1
|
The role of Sp3 transcription factor in syntaxin 1A gene silencing. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
2
|
Caspase-Mediated Cleavage of the Transcription Factor Sp3: Possible Relevance to Cancer and the Lytic Cycle of Kaposi's Sarcoma-Associated Herpesvirus. Microbiol Spectr 2022; 10:e0146421. [PMID: 35019687 PMCID: PMC8754129 DOI: 10.1128/spectrum.01464-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The open reading frame 50 (ORF50) protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the master regulator essential for initiating the viral lytic cycle. Previously, we have demonstrated that the ORF50 protein can cooperate with Sp3 to synergistically activate a set of viral and cellular gene promoters through highly conserved ORF50-responsive elements that harbor a Sp3-binding motif. Herein, we show that Sp3 undergoes proteolytic cleavage during the viral lytic cycle, and the cleavage of Sp3 is dependent on caspase activation. Since similar cleavage patterns of Sp3 could be detected in both KSHV-positive and KSHV-negative lymphoma cells undergoing apoptosis, the proteolytic cleavage of Sp3 could be a common event during apoptosis. Mutational analysis identifies 12 caspase cleavage sites in Sp3, which are situated at the aspartate (D) positions D17, D19, D180, D273, D275, D293, D304 (or D307), D326, D344, D530, D543, and D565. Importantly, we noticed that three stable Sp3 C-terminal fragments generated through cleavage at D530, D543, or D565 encompass an intact DNA-binding domain. Like the full-length Sp3, the C-terminal fragments of Sp3 could still retain the ability to cooperate with ORF50 protein to activate specific viral and cellular gene promoters synergistically. Collectively, our findings suggest that despite the proteolytic cleavage of Sp3 under apoptotic conditions, the resultant Sp3 fragments may retain biological activities important for the viral lytic cycle or for cellular apoptosis. IMPORTANCE The ORF50 protein of Kaposi's sarcoma-associated herpesvirus (KSHV) is the key viral protein that controls the switch from latency to lytic reactivation. It is a potent transactivator that can activate target gene promoters via interacting with other cellular DNA-binding transcription factors, such as Sp3. In this report, we show that Sp3 is proteolytically cleaved during the viral lytic cycle, and up to 12 caspase cleavage sites are identified in Sp3. Despite the proteolytic cleavage of Sp3, several resulting C-terminal fragments that have intact zinc-finger DNA-binding domains still retain substantial influence in the synergy with ORF50 to activate specific gene promoters. Overall, our studies elucidate the caspase-mediated cleavage of Sp3 and uncover how ORF50 utilizes the cleavage fragments of Sp3 to transactivate specific viral and cellular gene promoters.
Collapse
|
3
|
McDermott A, Kim K, Kasper S, Ho SM, Leung YK. The androgen receptor inhibits transcription of GPER1 by preventing Sp1 and Sp3 from binding to the promoters in prostate cancer cells. Oncotarget 2022; 13:46-60. [PMID: 35018219 PMCID: PMC8741193 DOI: 10.18632/oncotarget.28169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/01/2022] Open
Abstract
G-1, a GPER1 agonist, was shown to inhibit the growth of castration-resistant mouse xenografts but not their parental androgen-dependent tumors. It is currently unknown how the androgen receptor (AR) represses GPER1 expression. Here, we found that two GPER1 mRNA variants (GPER1v2 and GPER1v4) were transcriptionally repressed, not via transcript destabilization, by the androgen-activated AR. Although no AR binding was found in all active promoters near GPER1, data from promoter assays suggested that both variants' promoters were inhibited by androgen treatment. Site-directed mutagenesis on Sp1/Sp3 binding sites revealed their role in supporting the basal expression of GPER1. Knockdown of Sp1 and Sp3 together but not separately repressed GPER1 expression whereas overexpression of both Sp1 and Sp3 together was required to alleviate AR repression of GPER1. Based on the chromatin immunoprecipitation data, Sp3 was found to bind to the promoters prior to the binding of Sp1 and RNA polymerase II. However, the binding of all three transcription factors was inhibited by DHT treatment. Concordantly, DHT treatment induced nuclear interactions between AR and Sp1 or Sp3. Taken together, these results indicate that AR represses transcription of GPER1 by binding to Sp1 and Sp3 independently to prevent their transactivation of the GPER1 promoters.
Collapse
Affiliation(s)
- Austin McDermott
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - KyoungHyun Kim
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Susan Kasper
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Shuk-Mei Ho
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yuet-Kin Leung
- Department of Environmental Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
- Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
4
|
Ni C, Yang S, Ji Y, Duan Y, Yang W, Yang X, Li M, Xie J, Zhang C, Lu Y, Lu H. Hsa_circ_0011385 knockdown represses cell proliferation in hepatocellular carcinoma. Cell Death Discov 2021; 7:270. [PMID: 34599150 PMCID: PMC8486831 DOI: 10.1038/s41420-021-00664-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/24/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs), continuous loops of single-stranded RNA, regulate gene expression during the development of various cancers. However, the function of circRNAs in hepatocellular carcinoma (HCC) is rarely discussed. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to determine the mRNA levels of circ_0011385, miR-361-3p, and STC2 in 96 pairs of HCC tissues (tumor tissues and adjacent normal tissues), HCC cell lines, and L02 (human normal liver cell line) cells. The relationships between circ_0011385 expression and clinical features of HCC were evaluated. Functional experiments in vitro or in vivo were used to evaluate the biological function of circ_0011385. Bioinformatics analysis was performed to predict miRNAs and mRNAs sponged by circ_0011385. RNA immunoprecipitation (RIP) and dual-luciferase reporter gene assays were used to elucidate the interactions among circ_0011385, miR-361-3p, and STC2 (stanniocalcin 2). ChIP and dual-luciferase reporter gene assays were used to identify the upstream regulator of circ_0011385. High expression of circ_0011385 was observed in HCC tissues and cell lines and was significantly associated with tumor size, TNM stage, and prognosis. In addition, inhibition of circ_0011385 expression prevented the proliferation of HCC cells in vitro and in vivo. Circ_0011385 sponged miR-361-3p, thereby regulating the mRNA expression of STC2. In addition, the transcription of circ_0011385 was regulated by SP3. Circ_0011385 knockdown suppressed cell proliferation and tumor activity in HCC. Circ_0011385 may therefore serve as a new biomarker in the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Chuangye Ni
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Shikun Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Yang Ji
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Yunfei Duan
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Wenjie Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Xinchen Yang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
| | - Min Li
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Jun Xie
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China
| | - Chuanyong Zhang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
| | - Yunjie Lu
- Department of Hepatobiliary Surgery, The First People's Hospital of Changzhou, The Third Hospital Affiliated to Soochow University, Changzhou, 213000, China.
| | - Hao Lu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University; Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
| |
Collapse
|
5
|
Fenizia C, Ibba SV, Vanetti C, Strizzi S, Rossignol JF, Biasin M, Trabattoni D, Clerici M. The Modulation of Cholesterol Metabolism Is Involved in the Antiviral Effect of Nitazoxanide. Infect Dis Rep 2021; 13:636-644. [PMID: 34287319 PMCID: PMC8293206 DOI: 10.3390/idr13030060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Abstract
We previously investigated the role of Nitazoxanide (NTZ), a thiazolide endowed with antiviral and antiparasitic activity, in HIV-1 infection. NTZ treatment in primary isolated PBMCs was able to reduce HIV-1 infection in vitro by inducing the expression of a number of type-I interferon-stimulated genes. Among them, NTZ was able to induce cholesterol-25-hydroxylase (CH25H), which is involved in cholesterol metabolism. In the present study, we wanted to deepen our knowledge about the antiviral mechanism of action of NTZ. Indeed, by inducing CH25H, which catalyzes the formation of 25-hydroxycholesterol from cholesterol, NTZ treatment repressed cholesterol biosynthetic pathways and promoted cholesterol mobilization and efflux from the cell. Such effects were even more pronounced upon stimulation with FLU antigens in combination. It is already well known how lipid metabolism and virus replication are tightly interconnected; thus, it is not surprising that the antiviral immune response employs genes related to cholesterol metabolism. Indeed, NTZ was able to modulate cholesterol metabolism in vitro and, by doing so, enhance the antiviral response. These results give us the chance to speculate about the suitability of NTZ as adjuvant for induction of specific natural immunity. Moreover, the putative application of NTZ to alimentary-related diseases should be investigated.
Collapse
Affiliation(s)
- Claudio Fenizia
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Salomè Valentina Ibba
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Claudia Vanetti
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Sergio Strizzi
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | | | - Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via G.B. Grassi 74, 20157 Milan, Italy; (S.V.I.); (S.S.); (M.B.); (D.T.)
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via F. Sforza 35, 20122 Milan, Italy; (C.F.); (C.V.)
- IRCCS Fondazione Don Carlo Gnocchi, Via A. Capecelatro 66, 20148 Milan, Italy
- Correspondence: ; Tel.: +39-02-5031-9678
| |
Collapse
|
6
|
Vaughan HJ, Zamboni CG, Radant NP, Bhardwaj P, Revai Lechtich E, Hassan LF, Shah K, Green JJ. Poly(beta-amino ester) nanoparticles enable tumor-specific TRAIL secretion and a bystander effect to treat liver cancer. Mol Ther Oncolytics 2021; 21:377-388. [PMID: 34189258 PMCID: PMC8208964 DOI: 10.1016/j.omto.2021.04.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 04/12/2021] [Indexed: 01/23/2023] Open
Abstract
Despite initial promise, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-based approaches to cancer treatment have yet to yield a clinically approved therapy, due to delivery challenges, a lack of potency, and drug resistance. To address these challenges, we have developed poly(beta-amino ester) (PBAE) nanoparticles (NPs), as well as an engineered cDNA sequence encoding a secretable TRAIL (sTRAIL) protein, to enable reprogramming of liver cancer cells to locally secrete TRAIL protein. We show that sTRAIL initiates apoptosis in transfected cells and has a bystander effect to non-transfected cells. To address TRAIL resistance, NP treatment is combined with histone deacetylase inhibitors, resulting in >80% TRAIL-mediated cell death in target cancer cells and significantly slowed xenograft tumor growth. This anti-cancer effect is specific to liver cancer cells, with up to 40-fold higher cell death in HepG2 cancer cells over human hepatocytes. By combining cancer-specific TRAIL NPs with small-molecule-sensitizing drugs, this strategy addresses multiple challenges associated with TRAIL therapy and offers a new potential approach for cancer treatment.
