1
|
Al Kabbani MA, Köhler C, Zempel H. Effects of P301L-TAU on post-translational modifications of microtubules in human iPSC-derived cortical neurons and TAU transgenic mice. Neural Regen Res 2025; 20:2348-2360. [PMID: 38934386 DOI: 10.4103/nrr.nrr-d-23-01742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/16/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202508000-00025/figure1/v/2024-09-30T120553Z/r/image-tiff TAU is a microtubule-associated protein that promotes microtubule assembly and stability in the axon. TAU is missorted and aggregated in an array of diseases known as tauopathies. Microtubules are essential for neuronal function and regulated via a complex set of post-translational modifications, changes of which affect microtubule stability and dynamics, microtubule interaction with other proteins and cellular structures, and mediate recruitment of microtubule-severing enzymes. As impairment of microtubule dynamics causes neuronal dysfunction, we hypothesize cognitive impairment in human disease to be impacted by impairment of microtubule dynamics. We therefore aimed to study the effects of a disease-causing mutation of TAU (P301L) on the levels and localization of microtubule post-translational modifications indicative of microtubule stability and dynamics, to assess whether P301L-TAU causes stability-changing modifications to microtubules. To investigate TAU localization, phosphorylation, and effects on tubulin post-translational modifications, we expressed wild-type or P301L-TAU in human MAPT -KO induced pluripotent stem cell-derived neurons (iNeurons) and studied TAU in neurons in the hippocampus of mice transgenic for human P301L-TAU (pR5 mice). Human neurons expressing the longest TAU isoform (2N4R) with the P301L mutation showed increased TAU phosphorylation at the AT8, but not the p-Ser-262 epitope, and increased polyglutamylation and acetylation of microtubules compared with endogenous TAU-expressing neurons. P301L-TAU showed pronounced somatodendritic presence, but also successful axonal enrichment and a similar axodendritic distribution comparable to exogenously expressed 2N4R-wildtype-TAU. P301L-TAU-expressing hippocampal neurons in transgenic mice showed prominent missorting and tauopathy-typical AT8-phosphorylation of TAU and increased polyglutamylation, but reduced acetylation, of microtubules compared with non-transgenic littermates. In sum, P301L-TAU results in changes in microtubule PTMs, suggestive of impairment of microtubule stability. This is accompanied by missorting and aggregation of TAU in mice but not in iNeurons. Microtubule PTMs/impairment may be of key importance in tauopathies.
Collapse
Affiliation(s)
- Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christoph Köhler
- Center Anatomy, Department II, Medical Faculty, University of Cologne, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Soeda Y, Yoshimura H, Bannai H, Koike R, Shiiba I, Takashima A. Intracellular tau fragment droplets serve as seeds for tau fibrils. Structure 2024; 32:1793-1807.e6. [PMID: 39032487 DOI: 10.1016/j.str.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/04/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular tau aggregation requires a local protein concentration increase, referred to as "droplets". However, the cellular mechanism for droplet formation is poorly understood. Here, we expressed OptoTau, a P301L mutant tau fused with CRY2olig, a light-sensitive protein that can form homo-oligomers. Under blue light exposure, OptoTau increased tau phosphorylation and was sequestered in aggresomes. Suppressing aggresome formation by nocodazole formed tau granular clusters in the cytoplasm. The granular clusters disappeared by discontinuing blue light exposure or 1,6-hexanediol treatment suggesting that intracellular tau droplet formation requires microtubule collapse. Expressing OptoTau-ΔN, a species of N-terminal cleaved tau observed in the Alzheimer's disease brain, formed 1,6-hexanediol and detergent-resistant tau clusters in the cytoplasm with blue light stimulation. These intracellular stable tau clusters acted as a seed for tau fibrils in vitro. These results suggest that tau droplet formation and N-terminal cleavage are necessary for neurofibrillary tangles formation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoshiyuki Soeda
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Hideaki Yoshimura
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroko Bannai
- School of Advanced Science and Engineering, Department of Electrical Engineering and Biosciences, Waseda University, 2-2 Wakamatsucho, Shinjuku-Ku, Tokyo 162-0056, Japan
| | - Riki Koike
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Akihiko Takashima
- Laboratory for Alzheimer's Disease, Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| |
Collapse
|
3
|
Aggidis A, Devitt G, Zhang Y, Chatterjee S, Townsend D, Fullwood NJ, Ortega ER, Tarutani A, Hasegawa M, Cooper A, Williamson P, Mendoza-Oliva A, Diamond MI, Mudher A, Allsop D. A novel peptide-based tau aggregation inhibitor as a potential therapeutic for Alzheimer's disease and other tauopathies. Alzheimers Dement 2024. [PMID: 39360630 DOI: 10.1002/alz.14246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 10/04/2024]
Abstract
INTRODUCTION As aggregation underpins Tau toxicity, aggregation inhibitor peptides may have disease-modifying potential. They are therefore currently being designed and target either the 306VQIVYK311 aggregation-promoting hotspot found in all Tau isoforms or the 275VQIINK280 aggregation-promoting hotspot found in 4R isoforms. However, for any Tau aggregation inhibitor to potentially be clinically relevant for other tauopathies, it should target both hotspots to suppress aggregation of Tau isoforms, be stable, cross the blood-brain barrier, and rescue aggregation-dependent Tau phenotypes in vivo. METHODS We developed a retro-inverso, stable D-amino peptide, RI-AG03 [Ac-rrrrrrrrGpkyk(ac)iqvGr-NH2], based on the 306VQIVYK311 hotspots which exhibit these disease-relevant attributes. RESULTS Unlike other aggregation inhibitors, RI-AG03 effectively suppresses aggregation of multiple Tau species containing both hotspots in vitro and in vivo, is non-toxic, and suppresses aggregation-dependent neurodegenerative and behavioral phenotypes. DISCUSSION RI-AG03 therefore meets many clinically relevant requirements for an anti-aggregation Tau therapeutic and should be explored further for its disease-modifying potential for Tauopathies. HIGHLIGHTS Our manuscript describes the development of a novel peptide inhibitor of Tau aggregation, a retro-inverso, stable D-amino peptide called RI-AG03 that displays many clinically relevant attributes. We show its efficacy in preventing Tau aggregation in both in vitro and in vivo experimental models while being non-toxic to cells. RI-AG03 also rescues a biosensor cell line that stably expresses Tau repeat domains with the P301S mutation fused to Cer/Clo and rescues aggregation-dependent phenotypes in vivo, suppressing neurodegeneration and extending lifespan. Collectively our data describe several properties and attributes of RI-AG03 that make it a promising disease-modifying candidate to explore for reducing pathogenic Tau aggregation in Tauopathies such as Alzheimer's disease. Given the real interest in reducing Tau aggregation and the potential clinical benefit of using such agents in clinical practice, RI-AG03 should be investigated further for the treatment of Tauopathies after validation in mammalian models. Tau aggregation inhibitors are the obvious first choice as Tau-based therapies as much of Tau-mediated toxicity is aggregation dependent. Indeed, there are many research efforts focusing on this therapeutic strategy with aggregation inhibitors being designed against one of the two aggregation-promoting hotspots of the Tau protein. To our knowledge, RI-AG03 is the only peptide aggregation inhibitor that inhibits aggregation of Tau by targeting both aggregation-promoting hotspot motifs simultaneously. As such, we believe that our study will have a significant impact on drug discovery efforts in this arena.
