1
|
Banerjee S, Minshall N, Webb H, Carrington M. How are Trypanosoma brucei receptors protected from host antibody-mediated attack? Bioessays 2024; 46:e2400053. [PMID: 38713161 DOI: 10.1002/bies.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Trypanosoma brucei is the causal agent of African Trypanosomiasis in humans and other animals. It maintains a long-term infection through an antigenic variation based population survival strategy. To proliferate in a mammal, T. brucei acquires iron and haem through the receptor mediated uptake of host transferrin and haptoglobin-hemoglobin respectively. The receptors are exposed to host antibodies but this does not lead to clearance of the infection. Here we discuss how the trypanosome avoids this fate in the context of recent findings on the structure and cell biology of the receptors.
Collapse
Affiliation(s)
- Sourav Banerjee
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Helena Webb
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark Carrington
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Duncan SM, Carbajo CG, Nagar R, Zhong Q, Breen C, Ferguson MAJ, Tiengwe C. Generation of a bloodstream form Trypanosoma brucei double glycosyltransferase null mutant competent in receptor-mediated endocytosis of transferrin. PLoS Pathog 2024; 20:e1012333. [PMID: 38935804 PMCID: PMC11236118 DOI: 10.1371/journal.ppat.1012333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/10/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
The bloodstream form of Trypanosoma brucei expresses large poly-N-acetyllactosamine (pNAL) chains on complex N-glycans of a subset of glycoproteins. It has been hypothesised that pNAL may be required for receptor-mediated endocytosis. African trypanosomes contain a unique family of glycosyltransferases, the GT67 family. Two of these, TbGT10 and TbGT8, have been shown to be involved in pNAL biosynthesis in bloodstream form Trypanosoma brucei, raising the possibility that deleting both enzymes simultaneously might abolish pNAL biosynthesis and provide clues to pNAL function and/or essentiality. In this paper, we describe the creation of a TbGT10 null mutant containing a single TbGT8 allele that can be excised upon the addition of rapamycin and, from that, a TbGT10 and TbGT8 double null mutant. These mutants were analysed by lectin blotting, glycopeptide methylation linkage analysis and flow cytometry. The data show that the mutants are defective, but not abrogated, in pNAL synthesis, suggesting that other GT67 family members can compensate to some degree for loss of TbGT10 and TbGT8. Despite there being residual pNAL synthesis in these mutants, certain glycoproteins appear to be particularly affected. These include the lysosomal CBP1B serine carboxypeptidase, cell surface ESAG2 and the ESAG6 subunit of the essential parasite transferrin receptor (TfR). The pNAL deficient TfR in the mutants continued to function normally with respect to protein stability, transferrin binding, receptor mediated endocytosis of transferrin and subcellular localisation. Further the pNAL deficient mutants were as viable as wild type parasites in vitro and in in vivo mouse infection experiments. Although we were able to reproduce the inhibition of transferrin uptake with high concentrations of pNAL structural analogues (N-acetylchito-oligosaccharides), this effect disappeared at lower concentrations that still inhibited tomato lectin uptake, i.e., at concentrations able to outcompete lectin-pNAL binding. Based on these findings, we recommend revision of the pNAL-dependent receptor mediated endocytosis hypothesis.
Collapse
Affiliation(s)
- Samuel M. Duncan
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Carla Gilabert Carbajo
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Rupa Nagar
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Qi Zhong
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Conor Breen
- Regeneron Biotech, Raheen Business Park, Limerick, Ireland
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Calvin Tiengwe
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
3
|
Sülzen H, Volkov AN, Geens R, Zahedifard F, Stijlemans B, Zoltner M, Magez S, Sterckx YGJ, Zoll S. Beyond the VSG layer: Exploring the role of intrinsic disorder in the invariant surface glycoproteins of African trypanosomes. PLoS Pathog 2024; 20:e1012186. [PMID: 38648216 PMCID: PMC11065263 DOI: 10.1371/journal.ppat.1012186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/02/2024] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
In the bloodstream of mammalian hosts, African trypanosomes face the challenge of protecting their invariant surface receptors from immune detection. This crucial role is fulfilled by a dense, glycosylated protein layer composed of variant surface glycoproteins (VSGs), which undergo antigenic variation and provide a physical barrier that shields the underlying invariant surface glycoproteins (ISGs). The protective shield's limited permeability comes at the cost of restricted access to the extracellular host environment, raising questions regarding the specific function of the ISG repertoire. In this study, we employ an integrative structural biology approach to show that intrinsically disordered membrane-proximal regions are a common feature of members of the ISG super-family, conferring the ability to switch between compact and elongated conformers. While the folded, membrane-distal ectodomain is buried within the VSG layer for compact conformers, their elongated counterparts would enable the extension beyond it. This dynamic behavior enables ISGs to maintain a low immunogenic footprint while still allowing them to engage with the host environment when necessary. Our findings add further evidence to a dynamic molecular organization of trypanosome surface antigens wherein intrinsic disorder underpins the characteristics of a highly flexible ISG proteome to circumvent the constraints imposed by the VSG coat.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Rob Geens
- VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Brussels, Belgium
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Center of Excellence, Department of Pharmaceutical Sciences, Universiteit of Antwerp, Wilrijk, Belgium
| | - Farnaz Zahedifard
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Benoit Stijlemans
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Martin Zoltner
- Department of Parasitology, Faculty of Science, Charles University in Prague, Biocev, Vestec, Czech Republic
| | - Stefan Magez
- Brussels Center for Immunology (BCIM), Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Gent, Belgium
- Laboratory for Biomedical Research, Department of Molecular Biotechnology, Environment Technology and Food Technology, Ghent University Global Campus, Incheon, South Korea
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB) and the Infla-Med Center of Excellence, Department of Pharmaceutical Sciences, Universiteit of Antwerp, Wilrijk, Belgium
| | - Sebastian Zoll
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
4
|
Yamada K, Zhang N, Yaqub FK, Zoltner M, Field MC. TUSK: a ubiquitin hydrolase complex modulating surface protein abundance in trypanosomes. FRONTIERS IN PARASITOLOGY 2023; 2:1118284. [PMID: 39816833 PMCID: PMC11732084 DOI: 10.3389/fpara.2023.1118284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/29/2023] [Indexed: 01/18/2025]
Abstract
Control of protein levels is vital to cellular homeostasis, for maintaining a steady state, to coordinate changes during differentiation and other roles. In African trypanosomes surface proteins contribute to immune evasion, drug sensitivity and environmental sensing. The trypanosome surface is dominated by the GPI-anchored variant surface glycoprotein, but additional GPI-anchored and trans-membrane domain proteins are present with known roles as nutrient receptors and signal transducers. The evolutionarily conserved deubiquitinase orthologs of Usp7 and Vdu1 in trypanosomes modulate abundance of many surface proteins, including the invariant surface glycoproteins, which have roles in immune evasion and drug sensitivity. Here we identify multiple trypanosome Skp1 paralogs and specifically a divergent paralog SkpZ. Affinity isolation and LCMSMS indicates that SkpZ forms a heterotrimeric complex with TbUsp7 and TbTpr86, a tetratricopeptide-repeat protein. Silencing SkpZ decreases TbUsp7 and TbTpr86 abundance, confirming a direct association. Further, SkpZ knockdown decreases the abundance of multiple trans-membrane domain (TMD) proteins but increases GPI-anchored surface protein levels. Hence, a heterotrimeric complex of TbTpr86, TbUsp7 and SkpZ (TUSK) regulates expression levels of a significant cohort of trypanosome surface proteins mediating coordination between TMD and GPI-anchored protein expression levels.
Collapse
Affiliation(s)
- Kayo Yamada
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Farzana K. Yaqub
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Department of Parasitology, BIOCEV, Charles University, Vestec, Czechia
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czechia
| |
Collapse
|
5
|
Borges AR, Link F, Engstler M, Jones NG. The Glycosylphosphatidylinositol Anchor: A Linchpin for Cell Surface Versatility of Trypanosomatids. Front Cell Dev Biol 2021; 9:720536. [PMID: 34790656 PMCID: PMC8591177 DOI: 10.3389/fcell.2021.720536] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/06/2021] [Indexed: 11/20/2022] Open
Abstract
The use of glycosylphosphatidylinositol (GPI) to anchor proteins to the cell surface is widespread among eukaryotes. The GPI-anchor is covalently attached to the C-terminus of a protein and mediates the protein’s attachment to the outer leaflet of the lipid bilayer. GPI-anchored proteins have a wide range of functions, including acting as receptors, transporters, and adhesion molecules. In unicellular eukaryotic parasites, abundantly expressed GPI-anchored proteins are major virulence factors, which support infection and survival within distinct host environments. While, for example, the variant surface glycoprotein (VSG) is the major component of the cell surface of the bloodstream form of African trypanosomes, procyclin is the most abundant protein of the procyclic form which is found in the invertebrate host, the tsetse fly vector. Trypanosoma cruzi, on the other hand, expresses a variety of GPI-anchored molecules on their cell surface, such as mucins, that interact with their hosts. The latter is also true for Leishmania, which use GPI anchors to display, amongst others, lipophosphoglycans on their surface. Clearly, GPI-anchoring is a common feature in trypanosomatids and the fact that it has been maintained throughout eukaryote evolution indicates its adaptive value. Here, we explore and discuss GPI anchors as universal evolutionary building blocks that support the great variety of surface molecules of trypanosomatids.