Collapse
Affiliation(s)
- Hannah J. Vaughan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Nicholas P. Radant
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Pranshu Bhardwaj
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Esther Revai Lechtich
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Laboni F. Hassan
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan J. Green
- Department of Biomedical Engineering, Institute for NanoBioTechnology, and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Departments of Ophthalmology, Oncology, Neurosurgery, Materials Science & Engineering, and Chemical & Biomolecular Engineering, and the Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
7
|
Mansour MA. SP3 is associated with migration, invasion, and Akt/PKB signalling in MDA-MB-231 breast cancer cells. J Biochem Mol Toxicol 2020; 35:e22657. [PMID: 33113244 DOI: 10.1002/jbt.22657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) have pro-oncogenic functions in cancer cells, ranging from cancer cell proliferation, migration, invasion, and angiogenesis. There is strong evidence that several antineoplastic drugs target depletion of SP proteins via different pathways. However, the mode of action of SP3 and the underlying consequences of its depletion are not well understood. Here, we demonstrate that SP3 is overexpressed in invasive breast cancer cells vs normal counterparts. The gene expression analysis from The Cancer Genome Atlas datasets indicated that SP3 is strongly correlated with Akt signalling-related proteins, G protein subunit alpha 13, and RAB33B (RAB33B, member RAS oncogene family). RNA interference of SP3 decreased active phosphorylation of Akt at serine and threonine sites. These findings indicate that SP3 exhibits a pro-oncogenic function, which clearly fits the description of an nononcogene addiction gene. Future analyses are prompted to uncover the SP3 gene regulation function and to reveal downstream targets of SP3 in breast cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.,Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
8
|
Raghavan S, Baskin DS, Sharpe MA. MP-Pt(IV): A MAOB-Sensitive Mitochondrial-Specific Prodrug for Treating Glioblastoma. Mol Cancer Ther 2020; 19:2445-2453. [PMID: 33033175 DOI: 10.1158/1535-7163.mct-20-0420] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/13/2020] [Accepted: 09/23/2020] [Indexed: 11/16/2022]
Abstract
We have previously reported the in vitro and in vivo efficacy of N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propenamide (MP-MUS), a prodrug that targeted the mitochondria of glioblastoma (GBM). The mitochondrial enzyme, monoamine oxidase B (MAOB), is highly expressed in GBM and oxidizes an uncharged methyl-tetrahydropyridine (MP-) moiety into the mitochondrially targeted cationic form, methyl-pyridinium (P+-). Coupling this MAOB-sensitive group to a nitrogen mustard produced a prodrug that damaged GBM mitochondria and killed GBM cells. Unfortunately, the intrinsic reactivity of the nitrogen mustard group and low solubility of MP-MUS precluded clinical development. In our second-generation prodrug, MP-Pt(IV), we coupled the MP group to an unreactive cisplatin precursor. The enzymatic conversion of MP-Pt(IV) to P+-Pt(IV) was tested using recombinant human MAOA and rhMAOB. The generation of cisplatin from Pt(IV) by ascorbate was studied optically and using mass spectroscopy. Efficacy toward primary GBM cells and tumors was studied in vitro and in an intracranial patient-derived xenograft mice GBM model. Our studies demonstrate that MP-Pt(IV) is selectively activated by MAOB. MP-Pt(IV) is highly toxic toward GBM cells in vitro MP-Pt(IV) toxicity against GBM is potentiated by elevating mitochondrial ascorbate and can be arrested by MAOB inhibition. In in vitro studies, sublethal MP-Pt(IV) doses elevated mitochondrial MAOB levels in surviving GBM cells. MP-Pt(IV) is a potent chemotherapeutic in intracranial patient-derived xenograft mouse models of primary GBM and potentiates both temozolomide and temozolomide-chemoradiation therapies. MP-Pt(IV) was well tolerated and is highly effective against GBM in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Sudhir Raghavan
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas.,Houston Methodist Research Institute, Houston, Texas
| | - David S Baskin
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| | - Martyn A Sharpe
- Kenneth R. Peak Brain and Pituitary Treatment Center and the Department of Neurosurgery, Houston Methodist Hospital, Houston, Texas. .,Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
9
|
Zhang H, Lu J, Wu S. Sp4 controls constitutive expression of neuronal serine racemase and NF-E2-related factor-2 mediates its induction by valproic acid. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194597. [PMID: 32603878 DOI: 10.1016/j.bbagrm.2020.194597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/12/2020] [Accepted: 06/21/2020] [Indexed: 01/10/2023]
Abstract
Serine racemase (SR) synthesizes l-type serine to its enantimor, d-serine which participates in physiological processes and in pathological conditions. In the central nervous system, SR is highly expressed in neurons and astrocytes but expressed at relatively lower amount in microglia. However, the mechanism by which SR is highly expessed in neurons is hitherto unknown. We report that the SR mRNA and protein levels in Neuro-2a were increased by valproic acid (VPA), a neuron differentiation stimulator as well as a histone deacetylase inhibitor. SR proximal promoter contained nine putative Sp-binding elements and in the exon 1, three putative anti-oxidant elements (AREs) were conservative among human, rat, and mouse genome. The promoter constructs including 5'-, 3'-fragment, and full length fragment from mouse were individually cloned into a luciferase reporter. Using dual-luciferase assay, the promoter harboring 3'-fragment contained much lower activity than the construct containing 5'-fragment which was though resistant to VPA induction, relative to 3'-fragment. Overexpression of Sp4 or Nrf2 increased whereas knockdown of either decreased Srr mRNA and SR protein. Using site-directed mutagenesis, mutation of Sp-binding elements or AREs in the constructs significantly decreased luciferase activity of the corresponding promoter construct. With chromatin immunoprecipitation, Sp4 was demonstrated to interact directly with the Sp-binding elements whereas Nrf2 bound AREs in Srr mRNA promoter. Altogether, our study highlights that Sp4 controls constitutive expression of SR in neuron and VPA mediates SR expression in N2A cells which is associated with its effect on neuron differentiation, that is, the effect is mediated via Nrf2.
Collapse
Affiliation(s)
- He Zhang
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China
| | - Jinfang Lu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Shengzhou Wu
- School of Optometry and Ophthalmology and the Eye Hospital, Wenzhou Medical University, China; State Key Laboratory of Optometry, Ophthalmology, and Visual Science, 270 Xueyuan Road, Wenzhou, Zhejiang 325003, China.
| |
Collapse
|
10
|
Cao Z, Gao W, Gu T, Huo W, Zhang Y, Zhang Y, Xu Q, Chen G. The specificity protein 3 ( SP3) gene in ducks ( Anas platyrhynchos): cloning, characterization and expression during viral infection. Anim Biotechnol 2020; 32:676-682. [PMID: 32180490 DOI: 10.1080/10495398.2020.1740240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Specificity Protein 3 (SP3) is a newly identified regulator of tumor growth and invasiveness in humans. In this study, we identified and characterized the function of duck SP3 (duSP3). The full-length cDNA sequence of the duSP3 gene was cloned via rapid amplification of cDNA ends. It contained 2468 nucleotides, including a 111 base pair (bp) 5'-untranslated region (UTR), 215 bp 3'-UTR, and 2142 bp open reading frame (ORF), which encoded a 713 amino acid (AA) strongly conserved with Avian SP3. Tissue specificity analysis demonstrated that duSP3 was constitutively expressed in the eight tissues tested: liver, spleen, lung, heart, kidney, thymus, breast, and leg; and low expression levels were observed in all tissues, except the spleen and thymus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that duSP3 expression rapidly increased in vitro after stimulation with both the hepatitis virus (DHV-1) and polyriboinosinic polyribocytidylic acid (poly(I:C)). However, the expression under these treatments varied in kidney and liver tissues; in the liver, duSP3 increased significantly at 36 h after the DHV-1 treatment and peaked at 72 h after poly(I:C) stimulation. These results suggested that SP3 may play a positive role in immune responses against viral infections in ducks.
Collapse
Affiliation(s)
- Zhengfeng Cao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Wen Gao
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Tiantian Gu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Weiran Huo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yang Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Yu Zhang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Qi Xu
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| | - Guohong Chen
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
11
|
Beug ST, Cheung HH, Sanda T, St-Jean M, Beauregard CE, Mamady H, Baird SD, LaCasse EC, Korneluk RG. The transcription factor SP3 drives TNF-α expression in response to Smac mimetics. Sci Signal 2019; 12:12/566/eaat9563. [PMID: 30696705 DOI: 10.1126/scisignal.aat9563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The controlled production and downstream signaling of the inflammatory cytokine tumor necrosis factor-α (TNF-α) are important for immunity and its anticancer effects. Although chronic stimulation with TNF-α is detrimental to the health of the host in several autoimmune and inflammatory disorders, TNF-α-contrary to what its name implies-leads to cancer formation by promoting cell proliferation and survival. Smac mimetic compounds (SMCs), small-molecule antagonists of inhibitor of apoptosis proteins (IAPs), switch the TNF-α signal from promoting survival to promoting death in cancer cells. Using a genome-wide siRNA screen to identify factors required for SMC-to-TNF-α-mediated cancer cell death, we identified the transcription factor SP3 as a critical molecule in both basal and SMC-induced production of TNF-α by engaging the nuclear factor κB (NF-κB) transcriptional pathway. Moreover, the promotion of TNF-α expression by SP3 activity confers differential sensitivity of cancer versus normal cells to SMC treatment. The key role of SP3 in TNF-α production and signaling will help us further understand TNF-α biology and provide insight into mechanisms relevant to cancer and inflammatory disease.
Collapse
Affiliation(s)
- Shawn T Beug
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Herman H Cheung
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Tarun Sanda
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Martine St-Jean
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Caroline E Beauregard
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Hapsatou Mamady
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Stephen D Baird
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada.
| | - Robert G Korneluk
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, Ontario K1H 8L1, Canada. .,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
12
|
Völkel S, Stielow B, Finkernagel F, Berger D, Stiewe T, Nist A, Suske G. Transcription factor Sp2 potentiates binding of the TALE homeoproteins Pbx1:Prep1 and the histone-fold domain protein Nf-y to composite genomic sites. J Biol Chem 2018; 293:19250-19262. [PMID: 30337366 DOI: 10.1074/jbc.ra118.005341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/17/2018] [Indexed: 11/06/2022] Open
Abstract
Different transcription factors operate together at promoters and enhancers to regulate gene expression. Transcription factors either bind directly to their target DNA or are tethered to it by other proteins. The transcription factor Sp2 serves as a paradigm for indirect genomic binding. It does not require its DNA-binding domain for genomic DNA binding and occupies target promoters independently of whether they contain a cognate DNA-binding motif. Hence, Sp2 is strikingly different from its closely related paralogs Sp1 and Sp3, but how Sp2 recognizes its targets is unknown. Here, we sought to gain more detailed insights into the genomic targeting mechanism of Sp2. ChIP-exo sequencing in mouse embryonic fibroblasts revealed genomic binding of Sp2 to a composite motif where a recognition sequence for TALE homeoproteins and a recognition sequence for the trimeric histone-fold domain protein nuclear transcription factor Y (Nf-y) are separated by 11 bp. We identified a complex consisting of the TALE homeobox protein Prep1, its partner PBX homeobox 1 (Pbx1), and Nf-y as the major partners in Sp2-promoter interactions. We found that the Pbx1:Prep1 complex together with Nf-y recruits Sp2 to co-occupied regulatory elements. In turn, Sp2 potentiates binding of Pbx1:Prep1 and Nf-y. We also found that the Sp-box, a short sequence motif close to the Sp2 N terminus, is crucial for Sp2's cofactor function. Our findings reveal a mechanism by which the DNA binding-independent activity of Sp2 potentiates genomic loading of Pbx1:Prep1 and Nf-y to composite motifs present in many promoters of highly expressed genes.