Collapse
Affiliation(s)
- Anthony Aggidis
- Department of Biological Sciences, University of Southampton, Southampton, UK
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| | - George Devitt
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Yongrui Zhang
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Shreyasi Chatterjee
- Department of Biological Sciences, University of Southampton, Southampton, UK
- Department of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - David Townsend
- Department of Chemistry, University of Lancaster, Lancaster University, Lancaster, UK
| | - Nigel J Fullwood
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| | - Eva Ruiz Ortega
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Airi Tarutani
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Amber Cooper
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Philip Williamson
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - Ayde Mendoza-Oliva
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Amritpal Mudher
- Department of Biological Sciences, University of Southampton, Southampton, UK
| | - David Allsop
- Division of Biomedical and Life Sciences, University of Lancaster, Lancaster, UK
| |
Collapse
|
4
|
Ollen-Bittle N, Roseborough AD, Wang W, Wu JLD, Whitehead SN. Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury. Neural Regen Res 2024; 19:2119-2131. [PMID: 38488547 PMCID: PMC11034607 DOI: 10.4103/1673-5374.391329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Austyn D. Roseborough
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jeng-liang D. Wu
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
5
|
Pan Q, Parra GB, Myung Y, Portelli S, Nguyen TB, Ascher DB. AlzDiscovery: A computational tool to identify Alzheimer's disease-causing missense mutations using protein structure information. Protein Sci 2024; 33:e5147. [PMID: 39276018 PMCID: PMC11401060 DOI: 10.1002/pro.5147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 09/16/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of dementia and neurodegenerative diseases, characterized by the formation of neuritic plaques and neurofibrillary tangles. Many different proteins participate in this complicated pathogenic mechanism, and missense mutations can alter the folding and functions of these proteins, significantly increasing the risk of AD. However, many methods to identify AD-causing variants did not consider the effect of mutations from the perspective of a protein three-dimensional environment. Here, we present a machine learning-based analysis to classify the AD-causing mutations from their benign counterparts in 21 AD-related proteins leveraging both sequence- and structure-based features. Using computational tools to estimate the effect of mutations on protein stability, we first observed a bias of the pathogenic mutations with significant destabilizing effects on family AD-related proteins. Combining this insight, we built a generic predictive model, and improved the performance by tuning the sample weights in the training process. Our final model achieved the performance on area under the receiver operating characteristic curve up to 0.95 in the blind test and 0.70 in an independent clinical validation, outperforming all the state-of-the-art methods. Feature interpretation indicated that the hydrophobic environment and polar interaction contacts were crucial to the decision on pathogenic phenotypes of missense mutations. Finally, we presented a user-friendly web server, AlzDiscovery, for researchers to browse the predicted phenotypes of all possible missense mutations on these 21 AD-related proteins. Our study will be a valuable resource for AD screening and the development of personalized treatment.
Collapse
Affiliation(s)
- Qisheng Pan
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Georgina Becerra Parra
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Yoochan Myung
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Stephanie Portelli
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - Thanh Binh Nguyen
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| | - David B. Ascher
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular BioscienceUniversity of QueenslandBrisbaneAustralia
- Computational Biology and Clinical InformaticsBaker Heart and Diabetes InstituteMelbourneAustralia
| |
Collapse
|
6
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
7
|
Sheng L, Bhalla R. Biomarkers and Target-Specific Small-Molecule Drugs in Alzheimer's Diagnostic and Therapeutic Research: From Amyloidosis to Tauopathy. Neurochem Res 2024; 49:2273-2302. [PMID: 38844706 PMCID: PMC11310295 DOI: 10.1007/s11064-024-04178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/31/2024] [Accepted: 05/22/2024] [Indexed: 08/09/2024]
Abstract
Alzheimer's disease (AD) is the most common type of human dementia and is responsible for over 60% of diagnosed dementia cases worldwide. Abnormal deposition of β-amyloid and the accumulation of neurofibrillary tangles have been recognised as the two pathological hallmarks targeted by AD diagnostic imaging as well as therapeutics. With the progression of pathological studies, the two hallmarks and their related pathways have remained the focus of researchers who seek for AD diagnostic and therapeutic strategies in the past decades. In this work, we reviewed the development of the AD biomarkers and their corresponding target-specific small molecule drugs for both diagnostic and therapeutic applications, underlining their success, failure, and future possibilities.
Collapse
Affiliation(s)
- Li Sheng
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Rajiv Bhalla
- Centre for Advanced Imaging, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Yu L, Wang H, Yao Q, Li K, Qu L, Tang B, Zeng W, Qiao G, Tang Y, Hu G, Hu G, Wong VKW, Wang Q, Qin D, Wu J, Zhou X, Sun X, Law BYK, Wu A. Thonningianin A from Penthorum chinense Pursh as a targeted inhibitor of Alzheimer's disease-related β-amyloid and Tau proteins. Phytother Res 2024; 38:4815-4831. [PMID: 39225174 DOI: 10.1002/ptr.8060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 09/04/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by complex pathogenesis mechanisms. Among these, β-amyloid plaques and hyperphosphorylated Tau protein tangles have been identified as significant contributors to neuronal damage. This study investigates thonningianin A (TA) from Penthorum chinense Pursh (PCP) as a potential inhibitor targeting these pivotal proteins in AD progression. The inhibitory potential of PCP and TA on Aβ fibrillization was initially investigated. Subsequently, ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry and biolayer interferometry were employed to determine TA's affinity for both Aβ and Tau. The inhibitory effects of TA on the levels and cytotoxicity of AD-related proteins were then assessed. In 3xTg-AD mice, the therapeutic potential of TA was evaluated. Additionally, the molecular interactions between TA and either Aβ or Tau were explored using molecular docking. We found that PCP-total ethanol extract and TA significantly inhibited Aβ fibrillization. Additionally, TA demonstrated strong affinity to Aβ and Tau, reduced levels of amyloid precursor protein and Tau, and alleviated mitochondrial distress in PC-12 cells. In 3xTg-AD mice, TA improved cognition, reduced Aβ and Tau pathology, and strengthened neurons. Moreover, molecular analyses revealed efficient binding of TA to Aβ and Tau. In conclusion, TA, derived from PCP, shows significant neuroprotection against AD proteins, highlighting its potential as an anti-AD drug candidate.