Collapse
Affiliation(s)
- Alyssa R Borges
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Fabian Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
6
|
Gilabert Carbajo C, Cornell LJ, Madbouly Y, Lai Z, Yates PA, Tinti M, Tiengwe C. Novel aspects of iron homeostasis in pathogenic bloodstream form Trypanosoma brucei. PLoS Pathog 2021; 17:e1009696. [PMID: 34161395 PMCID: PMC8259959 DOI: 10.1371/journal.ppat.1009696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/06/2021] [Accepted: 06/04/2021] [Indexed: 01/09/2023] Open
Abstract
Iron is an essential regulatory signal for virulence factors in many pathogens. Mammals and bloodstream form (BSF) Trypanosoma brucei obtain iron by receptor-mediated endocytosis of transferrin bound to receptors (TfR) but the mechanisms by which T. brucei subsequently handles iron remains enigmatic. Here, we analyse the transcriptome of T. brucei cultured in iron-rich and iron-poor conditions. We show that adaptation to iron-deprivation induces upregulation of TfR, a cohort of parasite-specific genes (ESAG3, PAGS), genes involved in glucose uptake and glycolysis (THT1 and hexokinase), endocytosis (Phosphatidic Acid Phosphatase, PAP2), and most notably a divergent RNA binding protein RBP5, indicative of a non-canonical mechanism for regulating intracellular iron levels. We show that cells depleted of TfR by RNA silencing import free iron as a compensatory survival strategy. The TfR and RBP5 iron response are reversible by genetic complementation, the response kinetics are similar, but the regulatory mechanisms are distinct. Increased TfR protein is due to increased mRNA. Increased RBP5 expression, however, occurs by a post-transcriptional feedback mechanism whereby RBP5 interacts with its own, and with PAP2 mRNAs. Further observations suggest that increased RBP5 expression in iron-deprived cells has a maximum threshold as ectopic overexpression above this threshold disrupts normal cell cycle progression resulting in an accumulation of anucleate cells and cells in G2/M phase. This phenotype is not observed with overexpression of RPB5 containing a point mutation (F61A) in its single RNA Recognition Motif. Our experiments shed new light on how T. brucei BSFs reorganise their transcriptome to deal with iron stress revealing the first iron responsive RNA binding protein that is co-regulated with TfR, is important for cell viability and iron homeostasis; two essential processes for successful proliferation.
Collapse
Affiliation(s)
- Carla Gilabert Carbajo
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Lucy J. Cornell
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Youssef Madbouly
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Zhihao Lai
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| | - Phillip A. Yates
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, Oregon, United States of America
| | - Michele Tinti
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Calvin Tiengwe
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, United Kingdom
| |
Collapse
|
7
|
Koeller CM, Tiengwe C, Schwartz KJ, Bangs JD. Steric constraints control processing of glycosylphosphatidylinositol anchors in Trypanosoma brucei. J Biol Chem 2020; 295:2227-2238. [PMID: 31932305 DOI: 10.1074/jbc.ra119.010847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/26/2019] [Indexed: 11/06/2022] Open
Abstract
The transferrin receptor (TfR) of the bloodstream form (BSF) of Trypanosoma brucei is a heterodimer comprising glycosylphosphatidylinositol (GPI)-anchored expression site-associated gene 6 (ESAG6 or E6) and soluble ESAG7. Mature E6 has five N-glycans, consisting of three oligomannose and two unprocessed paucimannose structures. Its GPI anchor is modified by the addition of 4-6 α-galactose residues. TfR binds tomato lectin (TL), specific for N-acetyllactosamine (LacNAc) repeats, and previous studies have shown transport-dependent increases in E6 size consistent with post-glycan processing in the endoplasmic reticulum. Using pulse-chase radiolabeling, peptide-N-glycosidase F treatment, lectin pulldowns, and exoglycosidase treatment, we have now investigated TfR N-glycan and GPI processing. E6 increased ∼5 kDa during maturation, becoming reactive with both TL and Erythrina cristagalli lectin (ECL, terminal LacNAc), indicating synthesis of poly-LacNAc on paucimannose N-glycans. This processing was lost after exoglycosidase treatment and after RNAi-based silencing of TbSTT3A, the oligosaccharyltransferase that transfers paucimannose structures to nascent secretory polypeptides. These results contradict previous structural studies. Minor GPI processing was also observed, consistent with α-galactose addition. However, increasing the spacing between E6 protein and the GPI ω-site (aa 4-7) resulted in extensive post-translational processing of the GPI anchor to a form that was TL/ECL-reactive, suggesting the addition of LacNAc structures, confirmed by identical assays with BiPNHP, a non-N-glycosylated GPI-anchored reporter. We conclude that BSF trypanosomes can modify GPIs by generating structures reminiscent of those present in insect-stage trypanosomes and that steric constraints, not stage-specific expression of glycosyltransferases, regulate GPI processing.
Collapse
Affiliation(s)
- Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214
| | - Kevin J Schwartz
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53706
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York 14214.
| |
Collapse
|
8
|
Kariuki CK, Stijlemans B, Magez S. The Trypanosomal Transferrin Receptor of Trypanosoma Brucei-A Review. Trop Med Infect Dis 2019; 4:tropicalmed4040126. [PMID: 31581506 PMCID: PMC6958415 DOI: 10.3390/tropicalmed4040126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/19/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions.
Collapse
Affiliation(s)
- Christopher K. Kariuki
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Department of Tropical and Infectious Diseases, Institute of Primate Research (IPR), 00502 Nairobi, Kenya
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| | - Benoit Stijlemans
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, 9052 Gent, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Interactions (CMIM), Vrije Universiteit Brussels, Brussels, 1050 Ixelles, Belgium;
- Laboratory for Biomedical Research, Ghent University Global Campus, Yeonsu-Gu, Incheon 219220, Korea
- Correspondence: (C.K.K.); (S.M.); Tel.: +322-629-1975 (C.K.K.); +82-32626-4207 (S.M.)
| |
Collapse
|
9
|
Amisigo CM, Antwi CA, Adjimani JP, Gwira TM. In vitro anti-trypanosomal effects of selected phenolic acids on Trypanosoma brucei. PLoS One 2019; 14:e0216078. [PMID: 31048849 PMCID: PMC6497272 DOI: 10.1371/journal.pone.0216078] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/09/2019] [Indexed: 01/04/2023] Open
Abstract
African trypanosomiasis remains a lethal disease to both humans and livestock. The disease persists due to limited drug availability, toxicity and drug resistance, hence the need for a better understanding of the parasite's biology and provision of alternative forms of therapy. In this study, the in vitro effects of phenolic acids were assessed for their trypanocidal activities against Trypanosoma brucei brucei. The effect of the phenolic acids on Trypanosoma brucei brucei was determined by the alamarBlue assay. The cell cycle effects were determined by flow cytometry and parasite morphological analysis was done by microscopy. Effect on cell proliferation was determined by growth kinetic analysis. Reverse Transcriptase quantitative Polymerase Chain Reaction was used to determine expression of iron dependent enzymes and iron distribution determined by atomic absorption spectroscopy. Gallic acid gave an IC50 of 14.2±1.5 μM. Deferoxamine, gallic acid and diminazene aceturate showed a dose dependent effect on the cell viability and the mitochondrion membrane integrity. Gallic acid, deferoxamine and diminazene aceturate caused loss of kinetoplast in 22%, 26% and 82% of trypanosomes respectively and less than 10% increase in the number of trypanosomes in S phase was observed. Gallic acid caused a 0.6 fold decrease, 50 fold increase and 7 fold increase in the expression levels of the transferrin receptor, ribonucleotide reductase and cyclin 2 genes respectively while treatment with deferoxamine and diminazene aceturate also showed differential expressions of the transferrin receptor, ribonucleotide reductase and cyclin 2 genes. The data suggests that gallic acid possibly exerts its effect on T. brucei via iron chelation leading to structural and morphological changes and arrest of the cell cycle. These together provide information on the cell biology of the parasite under iron starved conditions and provide leads into alternative therapeutic approaches in the treatment of African trypanosomiasis.