Collapse
Affiliation(s)
- Sara Völkel
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Bastian Stielow
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | | | - Dana Berger
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| | - Thorsten Stiewe
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Andrea Nist
- the Genomics Core Facility, Center for Tumor Biology and Immunology (ZTI), Philipps-University of Marburg, 35043 Marburg, Germany
| | - Guntram Suske
- From the Institute of Molecular Biology and Tumor Research (IMT) and
| |
Collapse
|
13
|
Ko H, Lee GM, Shin OS, Song MJ, Lee CH, Kim YE, Ahn JH. Analysis of IE62 mutations found in Varicella-Zoster virus vaccine strains for transactivation activity. J Microbiol 2018; 56:441-448. [PMID: 29858833 DOI: 10.1007/s12275-018-8144-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/16/2022]
Abstract
Live attenuated vaccine strains have been developed for Varicella-Zoster virus (VZV). Compared to clinically isolated strains, the vaccine strains contain several non-synonymous mutations in open reading frames (ORFs) 0, 6, 31, 39, 55, 62, and 64. In particular, ORF62, encoding an immediate-early (IE) 62 protein that acts as a transactivator for viral gene expression, contains six non-synonymous mutations, but whether these mutations affect transactivation activity of IE62 is not understood. In this study, we investigated the role of non-synonymous vaccine-type mutations (M99T, S628G, R958G, V1197A, I1260V, and L1275S) of IE62 in Suduvax, a vaccine strain isolated in Korea, for transactivation activity. In reporter assays, Suduvax IE62 showed 2- to 4-fold lower transactivation activity toward ORF4, ORF28, ORF29, and ORF68 promoters than wild-type IE62. Introduction of individual M99T, S628G, R958G, or V1197A/I1260V/L1275S mutations into wild-type IE62 did not affect transactivation activity. However, the combination of M99T within the N-terminal Sp transcription factor binding region and V1197A/I1260V/L1275S within the C-terminal serine-enriched acidic domain (SEAD) significantly reduced the transactivation activity of IE62. The M99T/V1197A/I1260V/L1275S mutant IE62 did not show considerable alterations in intracellular distribution and Sp3 binding compared to wild-type IE62, suggesting that other alteration(s) may be responsible for the reduced transactivation activity. Collectively, our results suggest that acquisition of mutations in both Met 99 and the SEAD of IE62 is responsible for the reduced transactivation activity found in IE62 of the VZV vaccine strains and contributes to attenuation of the virus.
Collapse
Affiliation(s)
- Hyemin Ko
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Gwang Myeong Lee
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Ok Sarah Shin
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 08308, Republic of Korea
| | - Moon Jung Song
- Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Chan Hee Lee
- Department of Microbiology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Young Eui Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Samsung Medical Center, Suwon, 16419, Republic of Korea.
| |
Collapse
|
14
|
Promoter analysis and transcriptional regulation of human carbonic anhydrase VIII gene in a MERRF disease cell model. Arch Biochem Biophys 2018; 641:50-61. [DOI: 10.1016/j.abb.2018.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/22/2017] [Accepted: 01/19/2018] [Indexed: 02/01/2023]
|
15
|
Li Z, Liu Q. Hepatitis C virus regulates proprotein convertase subtilisin/kexin type 9 promoter activity. Biochem Biophys Res Commun 2018; 496:1229-1235. [PMID: 29397939 DOI: 10.1016/j.bbrc.2018.01.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/11/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secretory serine protease mainly expressed in liver. Although PCSK9 has been shown to inhibit hepatitis C virus (HCV) entry and replication, whether HCV regulates PCSK9 transcription has not been well studied. PCSK9 promoter activity is modulated by numerous transcription factors including sterol-regulatory element binding protein (SREBP)-1a, -1c, -2, hepatocyte nuclear factor-1 (HNF-1), and forkhead box O3 (FoxO3). Since they are differently regulated by HCV, we studied the effects of these transcription factors on PCSK9 promoter activity in the context of HCV infection and replication. We demonstrated that PCSK9 promoter activity was up-regulated after HCV infection and in HCV genomic replicon cells. We also studied the effects of HCV proteins on the PCSK9 promoter activity. While HCV structural proteins core, E1, and E2 had no effect, NS2, NS3, NS3-4A, NS5A and NS5B enhanced, and p7 and NS4B decreased PCSK9 promoter activity. Furthermore, we showed that transcription factors SREBP-1c, HNF-1α and specificity protein 1 increased PCSK9 promoter activity in HCV replicon cells, whereas SREBP-1a, HNF-1β and FoxO3 had an inhibitory effect. These results demonstrated the molecular mechanisms of how HCV modulates PCSK9 promoter activity and advanced our understanding on the mutual interactions between HCV and PCSK9.
Collapse
Affiliation(s)
- Zhubing Li
- VIDO-InterVac, Vaccinology and Immunotherapeutics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Qiang Liu
- VIDO-InterVac, Vaccinology and Immunotherapeutics, Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
16
|
Miyazawa M, Noguchi K, Kujirai M, Katayama K, Yamagoe S, Sugimoto Y. IL-10 promoter transactivation by the viral K-RTA protein involves the host-cell transcription factors, specificity proteins 1 and 3. J Biol Chem 2018; 293:662-676. [PMID: 29184003 PMCID: PMC5767870 DOI: 10.1074/jbc.m117.802900] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/24/2017] [Indexed: 11/06/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus-8 (HHV-8) causes a persistent infection, presenting latent and lytic replication phases during its life cycle. KSHV-related diseases are associated with deregulated expression of inflammatory cytokines, including IL-6 and IL-10, but the mechanisms underlying this dysregulation are unclear. Herein, we report a molecular mechanism for KSHV-induced IL-10 gene expression. KSHV replication and transcription activator (K-RTA) is a molecular switch for the initiation of expression of viral lytic genes, and we describe, for the first time, that K-RTA significantly activates the promoter of the human IL-10 gene. Of note, mutations involving a basic region of K-RTA reduced the association of K-RTA with the IL-10 promoter. Moreover, the host-cell transcription factors, specificity proteins (SP) 1 and 3, play a pivotal cooperative role in K-RTA-mediated transactivation of the IL-10 promoter. K-RTA can interact with SP1 and SP3 directly in vitro, and electrophoresis mobility shift assays (EMSAs) revealed co-operative interaction involving K-RTA, SP1, and SP3 in binding to the IL-10 promoter. As DNase I footprinting assays indicated that K-RTA did not affect SP3 binding to the IL-10 promoter, SP3 can function to recruit K-RTA to the IL-10 promoter. These findings indicate that K-RTA can directly contribute to IL-10 up-regulation via a functional interplay with the cellular transcription factors SP1 and SP3.
Collapse
Affiliation(s)
- Masanori Miyazawa
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Kohji Noguchi
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Mana Kujirai
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Kazuhiro Katayama
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| | - Satoshi Yamagoe
- the Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoshikazu Sugimoto
- From the Division of Chemotherapy, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512 and
| |
Collapse
|
17
|
Sharpe MA, Baskin DS. Monoamine oxidase B levels are highly expressed in human gliomas and are correlated with the expression of HiF-1α and with transcription factors Sp1 and Sp3. Oncotarget 2016; 7:3379-93. [PMID: 26689994 PMCID: PMC4823113 DOI: 10.18632/oncotarget.6582] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022] Open
Abstract
Monoamine oxidases A and B (MAOA and MAOB) are highly expressed in many cancers. Here we investigated the level of MAOB in gliomas and confirmed its high expression. We found that MAOB levels correlated with tumor grade and hypoxia-inducible factor 1-alpha (HiF-1α) expression. HiF-1α was localized to the nuclei in high-grade gliomas, but it was primarily cytosolic in low-grade gliomas and normal human astrocytes. Expression of both glial fibrillary acidic protein (GFAP) and MAOB are correlated to HiF-1α expression levels. Levels of MAOB are correlated by the levels of transcription factor Sp3 in the majority of GBM examined, but this control of MAOB expression by Sp3 in low grade astrocytic gliomas is significantly different from control in the in the majority of glioblastomas. The current findings support previous suggestions that MAOB can be exploited for the killing of cancer cells. Selective cell toxicity can be achieved by designing non-toxic prodrugs that require MAOB for their catalytic conversion into mature cytotoxic chemotherapeutics.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX 77030, USA
| | - David S Baskin
- Department of Neurosurgery, Kenneth R. Peak Brain and Pituitary Tumor Center, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
18
|
Hedrick E, Cheng Y, Jin UH, Kim K, Safe S. Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget 2016; 7:22245-56. [PMID: 26967243 PMCID: PMC5008359 DOI: 10.18632/oncotarget.7925] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Specificity protein (Sp) transcription factor (TF) Sp1 is overexpressed in multiple tumors and is a negative prognostic factor for patient survival. Sp1 and also Sp3 and Sp4 are highly expressed in cancer cells and in this study, we have used results of RNA interference (RNAi) to show that the three TFs individually play a role in the growth, survival and migration/invasion of breast, kidney, pancreatic, lung and colon cancer cell lines. Moreover, tumor growth in athymic nude mice bearing L3.6pL pancreatic cancer cells as xenografts were significantly decreased in cells depleted for Sp1, Sp3 and Sp4 (combined) or Sp1 alone. Ingenuity Pathway Analysis (IPA) of changes in gene expression in Panc1 pancreatic cancer cells after individual knockdown of Sp1, Sp3 and Sp4 demonstrates that these TFs regulate genes and pathways that correlated with the functional responses observed after knockdown but also some genes and pathways that inversely correlated with the functional responses. However, causal IPA analysis which integrates all pathway-dependent changes in all genes strongly predicted that Sp1-, Sp3- and Sp4-regulated genes were associated with the pro-oncogenic activity. These functional and genomic results coupled with overexpression of Sp transcription factors in tumor vs. non-tumor tissues and decreased Sp1 expression with age indicate that Sp1, Sp3 and Sp4 are non-oncogene addiction (NOA) genes and are attractive drug targets for individual and combined cancer chemotherapies.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Kyounghyun Kim
- Environmental Health, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
19
|
Thakur BK, Dasgupta N, Ta A, Das S. Physiological TLR5 expression in the intestine is regulated by differential DNA binding of Sp1/Sp3 through simultaneous Sp1 dephosphorylation and Sp3 phosphorylation by two different PKC isoforms. Nucleic Acids Res 2016; 44:5658-72. [PMID: 27060138 PMCID: PMC4937308 DOI: 10.1093/nar/gkw189] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/10/2016] [Indexed: 12/24/2022] Open
Abstract
Toll-like receptor 5 (TLR5) expression in the intestinal epithelial cells (IECs) is critical to maintain health, as underscored by multiple intestinal and extra-intestinal diseases in mice genetically engineered for IEC-specific TLR5 knockout. A gradient of expression exists in the colonic epithelial cells from the cecum to the distal colon. Intriguingly, an identical gradient for the dietary metabolite, butyrate also exists in the luminal contents. However, both being critical for intestinal homeostasis and immune response, no studies examined the role of butyrate in the regulation of TLR5 expression. We showed that butyrate transcriptionally upregulates TLR5 in the IECs and augments flagellin-induced immune responses. Both basal and butyrate-induced transcription is regulated by differential binding of Sp-family transcription factors to the GC-box sequences over the TLR5 promoter. Butyrate activates two different protein kinase C isoforms to dephosphorylate/acetylate Sp1 by serine/threonine phosphatases and phosphorylate Sp3 by ERK-MAPK, respectively. This resulted in Sp1 displacement from the promoter and binding of Sp3 to it, leading to p300 recruitment and histone acetylation, activating transcription. This is the first study addressing the mechanisms of physiological TLR5 expression in the intestine. Additionally, a novel insight is gained into Sp1/Sp3-mediated gene regulation that may apply to other genes.