Collapse
Affiliation(s)
- Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, China
| | - Huimiao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qianfang Yao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Keru Li
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Liqun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Bin Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Gan Qiao
- Nucleic Acid Medicine of Luzhou Key Laboratory, Central Nervous System Drug Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Guishan Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Guangqiang Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Vincent Kam-Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Qiong Wang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Xiaolei Sun
- Vascular Surgery Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Sultana OF, Bandaru M, Islam MA, Reddy PH. Unraveling the complexity of human brain: Structure, function in healthy and disease states. Ageing Res Rev 2024; 100:102414. [PMID: 39002647 PMCID: PMC11384519 DOI: 10.1016/j.arr.2024.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The human brain stands as an intricate organ, embodying a nexus of structure, function, development, and diversity. This review delves into the multifaceted landscape of the brain, spanning its anatomical intricacies, diverse functional capacities, dynamic developmental trajectories, and inherent variability across individuals. The dynamic process of brain development, from early embryonic stages to adulthood, highlights the nuanced changes that occur throughout the lifespan. The brain, a remarkably complex organ, is composed of various anatomical regions, each contributing uniquely to its overall functionality. Through an exploration of neuroanatomy, neurophysiology, and electrophysiology, this review elucidates how different brain structures interact to support a wide array of cognitive processes, sensory perception, motor control, and emotional regulation. Moreover, it addresses the impact of age, sex, and ethnic background on brain structure and function, and gender differences profoundly influence the onset, progression, and manifestation of brain disorders shaped by genetic, hormonal, environmental, and social factors. Delving into the complexities of the human brain, it investigates how variations in anatomical configuration correspond to diverse functional capacities across individuals. Furthermore, it examines the impact of neurodegenerative diseases on the structural and functional integrity of the brain. Specifically, our article explores the pathological processes underlying neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Huntington's diseases, shedding light on the structural alterations and functional impairments that accompany these conditions. We will also explore the current research trends in neurodegenerative diseases and identify the existing gaps in the literature. Overall, this article deepens our understanding of the fundamental principles governing brain structure and function and paves the way for a deeper understanding of individual differences and tailored approaches in neuroscience and clinical practice-additionally, a comprehensive understanding of structural and functional changes that manifest in neurodegenerative diseases.
Collapse
Affiliation(s)
- Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
10
|
Ali A, Matveyenka M, Rodriguez A, Kurouski D. Under Heparin-Free Conditions Unsaturated Phospholipids Inhibit the Aggregation of 1N4R and 2N4R Tau. J Phys Chem Lett 2024; 15:8577-8583. [PMID: 39140785 PMCID: PMC11345945 DOI: 10.1021/acs.jpclett.4c01718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/15/2024]
Abstract
A progressive aggregation of Tau proteins in the brain is linked to both Alzheimer's disease (AD) and various Tauopathies. This pathological process can be enhanced by several substances, including heparin. However, very little if anything is known about molecules that can inhibit the aggregation of Tau isoforms. In this study, we examined the effect of phosphatidylserines (PSs) with various lengths and saturations of fatty acids (FAs) on the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N-terminal inserts that enhance binding of Tau to tubulin. We found that PS with unsaturated and short-length FAs inhibited Tau aggregation and drastically lowered the toxicity of Tau oligomers that were formed in the presence of such phospholipids. Such an effect was not observed for PS with fully saturated long-chain FAs. These results suggest that a short-chain irreversible disbalance between saturated and unsaturated lipids in the brain could be the trigger of Tau aggregation.
Collapse
Affiliation(s)
- Abid Ali
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Mikhail Matveyenka
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Axell Rodriguez
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Dmitry Kurouski
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Biomedical Engineering, Texas A&M
University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Kolahchi Z, Henkel N, Eladawi MA, Villarreal EC, Kandimalla P, Lundh A, McCullumsmith RE, Cuevas E. Sex and Gender Differences in Alzheimer's Disease: Genetic, Hormonal, and Inflammation Impacts. Int J Mol Sci 2024; 25:8485. [PMID: 39126053 PMCID: PMC11313277 DOI: 10.3390/ijms25158485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Two-thirds of Americans with Alzheimer's disease are women, indicating a profound variance between the sexes. Variances exist between the sexes in the age and intensity of the presentation, cognitive deficits, neuroinflammatory factors, structural and functional brain changes, as well as psychosocial and cultural circumstances. Herein, we summarize the existing evidence for sexual dimorphism and present the available evidence for these distinctions. Understanding these complexities is critical to developing personalized interventions for the prevention, care, and treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Nicholas Henkel
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Mahmoud A. Eladawi
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Emma C. Villarreal
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| | - Prathik Kandimalla
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Anna Lundh
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
| | - Robert E. McCullumsmith
- Department of Neurosciences and Neurological Disorders, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA; (N.H.); (M.A.E.); (P.K.); (A.L.); (R.E.M.)
- ProMedica Neurosciences Center, Toledo, OH 43606, USA
| | - Elvis Cuevas
- Department of Neurology, Mitchell Center for Neurodegenerative Diseases, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA; (Z.K.); (E.C.V.)
| |
Collapse
|
12
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
13
|
Ali A, Holman AP, Rodriguez A, Matveyenka M, Kurouski D. Tubulin-binding region alters tau-lipid interactions and changes toxicity of tau fibrils formed in the presence of phosphatidylserine lipids. Protein Sci 2024; 33:e5078. [PMID: 38895991 PMCID: PMC11187861 DOI: 10.1002/pro.5078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Alzheimer's disease is the fastest-growing neurodegenerative disease that affects over six million Americans. The abnormal aggregation of amyloid β peptide and Tau protein is the expected molecular cause of the loss of neurons in brains of AD patients. A growing body of evidence indicates that lipids can alter the aggregation rate of amyloid β peptide and modify the toxicity of amyloid β aggregates. However, the role of lipids in Tau aggregation remains unclear. In this study, we utilized a set of biophysical methods to determine the extent to which phospatidylserine (PS) altered the aggregation properties of Tau isoforms with one (1N4R) and two (2N4R) N terminal inserts that enhance the binding of Tau to tubulin. We found that the length and saturation of fatty acids (FAs) in PS altered the aggregation rate of 2N4R isoform, while no changes in the aggregation rate of 1N4R were observed. These results indicate that N terminal inserts play an important role in protein-lipid interactions. We also found that PS could change the toxicity of 1N4R and 2N4R Tau fibrils, as well as alter molecular mechanisms by which these aggregates exert cytotoxicity to neurons. Finally, we found that although Tau fibrils formed in the presence and absence of PS endocytosed by cells, only fibril species that were formed in the presence of PS exert strong impairment of the cell mitochondria.