Collapse
Affiliation(s)
- Cynthia Mmalebna Amisigo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Christine Achiaa Antwi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jonathan Partt Adjimani
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
10
|
Antwi CA, Amisigo CM, Adjimani JP, Gwira TM. In vitro activity and mode of action of phenolic compounds on Leishmania donovani. PLoS Negl Trop Dis 2019; 13:e0007206. [PMID: 30802252 PMCID: PMC6405172 DOI: 10.1371/journal.pntd.0007206] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/07/2019] [Accepted: 01/30/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Leishmaniasis is a disease caused by the protozoan parasite, Leishmania. The disease remains a global threat to public health requiring effective chemotherapy for control and treatment. In this study, the effect of some selected phenolic compounds on Leishmania donovani was investigated. The compounds were screened for their anti-leishmanial activities against promastigote and intracellular amastigote forms of Leishmania donovani. METHODOLOGY/PRINCIPAL FINDINGS The dose dependent effect and cytotoxicity of the compounds were determined by the MTT assay. Flow cytometry was used to determine the effect of the compounds on the cell cycle. Parasite morphological analysis was done by microscopy and growth kinetic studies were conducted by culturing cells and counting at 24 hours intervals over 120 hours. The cellular levels of iron in promastigotes treated with compounds was determined by atomic absorption spectroscopy and the effect of compounds on the expression of iron dependent enzymes was investigated using RT-qPCR. The IC50 of the compounds ranged from 16.34 μM to 198 μM compared to amphotericin B and deferoxamine controls. Rosmarinic acid and apigenin were the most effective against the promastigote and the intracellular amastigote forms. Selectivity indexes (SI) of rosmarinic acid and apigenin were 15.03 and 10.45 respectively for promastigotes while the SI of 12.70 and 5.21 respectively was obtained for intracellular amastigotes. Morphologically, 70% of rosmarinic acid treated promastigotes showed rounded morphology similar to the deferoxamine control. About 30% of cells treated with apigenin showed distorted cell membrane. Rosmarinic acid and apigenin induced cell arrest in the G0/G1 phase in promastigotes. Elevated intracellular iron levels were observed in promastigotes when parasites were treated with rosmarinic acid and this correlated with the level of expression of iron dependent genes. CONCLUSIONS/SIGNIFICANCE The data suggests that rosmarinic acid exerts its anti-leishmanial effect via iron chelation resulting in variable morphological changes and cell cycle arrest.
Collapse
Affiliation(s)
- Christine Achiaa Antwi
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Cynthia Mmalebna Amisigo
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Jonathan Partt Adjimani
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| | - Theresa Manful Gwira
- West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
- Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
11
|
Benz C, Lo W, Fathallah N, Connor-Guscott A, Benns HJ, Urbaniak MD. Dynamic regulation of the Trypanosoma brucei transferrin receptor in response to iron starvation is mediated via the 3'UTR. PLoS One 2018; 13:e0206332. [PMID: 30596656 PMCID: PMC6312234 DOI: 10.1371/journal.pone.0206332] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/14/2018] [Indexed: 12/04/2022] Open
Abstract
The bloodstream form of the parasite Trypanosoma brucei obtains iron from its mammalian host by receptor-mediated endocytosis of host transferrin through its own unique transferrin receptor (TbTfR). Expression of TbTfR rapidly increases upon iron starvation by post-transcriptional regulation through a currently undefined mechanism that is distinct from the mammalian iron response system. We have created reporter cell lines by fusing the TbTfR 3’UTR or a control Aldolase 3’UTR to reporter genes encoding GFP or firefly Luciferase, and inserted the fusions into a bloodstream form cell line at a tagged ribosomal RNA locus. Fusion of the TbTfR 3’UTR is sufficient to significantly repress the expression of the reporter proteins under normal growth conditions. Under iron starvation conditions we observed upregulation of the mRNA and protein level of the TbTfR 3’UTR fusions only, with a magnitude and timing consistent with that reported for upregulation of the TbTfR. We conclude that the dynamic regulation of the T. brucei transferrin receptor in response to iron starvation is mediated via its 3’UTR, and that the effect is independent of genomic location.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Winston Lo
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Nadin Fathallah
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Ashley Connor-Guscott
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Henry J. Benns
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Michael D. Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Tiengwe C, Koeller CM, Bangs JD. Endoplasmic reticulum-associated degradation and disposal of misfolded GPI-anchored proteins in Trypanosoma brucei. Mol Biol Cell 2018; 29:2397-2409. [PMID: 30091673 PMCID: PMC6233060 DOI: 10.1091/mbc.e18-06-0380] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Misfolded secretory proteins are retained by endoplasmic reticulum quality control (ERQC) and degraded in the proteasome by ER-associated degradation (ERAD). However, in yeast and mammals, misfolded glycosylphosphatidylinositol (GPI)-anchored proteins are preferentially degraded in the vacuole/lysosome. We investigate this process in the divergent eukaryotic pathogen Trypanosoma brucei using a misfolded GPI-anchored subunit (HA:E6) of the trypanosome transferrin receptor. HA:E6 is N-glycosylated and GPI-anchored and accumulates in the ER as aggregates. Treatment with MG132, a proteasome inhibitor, generates a smaller protected polypeptide (HA:E6*), consistent with turnover in the proteasome. HA:E6* partitions between membrane and cytosol fractions, and both pools are proteinase K-sensitive, indicating cytosolic disposition of membrane-associated HA:E6*. HA:E6* is de-N-glycosylated and has a full GPI-glycan structure from which dimyristoylglycerol has been removed, indicating that complete GPI removal is not a prerequisite for proteasomal degradation. However, HA:E6* is apparently not ubiquitin-modified. The trypanosome GPI anchor is a forward trafficking signal; thus the dynamic tension between ERQC and ER exit favors degradation by ERAD. These results differ markedly from the standard eukaryotic model systems and may indicate an evolutionary advantage related to pathogenesis.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - Carolina M Koeller
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| | - James D Bangs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14214
| |
Collapse
|
13
|
Quintana JF, Pino RCD, Yamada K, Zhang N. Adaptation and Therapeutic Exploitation of the Plasma Membrane of African Trypanosomes. Genes (Basel) 2018; 9:E368. [PMID: 30037058 PMCID: PMC6071061 DOI: 10.3390/genes9070368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 12/19/2022] Open
Abstract
African trypanosomes are highly divergent from their metazoan hosts, and as part of adaptation to a parasitic life style have developed a unique endomembrane system. The key virulence mechanism of many pathogens is successful immune evasion, to enable survival within a host, a feature that requires both genetic events and membrane transport mechanisms in African trypanosomes. Intracellular trafficking not only plays a role in immune evasion, but also in homeostasis of intracellular and extracellular compartments and interactions with the environment. Significantly, historical and recent work has unraveled some of the connections between these processes and highlighted how immune evasion mechanisms that are associated with adaptations to membrane trafficking may have, paradoxically, provided specific sensitivity to drugs. Here, we explore these advances in understanding the membrane composition of the trypanosome plasma membrane and organelles and provide a perspective for how transport could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Juan F Quintana
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | | | - Kayo Yamada
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| | - Ning Zhang
- School of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK.