Collapse
Affiliation(s)
- Bhupesh Kumar Thakur
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Nirmalya Dasgupta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Atri Ta
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| | - Santasabuj Das
- Division of Clinical Medicine, National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India
| |
Collapse
|
20
|
Parathyroid hormone inhibition of Na+/H+ exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression. Biochem Biophys Res Commun 2015; 461:582-8. [DOI: 10.1016/j.bbrc.2015.04.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/07/2015] [Indexed: 11/18/2022]
|
21
|
Zinc finger independent genome-wide binding of Sp2 potentiates recruitment of histone-fold protein Nf-y distinguishing it from Sp1 and Sp3. PLoS Genet 2015; 11:e1005102. [PMID: 25793500 PMCID: PMC4368557 DOI: 10.1371/journal.pgen.1005102] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/25/2015] [Indexed: 11/19/2022] Open
Abstract
Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. A major question in eukaryotic gene regulation is how transcription factors with similar structural features elicit specific biological responses. We used the three transcription factors Sp1, Sp2 and Sp3 as a paradigm for investigating this question. All three proteins are ubiquitously expressed, and they share glutamine-rich domains as well as a conserved bona fide zinc finger DNA binding domain. Yet, each of the three proteins carries out unique functions in vivo, and each is absolutely essential for mouse development. By genome-wide binding analysis, we found that Sp1 and Sp3 on the one hand, and Sp2 on the other hand engage completely different protein domains for their genomic binding site selection. Most strikingly, the zinc finger domain of Sp2 is dispensable for recruitment to its target sites in vivo. Moreover, we provide strong evidence that the histone-fold protein Nf-y is necessary for recruitment of Sp2. Conversely, Sp2 potentiates Nf-y binding showing that binding of Sp2 and Nf-y to shared sites is mutually dependent. Our findings uncover an unexpected mechanistic diversity in promoter recognition by seemingly similar transcription factors. This work has broader implications for our understanding of how members of other multi-protein transcription factor families could achieve specificity.
Collapse
|
22
|
Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG. Histone hyperacetylation up-regulates protein kinase Cδ in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 2014; 289:34743-67. [PMID: 25342743 DOI: 10.1074/jbc.m114.576702] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oxidative stress-sensitive protein kinase Cδ (PKCδ) has been implicated in dopaminergic neuronal cell death. However, little is known about the epigenetic mechanisms regulating PKCδ expression in neurons. Here, we report a novel mechanism by which the PKCδ gene can be regulated by histone acetylation. Treatment with histone deacetylase (HDAC) inhibitor sodium butyrate (NaBu) induced PKCδ expression in cultured neurons, brain slices, and animal models. Several other HDAC inhibitors also mimicked NaBu. The chromatin immunoprecipitation analysis revealed that hyperacetylation of histone H4 by NaBu is associated with the PKCδ promoter. Deletion analysis of the PKCδ promoter mapped the NaBu-responsive element to an 81-bp minimal promoter region. Detailed mutagenesis studies within this region revealed that four GC boxes conferred hyperacetylation-induced PKCδ promoter activation. Cotransfection experiments and Sp inhibitor studies demonstrated that Sp1, Sp3, and Sp4 regulated NaBu-induced PKCδ up-regulation. However, NaBu did not alter the DNA binding activities of Sp proteins or their expression. Interestingly, a one-hybrid analysis revealed that NaBu enhanced transcriptional activity of Sp1/Sp3. Overexpression of the p300/cAMP-response element-binding protein-binding protein (CBP) potentiated the NaBu-mediated transactivation potential of Sp1/Sp3, but expressing several HDACs attenuated this effect, suggesting that p300/CBP and HDACs act as coactivators or corepressors in histone acetylation-induced PKCδ up-regulation. Finally, using genetic and pharmacological approaches, we showed that NaBu up-regulation of PKCδ sensitizes neurons to cell death in a human dopaminergic cell model and brain slice cultures. Together, these results indicate that histone acetylation regulates PKCδ expression to augment nigrostriatal dopaminergic cell death, which could contribute to the progressive neuropathogenesis of Parkinson disease.
Collapse
Affiliation(s)
- Huajun Jin
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Arthi Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Dilshan S Harischandra
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Naveen Kondru
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Anamitra Ghosh
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Nikhil Panicker
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Vellareddy Anantharam
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011
| | - Ajay Rana
- the Department of Molecular Pharmacology and Therapeutics, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, and the Hines Veterans Affairs Medical Center, Hines, Illinois 60141
| | - Anumantha G Kanthasamy
- From the Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, Iowa 50011,
| |
Collapse
|
23
|
Lafleur VN, Richard S, Richard DE. Transcriptional repression of hypoxia-inducible factor-1 (HIF-1) by the protein arginine methyltransferase PRMT1. Mol Biol Cell 2014; 25:925-35. [PMID: 24451260 PMCID: PMC3952860 DOI: 10.1091/mbc.e13-07-0423] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxia-inducible factors (HIF) are essential for the adaptive response of cells to low-oxygen conditions. Transcription of HIF-α subunits and HIF activity are repressed by the arginine methyltransferase PRMT1. Therefore PRMT1 is a novel regulator of hypoxic cell responses. Hypoxia-inducible factors (HIF-1 and HIF-2) are essential mediators for the adaptive transcriptional response of cells and tissues to low-oxygen conditions. Under hypoxia or when cells are treated with various nonhypoxic stimuli, the active HIF-α subunits are mainly regulated through increased protein stabilization. For HIF-1α, it is clear that further transcriptional, translational, and posttranslational regulations are important for complete HIF-1 activity. Novel evidence links hypoxia and HIF-1 to arginine methylation, an important protein modification. These studies suggest that arginine methyltransferases may be important for hypoxic responses. Protein arginine methyltransferase 1 (PRMT1), the predominant arginine methyltransferase, can act as a transcriptional activator or repressor by modifying a diverse set of substrates. In this work, we show that PRMT1 is a repressor of both HIF-1 and HIF-2. The cellular depletion of PRMT1 by small interference RNA targeting leads to increased HIF transcriptional activity. This activation is the result of enhanced HIF-α subunit transcription, which allows increased HIF-α subunit availability. We provide evidence that PRMT1-dependent HIF-1α regulation is mediated through the activities of both specificity protein 1 (Sp1) and Sp3, two transcription factors known to control HIF-1α expression. This study therefore identifies PRMT1 as a novel regulator of HIF-1– and HIF-2–mediated responses.
Collapse
Affiliation(s)
- Véronique N Lafleur
- Centre de Recherche du CHU de Québec, L'Hôtel-Dieu de Québec, and Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Québec, QC G1R 2J6, Canada Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, and Departments of Oncology and Medicine, McGill University, Montréal, QC H3G 1Y6, Canada
| | | | | |
Collapse
|
24
|
Hekmatnejad B, Gauthier C, St-Arnaud R. Control of Fiat (factor inhibiting ATF4-mediated transcription) expression by Sp family transcription factors in osteoblasts. J Cell Biochem 2013; 114:1863-70. [PMID: 23463631 DOI: 10.1002/jcb.24528] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Accepted: 02/21/2013] [Indexed: 12/16/2022]
Abstract
FIAT (factor inhibiting ATF4-mediated transcription) represses Osteocalcin gene transcription and inhibits osteoblast activity by heterodimerizing with ATF4 to prevent it from binding DNA. It thus appears important to identify and characterize the molecular mechanisms that control Fiat gene expression in osteoblasts. In silico sequence analysis identified a canonical GC-box within a 1,400 bp region of the proximal Fiat gene promoter. Electrophoretic mobility shift assays (EMSA) with MC3T3-E1 osteoblastic cells nuclear extracts indicated that the transcription factors Sp1 and Sp3, but not Sp7/OSTERIX, bound this proximal GC-box. Chromatin immunoprecipitation confirmed interaction of the two transcription factors with the Fiat promoter GC-element in living osteoblasts. Transient transfection studies showed that Sp1 dose-dependently activated the expression of a Fiat-luciferase reporter construct while both the long or short isoforms of Sp3 dose-dependently inhibited transcription from the Fiat reporter construct. Transfection of an Sp7/OSTERIX expression vector did not affect expression of the Fiat-luciferase reporter. Co-transfection of increasing amounts of the Sp3 expression vector in the context of maximal Sp1-dependent Fiat-luciferase activation led to dose-dependent repression of the expression of the reporter. Using RNA knockdown, we measured a reduction in steady-state Fiat expression when Sp1 was inhibited, and a reciprocal increase upon Sp3 knockdown. In parallel, treatment of osteoblasts with WP631, which prevents Sp1/DNA interactions, strongly inhibited the expression of Fiat and reduced the occupancy of the Fiat promoter proximal GC-box by Sp1. Taken together, our results suggest an interplay between Sp1 and Sp3 as a mechanism involved in the control of Fiat gene expression in osteoblasts.
Collapse
Affiliation(s)
- Bahareh Hekmatnejad
- Genetics Unit, Shriners Hospitals for Children-Canada, Montreal, Quebec, Canada H3G 1A6
| | | | | |
Collapse
|
25
|
Carver BJ, Plosa EJ, Stinnett AM, Blackwell TS, Prince LS. Interactions between NF-κB and SP3 connect inflammatory signaling with reduced FGF-10 expression. J Biol Chem 2013; 288:15318-25. [PMID: 23558680 DOI: 10.1074/jbc.m112.447318] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation inhibits normal lung morphogenesis in preterm infants. Soluble inflammatory mediators present in the lungs of patients developing bronchopulmonary dysplasia disrupt expression of multiple genes critical for development. However, the mechanisms linking innate immune signaling and developmental programs are not clear. NF-κB activation inhibits expression of the critical morphogen FGF-10. Here, we show that interactions between the RELA subunit of NF-κB and SP3 suppress SP1-mediated FGF-10 expression. SP3 co-expression reduced SP1-mediated Fgf-10 promoter activity, suggesting antagonistic interactions between SP1 and SP3. Chromatin immunoprecipitation of LPS-treated primary mouse fetal lung mesenchymal cells detected increased interactions between SP3, RELA, and the Fgf-10 promoter. Expression of a constitutively active IκB kinase β mutant not only decreased Fgf-10 promoter activity but also increased RELA-SP3 nuclear interactions. Expression of a dominant-negative IκB, which blocks NF-κB nuclear translocation, prevented inhibition of FGF-10 by SP3. The inhibitory functions of SP3 required sequences located in the N-terminal region of the protein. These data suggested that inhibition of FGF-10 by inflammatory signaling involves the NF-κB-dependent interactions between RELA, SP3, and the Fgf-10 promoter. NF-κB activation may therefore lead to reduced gene expression by recruiting inhibitory factors to specific gene promoters following exposure to inflammatory stimuli.