Collapse
Affiliation(s)
- Abid Ali
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Aidan P. Holman
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of EntomologyTexas A&M UniversityCollege StationTexasUSA
| | - Axell Rodriguez
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Mikhail Matveyenka
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
14
|
Hole KL, Zhu B, Huggon L, Brown JT, Mason JM, Williams RJ. Tau P301L disengages from the proteosome core complex and neurogranin coincident with enhanced neuronal network excitability. Cell Death Dis 2024; 15:429. [PMID: 38890273 PMCID: PMC11189525 DOI: 10.1038/s41419-024-06815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 06/04/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Tauopathies are characterised by the pathological accumulation of misfolded tau. The emerging view is that toxic tau species drive synaptic dysfunction and potentially tau propagation before measurable neurodegeneration is evident, but the underlying molecular events are not well defined. Human non-mutated 0N4R tau (tauWT) and P301L mutant 0N4R tau (tauP301L) were expressed in mouse primary cortical neurons using adeno-associated viruses to monitor early molecular changes and synaptic function before the onset of neuronal loss. In this model tauP301L was differentially phosphorylated relative to tauwt with a notable increase in phosphorylation at ser262. Affinity purification - mass spectrometry combined with tandem mass tagging was used to quantitatively compare the tauWT and tauP301L interactomes. This revealed an enrichment of tauP301L with ribosomal proteins but a decreased interaction with the proteasome core complex and reduced tauP301L degradation. Differences in the interaction of tauP301L with members of a key synaptic calcium-calmodulin signalling pathway were also identified, most notably, increased association with CaMKII but reduced association with calcineurin and the candidate AD biomarker neurogranin. Decreased association of neurogranin to tauP301L corresponded with the appearance of enhanced levels of extracellular neurogranin suggestive of potential release or leakage from synapses. Finally, analysis of neuronal network activity using micro-electrode arrays showed that overexpression of tauP301L promoted basal hyperexcitability coincident with these changes in the tau interactome and implicating tau in specific early alterations in synaptic function.
Collapse
Affiliation(s)
- Katriona L Hole
- Department of Life Sciences, University of Bath, Bath, UK
- The Francis Crick Institute, London, UK
| | - Bangfu Zhu
- Department of Life Sciences, University of Bath, Bath, UK
| | - Laura Huggon
- Department of Life Sciences, University of Bath, Bath, UK
- UK Dementia Research Institute at King's College London, London, UK
| | - Jon T Brown
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Jody M Mason
- Department of Life Sciences, University of Bath, Bath, UK
| | | |
Collapse
|
15
|
Islam M, Shen F, Regmi D, Petersen K, Karim MRU, Du D. Tau liquid-liquid phase separation: At the crossroads of tau physiology and tauopathy. J Cell Physiol 2024; 239:e30853. [PMID: 35980344 PMCID: PMC9938090 DOI: 10.1002/jcp.30853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022]
Abstract
Abnormal deposition of tau in neurons is a hallmark of Alzheimer's disease and several other neurodegenerative disorders. In the past decades, extensive efforts have been made to explore the mechanistic pathways underlying the development of tauopathies. Recently, the discovery of tau droplet formation by liquid-liquid phase separation (LLPS) has received a great deal of attention. It has been reported that tau condensates have a biological role in promoting and stabilizing microtubule (MT) assembly. Furthermore, it has been hypothesized that the transition of phase-separated tau droplets to a gel-like state and then to fibrils is associated with the pathology of neurodegenerative diseases. In this review, we outline LLPS, the structural disorder that facilitates tau droplet formation, the effects of posttranslational modification of tau on condensate formation, the physiological function of tau droplets, the pathways from droplet to toxic fibrils, and the therapeutic strategies for tauopathies that might evolve from toxic droplets. We expect a deeper understanding of tau LLPS will provide additional insights into tau physiology and tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Katherine Petersen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Md Raza Ul Karim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431, United States
| |
Collapse
|
16
|
Langerscheidt F, Wied T, Al Kabbani MA, van Eimeren T, Wunderlich G, Zempel H. Genetic forms of tauopathies: inherited causes and implications of Alzheimer's disease-like TAU pathology in primary and secondary tauopathies. J Neurol 2024; 271:2992-3018. [PMID: 38554150 PMCID: PMC11136742 DOI: 10.1007/s00415-024-12314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Tauopathies are a heterogeneous group of neurologic diseases characterized by pathological axodendritic distribution, ectopic expression, and/or phosphorylation and aggregation of the microtubule-associated protein TAU, encoded by the gene MAPT. Neuronal dysfunction, dementia, and neurodegeneration are common features of these often detrimental diseases. A neurodegenerative disease is considered a primary tauopathy when MAPT mutations/haplotypes are its primary cause and/or TAU is the main pathological feature. In case TAU pathology is observed but superimposed by another pathological hallmark, the condition is classified as a secondary tauopathy. In some tauopathies (e.g. MAPT-associated frontotemporal dementia (FTD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and Alzheimer's disease (AD)) TAU is recognized as a significant pathogenic driver of the disease. In many secondary tauopathies, including Parkinson's disease (PD) and Huntington's disease (HD), TAU is suggested to contribute to the development of dementia, but in others (e.g. Niemann-Pick disease (NPC)) TAU may only be a bystander. The genetic and pathological mechanisms underlying TAU pathology are often not fully understood. In this review, the genetic predispositions and variants associated with both primary and secondary tauopathies are examined in detail, assessing evidence for the role of TAU in these conditions. We highlight less common genetic forms of tauopathies to increase awareness for these disorders and the involvement of TAU in their pathology. This approach not only contributes to a deeper understanding of these conditions but may also lay the groundwork for potential TAU-based therapeutic interventions for various tauopathies.
Collapse
Affiliation(s)
- Felix Langerscheidt
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Tamara Wied
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Von-Liebig-Str. 20, 53359, Rheinbach, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
| | - Gilbert Wunderlich
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937, Cologne, Germany
- Center for Rare Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany
| | - Hans Zempel
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931, Cologne, Germany.
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
17
|
Pedicone C, Weitzman SA, Renton AE, Goate AM. Unraveling the complex role of MAPT-containing H1 and H2 haplotypes in neurodegenerative diseases. Mol Neurodegener 2024; 19:43. [PMID: 38812061 PMCID: PMC11138017 DOI: 10.1186/s13024-024-00731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
A ~ 1 Mb inversion polymorphism exists within the 17q21.31 locus of the human genome as direct (H1) and inverted (H2) haplotype clades. This inversion region demonstrates high linkage disequilibrium, but the frequency of each haplotype differs across ancestries. While the H1 haplotype exists in all populations and shows a normal pattern of genetic variability and recombination, the H2 haplotype is enriched in European ancestry populations, is less frequent in African ancestry populations, and nearly absent in East Asian ancestry populations. H1 is a known risk factor for several neurodegenerative diseases, and has been associated with many other traits, suggesting its importance in cellular phenotypes of the brain and entire body. Conversely, H2 is protective for these diseases, but is associated with predisposition to recurrent microdeletion syndromes and neurodevelopmental disorders such as autism. Many single nucleotide variants and copy number variants define H1/H2 haplotypes and sub-haplotypes, but identifying the causal variant(s) for specific diseases and phenotypes is complex due to the extended linkage equilibrium. In this review, we assess the current knowledge of this inversion region regarding genomic structure, gene expression, cellular phenotypes, and disease association. We discuss recent discoveries and challenges, evaluate gaps in knowledge, and highlight the importance of understanding the effect of the 17q21.31 haplotypes to promote advances in precision medicine and drug discovery for several diseases.
