albus XEGIP-like protein, whose expression is elicited by chitosan, lacks of the typical inhibitory activity against GH12 endo-glucanases. PHYTOCHEMISTRY 2010; 71:142-148. [PMID: 19962718 DOI: 10.1016/j.phytochem.2009.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Revised: 11/06/2009] [Accepted: 11/10/2009] [Indexed: 05/27/2023]
Abstract
gamma-Conglutin, a glycoprotein from Lupinus albus seed, has been characterized at molecular level but its physiological function is still unknown. gamma-Conglutin shares a high structural similarity with xyloglucan-specific endo-beta-1,4-glucanase inhibitor proteins (XEGIPs) and Triticum aestivum xylanase inhibitor (TAXI-I), which act specifically against fungal glycosyl hydrolase belonging to families 12 and 11, respectively. To assess the possible involvement of gamma-conglutin in plant defense, germinating lupin seeds were incubated with chitosan. The relative quantification of gamma-conglutin mRNA extracted from cotyledons was then carried out by RT-qPCR and indicated that chitosan strongly elicited the expression of gamma-conglutin. Moreover, biochemical trials aimed to test the inhibitory capacity of the protein have been also carried out. gamma-Conglutin failed to inhibit representative fungal endo-glucanases and other cell wall-degrading enzymes. To explain the lack of inhibitory capacity we investigated the possible structural differences between gamma-conglutin and XEGIPs and TAXI-I, including the construction of a predictive 3D model of the protein. Bioinformatic analysis suggests that the lack of inhibitory activity of gamma-conglutin can be attributed to sequence differences in the inhibitor interaction domains, and in particular to a sequence deletion in one of the functional loops.
Collapse
Affiliation(s)
- Alessio Scarafoni
- Dipartimento di Scienze Molecolari Agroalimentari, Università degli Studi di Milano, via G. Celoria 2, 20133 Milano, Italy.
| | | | | |
Collapse
|
44
|
Gloster TM, Davies GJ. Glycosidase inhibition: assessing mimicry of the transition state. Org Biomol Chem 2010; 8:305-20. [PMID: 20066263 PMCID: PMC2822703 DOI: 10.1039/b915870g] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 09/30/2009] [Indexed: 12/15/2022]
Abstract
Glycoside hydrolases, the enzymes responsible for hydrolysis of the glycosidic bond in di-, oligo- and polysaccharides, and glycoconjugates, are ubiquitous in Nature and fundamental to existence. The extreme stability of the glycosidic bond has meant these enzymes have evolved into highly proficient catalysts, with an estimated 10(17) fold rate enhancement over the uncatalysed reaction. Such rate enhancements mean that enzymes bind the substrate at the transition state with extraordinary affinity; the dissociation constant for the transition state is predicted to be 10(-22) M. Inhibition of glycoside hydrolases has widespread application in the treatment of viral infections, such as influenza and HIV, lysosomal storage disorders, cancer and diabetes. If inhibitors are designed to mimic the transition state, it should be possible to harness some of the transition state affinity, resulting in highly potent and specific drugs. Here we examine a number of glycosidase inhibitors which have been developed over the past half century, either by Nature or synthetically by man. A number of criteria have been proposed to ascertain which of these inhibitors are true transition state mimics, but these features have only be critically investigated in a very few cases.
Collapse
Affiliation(s)
- Tracey M. Gloster
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK. ; ; Fax: +44 1904 328266; Tel: +44 1904 328260
- Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada
| | - Gideon J. Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW, UK. ; ; Fax: +44 1904 328266; Tel: +44 1904 328260
| |
Collapse
|
45
|
Lagaert S, Beliën T, Volckaert G. Plant cell walls: Protecting the barrier from degradation by microbial enzymes. Semin Cell Dev Biol 2009; 20:1064-73. [DOI: 10.1016/j.semcdb.2009.05.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/25/2009] [Indexed: 10/20/2022]
|
46
|
Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM. Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins 2009; 77:395-403. [PMID: 19422059 DOI: 10.1002/prot.22445] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Enzyme intramolecular mobility and conformational changes of loops in particular play a significant role in biocatalysis. In this respect, the highly conserved thumb loop of glycoside hydrolase family (GH) 11 xylanases is an intriguing and characteristic structural element, of which the true dynamic nature and function in catalysis is still unknown. Crystallographic analysis of the structure of a Bacillus subtilis xylanase A mutant, found as a dimer in an asymmetric unit, revealed that the thumb region can adopt an extended conformation, which is stabilized in the crystal lattice through intermolecular contacts. In contrast to the closed thumb conformation of GH11 xylanases and the previously observed small conformational changes upon substrate binding, a relocation of the tip of the thumb of more than 15 A was observed. Site-directed mutagenesis of five thumb residues, including putative hinge point residues, and enzyme kinetics assays showed that Arg112, Asn114, and Thr126 play a role in the open-close thumb movement. Replacement of Arg112 by glycine or proline caused a strong decrease of turnover numbers and elevated Michaelis constants on xylan. Mutant N114P hindered thumb movement, provoking a fourfold decrease of turnover numbers and a sharp rise in Michaelis constants, whereas the proline mutant of Thr126 displayed an increase in specific activity. The observation that extensive thumb opening is possible combined with the kinetic data suggests that the thumb plays a crucial role in both binding of substrate and release of product from the active site.