Collapse
Affiliation(s)
- Billy J Carver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | | | | | |
Collapse
|
26
|
Kasaai B, Gaumond MH, Moffatt P. Regulation of the bone-restricted IFITM-like (Bril) gene transcription by Sp and Gli family members and CpG methylation. J Biol Chem 2013; 288:13278-94. [PMID: 23530031 DOI: 10.1074/jbc.m113.457010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND BRIL is a bone-specific membrane protein that is involved in osteogenesis imperfecta type V. RESULTS Bril transcription is activated by Sp1, Sp3, OSX, and GLI2 and by CpG demethylation. CONCLUSION Regulation of Bril involves trans-acting factors integrating at conserved promoter elements and epigenetic modifications. SIGNIFICANCE Identification of the mechanisms governing Bril transcription is important to understand its role in skeletal biology. Bril encodes a small membrane protein present in osteoblasts. In humans, a single recurrent mutation in the 5'-UTR of BRIL causes osteogenesis imperfecta type V. The exact function of BRIL and the mechanism by which it contributes to disease are still unknown. The goal of the current study was to characterize the mechanisms governing Bril transcription in humans, rats, and mice. In the three species, as detected by luciferase reporter assays in UMR106 cells, we found that most of the base-line regulatory activity was localized within ∼250 bp upstream of the coding ATG. Co-transfection experiments indicated that Sp1 and Sp3 were potent inducers of the promoter activity, through the binding of several GC-rich boxes. Osterix was a weak activator but acted cooperatively with Sp1 and GLI2 to synergistically induce the BRIL promoter. GLI2, a mediator of hedgehog signaling pathway, was also a potent activator of BRIL through a single GLI binding site. Correspondingly, agonists of the hedgehog pathway (purmorphamine and Indian hedgehog) in MC3T3 osteoblasts led to increased BRIL levels. The BRIL promoter activity was also found to be negatively modulated through two different mechanisms. First, the ZFP354C zinc finger protein repressed basal and Sp1-induced activity. Second, CpG methylation of the promoter region correlated with an inactive state and prevented Sp1 activation. The data provide the very first analyses of the cis- and trans-acting factors regulating Bril transcription. They revealed key roles for the Sp members and GLI2 that possibly cooperate to activate Bril when the promoter becomes demethylated.
Collapse
Affiliation(s)
- Bahar Kasaai
- Shriners Hospital for Children, Montreal, Quebec H3G 1A6, Canada
| | | | | |
Collapse
|
27
|
Abstract
A major challenge in nuclear organization is the packaging of DNA into dynamic chromatin structures that can respond to changes in the transcriptional requirements of the cell. Posttranslational protein modifications, of histones and other chromatin-associated factors, are essential regulators of chromatin dynamics. In this Review, we summarize studies demonstrating that posttranslational modification of proteins by small ubiquitin-related modifiers (SUMOs) regulates chromatin structure and function at multiple levels and through a variety of mechanisms to influence gene expression and maintain genome integrity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | | |
Collapse
|
28
|
Kajita Y, Kato T, Tamaki S, Furu M, Takahashi R, Nagayama S, Aoyama T, Nishiyama H, Nakamura E, Katagiri T, Nakamura Y, Ogawa O, Toguchida J. The transcription factor Sp3 regulates the expression of a metastasis-related marker of sarcoma, actin filament-associated protein 1-like 1 (AFAP1L1). PLoS One 2013; 8:e49709. [PMID: 23326307 PMCID: PMC3541374 DOI: 10.1371/journal.pone.0049709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/12/2012] [Indexed: 11/19/2022] Open
Abstract
We previously identified actin filament-associated protein 1-like 1 (AFAP1L1) as a metastasis-predicting marker from the gene-expression profiles of 65 spindle cell sarcomas, and demonstrated the up-regulation of AFAP1L1 expression to be an independent risk factor for distant metastasis in multivariate analyses. Little is known, however, about how the expression of AFAP1L1 is regulated. Luciferase reporter assays showed tandem binding motives of a specificity protein (Sp) located at −85 to −75 relative to the transcriptional start site to be essential to the promoter activity. Overexpression of Sp1 and Sp3 proteins transactivated the proximal AFAP1L1 promoter construct, and electrophoretic mobility shift assays showed that both Sp1 and Sp3 were able to bind to this region in vitro. Chromatin immunoprecipitation experiments, however, revealed that Sp3 is the major factor binding to the proximal promoter region of the AFAP1L1 gene in AFAP1L1- positive cells. Treatment with mithramycin A, an inhibitor of proteins binding to GC-rich regions, prevented Sp3 from binding to the proximal promoter region of AFAP1L1 and decreased its expression in a dose-dependent manner. Finally, knocking down Sp3 using small inhibitory RNA duplex (siRNA) reduced AFAP1L1 expression significantly, which was partially restored by expressing siRNA-resistant Sp3. These findings indicate a novel role for Sp3 in sarcomas as a driver for expression of the metastasis-related gene AFAP1L1.
Collapse
Affiliation(s)
- Yoichiro Kajita
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohisa Kato
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Sakura Tamaki
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Moritoshi Furu
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryo Takahashi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoshi Nagayama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoki Aoyama
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Hiroyuki Nishiyama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eijiro Nakamura
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toyomasa Katagiri
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Nakamura
- Laboratory of Molecular Medicine, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Toguchida
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
29
|
Gromnicova R, Romero I, Male D. Transcriptional control of the multi-drug transporter ABCB1 by transcription factor Sp3 in different human tissues. PLoS One 2012; 7:e48189. [PMID: 23133566 PMCID: PMC3485001 DOI: 10.1371/journal.pone.0048189] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter ABCB1, encoded by the multidrug resistance gene MDR1, is expressed on brain microvascular endothelium and several types of epithelium, but not on endothelia outside the CNS. It is an essential component of the blood-brain barrier. The aim of this study was to identify cell-specific controls on the transcription of MDR1 in human brain endothelium. Reporter assays identified a region of 500 bp around the transcription start site that was optimally active in brain endothelium. Chromatin immunoprecipitation identified Sp3 and TFIID associated with this region and EMSA (electrophoretic mobility shift assays) confirmed that Sp3 binds preferentially to an Sp-target site (GC-box) on the MDR1 promoter in brain endothelium. This result contrasts with findings in other cell types and with the colon carcinoma line Caco-2, in which Sp1 preferentially associates with the MDR1 promoter. Differences in MDR1 transcriptional control between brain endothelium and Caco-2 could not be explained by the relative abundance of Sp1:Sp3 nor by the ratio of Sp3 variants, because activating variants of Sp3 were present in both cell types. However differential binding of other transcription factors was also detected in two additional upstream regions of the MDR1 promoter. Identification of cell-specific controls on the transcription of MDR1 indicates that it may be possible to modulate multi-drug resistance on tumours, while leaving the blood brain barrier intact.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Blood-Brain Barrier
- Caco-2 Cells
- Cell Line, Tumor
- Cell Separation
- Endothelial Cells/cytology
- Endothelium, Vascular/cytology
- Flow Cytometry
- Gene Expression Regulation
- Humans
- Immunohistochemistry/methods
- Microscopy, Fluorescence/methods
- Promoter Regions, Genetic
- Protein Binding
- Sp3 Transcription Factor/metabolism
- Transcription Factor TFIID/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- Radka Gromnicova
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Bucks, United Kingdom
| | - Ignacio Romero
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Bucks, United Kingdom
| | - David Male
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, Bucks, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Liu J, Wang X, Cai Y, Zhou J, Guleng B, Shi H, Ren J. The regulation of trefoil factor 2 expression by the transcription factor Sp3. Biochem Biophys Res Commun 2012; 427:410-4. [DOI: 10.1016/j.bbrc.2012.09.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 11/28/2022]
|
31
|
Lu HP, Li J, Mo WJ, Feng ZB. RNAi-mediated down-regulation of Sp3 gene expression inhibits proliferation of HepG2 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2595-2600. [DOI: 10.11569/wcjd.v20.i27.2595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of RNA interference (RNAi)-mediated gene silencing of specificity protein 3 (Sp3) on the proliferation of human hepatocellular carcinoma HepG2 cells.
METHODS: HepG2 cells were infected with a lentivirus expressing Sp3-siRNA, and the expression of Sp3 mRNA and protein was determined by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and Western blot and immunohistochemistry. Cell growth was evaluated by methyl thiazolyl tetrazolium (MTT) assay, and cell cycle progression was analyzed by flow cytometry.
RESULTS: Compared to control cells, the expression levels of Sp3 mRNA and protein were significantly lower in HepG2 cells transfected with the Sp3-siRNA (mRNA: 0.47 ± 0.05 vs 0.74 ± 0.08, 0.70 ± 0.16, F = 7.322, all P < 0.05; protein: 0.37 ± 0.08vs 0.83 ± 0.17, 0.66 ± 0.13, F = 8.442, all P < 0.05). MTT assay showed that the growth of cells transfected with the Sp3-siRNA was slower at 48 , 72 and 96 h (0.28 ± 0.18 vs 0.34 ± 0.19, 0.35 ± 0.07, F = 3.888; 0.57 ± 0.11 vs 0.84 ± 0.05, 0.74 ± 0.08, F = 12.721; 0.72 ± 18.1 vs 0.98 ± 0.05, 0.93 ± 0.9, F = 6.342, all P < 0.05). Flow cytometry analysis showed that the percentage of cells in G1 phase increased in cells transfected with the Sp3-siRNA.
CONCLUSION: Sp3 may play an important role in the growth of human hepatic cancer cells, and RNAi-induced Sp3 down-regulation could inhibit the growth of HepG2 cells in vitro.