| |
Collapse
|
14
|
Tiengwe C, Bush PJ, Bangs JD. Controlling transferrin receptor trafficking with GPI-valence in bloodstream stage African trypanosomes. PLoS Pathog 2017; 13:e1006366. [PMID: 28459879 PMCID: PMC5426795 DOI: 10.1371/journal.ppat.1006366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 05/11/2017] [Accepted: 04/19/2017] [Indexed: 01/10/2023] Open
Abstract
Bloodstream-form African trypanosomes encode two structurally related glycosylphosphatidylinositol (GPI)-anchored proteins that are critical virulence factors, variant surface glycoprotein (VSG) for antigenic variation and transferrin receptor (TfR) for iron acquisition. Both are transcribed from the active telomeric expression site. VSG is a GPI2 homodimer; TfR is a GPI1 heterodimer of GPI-anchored ESAG6 and ESAG7. GPI-valence correlates with secretory progression and fate in bloodstream trypanosomes: VSG (GPI2) is a surface protein; truncated VSG (GPI0) is degraded in the lysosome; and native TfR (GPI1) localizes in the flagellar pocket. Tf:Fe starvation results in up-regulation and redistribution of TfR to the plasma membrane suggesting a saturable mechanism for flagellar pocket retention. However, because such surface TfR is non-functional for ligand binding we proposed that it represents GPI2 ESAG6 homodimers that are unable to bind transferrin-thereby mimicking native VSG. We now exploit a novel RNAi system for simultaneous lethal silencing of all native TfR subunits and exclusive in-situ expression of RNAi-resistant TfR variants with valences of GPI0-2. Our results conform to the valence model: GPI0 ESAG7 homodimers traffick to the lysosome and GPI2 ESAG6 homodimers to the cell surface. However, when expressed alone ESAG6 is up-regulated ~7-fold, leaving the issue of saturable retention in the flagellar pocket in question. Therefore, we created an RNAi-resistant GPI2 TfR heterodimer by fusing the C-terminal domain of ESAG6 to ESAG7. Co-expression with ESAG6 generates a functional heterodimeric GPI2 TfR that restores Tf uptake and cell viability, and localizes to the cell surface, without overexpression. These results resolve the longstanding issue of TfR trafficking under over-expression and confirm GPI valence as a critical determinant of intracellular sorting in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, United States of America
| | - Peter J. Bush
- South Campus Instrument Center, School of Dental Medicine, University at Buffalo (SUNY), Buffalo, New York, United States of America
| | - James D. Bangs
- Department of Microbiology & Immunology, School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, New York, United States of America
| |
Collapse
|
15
|
Tiengwe C, Muratore KA, Bangs JD. Surface proteins, ERAD and antigenic variation in Trypanosoma brucei. Cell Microbiol 2016; 18:1673-1688. [PMID: 27110662 DOI: 10.1111/cmi.12605] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/20/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
Variant surface glycoprotein (VSG) is central to antigenic variation in African trypanosomes. Although much prior work documents that VSG is efficiently synthesized and exported to the cell surface, it was recently claimed that 2-3 fold more is synthesized than required, the excess being eliminated by ER-Associated Degradation (ERAD) (Field et al., ). We now reinvestigate VSG turnover and find no evidence for rapid degradation, consistent with a model whereby VSG synthesis is precisely regulated to match requirements for a functional surface coat on each daughter cell. However, using a mutated version of the ESAG7 subunit of the transferrin receptor (E7:Ty) we confirm functional ERAD in trypanosomes. E7:Ty fails to assemble into transferrin receptors and accumulates in the ER, consistent with retention of misfolded protein, and its turnover is selectively rescued by the proteasomal inhibitor MG132. We also show that ER accumulation of E7:Ty does not induce an unfolded protein response. These data, along with the presence of ERAD orthologues in the Trypanosoma brucei genome, confirm ERAD in trypanosomes. We discuss scenarios in which ERAD could be critical to bloodstream parasites, and how these may have contributed to the evolution of antigenic variation in trypanosomes.
Collapse
Affiliation(s)
- Calvin Tiengwe
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA
| | - Katherine A Muratore
- Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis-St. Paul, MN, 55455, USA
| | - James D Bangs
- Department of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo (SUNY), Buffalo, NY, 14214, USA.
| |
Collapse
|
16
|
Borst P. Maxi-circles, glycosomes, gene transposition, expression sites, transsplicing, transferrin receptors and base J. Mol Biochem Parasitol 2016; 205:39-52. [DOI: 10.1016/j.molbiopara.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 01/05/2023]
|
17
|
Zoltner M, Leung KF, Alsford S, Horn D, Field MC. Modulation of the Surface Proteome through Multiple Ubiquitylation Pathways in African Trypanosomes. PLoS Pathog 2015; 11:e1005236. [PMID: 26492041 PMCID: PMC4619645 DOI: 10.1371/journal.ppat.1005236] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 09/28/2015] [Indexed: 12/29/2022] Open
Abstract
Recently we identified multiple suramin-sensitivity genes with a genome wide screen in Trypanosoma brucei that includes the invariant surface glycoprotein ISG75, the adaptin-1 (AP-1) complex and two deubiquitylating enzymes (DUBs) orthologous to ScUbp15/HsHAUSP1 and pVHL-interacting DUB1 (type I), designated TbUsp7 and TbVdu1, respectively. Here we have examined the roles of these genes in trafficking of ISG75, which appears key to suramin uptake. We found that, while AP-1 does not influence ISG75 abundance, knockdown of TbUsp7 or TbVdu1 leads to reduced ISG75 abundance. Silencing TbVdu1 also reduced ISG65 abundance. TbVdu1 is a component of an evolutionarily conserved ubiquitylation switch and responsible for rapid receptor modulation, suggesting similar regulation of ISGs in T. brucei. Unexpectedly, TbUsp7 knockdown also blocked endocytosis. To integrate these observations we analysed the impact of TbUsp7 and TbVdu1 knockdown on the global proteome using SILAC. For TbVdu1, ISG65 and ISG75 are the only significantly modulated proteins, but for TbUsp7 a cohort of integral membrane proteins, including the acid phosphatase MBAP1, that is required for endocytosis, and additional ISG-related proteins are down-regulated. Furthermore, we find increased expression of the ESAG6/7 transferrin receptor and ESAG5, likely resulting from decreased endocytic activity. Therefore, multiple ubiquitylation pathways, with a complex interplay with trafficking pathways, control surface proteome expression in trypanosomes. The mechanisms by which pathogens interact with their environment are of major importance, both for fulfilling the basic needs of the parasite and understanding immune evasion. For African trypanosomes, the surface is dominated by the variant surface glycoprotein (VSG), but recent data has demonstrated an important role for ubiquitylation in mediating turnover of invariant surface glycoproteins (ISGs) and maintaining ISG copy number independent of VSG. Further, ISG expression is required for suramin-sensitivity. Here we describe mechanisms mediating ISG turnover, uncovered using a screen for genes involved in sensitivity to suramin. These involve multiple aspects of the ubiquitylation machinery, and connect ISG turnover with additional surface proteins. Our data provide a first insight into the complexity of regulation of the ISG family, identifying further aspects to the control of a drug-sensitivity pathway in trypanosomes, and offering insights into metabolism of the parasite surface proteome.
Collapse
Affiliation(s)
- Martin Zoltner
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sam Alsford
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - David Horn
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
| | - Mark C. Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, United Kingdom
- * E-mail:
| |
Collapse
|
18
|
Iron Homeostasis and Trypanosoma brucei Associated Immunopathogenicity Development: A Battle/Quest for Iron. BIOMED RESEARCH INTERNATIONAL 2015; 2015:819389. [PMID: 26090446 PMCID: PMC4450282 DOI: 10.1155/2015/819389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/11/2015] [Accepted: 02/15/2015] [Indexed: 12/24/2022]
Abstract
African trypanosomosis is a chronic debilitating disease affecting the health and economic well-being of developing countries. The immune response during African trypanosome infection consisting of a strong proinflammatory M1-type activation of the myeloid phagocyte system (MYPS) results in iron deprivation for these extracellular parasites. Yet, the persistence of M1-type MYPS activation causes the development of anemia (anemia of chronic disease, ACD) as a most prominent pathological parameter in the mammalian host, due to enhanced erythrophagocytosis and retention of iron within the MYPS thereby depriving iron for erythropoiesis. In this review we give an overview of how parasites acquire iron from the host and how iron modulation of the host MYPS affects trypanosomosis-associated anemia development. Finally, we also discuss different strategies at the level of both the host and the parasite that can/might be used to modulate iron availability during African trypanosome infections.
Collapse
|
19
|
Lane-Serff H, MacGregor P, Lowe ED, Carrington M, Higgins MK. Structural basis for ligand and innate immunity factor uptake by the trypanosome haptoglobin-haemoglobin receptor. eLife 2014; 3:e05553. [PMID: 25497229 PMCID: PMC4383175 DOI: 10.7554/elife.05553] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
The haptoglobin-haemoglobin receptor (HpHbR) of African trypanosomes allows acquisition of haem and provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. In this study, we report the structure of Trypanosoma brucei HpHbR in complex with human haptoglobin-haemoglobin (HpHb), revealing an elongated ligand-binding site that extends along its membrane distal half. This contacts haptoglobin and the β-subunit of haemoglobin, showing how the receptor selectively binds HpHb over individual components. Lateral mobility of the glycosylphosphatidylinositol-anchored HpHbR, and a ∼50° kink in the receptor, allows two receptors to simultaneously bind one HpHb dimer. Indeed, trypanosomes take up dimeric HpHb at significantly lower concentrations than monomeric HpHb, due to increased ligand avidity that comes from bivalent binding. The structure therefore reveals the molecular basis for ligand and innate immunity factor uptake by trypanosomes and identifies adaptations that allow efficient ligand uptake in the context of the complex trypanosome cell surface.