Collapse
Affiliation(s)
- Chiara Pedicone
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Weitzman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alan E Renton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
18
|
Ortiz C, Pearson A, McCartan R, Roche S, Carothers N, Browning M, Perez S, He B, Ginsberg SD, Mullan M, Mufson EJ, Crawford F, Ojo J. Overexpression of pathogenic tau in astrocytes causes a reduction in AQP4 and GLT1, an immunosuppressed phenotype and unique transcriptional responses to repetitive mild TBI without appreciable changes in tauopathy. J Neuroinflammation 2024; 21:130. [PMID: 38750510 PMCID: PMC11096096 DOI: 10.1186/s12974-024-03117-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Epidemiological studies have unveiled a robust link between exposure to repetitive mild traumatic brain injury (r-mTBI) and elevated susceptibility to develop neurodegenerative disorders, notably chronic traumatic encephalopathy (CTE). The pathogenic lesion in CTE cases is characterized by the accumulation of hyperphosphorylated tau in neurons around small cerebral blood vessels which can be accompanied by astrocytes that contain phosphorylated tau, the latter termed tau astrogliopathy. However, the contribution of tau astrogliopathy to the pathobiology and functional consequences of r-mTBI/CTE or whether it is merely a consequence of aging remains unclear. We addressed these pivotal questions by utilizing a mouse model harboring tau-bearing astrocytes, GFAPP301L mice, subjected to our r-mTBI paradigm. Despite the fact that r-mTBI did not exacerbate tau astrogliopathy or general tauopathy, it increased phosphorylated tau in the area underneath the impact site. Additionally, gene ontology analysis of tau-bearing astrocytes following r-mTBI revealed profound alterations in key biological processes including immunological and mitochondrial bioenergetics. Moreover, gene array analysis of microdissected astrocytes accrued from stage IV CTE human brains revealed an immunosuppressed astroglial phenotype similar to tau-bearing astrocytes in the GFAPP301L model. Additionally, hippocampal reduction of proteins involved in water transport (AQP4) and glutamate homeostasis (GLT1) was found in the mouse model of tau astrogliopathy. Collectively, these findings reveal the importance of understanding tau astrogliopathy and its role in astroglial pathobiology under normal circumstances and following r-mTBI. The identified mechanisms using this GFAPP301L model may suggest targets for therapeutic interventions in r-mTBI pathogenesis in the context of CTE.
Collapse
Affiliation(s)
- Camila Ortiz
- The Roskamp Institute, Sarasota, FL, USA.
- The Open University, Milton Keynes, UK.
| | - Andrew Pearson
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
| | | | | | | | | | | | - Bin He
- Barrow Neurological Institute, Phoenix, AZ, USA
| | - Stephen D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Departments of Psychiatry, Neuroscience and Physiology, and NYU Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | | | | | - Fiona Crawford
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Joseph Ojo
- The Roskamp Institute, Sarasota, FL, USA
- The Open University, Milton Keynes, UK
| |
Collapse
|
19
|
Buchholz S, Zempel H. The six brain-specific TAU isoforms and their role in Alzheimer's disease and related neurodegenerative dementia syndromes. Alzheimers Dement 2024; 20:3606-3628. [PMID: 38556838 PMCID: PMC11095451 DOI: 10.1002/alz.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
INTRODUCTION Alternative splicing of the human MAPT gene generates six brain-specific TAU isoforms. Imbalances in the TAU isoform ratio can lead to neurodegenerative diseases, underscoring the need for precise control over TAU isoform balance. Tauopathies, characterized by intracellular aggregates of hyperphosphorylated TAU, exhibit extensive neurodegeneration and can be classified by the TAU isoforms present in pathological accumulations. METHODS A comprehensive review of TAU and related dementia syndromes literature was conducted using PubMed, Google Scholar, and preprint server. RESULTS While TAU is recognized as key driver of neurodegeneration in specific tauopathies, the contribution of the isoforms to neuronal function and disease development remains largely elusive. DISCUSSION In this review we describe the role of TAU isoforms in health and disease, and stress the importance of comprehending and studying TAU isoforms in both, physiological and pathological context, in order to develop targeted therapeutic interventions for TAU-associated diseases. HIGHLIGHTS MAPT splicing is tightly regulated during neuronal maturation and throughout life. TAU isoform expression is development-, cell-type and brain region specific. The contribution of TAU to neurodegeneration might be isoform-specific. Ineffective TAU-based therapies highlight the need for specific targeting strategies.
Collapse
Affiliation(s)
- Sarah Buchholz
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
- Present address:
Department Schaefer, Neurobiology of AgeingMax Planck Institute for Biology of AgeingCologneGermany
| | - Hans Zempel
- Institute of Human GeneticsFaculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Center for Molecular Medicine Cologne (CMMC)University of CologneCologneGermany
| |
Collapse
|
20
|
Katchur NJ, Notterman DA. Recent insights from non-mammalian models of brain injuries: an emerging literature. Front Neurol 2024; 15:1378620. [PMID: 38566857 PMCID: PMC10985199 DOI: 10.3389/fneur.2024.1378620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Traumatic brain injury (TBI) is a major global health concern and is increasingly recognized as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Repetitive TBIs (rTBIs), commonly observed in contact sports, military service, and intimate partner violence (IPV), pose a significant risk for long-term sequelae. To study the long-term consequences of TBI and rTBI, researchers have typically used mammalian models to recapitulate brain injury and neurodegenerative phenotypes. However, there are several limitations to these models, including: (1) lengthy observation periods, (2) high cost, (3) difficult genetic manipulations, and (4) ethical concerns regarding prolonged and repeated injury of a large number of mammals. Aquatic vertebrate model organisms, including Petromyzon marinus (sea lampreys), zebrafish (Danio rerio), and invertebrates, Caenorhabditis elegans (C. elegans), and Drosophila melanogaster (Drosophila), are emerging as valuable tools for investigating the mechanisms of rTBI and tauopathy. These non-mammalian models offer unique advantages, including genetic tractability, simpler nervous systems, cost-effectiveness, and quick discovery-based approaches and high-throughput screens for therapeutics, which facilitate the study of rTBI-induced neurodegeneration and tau-related pathology. Here, we explore the use of non-vertebrate and aquatic vertebrate models to study TBI and neurodegeneration. Drosophila, in particular, provides an opportunity to explore the longitudinal effects of mild rTBI and its impact on endogenous tau, thereby offering valuable insights into the complex interplay between rTBI, tauopathy, and neurodegeneration. These models provide a platform for mechanistic studies and therapeutic interventions, ultimately advancing our understanding of the long-term consequences associated with rTBI and potential avenues for intervention.