Collapse
|
32
|
Jiang Y, Fleet JC. Phorbol esters enhance 1α,25-dihydroxyvitamin D3-regulated 25-hydroxyvitamin D-24-hydroxylase (CYP24A1) gene expression through ERK-mediated phosphorylation of specific protein 3 (Sp3) in Caco-2 cells. Mol Cell Endocrinol 2012; 361:31-9. [PMID: 22871965 PMCID: PMC3414851 DOI: 10.1016/j.mce.2012.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 02/15/2012] [Accepted: 03/14/2012] [Indexed: 01/20/2023]
Abstract
Phorbol 12-myristate 13-acetate (PMA) increased 1,25(OH)(2)D(3)-induced human 25 hydroxyvitamin d-24 hydroxylase (hCYP24A1) gene expression and vitamin D receptor (VDR) binding to the hCYP24A1 promoter. It did not alter transient receptor potential cation channel, subfamily V, member 6 (TRPV6) expression, VDR binding to the TRPV6 promoter, or VDR binding to a crude chromatin preparation. PMA activated Extracellular signal-Regulated Kinases (ERK) 1/2 and p38 mitogen activated protein kinases (MAPK) and inhibiting these kinases reduced 1,25(OH)(2)D(3)-induced and PMA-enhanced hCYP24A1 promoter activity. Mithramycin A inhibits Specific Protein (Sp) family member binding to DNA and reduced 1,25(OH)(2)D(3)-induced and PMA-enhanced hCYP24A1 promoter activity. Sp1 or Sp3 siRNA knockdown reduced 1,25(OH)(2)D(3)-regulated hCYP24A1 promoter activity but only Sp3 siRNA reduced PMA-enhanced hCYP24A1 promoter activity. PMA increased MAPK-dependent Sp3 phosphorylation, Sp3-VDR interactions, and Sp3 binding to the hCYP24A1 promoter. These data suggest that MAPK signaling contributes to 1,25(OH)(2)D(3)-induced and PMA-enhanced CYP24A1 gene transcription by modulating Sp3 function.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907-2059, United States.
| | | |
Collapse
|
33
|
Fritsch C, Herrmann A, Nothnagel M, Szafranski K, Huse K, Schumann F, Schreiber S, Platzer M, Krawczak M, Hampe J, Brosch M. Genome-wide search for novel human uORFs and N-terminal protein extensions using ribosomal footprinting. Genome Res 2012; 22:2208-18. [PMID: 22879431 PMCID: PMC3483550 DOI: 10.1101/gr.139568.112] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
So far, the annotation of translation initiation sites (TISs) has been based mostly upon bioinformatics rather than experimental evidence. We adapted ribosomal footprinting to puromycin-treated cells to generate a transcriptome-wide map of TISs in a human monocytic cell line. A neural network was trained on the ribosomal footprints observed at previously annotated AUG translation initiation codons (TICs), and used for the ab initio prediction of TISs in 5062 transcripts with sufficient sequence coverage. Functional interpretation suggested 2994 novel upstream open reading frames (uORFs) in the 5′ UTR, 1406 uORFs overlapping with the coding sequence, and 546 N-terminal protein extensions. The TIS detection method was validated on the basis of previously published alternative TISs and uORFs. Among primates, TICs in newly annotated TISs were significantly more conserved than control codons, both for AUGs and near-cognate codons. The transcriptome-wide map of novel candidate TISs derived as part of the study will shed further light on the way in which human proteome diversity is influenced by alternative translation initiation and regulation.
Collapse
Affiliation(s)
- Claudia Fritsch
- Department of Internal Medicine I, University Hospital Schleswig Holstein, 24105 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Negoro H, Kanematsu A, Doi M, Suadicani SO, Matsuo M, Imamura M, Okinami T, Nishikawa N, Oura T, Matsui S, Seo K, Tainaka M, Urabe S, Kiyokage E, Todo T, Okamura H, Tabata Y, Ogawa O. Involvement of urinary bladder Connexin43 and the circadian clock in coordination of diurnal micturition rhythm. Nat Commun 2012; 3:809. [PMID: 22549838 PMCID: PMC3541943 DOI: 10.1038/ncomms1812] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/30/2012] [Indexed: 01/27/2023] Open
Abstract
Nocturnal enuresis in children and nocturia in the elderly are two highly prevalent clinical conditions characterized by a mismatch between urine production rate in the kidneys and storage in the urinary bladder during the sleep phase. Here we demonstrate, using a novel method for automated recording of mouse micturition, that connexin43 (Cx43), a bladder gap junction protein, is a negative regulator of functional bladder capacity. Bladder Cx43 levels and functional capacity show circadian oscillations in wild-type mice, but such rhythms are completely lost in Cry-null mice having a dysfunctional biological clock. Bladder muscle cells have an internal clock, and show oscillations of Cx43 and gap junction function. A clock regulator, Rev-erbα, upregulates Cx43 transcription as a co-factor of Sp1 using Sp1 cis-elements of the promoter. Therefore, circadianoscillation of Cx43 is associated with the biological clock and contributes to diurnal changes in bladder capacity, which avoids disturbance of sleep by micturition.
Collapse
Affiliation(s)
- Hiromitsu Negoro
- Department of Urology, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Infantino V, Convertini P, Iacobazzi F, Pisano I, Scarcia P, Iacobazzi V. Identification of a novel Sp1 splice variant as a strong transcriptional activator. Biochem Biophys Res Commun 2011; 412:86-91. [PMID: 21798247 DOI: 10.1016/j.bbrc.2011.07.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 02/03/2023]
Abstract
The transcription factor Sp1 regulates expression of numerous genes involved in many cellular processes. Different post-transcriptional modifications can influence the transcriptional control activity and stability of Sp1. In addition to these modifications, alternative splicing isoforms may also be the basis of its distinct functional activities. In this study, we identified a novel alternative splice isoform of Sp1 named Sp1c. This variant is generated by exclusion of a short domain, which we designate α, through alternative splice acceptor site usage in the exon 3. The existence of this new isoform was confirmed in vivo by Western blotting analysis. Although at very low levels, Sp1c is ubiquitously expressed, as seen in its full-length Sp1. A preliminary characterization of Sp1c shows that: (a) Sp1c works as stronger activator of transcription than full-length Sp1; (b) percentage of HEK293 Sp1c-overexpressing cells is higher in G1 phase and lower in S phase than percentage of HEK293 Sp1-overexpressing cells.
Collapse
Affiliation(s)
- Vittoria Infantino
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Bari, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Chu C, Zavala K, Fahimi A, Lee J, Xue Q, Eilers H, Schumacher MA. Transcription factors Sp1 and Sp4 regulate TRPV1 gene expression in rat sensory neurons. Mol Pain 2011; 7:44. [PMID: 21645329 PMCID: PMC3121596 DOI: 10.1186/1744-8069-7-44] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Accepted: 06/06/2011] [Indexed: 11/10/2022] Open
Abstract
Background The capsaicin receptor, transient receptor potential vanilloid type -1 (TRPV1) directs complex roles in signal transduction including the detection of noxious stimuli arising from cellular injury and inflammation. Under pathophysiologic conditions, TRPV1 mRNA and receptor protein expression are elevated in dorsal root ganglion (DRG) neurons for weeks to months and is associated with hyperalgesia. Building on our previous isolation of a promoter system for the rat TRPV1 gene, we investigated the proximal TRPV1 P2-promoter by first identifying candidate Sp1-like transcription factors bound in vivo to the P2-promoter using chromatin immunoprecipitation (ChIP) assay. We then performed deletion analysis of GC-box binding sites, and quantified promoter activity under conditions of Sp1 / Sp4 over-expression versus inhibition/knockdown. mRNA encoding Sp1, Sp4 and TRPV1 were quantified by qRT-PCR under conditions of Sp1/Sp4 over-expression or siRNA mediated knockdown in cultured DRG neurons. Results Using ChIP analysis of DRG tissue, we demonstrated that Sp1 and Sp4 are bound to the candidate GC-box site region within the endogenous TRPV1 P2-promoter. Deletion of GC-box "a" or "a + b" within the P2- promoter resulted in a complete loss of transcriptional activity indicating that GC-box "a" was the critical site for promoter activation. Co-transfection of Sp1 increased P2-promoter activity in cultured DRG neurons whereas mithramycin-a, an inhibitor of Sp1-like function, dose dependently blocked NGF and Sp1-dependent promoter activity in PC12 cells. Co-transfection of siRNA directed against Sp1 or Sp4 decreased promoter activity in DRG neurons and NGF treated PC12 cells. Finally, electroporation of Sp1 or Sp4 cDNA into cultures of DRG neurons directed an increase in Sp1/Sp4 mRNA and importantly an increase in TRPV1 mRNA. Conversely, combined si-RNA directed knockdown of Sp1/Sp4 resulted in a decrease in TRPV1 mRNA. Conclusion Based on these studies, we now propose a model of TRPV1 expression that is dependent on Sp1-like transcription factors with Sp4 playing a predominant role in activating TRPV1 RNA transcription in DRG neurons. Given that increases of TRPV1 expression have been implicated in a wide range of pathophysiologic states including persistent painful conditions, blockade of Sp1-like transcription factors represents a novel direction in therapeutic strategies.
Collapse
Affiliation(s)
- Catherine Chu
- University of California, San Francisco Department of Anesthesia and Perioperative Care 513 Parnassus Ave, Rm, S436, University of California, San Francisco 94143-0427, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jin H, Kanthasamy A, Anantharam V, Rana A, Kanthasamy AG. Transcriptional regulation of pro-apoptotic protein kinase Cdelta: implications for oxidative stress-induced neuronal cell death. J Biol Chem 2011; 286:19840-59. [PMID: 21467032 DOI: 10.1074/jbc.m110.203687] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We previously demonstrated that protein kinase Cδ (PKCδ; PKC delta) is an oxidative stress-sensitive kinase that plays a causal role in apoptotic cell death in neuronal cells. Although PKCδ activation has been extensively studied, relatively little is known about the molecular mechanisms controlling PKCδ expression. To characterize the regulation of PKCδ expression, we cloned an ∼2-kbp 5'-promoter segment of the mouse Prkcd gene. Deletion analysis indicated that the noncoding exon 1 region contained multiple Sp sites, including four GC boxes and one CACCC box, which directed the highest levels of transcription in neuronal cells. In addition, an upstream regulatory region containing adjacent repressive and anti-repressive elements with opposing regulatory activities was identified within the region -712 to -560. Detailed mutagenesis studies revealed that each Sp site made a positive contribution to PKCδ promoter expression. Overexpression of Sp family proteins markedly stimulated PKCδ promoter activity without any synergistic transactivating effect. Furthermore, experiments in Sp-deficient SL2 cells indicated long isoform Sp3 as the essential activator of PKCδ transcription. Importantly, both PKCδ promoter activity and endogenous PKCδ expression in NIE115 cells and primary striatal cultures were inhibited by mithramycin A. The results from chromatin immunoprecipitation and gel shift assays further confirmed the functional binding of Sp proteins to the PKCδ promoter. Additionally, we demonstrated that overexpression of p300 or CREB-binding protein increases the PKCδ promoter activity. This stimulatory effect requires intact Sp-binding sites and is independent of p300 histone acetyltransferase activity. Finally, modulation of Sp transcriptional activity or protein level profoundly altered the cell death induced by oxidative insult, demonstrating the functional significance of Sp-dependent PKCδ gene expression. Collectively, our findings may have implications for development of new translational strategies against oxidative damage.