Collapse
Affiliation(s)
- Harriet Lane-Serff
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| | - Paula MacGregor
- Department of
Biochemistry, University of Cambridge,
Cambridge, United Kingdom
| | - Edward D Lowe
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| | - Mark Carrington
- Department of
Biochemistry, University of Cambridge,
Cambridge, United Kingdom
| | - Matthew K Higgins
- Department of
Biochemistry, University of Oxford,
Oxford, United Kingdom
| |
Collapse
|
20
|
Cordon-Obras C, Cano J, González-Pacanowska D, Benito A, Navarro M, Bart JM. Trypanosoma brucei gambiense adaptation to different mammalian sera is associated with VSG expression site plasticity. PLoS One 2013; 8:e85072. [PMID: 24376866 PMCID: PMC3871602 DOI: 10.1371/journal.pone.0085072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/21/2013] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma brucei gambiense infection is widely considered an anthroponosis, although it has also been found in wild and domestic animals. Thus, fauna could act as reservoir, constraining the elimination of the parasite in hypo-endemic foci. To better understand the possible maintenance of T. b. gambiense in local fauna and investigate the molecular mechanisms underlying adaptation, we generated adapted cells lines (ACLs) by in vitro culture of the parasites in different mammalian sera. Using specific antibodies against the Variant Surface Glycoproteins (VSGs) we found that serum ACLs exhibited different VSG variants when maintained in pig, goat or human sera. Although newly detected VSGs were independent of the sera used, the consistent appearance of different VSGs suggested remodelling of the co-transcribed genes at the telomeric Expression Site (VSG-ES). Thus, Expression Site Associated Genes (ESAGs) sequences were analysed to investigate possible polymorphism selection. ESAGs 6 and 7 genotypes, encoding the transferrin receptor (TfR), expressed in different ACLs were characterised. In addition, we quantified the ESAG6/7 mRNA levels and analysed transferrin (Tf) uptake. Interestingly, the best growth occurred in pig and human serum ACLs, which consistently exhibited a predominant ESAG7 genotype and higher Tf uptake than those obtained in calf and goat sera. We also detected an apparent selection of specific ESAG3 genotypes in the pig and human serum ACLs, suggesting that other ESAGs could be involved in the host adaptation processes. Altogether, these results suggest a model whereby VSG-ES remodelling allows the parasite to express a specific set of ESAGs to provide selective advantages in different hosts. Finally, pig serum ACLs display phenotypic adaptation parameters closely related to human serum ACLs but distinct to parasites grown in calf and goat sera. These results suggest a better suitability of swine to maintain T. b. gambiense infection supporting previous epidemiological results.
Collapse
Affiliation(s)
- Carlos Cordon-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Jorge Cano
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Agustin Benito
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- * E-mail:
| | - Jean-Mathieu Bart
- Instituto de Parasitología y Biomedicina "López-Neyra", CSIC, Consejo Superior de Investigaciones Científicas, Granada, Spain
- Centro Nacional de Medicina Tropical, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Taylor MC, McLatchie AP, Kelly JM. Evidence that transport of iron from the lysosome to the cytosol in African trypanosomes is mediated by a mucolipin orthologue. Mol Microbiol 2013; 89:420-32. [PMID: 23750752 PMCID: PMC3828870 DOI: 10.1111/mmi.12285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2013] [Indexed: 11/28/2022]
Abstract
Bloodstream-form Trypanosoma brucei acquire iron by receptor-mediated endocytosis of host transferrin. However, the mechanism(s) by which iron is then transferred from the lysosome to the cytosol are unresolved. Here, we provide evidence for the involvement of a protein (TbMLP) orthologous to the mammalian endolysosomal cation channel Mucolipin 1. In T. brucei, we show that this protein is localized to the single parasite lysosome. TbMLP null mutants could only be generated in the presence of an expressed ectopic copy, suggesting that the protein is essential. RNAi-mediated ablation resulted in a growth defect in vitro and led to a sevenfold increase in susceptibility to the iron-chelators deferoxamine and salicylhydroxamic acid. Conditional null mutants remained viable when the ectopic copy was repressed, but were hypersensitive to deferoxamine and displayed a growth defect similar to that observed following RNAi. The conditional nulls also retained virulence in vivo in the absence of the doxycycline inducer. These data provide strong evidence that TbMLP has a role in import of iron into the cytosol of African trypanosomes. They also indicate that even when expression is greatly reduced, there is sufficient protein, or an alternative mechanism, to provide the parasite with an adequate supply of cytosolic iron.
Collapse
Affiliation(s)
- Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel St., London, WC1E 7HT, UK.
| | | | | |
Collapse
|
22
|
Ali M, Field MC. Cell density-dependent ectopic expression in bloodstream form Trypanosoma brucei. Exp Parasitol 2013; 134:249-55. [PMID: 23538029 PMCID: PMC3659828 DOI: 10.1016/j.exppara.2013.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 03/04/2013] [Accepted: 03/17/2013] [Indexed: 01/15/2023]
Abstract
Ectopic expression of either wild type or mutant proteins is a standard method in cell biology, and a vital part of the tool kit of molecular parasitology. During study of protein expression levels mediating intracellular trafficking, we became aware of highly variable expression between experiments. When investigated systematically it became apparent that ectopic expression of proteins from a ribosomal promoter diminished at high cell culture density in bloodstream form Trypanosoma brucei. This phenomenon was not restricted to expression of a specific protein or cell line or the vector backbone. While procyclic form cells did not exhibit detectable density-related expression changes, bloodstream form cells manifest significant reduction in expression at high density, confirmed by qRT PCR, Western blotting and fluorescence microscopy. Culturing in conditioned media unveiled a similar reduction in expression at lower cell densities. Taken together we concluded that this effect is likely related to the influence of a diffusible factor present in conditioned media and has implications for accurate quantification of ectopic expression using transgenic expression systems.
Collapse
MESH Headings
- Blotting, Western
- Culture Media, Conditioned
- DNA, Protozoan/isolation & purification
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Dyes
- Gene Expression Regulation
- Microscopy, Fluorescence
- Organisms, Genetically Modified
- Promoter Regions, Genetic
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA, Messenger/metabolism
- RNA, Protozoan/isolation & purification
- RNA, Ribosomal/genetics
- Trans-Activators/metabolism
- Trypanosoma brucei brucei/cytology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
- rab GTP-Binding Proteins/genetics
- rab GTP-Binding Proteins/metabolism
Collapse
Affiliation(s)
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
23
|
Oberholzer M, Langousis G, Nguyen HT, Saada EA, Shimogawa MM, Jonsson ZO, Nguyen SM, Wohlschlegel JA, Hill KL. Independent analysis of the flagellum surface and matrix proteomes provides insight into flagellum signaling in mammalian-infectious Trypanosoma brucei. Mol Cell Proteomics 2011; 10:M111.010538. [PMID: 21685506 DOI: 10.1074/mcp.m111.010538] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The flagellum of African trypanosomes is an essential and multifunctional organelle that functions in motility, cell morphogenesis, and host-parasite interaction. Previous studies of the trypanosome flagellum have been limited by the inability to purify flagella without first removing the flagellar membrane. This limitation is particularly relevant in the context of studying flagellum signaling, as signaling requires surface-exposed proteins in the flagellar membrane and soluble signaling proteins in the flagellar matrix. Here we employ a combination of genetic and mechanical approaches to purify intact flagella from the African trypanosome, Trypanosoma brucei, in its mammalian-infectious stage. We combined flagellum purification with affinity-purification of surface-exposed proteins to conduct independent proteomic analyses of the flagellum surface and matrix fractions. The proteins identified encompass a broad range of molecular functionalities, including many predicted to function in signaling. Immunofluorescence and RNA interference studies demonstrate flagellum localization and function for proteins identified and provide insight into mechanisms of flagellum attachment and motility. The flagellum surface proteome includes many T. brucei-specific proteins and is enriched for proteins up-regulated in the mammalian-infectious stage of the parasite life-cycle. The combined results indicate that the flagellum surface presents a diverse and dynamic host-parasite interface that is well-suited for host-parasite signaling.
Collapse
Affiliation(s)
- Michael Oberholzer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Iron is almost ubiquitous in living organisms due to the utility of its redox chemistry. It is also dangerous as it can catalyse the formation of reactive free radicals - a classical double-edged sword. In this review, we examine the uptake and usage of iron by trypanosomatids and discuss how modulation of host iron metabolism plays an important role in the protective response. Trypanosomatids require iron for crucial processes including DNA replication, antioxidant defence, mitochondrial respiration, synthesis of the modified base J and, in African trypanosomes, the alternative oxidase. The source of iron varies between species. Bloodstream-form African trypanosomes acquire iron from their host by uptake of transferrin, and Leishmania amazonensis expresses a ZIP family cation transporter in the plasma membrane. In other trypanosomatids, iron uptake has been poorly characterized. Iron-withholding responses by the host can be a major determinant of disease outcome. Their role in trypanosomatid infections is becoming apparent. For example, the cytosolic sequestration properties of NRAMP1, confer resistance against leishmaniasis. Conversely, cytoplasmic sequestration of iron may be favourable rather than detrimental to Trypanosoma cruzi. The central role of iron in both parasite metabolism and the host response is attracting interest as a possible point of therapeutic intervention.