Collapse
Affiliation(s)
- Nicole J. Katchur
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
- Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| |
Collapse
|
21
|
Abdelhamid M, Jung CG, Zhou C, Inoue R, Chen Y, Sento Y, Hida H, Michikawa M. Potential Therapeutic Effects of Bifidobacterium breve MCC1274 on Alzheimer's Disease Pathologies in AppNL-G-F Mice. Nutrients 2024; 16:538. [PMID: 38398861 PMCID: PMC10893354 DOI: 10.3390/nu16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
We previously demonstrated that orally supplemented Bifidobacterium breve MCC1274 (B. breve MCC1274) mitigated Alzheimer's disease (AD) pathologies in both 7-month-old AppNL-G-F mice and wild-type mice; thus, B. breve MCC1274 supplementation might potentially prevent the progression of AD. However, the possibility of using this probiotic as a treatment for AD remains unclear. Thus, we investigated the potential therapeutic effects of this probiotic on AD using 17-month-old AppNL-G-F mice with memory deficits and amyloid beta saturation in the brain. B. breve MCC1274 supplementation ameliorated memory impairment via an amyloid-cascade-independent pathway. It reduced hippocampal and cortical levels of phosphorylated extracellular signal-regulated kinase and c-Jun N-terminal kinase as well as heat shock protein 90, which might have suppressed tau hyperphosphorylation and chronic stress. Moreover, B. breve MCC1274 supplementation increased hippocampal synaptic protein levels and upregulated neuronal activity. Thus, B. breve MCC1274 supplementation may alleviate cognitive dysfunction by reducing chronic stress and tau hyperphosphorylation, thereby enhancing both synaptic density and neuronal activity in 17-month-old AppNL-G-F mice. Overall, this study suggests that B. breve MCC1274 has anti-AD effects and can be used as a potential treatment for AD.
Collapse
Affiliation(s)
- Mona Abdelhamid
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Cha-Gyun Jung
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Chunyu Zhou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Rieko Inoue
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yuxin Chen
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
| | - Yoshiki Sento
- Department of Anesthesiology and Intensive Care Medicine, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan;
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan; (M.A.); (C.Z.); (R.I.); (Y.C.)
- Department of Geriatric Medicine School of Life, Dentistry at Niigata, Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| |
Collapse
|
22
|
Asamu MO, Oladipo OO, Abayomi OA, Adebayo AA. Alzheimer's disease: The role of T lymphocytes in neuroinflammation and neurodegeneration. Brain Res 2023; 1821:148589. [PMID: 37734576 DOI: 10.1016/j.brainres.2023.148589] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Alzheimer's disease, the leading cause of progressive cognitive decline globally, has been reported to be enhanced by neuroinflammation. Brain-resident innate immune cells and adaptive immune cells work together to produce neuroinflammation. Studies over the past decade have established the neuroimmune axis present in Alzheimer's disease; the crosstalk between adaptive and innate immune cells within and outside the brain is crucial to the onset and progression of Alzheimer's disease. Although the role of the adaptive immune system in Alzheimer's disease is not fully understood, it has been hypothesized that the brain's immune homeostasis is significantly disrupted, which greatly contributes to neuroinflammation. Brain-infiltrating T cells possess proinflammatory phenotypes and activities that directly contribute to neuroinflammation. The pro-inflammatory activities of the adaptive immune system in Alzheimer's disease are characterized by the upregulation of effector T cell activities and the downregulation of regulatory T cell activities in the brain, blood, and cerebrospinal fluid. In this review, we discuss the major impact of T lymphocytes on the pathogenesis and progression of Alzheimer's disease. Understanding the role and mechanism of action of T cells in Alzheimer's disease would significantly contribute to the identification of novel biomarkers for diagnosing and monitoring the progression of the disease. This knowledge could also be crucial to the development of immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Moses O Asamu
- Department of Anatomy, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Oluseun A Abayomi
- College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; Olabisi Onabanjo University Teaching Hospital (OOUTH), Sagamu, Ogun State, Nigeria
| | - Afeez A Adebayo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria; College of Health Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| |
Collapse
|
23
|
Wang J, Fu J, Zhao Y, Liu Q, Yan X, Su J. Iron and Targeted Iron Therapy in Alzheimer's Disease. Int J Mol Sci 2023; 24:16353. [PMID: 38003544 PMCID: PMC10671546 DOI: 10.3390/ijms242216353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease worldwide. β-amyloid plaque (Aβ) deposition and hyperphosphorylated tau, as well as dysregulated energy metabolism in the brain, are key factors in the progression of AD. Many studies have observed abnormal iron accumulation in different regions of the AD brain, which is closely correlated with the clinical symptoms of AD; therefore, understanding the role of brain iron accumulation in the major pathological aspects of AD is critical for its treatment. This review discusses the main mechanisms and recent advances in the involvement of iron in the above pathological processes, including in iron-induced oxidative stress-dependent and non-dependent directions, summarizes the hypothesis that the iron-induced dysregulation of energy metabolism may be an initiating factor for AD, based on the available evidence, and further discusses the therapeutic perspectives of targeting iron.
Collapse
Affiliation(s)
| | | | | | | | | | - Jing Su
- Key Laboratory of Pathobiology, Department of Pathophysiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun 130012, China; (J.W.); (J.F.); (Y.Z.); (Q.L.); (X.Y.)