Collapse
Affiliation(s)
- Annick Pollet
- Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre, Katholieke Universiteit Leuven, Kasteelpark Arenberg, B-3001 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
47
|
Kowalsman N, Eisenstein M. Combining interface core and whole interface descriptors in postscan processing of protein-protein docking models. Proteins 2009; 77:297-318. [DOI: 10.1002/prot.22436] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
|
49
|
Rawlings ND, Bateman A. Pepsin homologues in bacteria. BMC Genomics 2009; 10:437. [PMID: 19758436 PMCID: PMC2761423 DOI: 10.1186/1471-2164-10-437] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 09/16/2009] [Indexed: 11/19/2022] Open
Abstract
Background Peptidase family A1, to which pepsin belongs, had been assumed to be restricted to eukaryotes. The tertiary structure of pepsin shows two lobes with similar folds and it has been suggested that the gene has arisen from an ancient duplication and fusion event. The only sequence similarity between the lobes is restricted to the motif around the active site aspartate and a hydrophobic-hydrophobic-Gly motif. Together, these contribute to an essential structural feature known as a psi-loop. There is one such psi-loop in each lobe, and so each lobe presents an active Asp. The human immunodeficiency virus peptidase, retropepsin, from peptidase family A2 also has a similar fold but consists of one lobe only and has to dimerize to be active. All known members of family A1 show the bilobed structure, but it is unclear if the ancestor of family A1 was similar to an A2 peptidase, or if the ancestral retropepsin was derived from a half-pepsin gene. The presence of a pepsin homologue in a prokaryote might give insights into the evolution of the pepsin family. Results Homologues of the aspartic peptidase pepsin have been found in the completed genomic sequences from seven species of bacteria. The bacterial homologues, unlike those from eukaryotes, do not possess signal peptides, and would therefore be intracellular acting at neutral pH. The bacterial homologues have Thr218 replaced by Asp, a change which in renin has been shown to confer activity at neutral pH. No pepsin homologues could be detected in any archaean genome. Conclusion The peptidase family A1 is found in some species of bacteria as well as eukaryotes. The bacterial homologues fall into two groups, one from oceanic bacteria and one from plant symbionts. The bacterial homologues are all predicted to be intracellular proteins, unlike the eukaryotic enzymes. The bacterial homologues are bilobed like pepsin, implying that if no horizontal gene transfer has occurred the duplication and fusion event might be very ancient indeed, preceding the divergence of bacteria and eukaryotes. It is unclear whether all the bacterial homologues are derived from horizontal gene transfer, but those from the plant symbionts probably are. The homologues from oceanic bacteria are most closely related to memapsins (or BACE-1 and BACE-2), but are so divergent that they are close to the root of the phylogenetic tree and to the division of the A1 family into two subfamilies.
Collapse
Affiliation(s)
- Neil D Rawlings
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | |
Collapse
|
50
|
Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. FEBS J 2009; 276:3916-27. [PMID: 19769747 DOI: 10.1111/j.1742-4658.2009.07105.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Triticum aestivum xylanase inhibitor (TAXI)-type inhibitors are active against microbial xylanases from glycoside hydrolase family 11, but the inhibition strength and the specificity towards different xylanases differ between TAXI isoforms. Mutational and biochemical analyses of TAXI-I, TAXI-IIA and Bacillus subtilis xylanase A showed that inhibition strength and specificity depend on the identity of only a few key residues of inhibitor and xylanase [Fierens K et al. (2005) FEBS J 272, 5872-5882; Raedschelders G et al. (2005) Biochem Biophys Res Commun335, 512-522; Sorensen JF & Sibbesen O (2006) Protein Eng Des Sel 19, 205-210; Bourgois TM et al. (2007) J Biotechnol 130, 95-105]. Crystallographic analysis of the structures of TAXI-IA and TAXI-IIA in complex with glycoside hydrolase family 11 B. subtilis xylanase A now provides a substantial explanation for these observations and a detailed insight into the structural determinants for inhibition strength and specificity. Structures of the xylanaseinhibitor complexes show that inhibition is established by loop interactions with active-site residues and substrate-mimicking contacts in the binding subsites. The interaction of residues Leu292 of TAXI-IA and Pro294 of TAXI-IIA with the -2 glycon subsite of the xylanase is shown to be critical for both inhibition strength and specificity. Also, detailed analysis of the interaction interfaces of the complexes illustrates that the inhibition strength of TAXI is related to the presence of an aspartate or asparagine residue adjacent to the acid/base catalyst of the xylanase, and therefore to the pH optimum of the xylanase. The lower the pH optimum of the xylanase, the stronger will be the interaction between enzyme and inhibitor, and the stronger the resulting inhibition.
Collapse
Affiliation(s)
- Annick Pollet
- Laboratory of Food Chemistry and Biochemistry, Katholieke Universiteit Leuven, Belgium
| | | | | | | | | | | | | |
Collapse
|