Collapse
|
25
|
|
26
|
de Souza W, Sant'Anna C, Cunha-e-Silva NL. Electron microscopy and cytochemistry analysis of the endocytic pathway of pathogenic protozoa. ACTA ACUST UNITED AC 2009; 44:67-124. [PMID: 19410686 DOI: 10.1016/j.proghi.2009.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Endocytosis is essential for eukaryotic cell survival and has been well characterized in mammal and yeast cells. Among protozoa it is also important for evading from host immune defenses and to support intense proliferation characteristic of some life cycle stages. Here we focused on the contribution of morphological and cytochemical studies to the understanding of endocytosis in Trichomonas, Giardia, Entamoeba, Plasmodium, and trypanosomatids, mainly Trypanosoma cruzi, and also Trypanosoma brucei and Leishmania.
Collapse
Affiliation(s)
- Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil.
| | | | | |
Collapse
|
27
|
Field MC, Lumb JH, Adung'a VO, Jones NG, Engstler M. Chapter 1 Macromolecular Trafficking and Immune Evasion in African Trypanosomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:1-67. [DOI: 10.1016/s1937-6448(09)78001-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
O'Brien TC, Mackey ZB, Fetter RD, Choe Y, O'Donoghue AJ, Zhou M, Craik CS, Caffrey CR, McKerrow JH. A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 2008; 283:28934-43. [PMID: 18701454 PMCID: PMC2570886 DOI: 10.1074/jbc.m805824200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Indexed: 01/19/2023] Open
Abstract
Cysteine proteases of the Clan CA (papain) family are the predominant protease group in primitive invertebrates. Cysteine protease inhibitors arrest infection by the protozoan parasite, Trypanosoma brucei. RNA interference studies implicated a cathepsin B-like protease, tbcatB, as a key inhibitor target. Utilizing parasites in which one of the two alleles of tbcatb has been deleted, the key role of this protease in degradation of endocytosed host proteins is delineated. TbcatB deficiency results in a decreased growth rate and dysmorphism of the flagellar pocket and the subjacent endocytic compartment. Western blot and microscopic analysis indicate that deficiency in tbcatB results in accumulation of both host and parasite proteins, including the lysosomal marker p67. A critical function for parasitism is the degradation of host transferrin, which is necessary for iron acquisition. Substrate specificity analysis of recombinant tbcatB revealed the optimal peptide cleavage sequences for the enzyme and these were confirmed experimentally using FRET-based substrates. Degradation of transferrin was validated by SDS-PAGE and the specific cleavage sites identified by N-terminal sequencing. Because even a modest deficiency in tbcatB is lethal for the parasite, tbcatB is a logical target for the development of new anti-trypanosomal chemotherapy.
Collapse
Affiliation(s)
- Theresa C O'Brien
- Department of Pathology and Sandler Center for Basic Research in Parasitic Diseases, University of California, San Francisco, California 94158-2550, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Biogenesis of the trypanosome endo-exocytotic organelle is cytoskeleton mediated. PLoS Biol 2008; 6:e105. [PMID: 18462016 PMCID: PMC2365980 DOI: 10.1371/journal.pbio.0060105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 03/17/2008] [Indexed: 12/31/2022] Open
Abstract
Trypanosoma brucei is a protozoan parasite that is used as a model organism to study such biological phenomena as gene expression, protein trafficking, and cytoskeletal biogenesis. In T. brucei, endocytosis and exocytosis occur exclusively through a sequestered organelle called the flagellar pocket (FP), an invagination of the pellicular membrane. The pocket is the sole site for specific receptors thus maintaining them inaccessible to components of the innate immune system of the mammalian host. The FP is also responsible for the sorting of protective parasite glycoproteins targeted to, or recycling from, the pellicular membrane, and for the removal of host antibodies from the cell surface. Here, we describe the first characterisation of a flagellar pocket cytoskeletal protein, BILBO1. BILBO1 functions to form a cytoskeleton framework upon which the FP is made and which is also required and essential for FP biogenesis and cell survival. Remarkably, RNA interference (RNAi)-mediated ablation of BILBO1 in insect procyclic-form parasites prevents FP biogenesis and induces vesicle accumulation, Golgi swelling, the aberrant repositioning of the new flagellum, and cell death. Cultured bloodstream-form parasites are also nonviable when subjected to BILBO1 RNAi. These results provide the first molecular evidence for cytoskeletally mediated FP biogenesis. Trypanosomes are ubiquitous unicellular parasites that infect humans, animals, insects, and plants. African, Asian, and some South American trypanosomes have evolved the amazing ability to change their surface coat proteins, an essential strategy for their survival. The surface coat proteins are recycled and targeted to the surface of the parasite via an endocytic and exocytotic organelle called the flagellar pocket, which is sequestered in the trypanosome cell's cytoplasm. The flagellar pocket is also used to remove host-derived antibodies that are bound to the surface of the parasite, making this organelle critical for the parasite's evasion of the host immune system. We describe a novel protein, “BILBO1,” which was identified from the insect-form parasite of the African trypanosome Trypanosoma brucei. We show that BILBO1 is part of a ring or horseshoe-like cytoskeletal structure that is located in a region of the flagellar pocket called the collar. When BILBO1 transcripts were knocked down with inducible RNA interference, trypanosome cells became arrested in a post-mitotic cell-cycle stage. Induced cells lost the normal flagellum-to-cell-body attachment, were unable to regulate endocytosis and exocytosis, and most importantly, were unable to construct a new flagellar pocket. These results provide molecular evidence for the idea that flagellar pocket biogenesis is cytoskeletally mediated. RNAi of the parasite protein BILBO1 prevents the biogenesis of the endocytic and exocytotic organelle in Trypanosoma brucei, kills the parasite, and reveals novel insights into how this pathogen organizes and uses one of its distinctive organelles.
Collapse
|
30
|
Koumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics 2008; 9:298. [PMID: 18573209 PMCID: PMC2443814 DOI: 10.1186/1471-2164-9-298] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 06/23/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosomatids utilise polycistronic transcription for production of the vast majority of protein-coding mRNAs, which operates in the absence of gene-specific promoters. Resolution of nascent transcripts by polyadenylation and trans-splicing, together with specific rates of mRNA turnover, serve to generate steady state transcript levels that can differ in abundance across several orders of magnitude and can be developmentally regulated. We used a targeted oligonucleotide microarray, representing the strongly developmentally-regulated T. brucei membrane trafficking system and approximately 10% of the Trypanosoma brucei genome, to investigate both between-stage, or differentiation-dependent, transcriptome changes and within-stage flexibility in response to various challenges. RESULTS 6% of the gene cohort are developmentally regulated, including several small GTPases, SNAREs, vesicle coat factors and protein kinases both consistent with and extending previous data. Therefore substantial differentiation-dependent remodeling of the trypanosome transcriptome is associated with membrane transport. Both the microarray and qRT-PCR were then used to analyse transcriptome changes resulting from specific gene over-expression, knockdown, altered culture conditions and chemical stress. Firstly, manipulation of Rab5 expression results in co-ordinate changes to clathrin protein expression levels and endocytotic activity, but no detectable changes to steady-state mRNA levels, which indicates that the effect is mediated post-transcriptionally. Secondly, knockdown of clathrin or the variant surface glycoprotein failed to perturb transcription. Thirdly, exposure to dithiothreitol or tunicamycin revealed no evidence for a classical unfolded protein response, mediated in higher eukaryotes by transcriptional changes. Finally, altered serum levels invoked little transcriptome alteration beyond changes to expression of ESAG6/7, the transferrin receptor. CONCLUSION While trypanosomes regulate mRNA abundance to effect the major changes accompanying differentiation, a given differentiated state appears transcriptionally inflexible. The implications of the absence of a transcriptome response in trypanosomes for both virulence and models of life cycle progression are discussed.