| |
Collapse
|
24
|
Khan MI, Jeong ES, Khan MZ, Shin JH, Kim JD. Stem cells-derived exosomes alleviate neurodegeneration and Alzheimer's pathogenesis by ameliorating neuroinflamation, and regulating the associated molecular pathways. Sci Rep 2023; 13:15731. [PMID: 37735227 PMCID: PMC10514272 DOI: 10.1038/s41598-023-42485-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Amyloid beta (Aβ) aggregation and tau hyper phosphorylation (p-tau) are key molecular factors in Alzheimer's disease (AD). The abnormal formation and accumulation of Aβ and p-tau lead to the formation of amyloid plaques and neurofibrillary tangles (NFTs) which ultimately leads to neuroinflammation and neurodegeneration. β- and γ-secretases produce Aβ peptides via the amyloidogenic pathway, and several kinases are involved in tau phosphorylation. Exosomes, a recently developed method of intercellular communication, derived from neuronal stem cells (NSC-exos), are intriguing therapeutic options for AD. Exosomes have ability to cross the BBB hence highly recommended for brain related diseases and disorders. In the current study, we examined how NSC-exos could protect human neuroblastoma cells SH-SY5Y (ATCC CRL-2266). NSC-exos were derived from Human neural stem cells (ATCC-BYS012) by ultracentrifugation and the therapeutic effects of the NSC-exos were then investigated in vitro. NSC-exos controlled the associated molecular processes to drastically lower Aβ and p-tau. A dose dependent reduction in β- and γ-secretase, acetylcholinesterase, GSK3β, CDK5, and activated α-secretase activities was also seen. We further showed that BACE1, PSEN1, CDK5, and GSK-3β mRNA expression was suppressed and downregulated, while ADAM10 mRNA was increased. NSC- Exos downregulate NF-B/ERK/JNK-related signaling pathways in activated glial cells HMC3 (ATCC-CRL-3304) and reduce inflammatory mediators such iNOS, IL-1β, TNF-α, and IL-6, which are associated with neuronal inflammation. The NSC-exos therapy ameliorated the neurodegeneration of human neuroblastoma cells SH-SY5Y by enhancing viability. Overall, these findings support that exosomes produced from stem cells can be a neuro-protective therapy to alleviate AD pathology.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Biotechnology, Faculty of Biomedical and Life Sciences, Kohsar University, Murree, Pakistan
| | - Eun Sun Jeong
- Department of Laboratory Medicine, Yeosu Chonnam Hospital, Yeosu, Korea
| | - Muhammad Zubair Khan
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea
| | - Jin Hyuk Shin
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea
| | - Jong Deog Kim
- Department of Biotechnology, Chonnam Notational University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea.
- Research Center on Anti-Obesity and Health Care, Chonnam National University, San96-1, Dun-Duk Dong, Yeosu, 59626, Chonnam, Korea.
| |
Collapse
|
25
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
26
|
Gąssowska-Dobrowolska M, Czapski GA, Cieślik M, Zajdel K, Frontczak-Baniewicz M, Babiec L, Adamczyk A. Microtubule Cytoskeletal Network Alterations in a Transgenic Model of Tuberous Sclerosis Complex: Relevance to Autism Spectrum Disorders. Int J Mol Sci 2023; 24:7303. [PMID: 37108467 PMCID: PMC10138344 DOI: 10.3390/ijms24087303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic multisystem disorder caused by loss-of-function mutations in the tumour suppressors TSC1/TSC2, both of which are negative regulators of the mammalian target of rapamycin (mTOR) kinase. Importantly, mTOR hyperactivity seems to be linked with the pathobiology of autism spectrum disorders (ASD). Recent studies suggest the potential involvement of microtubule (MT) network dysfunction in the neuropathology of "mTORopathies", including ASD. Cytoskeletal reorganization could be responsible for neuroplasticity disturbances in ASD individuals. Thus, the aim of this work was to study the effect of Tsc2 haploinsufficiency on the cytoskeletal pathology and disturbances in the proteostasis of the key cytoskeletal proteins in the brain of a TSC mouse model of ASD. Western-blot analysis indicated significant brain-structure-dependent abnormalities in the microtubule-associated protein Tau (MAP-Tau), and reduced MAP1B and neurofilament light (NF-L) protein level in 2-month-old male B6;129S4-Tsc2tm1Djk/J mice. Alongside, pathological irregularities in the ultrastructure of both MT and neurofilament (NFL) networks as well as swelling of the nerve endings were demonstrated. These changes in the level of key cytoskeletal proteins in the brain of the autistic-like TSC mice suggest the possible molecular mechanisms responsible for neuroplasticity alterations in the ASD brain.
Collapse
Affiliation(s)
- Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Magdalena Cieślik
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Karolina Zajdel
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Małgorzata Frontczak-Baniewicz
- Electron Microscopy Research Unit, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Lidia Babiec
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| | - Agata Adamczyk
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
| |
Collapse
|
27
|
Tsoi PS, Quan MD, Ferreon JC, Ferreon ACM. Aggregation of Disordered Proteins Associated with Neurodegeneration. Int J Mol Sci 2023; 24:3380. [PMID: 36834792 PMCID: PMC9966039 DOI: 10.3390/ijms24043380] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.
Collapse
Affiliation(s)
| | | | - Josephine C. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Allan Chris M. Ferreon
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
28
|
Luo B, Chen J, Zhou GF, Xie XY, Tang J, Wen QX, Song L, Xie SQ, Long Y, Chen GJ, Hu XT. Apicidin attenuates memory deficits by reducing the Aβ load in APP/PS1 mice. CNS Neurosci Ther 2023; 29:1300-1311. [PMID: 36708130 PMCID: PMC10068467 DOI: 10.1111/cns.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 01/29/2023] Open
Abstract
AIMS Amyloid beta (Aβ) is an important pathological feature of Alzheimer's disease (AD). A disintegrin and metalloproteinase 10 (ADAM10) can reduce the production of toxic Aβ by activating the nonamyloidogenic pathway of amyloid precursor protein (APP). We previously found that apicidin, which is a histone deacetylase (HDAC) inhibitor, can promote the expression of ADAM10 and reduce the production of Aβ in vitro. This study was designed to determine the potential of apicidin treatment to reverse learning and memory impairments in an AD mouse model and the possible correlation of these effects with ADAM10. METHODS Nine-month-old APP/PS1 mice and C57 mice received intraperitoneal injections of apicidin or vehicle for 2 months. At 11 months of age, we evaluated the memory performance of mice with Morris water maze (MWM) and context fear conditioning tests. The Aβ levels were assessed in mouse brain using the immunohistochemical method and ELISA. The expression of corresponding protein involved in proteolytic processing of APP and the phosphorylation of tau were assessed by Western blotting. RESULTS Apicidin reversed the deficits of spatial reference memory and contextual fear memory, attenuated the formation of Aβ-enriched plaques, and decreased the levels of soluble and insoluble Aβ40/42 in APP/PS1 mice. Moreover, apicidin significantly increased the expression of ADAM10, improved the level of sAPPα, and reduced the production of sAPPβ, but did not affect the levels of phosphorylated tau in APP/PS1 mice. CONCLUSION Apicidin significantly improves the AD symptoms of APP/PS1 mice by regulating the expression of ADAM10, which may contribute to decreasing the levels of Aβ rather than decreasing the phosphorylation of tau.