Collapse
Affiliation(s)
- Huajun Jin
- Parkinson's Disorder Research Laboratory, Iowa Center for Advanced Neurotoxicology, Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| | | | | | | | | |
Collapse
|
38
|
Stielow B, Krüger I, Diezko R, Finkernagel F, Gillemans N, Kong-a-San J, Philipsen S, Suske G. Epigenetic silencing of spermatocyte-specific and neuronal genes by SUMO modification of the transcription factor Sp3. PLoS Genet 2010; 6:e1001203. [PMID: 21085687 PMCID: PMC2978682 DOI: 10.1371/journal.pgen.1001203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/11/2010] [Indexed: 11/18/2022] Open
Abstract
SUMO modification of transcription factors is linked to repression of transcription. The physiological significance of SUMO attachment to a particular transcriptional regulator, however, is largely unknown. We have employed the ubiquitously expressed murine transcription factor Sp3 to analyze the role of SUMOylation in vivo. We generated mice and mouse embryonic fibroblasts (MEFs) carrying a subtle point mutation in the SUMO attachment sequence of Sp3 (IKEE553D mutation). The E553D mutation impedes SUMOylation of Sp3 at K551in vivo, without affecting Sp3 protein levels. Expression profiling revealed that spermatocyte-specific genes, such as Dmc1 and Dnahc8, and neuronal genes, including Paqr6, Rims3, and Robo3, are de-repressed in non-testicular and extra-neuronal mouse tissues and in mouse embryonic fibroblasts expressing the SUMOylation-deficient Sp3E553D mutant protein. Chromatin immunoprecipitation experiments show that transcriptional de-repression of these genes is accompanied by the loss of repressive heterochromatic marks such as H3K9 and H4K20 tri-methylation and impaired recruitment of repressive chromatin-modifying enzymes. Finally, analysis of the DNA methylation state of the Dmc1, Paqr6, and Rims3 promoters by bisulfite sequencing revealed that these genes are highly methylated in Sp3wt MEFs but are unmethylated in Sp3E553D MEFs linking SUMOylation of Sp3 to tissue-specific CpG methylation. Our results establish SUMO conjugation to Sp3 as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing. Cell type–specific gene expression patterns are largely regulated by positively or negatively acting transcription factors binding to promoter and enhancer elements. The ubiquitous transcription factor Sp3 represents a paradigm for a dual function transcription factor as it can activate and repress transcription. The repression function of Sp3 is mediated by attachment of a small protein designated SUMO to a single lysine residue. SUMOylation of Sp3 thus acts as a molecular switch that determines whether Sp3 acts as an activator or repressor. In this study, we have generated mice with a subtle mutation in the SUMO attachment site of Sp3. We found that several spermatocyte- and brain-specific genes that are silenced in non-testicular and extra-neuronal tissues of wild-type animals become aberrantly de-repressed in mice in which the SUMO attachment site of Sp3 is mutated. De-repression of these genes is accompanied with dramatic epigenetic changes including the loss of repressive histone methylation marks and, most significantly, loss of DNA methylation. Our findings suggest that SUMO modification of a transcription factor can act as a molecular beacon for the assembly of repression machineries to maintain tissue-specific transcriptional gene silencing in vivo.
Collapse
Affiliation(s)
- Bastian Stielow
- Institute of Molecular Biology and Tumor Research, Philipps-University of Marburg, Marburg, Germany
| | - Imme Krüger
- Institute of Molecular Biology and Tumor Research, Philipps-University of Marburg, Marburg, Germany
| | - Rolf Diezko
- Institute of Molecular Biology and Tumor Research, Philipps-University of Marburg, Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research, Philipps-University of Marburg, Marburg, Germany
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - John Kong-a-San
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Guntram Suske
- Institute of Molecular Biology and Tumor Research, Philipps-University of Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
39
|
Pierce SL, England SK. SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene. Am J Physiol Endocrinol Metab 2010; 299:E640-6. [PMID: 20682843 PMCID: PMC2957868 DOI: 10.1152/ajpendo.00063.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Overexpression of the small-conductance calcium-activated K(+) channel 3 (SK3) in transgenic mice compromises parturition, suggesting that the SK3 channel plays a role in pregnancy. In wild-type mouse myometrium, expression of SK3 transcript and protein is significantly reduced during pregnancy, but the mechanism(s) responsible for this attenuation of channel expression is unknown. The promoter region of the SK3-encoding mouse KCNN3 gene contains two binding sites for specificity protein (Sp) transcription factors, two of which are expressed in the uterus: Sp1, which enhances gene transcription in response to estrogen; and Sp3, which competes for the same binding motif as Sp1 and can repress gene expression. We investigated the hypothesis that Sp1 and Sp3 regulate SK3 channel expression during pregnancy. In mouse myometrium, Sp1 expression was reduced during late gestation, whereas Sp3 expression levels were constant throughout pregnancy. Using a reporter system, we found that Sp1 overexpression resulted in a significant increase in SK3 promoter activation and that Sp3 cotransfection reduced promoter activation to basal levels. These findings indicate that Sp3 outcompetes Sp1 to decrease SK3 transcription. To determine whether high levels of estrogen in vivo can affect the regulation of SK3 protein levels by Sp factors, ovariectomized mice were implanted with a 17β-estradiol or placebo pellet for 3 wk; estrogen-treated mice had reduced uterine SK3 protein expression compared with placebo-treated counterparts. In human myometrial cells overexpressing Sp1, estrogen treatment stimulated expression of the SK3 transcript. Overall, our findings indicate that Sp1 and Sp3 compete to regulate SK3 channel expression during pregnancy in response to stimulation by estrogen.
Collapse
Affiliation(s)
- Stephanie L Pierce
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
40
|
Li L, Davie JR. The role of Sp1 and Sp3 in normal and cancer cell biology. Ann Anat 2010; 192:275-83. [PMID: 20810260 DOI: 10.1016/j.aanat.2010.07.010] [Citation(s) in RCA: 448] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
Abstract
Sp1 and Sp3 are transcription factors expressed in all mammalian cells. These factors are involved in regulating the transcriptional activity of genes implicated in most cellular processes. Dysregulation of Sp1 and Sp3 is observed in many cancers and diseases. Due to the amino acid sequence similarity of the DNA binding domains, Sp1 and Sp3 recognize and associate with the same DNA element with similar affinity. However, others and our laboratory demonstrated that these two factors possess different properties and exert different functional roles. Both Sp1 and Sp3 can interact with and recruit a large number of proteins including the transcription initiation complex, histone modifying enzymes and chromatin remodeling complexes, which strongly suggest that Sp1 and Sp3 are important transcription factors in the remodeling chromatin and the regulation of gene expression. In this review, the role of Sp1 and Sp3 in normal and cancer cell biology and the multiple mechanisms deciding the functional roles of Sp1 and Sp3 will be presented.
Collapse
Affiliation(s)
- Lin Li
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Manitoba R3E 0V9, Canada
| | | |
Collapse
|
41
|
Abstract
MMP-28 (epilysin) is a recently cloned member of the MMP (matrix metalloproteinase) family. It is highly expressed in the skin by keratinocytes, the developing and regenerating nervous system and a number of other normal human tissues, as well as a number of carcinomas. The MMP28 promoter has previously been cloned and characterized identifying a conserved GT-box that binds Sp1/Sp3 (specificity proteins 1 and 3) proteins and is essential for the basal expression of the gene. The present study demonstrates that MMP28 expression is induced by HDAC (histone deacetylase) inhibitors and that this effect is mediated through the GT-box. Transient transfection assays have shown that the induction of MMP28 expression by the HDAC inhibitior TSA (trichostatin A) is mediated via Sp1 at the GT-box. Immunoprecipitation experiments have shown that the acetylation of Sp1 and Sp3 is increased by TSA treatment; however, no effect on DNA binding was observed. Histone acetyltransferases such as p300 and P/CAF [p300/CREB (cAMP-response-element-binding protein)-binding protein-associated factor] increased induction of the MMP28 promoter by Sp1. Knockdown of HDAC1 using siRNA (small interfering RNA) also induces the MMP28 promoter. Oligonucleotide pulldown identified STRAP (serine/threonine kinase receptor-associated protein) as a further protein recruited to the MMP28 promoter and acting functionally with Sp1.
Collapse
|
42
|
Essafi-Benkhadir K, Grosso S, Puissant A, Robert G, Essafi M, Deckert M, Chamorey E, Dassonville O, Milano G, Auberger P, Pagès G. Dual role of Sp3 transcription factor as an inducer of apoptosis and a marker of tumour aggressiveness. PLoS One 2009; 4:e4478. [PMID: 19212434 PMCID: PMC2636865 DOI: 10.1371/journal.pone.0004478] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/08/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The ambiguous role of transcription factor Sp3 for tumour progression is still debated since it was described as a transcriptional repressor or activator. Here we tried to decipher the molecular mechanisms implicated in Sp3 accumulation observed in aggressive tumours. METHODOLOGY We generated normal and tumour cell lines conditionally expressing Sp3. Cell growth was analyzed in vitro and after inoculation in nude mice. Apoptosis was assessed by pan- caspase activity assays, by counting fragmented nuclei and by determination of caspase 9 cleavage. Gene expression was determined by quantitative PCR. Cleavage by different caspases was performed after in vitro translation of the Sp3 cDNA in the presence of [S(35)] labelled methionine. Different tumour cell lines and head and neck tumour samples were tested for the presence of Sp3 by western blots. Correlation between Sp3 expression and overall survival has been statistically determined. PRINCIPAL FINDINGS Conditional over-expression of Sp3 induces apoptosis and modifies expression of genes implicated in the regulation of cell cycle and pro and anti apoptotic genes. Sp3 over-expression strongly reduces the development of tumours in nude mice confirming its pro-apoptotic potential in vivo. However, cells can survive to apoptosis through selective Sp3 cleavage by caspase. Sp3 induction in established tumours resulted in transient regression then progression. Progression coincides with re-accumulation of the full length form of Sp3. Sp3 is over-expressed in tumour cell lines of different origins. The presence of high levels of the full-length form of Sp3 indicates a poor prognosis for overall survival of patients with head and neck tumours. CONCLUSIONS Full length Sp3 accumulation highlights bypass of tumour cell apoptotic capacities and is indicative of head and neck tumours aggressiveness.
Collapse
Affiliation(s)
- Khadija Essafi-Benkhadir
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research UMR CNRS 6543, Centre Antoine Lacassagne, Nice, France
| | - Sébastien Grosso
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Alexandre Puissant
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Guillaume Robert
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Makram Essafi
- University of Nice-Sophia Antipolis, INSERM, U576, Regulation of immunity and inflammatory reactions, Nice, France
| | - Marcel Deckert
- University of Nice-Sophia Antipolis, INSERM, U576, Regulation of immunity and inflammatory reactions, Nice, France
| | | | | | - Gérard Milano
- Oncopharmacology unit (EA 3836), Centre Antoine Lacassagne, Nice, France
| | - Patrick Auberger
- University of Nice-Sophia Antipolis, INSERM, U895, Cell Death Differentiation and Cancer Team, Equipe labellisée par la Ligue Nationale contre le Cancer, Faculty of Medicine, Nice, France
| | - Gilles Pagès
- University of Nice-Sophia Antipolis, Institute of Developmental Biology and Cancer Research UMR CNRS 6543, Centre Antoine Lacassagne, Nice, France
- * E-mail:
| |
Collapse
|
43
|
Chen X, Yang J, Sung DY, Thompson W, Walker W, Thomas K. Molecular and functional characterization of the murine ldh2 promoter region: Sp-binding GC-box domains are the key cis-elements regulating ldh2 gene expression during spermatogenesis. Mol Cell Endocrinol 2008; 295:10-7. [PMID: 18790003 DOI: 10.1016/j.mce.2008.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 11/16/2022]
Abstract
The goal of the present study was to elucidate the specific transcriptional mechanisms that regulate ldh2 gene expression during the early stages of spermatogenesis. DNA sequence analysis of the 1.0-kb ldh2 promoter region directly upstream of the transcriptional start site indicated the presence of three SP-protein binding GC-box elements and the absence of TATA and CAAT boxes. Functional characterization studies of the mouse ldh2 promoter were performed in the SV40 transformed mouse spermatogonial cell line, GC-1 spg. Transfection/transient expression studies using full-length and truncated ldh2 promoter/luciferase reporter constructs revealed that all three of the SP-binding cis-regulatory GC-box elements are required for optimal ldh2 promoter activity. Additional site-directed mutagenesis studies indicated that the two most proximal GC-box sites play essential regulatory roles in mediating basal ldh2 promoter activity. These studies suggest that the expression of the ldh2 gene in spermatogonia and early spermatocytes are regulated by SP-mediated transcriptional mechanisms.