Collapse
Affiliation(s)
- V Lila Koumandou
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | | | | | | |
Collapse
|
31
|
Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 2008; 16:261-8. [PMID: 18467097 DOI: 10.1016/j.tim.2008.03.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/06/2008] [Accepted: 03/25/2008] [Indexed: 12/24/2022]
Abstract
The effective acquisition of iron is a pre-requisite for survival of all organisms, especially parasites that have a high iron requirement. In mammals, iron homeostasis is meticulously regulated; extracellular free iron is essentially unavailable and host iron availability has a crucial role in the host-pathogen relationship. Therefore, pathogens use specialized and effective mechanisms to acquire iron. In this review, we summarize the iron-uptake systems in eukaryotic unicellular organisms with particular focus on the pathogenic species: Candida albicans, Tritrichomonas foetus, Trypanosoma brucei and Leishmania spp. We describe the diversity of their iron-uptake mechanisms and highlight the importance of the process for virulence.
Collapse
|
32
|
Bridges DJ, Pitt AR, Hanrahan O, Brennan K, Voorheis HP, Herzyk P, de Koning HP, Burchmore RJS. Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 2008; 8:83-99. [PMID: 18095354 DOI: 10.1002/pmic.200700607] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteome analysis by conventional approaches is biased against hydrophobic membrane proteins, many of which are also of low abundance. We have isolated plasma membrane sheets from bloodstream forms of Trypanosoma brucei by subcellular fractionation, and then applied a battery of complementary protein separation and identification techniques to identify a large number of proteins in this fraction. The results of these analyses have been combined to generate a subproteome for the pellicular plasma membrane of bloodstream forms of T. brucei as well as a separate subproteome for the pellicular cytoskeleton. In parallel, we have used in silico approaches to predict the relative abundance of proteins potentially expressed by bloodstream form trypanosomes, and to identify likely polytopic membrane proteins, providing quality control for the experimentally defined plasma membrane subproteome. We show that the application of multiple high-resolution proteomic techniques to an enriched organelle fraction is a valuable approach for the characterisation of relatively intractable membrane proteomes. We present here the most complete analysis of a protozoan plasma membrane proteome to date and show the presence of a large number of integral membrane proteins, including 11 nucleoside/nucleobase transporters, 15 ion pumps and channels and a large number of adenylate cyclases hitherto listed as putative proteins.
Collapse
Affiliation(s)
- Daniel J Bridges
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Qiao X, Chuang BF, Jin Y, Muranjan M, Hung CH, Lee PT, Lee MGS. Sorting signals required for trafficking of the cysteine-rich acidic repetitive transmembrane protein in Trypanosoma brucei. EUKARYOTIC CELL 2007; 5:1229-42. [PMID: 16896208 PMCID: PMC1539130 DOI: 10.1128/ec.00064-06] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In trypanosomatids, endocytosis and exocytosis are restricted to the flagellar pocket (FP). The cysteine-rich acidic repetitive transmembrane (CRAM) protein is located at the FP of Trypanosoma brucei and potentially functions as a receptor or an essential component for lipoprotein uptake. We characterized sorting determinants involved in efficient trafficking of CRAM to and from the FP of T. brucei. Previous studies indicated the presence of signals in the CRAM C terminus, specific for its localization to the FP and for efficient endocytosis (H. Yang, D. G. Russell, B. Zeng, M. Eiki, and M.G.-S. Lee, Mol. Cell. Biol. 20:5149-5163, 2000.) To delineate functional domains of putative sorting signals, we performed a mutagenesis series of the CRAM C terminus. Subcellular localization of CRAM mutants demonstrated that the amino acid sequence between -5 and -14 (referred to as a transport signal) is essential for exporting CRAM from the endoplasmic reticulum to the FP, and mutations of amino acids at -12 (V), -10 (V), or -5 (D) led to retention of CRAM in the endoplasmic reticulum. Comparison of the endocytosis efficiency of CRAM mutants demonstrated that the sequence from amino acid -5 to -23 (referred to as a putative endocytosis signal) is required for efficient endocytosis and overlaps with the transport signal. Apparently the CRAM-derived sorting signal can efficiently interact with the T. brucei micro1 adaptin, and mutations at amino acids essential for the function of the transport signal abolished the interaction of the signal with T. brucei micro1, strengthening the hypothesis of the involvement of the clathrin- and adaptor-dependent pathway in trafficking of CRAM via the FP.
Collapse
Affiliation(s)
- Xugang Qiao
- Department of Pathology, New York University School of Medicine, 550 First Ave., New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
35
|
Steverding D. On the significance of host antibody response to the Trypanosoma brucei transferrin receptor during chronic infection. Microbes Infect 2006; 8:2777-82. [PMID: 17045507 DOI: 10.1016/j.micinf.2006.08.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 08/16/2006] [Accepted: 08/21/2006] [Indexed: 11/28/2022]
Abstract
The transferrin (Tf) receptor of Trypanosoma brucei (TbTfR) is encoded by two expression-site-associated genes, ESAG6 and ESAG7. There are around 20 different expression sites containing different copies of these genes that encode TbTfRs with quite distinct affinities for Tf of various hosts. It was proposed that T. brucei has developed multiple expression sites encoding different TbTfRs to ensure sufficient iron uptake in the presence of antibodies competing for binding to Tf. Here it is shown that anti-TbTfR antibody titres produced during chronic murine trypanosomiasis are only one-tenth of those achieved by immunisation of mice using recombinant TbTfR. Calculations indicate that the concentrations of competing anti-TbTfR antibodies present during chronic T. brucei infection are too low to deprive the parasite of iron. In addition, during human African trypanosomiasis the antibody response to the TbTfR seems to be poor and transient. Altogether, the results suggest that the host antibody response to the TbTfR during chronic infection with T. brucei is too low, if present at all, to prevent sufficient iron uptake by bloodstream forms to promote their growth.
Collapse
Affiliation(s)
- Dietmar Steverding
- School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK.
| |
Collapse
|
36
|
van Luenen HGAM, Kieft R, Mussmann R, Engstler M, ter Riet B, Borst P. Trypanosomes change their transferrin receptor expression to allow effective uptake of host transferrin. Mol Microbiol 2006; 58:151-65. [PMID: 16164555 DOI: 10.1111/j.1365-2958.2005.04831.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In its mammalian host, Trypanosoma brucei covers its iron requirements by receptor-mediated uptake of host transferrin (Tf). The Tf-receptor (Tf-R) is a heterodimeric membrane protein encoded by expression site-associated gene (ESAG) 6 and 7 located promoter-proximal in a polycistronic expression site (ES). Each of the 20 ESs encodes a slightly different Tf-R; these differences strongly affect the binding affinity for Tfs of different hosts. The Tf-R encoded in the 221 ES has a low affinity for dog Tf. Transfer of trypanosomes with an active 221 ES to dilute dog serum leads to growth arrest, which they can overcome by switching to another ES encoding a Tf-R with higher affinity for dog Tf. Here we show that trypanosomes can also adapt to dilute dog serum without switching but by replacing the ESAG7 gene in the 221 ES by one from another ES, by deleting ESAG7 from the 221 ES with concomitant upregulation of transcription of ESAG7 in 'silent' ESs, by grossly overproducing the 221 Tf-R or by combinations of these alterations. Our results illustrate the striking genetic flexibility of trypanosomes.
Collapse
Affiliation(s)
- Henri G A M van Luenen
- The Netherlands Cancer Institute, Division of Molecular Biology and Centre for Biomedical Genetics, Plesmanlaan 121, 1060 CX Amsterdam, the Netherlands
| | | | | | | | | | | |
Collapse
|
37
|
Pays E. The variant surface glycoprotein as a tool for adaptation in African trypanosomes. Microbes Infect 2006; 8:930-7. [PMID: 16480910 DOI: 10.1016/j.micinf.2005.10.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Accepted: 09/02/2005] [Indexed: 11/18/2022]
Abstract
African trypanosomes (prototype: Trypanosoma brucei) are flagellated protozoan parasites that infect a wide variety of mammals, causing nagana in cattle and sleeping sickness in humans. These organisms can cause prolonged chronic infections due to their ability to successively expose different antigenic variants of the variant surface glycoprotein (VSG). The genomic loci where the VSG genes are expressed are telomeric and contain polycistronic transcription units with several genes that are involved in adaptation of the parasite to the host. At least three of these genes, which respectively encode the two subunits of the heterodimeric receptor for transferrin and a protein conferring resistance to the human trypanolytic factor apolipoprotein L-I, share the same origin as the VSG. The high recombination potential of the telomeric VSG expression sites, coupled to their dynamic mono-allelic expression control, provides trypanosomes with a powerful capacity for adaptation to their hosts.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular Parasitology, IBMM, Université Libre de Bruxelles, 12, rue des Profs Jeener et Brachet, B6041 Gosselies, Belgium.
| |
Collapse
|
38
|
Schwartz KJ, Peck RF, Tazeh NN, Bangs JD. GPI valence and the fate of secretory membrane proteins in African trypanosomes. J Cell Sci 2005; 118:5499-511. [PMID: 16291721 DOI: 10.1242/jcs.02667] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progression of GPI-anchored proteins in bloodstream African trypanosomes correlates with GPI-valence: homodimeric VSG (2 GPI) is a surface protein; heterodimeric transferrin receptor (1 GPI) localizes in the flagellar pocket; homodimeric GPI-minus VSG (0 GPI) is rapidly degraded in the lysosome. We test this relationship using three native secretory/endocytic proteins as monomeric GPI-plus and -minus reporters. GPI-minus procyclin trafficks to the lysosome and is degraded. GPI-plus procyclin trafficks to the flagellar pocket/cell surface and is released (∼50%) with an intact anchor, the remainder (∼50%) is degraded in the lysosome. GPI-plus BiPNHP, derived from the ER marker BiP, is released quantitatively (>80%), while GPI-plus p67HP, derived from the lysosomal marker p67, turns over by both release (∼15%) and lysosomal degradation (>50%). Turnover of endogenous transferrin receptor occurs primarily by lysosomal degradation (>90%). Thus shedding of monovalent GPI reporters correlates inversely with lysosomal targeting. We propose that mono-GPI reporters cycle through the flagellar pocket and endosome until they are disposed of by either shedding or lysosomal targeting. Partitioning between these fates may be a function of individual physical properties. Release is likely due to the exclusive use of C-14:0 myristate in the bloodstream stage GPI anchor. Up-regulation of transferrin receptor by culture in dog serum resulted in prominent cell surface localization, but not in elevated release. Surface receptor was non-functional for ligand binding suggesting that it may be bivalent homodimers of the GPI-anchored ESAG6 receptor subunit.
Collapse
Affiliation(s)
- Kevin J Schwartz
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison Medical School, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
39
|
Field MC. Signalling the genome: the Ras-like small GTPase family of trypanosomatids. Trends Parasitol 2005; 21:447-50. [PMID: 16112905 DOI: 10.1016/j.pt.2005.08.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 05/23/2005] [Accepted: 08/03/2005] [Indexed: 10/25/2022]
Abstract
The genomes of the three principle experimental-model species of Kinetoplastida -Trypanosoma brucei brucei, Trypanosoma cruzi and Leishmania major - are now complete, providing both a milestone for trypanosome biology and an opportunity to consider a multitude of questions at the genome level. Of the >40 members of the Ras-like GTPase family in T. brucei, at least 30 are involved in intracellular transport, whereas fewer than eight are likely to have a classical role in signal transduction. There are no true members of the Ras or Rho subfamilies but divergent Ras- or Rho-like GTPases are present, suggesting that signalling mechanisms in trypanosomatids are highly unusual. Comparisons of T. brucei with T. cruzi and L. major indicate a high degree of conservation among the species. These analyses provide a framework for the functional investigation of small-GTPase-mediated signalling processes in trypanosomes.
Collapse
Affiliation(s)
- Mark C Field
- The Molteno Building, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK, CB2 1QP.
| |
Collapse
|
40
|
Engstler M, Weise F, Bopp K, Grünfelder CG, Günzel M, Heddergott N, Overath P. The membrane-bound histidine acid phosphatase TbMBAP1 is essential for endocytosis and membrane recycling in Trypanosoma brucei. J Cell Sci 2005; 118:2105-18. [PMID: 15855239 DOI: 10.1242/jcs.02327] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the parasitic protozoan Trypanosoma brucei, endocytosis and exocytosis occur exclusively at an invagination of the plasma membrane around the base of the flagellum, called the flagellar pocket, which actively communicates by vesicular membrane flow with cisternal/tubulovesicular endosomes. The division of the cell surface into three morphologically distinct sub-domains and the rapid plasma membrane turnover establishes T. brucei as an interesting model for investigations on the sorting and recycling of membrane proteins. In this study we show that the type I membrane protein TbMBAP1, an L-(+)-tartrate-sensitive acid phosphatase, is present in all endosomal membranes but is virtually absent from the lysosome membrane (where this type of protein is mainly found in other organisms) and is not detectable at the cell surface. The endosomal localization of TbMBAP1 is a function of protein abundance. Moderate overexpression (three- to fourfold) leads to an increased appearance within the flagellar pocket membrane. At higher levels the protein is found in the flagellum, and routing to the pellicular plasma membrane is observed at levels 10- to 25-fold above that of wild type. In other organisms L-(+)-tartrate-sensitive acid phosphatases appear to be dispensable but TbMBAP1 is essential, as shown by RNA interference, which causes growth arrest followed by cell death. Comparison of the phenotype of TbMBAP1-depleted cells with that of cells in which endocytosis or exocytosis has been specifically inhibited by RNAi against clathrin of RAB11, reveals that TbMBAP1 is essential for both incoming and recycling membrane traffic. During differentiation of the organism from bloodstream to insect stage, TbMBAP1 is down-regulated and differentially modified in parallel with a 10-fold decrease in the rate of endocytosis.
Collapse
Affiliation(s)
- Markus Engstler
- Ludwig-Maximilians-Universität, Department Biologie I, Genetik, Maria-Ward-Strasse 1a, München, 80638, Germany.
| | | | | | | | | | | | | |
Collapse
|
41
|
Salmon D, Paturiaux-Hanocq F, Poelvoorde P, Vanhamme L, Pays E. Trypanosoma brucei: growth differences in different mammalian sera are not due to the species-specificity of transferrin. Exp Parasitol 2005; 109:188-94. [PMID: 15713451 DOI: 10.1016/j.exppara.2004.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 11/22/2004] [Accepted: 11/24/2004] [Indexed: 11/25/2022]
Abstract
The heterodimeric transferrin receptors of Trypanosoma brucei (Tf-Rs) are encoded by two genes termed ESAG7 and ESAG6. These genes belong to polycistronic transcription units contained in the multiple expression sites for the variant surface glycoprotein (VSG ESs), only one of which is active at a time. Each VSG ES carries a different copy of these genes, leading to alternative expression of Tf-Rs with quite distinct binding affinities for transferrins from various mammals. T. brucei clones exhibit marked growth differences depending on the species-specificity of the serum. Since transferrin is a vital growth factor for the parasite, we investigated whether it could be responsible for these observations. We analyzed the cases of Tf-Rs from two ESs preferentially selected for expression in man and mouse, respectively. We show that serum-dependent growth variations of trypanosomes expressing these receptors are independent of transferrin, and that both high- and low-affinity Tf-Rs allow efficient trypanosome growth in various sera, either in vivo or in vitro.
Collapse
Affiliation(s)
- Didier Salmon
- Department of Medical Biochemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-590, Brazil
| | | | | | | | | |
Collapse
|
42
|
Witola WH, Sarataphan N, Inoue N, Ohashi K, Onuma M. Genetic variability in ESAG6 genes among Trypanosoma evansi isolates and in comparison to other Trypanozoon members. Acta Trop 2005; 93:63-73. [PMID: 15589799 DOI: 10.1016/j.actatropica.2004.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2004] [Revised: 08/12/2004] [Accepted: 09/14/2004] [Indexed: 11/15/2022]
Abstract
Bloodstream trypanosomes take up iron needed for their propagation through the transferrin receptor that, in Trypanosoma brucei, is encoded by expression-site-associated genes (ESAGs), ESAG6 and 7 genes located in variant surface glycoprotein expression sites. ESAG6 and 7 genes in different expression sites have been shown to encode transferrin receptors with varying affinities for polymorphic transferrins. T. brucei could cope with the different host transferrins by switching between expression sites. ESAG6- and 7-encoded transferrin receptor appear to be present in Trypanosoma evansi but the genes have not yet been characterized. In this study, we cloned and sequenced different members of ESAG6 genes in seven isolates of T. evansi from geographically distinct localities in Thailand. We assessed the intra- and inter-species genetic variability in the transferrin receptor gene regions involved in transferrin binding and established that T. evansi, like T. brucei, has widely diverse ESAG6 genes. In addition, T. evansi possess a clade of ESAG6 variants not observed in T. brucei and different T. evansi strains share at least two conserved variants. We further noted that T. evansi possesses all the reported T. equiperdum ESAG6 variants as a subset. Our findings depict a correlation between the genetic diversity in the transferrin-binding regions of ESAG6 genes with the broad host range of T. evansi and T. brucei compared to the narrow host range of Trypanosoma equiperdum.
Collapse
Affiliation(s)
- William H Witola
- Laboratory of Infectious Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan
| | | | | | | | | |
Collapse
|