Collapse
Affiliation(s)
- Xing Chen
- Department of Anatomy and Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | | | | | | | | | | |
Collapse
|
44
|
Li L, Davie JR. Association of Sp3 and estrogen receptor α with the transcriptionally active trefoil factor 1 promoter in MCF-7 breast cancer cells. J Cell Biochem 2008; 105:365-9. [DOI: 10.1002/jcb.21832] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Richer E, Campion CG, Dabbas B, White JH, Cellier MFM. Transcription factors Sp1 and C/EBP regulate NRAMP1 gene expression. FEBS J 2008; 275:5074-89. [PMID: 18786141 DOI: 10.1111/j.1742-4658.2008.06640.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The natural resistance-associated macrophage protein 1 (Nramp1), which belongs to a conserved family of membrane metal transporters, contributes to phagocyte-autonomous antimicrobial defense mechanisms. Genetic polymorphisms in the human NRAMP1 gene predispose to susceptibility to infectious or inflammatory diseases. To characterize the transcriptional mechanisms controlling NRAMP1 expression, we previously showed that a 263 bp region upstream of the ATG drives basal promoter activity, and that a 325 bp region further upstream confers myeloid specificity and activation during differentiation of HL-60 cells induced by vitamin D. Herein, the major transcription start site was mapped in the basal region by S1 protection assay, and two cis-acting elements essential for myeloid transactivation were characterized by in vitro DNase footprinting, electrophoretic mobility shift experiments, in vivo transfection assays using linker-mutated constructs, and chromatin immunoprecipitation assays in differentiated monocytic cells. One distal cis element binds Sp1 and is required for NRAMP1 myeloid regulation. Another site in the proximal region binds CCAAT enhancer binding proteins alpha or beta and is crucial for transcription. This study implicates Sp1 and C/EBP factors in regulating the expression of the NRAMP1 gene in myeloid cells.
Collapse
Affiliation(s)
- Etienne Richer
- Institut national de la recherche scientifique, INRS-Institut Armand-Frappier, Laval, Canada
| | | | | | | | | |
Collapse
|
46
|
Mora-López F, Pedreño-Horrillo N, Delgado-Pérez L, Brieva JA, Campos-Caro A. Transcription of PRDM1, the master regulator for plasma cell differentiation, depends on an SP1/SP3/EGR-1 GC-box. Eur J Immunol 2008; 38:2316-24. [PMID: 18604866 DOI: 10.1002/eji.200737861] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The positive regulatory domain containing 1, encoded by the PRDM1 gene, is a transcriptional repressor considered as a master regulator that is required and sufficient for plasma cell differentiation. In the present study we have performed sequence analysis of the upstream region of the human PRDM1 gene to detect the minimal promoter region necessary for PRDM1 gene transcription. This region comprises the region upstream of the initiation site, as well as the first exon. Collectively, deletion and mutation analysis in conjunction with luciferase reporter assays, EMSA and supershift assays identified a phylogenetically conserved GC-box as an essential element for PRDM1 expression. This GC-box element matches to a binding site for multiple transcription factors such as SP1 and SP3 isoforms as well as early growth response 1. Chromatin immunoprecipitation assays confirmed the in vivo binding capability of these factors to the human PRDM1 promoter. These studies together characterize for the first time the basal activity of the human PRDM1 promoter, through which several factors, including SP1, SP3 and early growth response 1, modulate its expression through a conserved GC-box.
Collapse
|
47
|
SUMO-modified Sp3 represses transcription by provoking local heterochromatic gene silencing. EMBO Rep 2008; 9:899-906. [PMID: 18617891 DOI: 10.1038/embor.2008.127] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 05/30/2008] [Accepted: 06/09/2008] [Indexed: 11/09/2022] Open
Abstract
Modification of many transcription factors including Sp3 and steroidogenic factor 1 with the small ubiquitin-like modifier (SUMO) is associated with transcriptional repression. Here, we show that SUMOylation of transcription factors bound to DNA provokes the establishment of compacted repressive chromatin with characteristics of heterochromatin. Chromatin immunoprecipitation experiments revealed SUMO-dependent recruitment of the chromatin remodeller Mi-2, MBT-domain proteins, heterochromatic protein 1, and the histone methyltransferases SETDB1 and SUV4-20H, concomitant with the establishment of histone modifications associated with repressed genes, including H3K9 and H4K20 trimethylation. These results indicate that SUMOylation has a crucial role in regulating gene expression by initiating chromatin structure changes that render DNA inaccessible to the transcription machinery.
Collapse
|
48
|
Wegrzyn JL, Drudge TM, Valafar F, Hook V. Bioinformatic analyses of mammalian 5'-UTR sequence properties of mRNAs predicts alternative translation initiation sites. BMC Bioinformatics 2008; 9:232. [PMID: 18466625 PMCID: PMC2396638 DOI: 10.1186/1471-2105-9-232] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 05/08/2008] [Indexed: 12/19/2022] Open
Abstract
Background Utilization of alternative initiation sites for protein translation directed by non-AUG codons in mammalian mRNAs is observed with increasing frequency. Alternative initiation sites are utilized for the synthesis of important regulatory proteins that control distinct biological functions. It is, therefore, of high significance to define the parameters that allow accurate bioinformatic prediction of alternative translation initiation sites (aTIS). This study has investigated 5'-UTR regions of mRNAs to define consensus sequence properties and structural features that allow identification of alternative initiation sites for protein translation. Results Bioinformatic evaluation of 5'-UTR sequences of mammalian mRNAs was conducted for classification and identification of alternative translation initiation sites for a group of mRNA sequences that have been experimentally demonstrated to utilize alternative non-AUG initiation sites for protein translation. These are represented by the codons CUG, GUG, UUG, AUA, and ACG for aTIS. The first phase of this bioinformatic analysis implements a classification tree that evaluated 5'-UTRs for unique consensus sequence features near the initiation codon, characteristics of 5'-UTR nucleotide sequences, and secondary structural features in a decision tree that categorizes mRNAs into those with potential aTIS, and those without. The second phase addresses identification of the aTIS codon and its location. Critical parameters of 5'-UTRs were assessed by an Artificial Neural Network (ANN) for identification of the aTIS codon and its location. ANNs have previously been used for the purpose of AUG start site prediction and are applicable in complex. ANN analyses demonstrated that multiple properties were required for predicting aTIS codons; these properties included unique consensus nucleotide sequences at positions -7 and -6 combined with positions -3 and +4, 5'-UTR length, ORF length, predicted secondary structures, free energy features, upstream AUGs, and G/C ratio. Importantly, combined results of the classification tree and the ANN analyses provided highly accurate bioinformatic predictions of alternative translation initiation sites. Conclusion This study has defined the unique properties of 5'-UTR sequences of mRNAs for successful bioinformatic prediction of alternative initiation sites utilized in protein translation. The ability to define aTIS through the described bioinformatic analyses can be of high importance for genomic analyses to provide full predictions of translated mammalian and human gene products required for cellular functions in health and disease.
Collapse
Affiliation(s)
- Jill L Wegrzyn
- Computational Science Research Center, San Diego State University, San Diego, USA.
| | | | | | | |
Collapse
|
49
|
Milagre I, Nunes MJ, Gama MJ, Silva RF, Pascussi JM, Lechner MC, Rodrigues E. Transcriptional regulation of the human CYP46A1 brain-specific expression by Sp transcription factors. J Neurochem 2008; 106:835-49. [PMID: 18445135 DOI: 10.1111/j.1471-4159.2008.05442.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brain defective cholesterol homeostasis has been associated with neurologic diseases, such as Alzheimer's and Huntington's disease. The elimination of cholesterol from the brain involves its conversion into 24(S)-hydroxycholesterol by CYP46A1, and the efflux of this oxysterol across the blood-brain barrier. Herein, we identified the regulatory elements and factors involved the human CYP46A1 expression. Functional 5'deletion analysis mapped a region spanning from nucleotides -236/-64 that is indispensable for basal expression of this TATA-less gene. Treatment of SH-SY5Y cells with mithramycin A resulted in a significant reduction of promoter activity, suggesting a role of Sp family of transcription factors in CYP46A1 regulation. Combination of Sp1, Sp3, and Sp4 over-expression studies in Drosophila SL-2 cells, and systematic promoter mutagenesis identified Sp3 and Sp4 binding to four GC-boxes as required and sufficient for high levels of promoter activity. Moreover, Sp3 and Sp4 were demonstrated to be the major components of the protein-DNA complexes observed in primary rat cortical extracts. Our results suggest that the cell-type specific expression of Sp transcription factors - substitution of Sp1 by Sp4 in neurons - is responsible for the basal expression of the CYP46A1 gene. This study delineates for the first time the mechanisms underlying the human CYP46A1 transcription and thereby elucidates potential pathways underlying cholesterol homeostasis in the brain.
Collapse
Affiliation(s)
- Inês Milagre
- iMed - Institute for Medicines and Research in Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | |
Collapse
|
50
|
Growth-dependent repression of human adenine nucleotide translocator-2 (ANT2) transcription: evidence for the participation of Smad and Sp family proteins in the NF1-dependent repressor complex. Biochem J 2008; 412:123-30. [DOI: 10.1042/bj20071440] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
NF1 (nuclear factor 1) binds to two upstream elements of the human ANT2 (adenine nucleotide translocator-2) promoter and actively represses expression of the gene in growth-arrested diploid skin fibroblasts [Luciakova, Barath, Poliakova, Persson and Nelson (2003) J. Biol. Chem. 278, 30624–30633]. ChIP (chromatin immunoprecipitation) and co-immunoprecipitation analyses of nuclear extracts from growth-arrested and growth-activated diploid cells demonstrate that NF1, when acting as a repressor, is part of a multimeric complex that also includes Smad and Sp-family proteins. This complex appears to be anchored to both the upstream NF1-repressor elements and the proximal promoter, Sp1-dependent activation elements in growth-arrested cells. In growth-activated cells, the repressor complex dissociates and NF1 leaves the promoter. As revealed by co-immunoprecipitation experiments, NF1–Smad4–Sp3 complexes are present in nuclear extracts only from growth-inhibited cells, suggesting that the growth-state-dependent formation of these complexes is not an ANT2 promoter-specific event. Consistent with the role of Smad proteins in the repression complex, TGF-β (transforming growth factor-β) can fully repress ANT2 transcription in normally growing fibroblasts. Finally, pull-down experiments of in vitro transcribed/translated NF1 isoforms by GST (glutathione transferase)–Smad and GST–Smad MH fusion proteins indicate direct physical interactions between members of the two families. These findings suggest a possible functional relationship between the NF1 and Smad proteins that has not been previously observed.
Collapse
|