Collapse
Affiliation(s)
- Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Jing Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Shi-Qi Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yan Long
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Tong Hu
- Department of Health Management, Daping Hospital, Army Medical University, Chongqing, China.,Department of Neurology, The Ninth People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
29
|
Baltissen D, Bold CS, Rehra L, Banićević M, Fricke J, Just J, Ludewig S, Buchholz CJ, Korte M, Müller UC. APPsα rescues CDK5 and GSK3β dysregulation and restores normal spine density in Tau transgenic mice. Front Cell Neurosci 2023; 17:1106176. [PMID: 36779015 PMCID: PMC9909437 DOI: 10.3389/fncel.2023.1106176] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/02/2023] [Indexed: 01/27/2023] Open
Abstract
The Tau protein can be phosphorylated by numerous kinases. In Alzheimer's disease (AD) hyperphosphorylated Tau species accumulate as neurofibrillary tangles that constitute a major hallmark of AD. AD is further characterized by extracellular Aβ plaques, derived from the β-amyloid precursor protein APP. Whereas Aβ is produced by amyloidogenic APP processing, APP processing along the competing non-amyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aβ-dependent impairments. Here, we examined the potential of APPsα to regulate two major Tau kinases, GSK3β and CDK5 in THY-Tau22 mice, a widely used mouse model of tauopathy. Immunohistochemistry revealed a dramatic increase in pathologically phosphorylated (AT8 and AT180) or misfolded Tau species (MC1) in the hippocampus of THY-Tau22 mice between 3 and 12 months of age. Using a highly sensitive radioactive kinase assay with recombinant human Tau as a substrate and immunoblotting, we demonstrate an increase in GSK3β and CDK5 activity in the hippocampus of THY-Tau22 mice. Interestingly, AAV-mediated intracranial expression of APPsα in THY-Tau22 mice efficiently restored normal GSK3β and CDK5 activity. Western blot analysis revealed upregulation of the CDK5 regulatory proteins p35 and p25, indicating CDK5 hyperactivation in THY-Tau22 mice. Strikingly, AAV-APPsα rescued p25 upregulation to wild-type levels even at stages of advanced Tau pathology. Sarkosyl fractionation used to study the abundance of soluble and insoluble phospho-Tau species revealed increased soluble AT8-Tau and decreased insoluble AT100-Tau species upon AAV-APPsα injection. Moreover, AAV-APPsα reduced misfolded (MC1) Tau species, particularly in somatodendritic compartments of CA1 pyramidal neurons. Finally, we show that AAV-APPsα upregulated PSD95 expression and rescued deficits in spine density of THY-Tau22 mice. Together our findings suggest that APPsα holds therapeutic potential to mitigate Tau-induced pathology.
Collapse
Affiliation(s)
- Danny Baltissen
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Charlotte S. Bold
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Lena Rehra
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Marija Banićević
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Justus Fricke
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Jennifer Just
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - Susann Ludewig
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany
| | - Christian J. Buchholz
- Department of Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, Technical University of Braunschweig, Braunschweig, Germany,Helmholtz Centre for Infection Research, Neuroinflammation and Neurodegeneration Group, Braunschweig, Germany
| | - Ulrike C. Müller
- Department of Functional Genomics, Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany,*Correspondence: Ulrike C. Müller,
| |
Collapse
|
30
|
Hu LT, Xie XY, Zhou GF, Wen QX, Song L, Luo B, Deng XJ, Pan QL, Chen GJ. HMGCS2-Induced Autophagic Degradation of Tau Involves Ketone Body and ANKRD24. J Alzheimers Dis 2023; 91:407-426. [PMID: 36442191 DOI: 10.3233/jad-220640] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Accumulation of hyperphosphorylated Tau (pTau) contributes to the formation of neurofibrillary tangles in Alzheimer's disease (AD), and targeting Tau/pTau metabolism has emerged as a therapeutic approach. We have previously reported that mitochondrial 3-hydroxy-3-methylglutaryl-COA synthase 2 (HMGCS2) is involved in AD by promoting autophagic clearance of amyloid-β protein precursor via ketone body-associated mechanism, whether HMGCS2 may also regulate Tau metabolism remains elusive. OBJECTIVE The present study was to investigate the role of HMGCS2 in Tau/p degradation. METHODS The protein levels of Tau and pTau including pT217 and pT181, as well as autophagic markers LAMP1 and LC3-II were assessed by western blotting. The differentially regulated genes by HMGCS2 were analyzed by RNA sequencing. Autophagosomes were assessed by transmission electron microscopy. RESULTS HMGCS2 significantly decreased Tau/pTau levels, which was paralleled by enhanced formation of autophagic vacuoles and prevented by autophagic regulators chloroquine, bafilomycin A1, 3-methyladenine, and rapamycin. Moreover, HMGCS2-induced alterations of LAMP1/LC3-II and Tau/pTau levels were mimicked by ketone body acetoacetate or β-hydroxybutyrate. Further RNA-sequencing identified ankyrin repeat domain 24 (ANKRD24) as a target gene of HMGCS2, and silencing of ANKRD24 reduced LAMP1/LC3-II levels, which was accompanied by the altered formation of autophagic vacuoles, and diminished the effect of HMGCS2 on Tau/pTau. CONCLUSION HMGCS2 promoted autophagic clearance of Tau/pTau, in which ketone body and ANKRD24 played an important role.
Collapse
Affiliation(s)
- Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiao-Yong Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qiu-Ling Pan
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Major Neurological and Mental Disorders, Chongqing Key Laboratory of Neurology, Chongqing, China.,Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Patel RS, Lui A, Hudson C, Moss L, Sparks RP, Hill SE, Shi Y, Cai J, Blair LJ, Bickford PC, Patel NA. Small molecule targeting long noncoding RNA GAS5 administered intranasally improves neuronal insulin signaling and decreases neuroinflammation in an aged mouse model. Sci Rep 2023; 13:317. [PMID: 36609440 PMCID: PMC9822944 DOI: 10.1038/s41598-022-27126-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
Shifts in normal aging set stage for neurodegeneration and dementia affecting 1 in 10 adults. The study demonstrates that lncRNA GAS5 is decreased in aged and Alzheimer's disease brain. The role and targets of lncRNA GAS5 in the aging brain were elucidated using a GAS5-targeting small molecule NPC86, a frontier in lncRNA-targeting therapeutic. Robust techniques such as molecular dynamics simulation of NPC86 binding to GAS5, in vitro functional assays demonstrating that GAS5 regulates insulin signaling, neuronal survival, phosphorylation of tau, and neuroinflammation via toll-like receptors support the role of GAS5 in maintaining healthy neurons. The study demonstrates the safety and efficacy of intranasal NPC86 treatment in aged mice to improve cellular functions with transcriptomic analysis in response to NPC86. In summary, the study demonstrates that GAS5 contributes to pathways associated with neurodegeneration and NPC86 has tremendous therapeutic potential to prevent the advent of neurodegenerative diseases and dementias.
Collapse
Affiliation(s)
- Rekha S. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Ashley Lui
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| | - Charles Hudson
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA
| | - Lauren Moss
- grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Robert P. Sparks
- Present Address: UMass Chan Medical School, Worcester, MA 01655 USA
| | - Shannon E. Hill
- grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Yan Shi
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Jianfeng Cai
- grid.170693.a0000 0001 2353 285XDepartment of Chemistry, University of South Florida, Tampa, FL 33612 USA
| | - Laura J. Blair
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XUSF Health Byrd Institute, University of South Florida, Tampa, FL 33612 USA
| | - Paula C. Bickford
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33612 USA
| | - Niketa A. Patel
- grid.281075.90000 0001 0624 9286James A. Haley Veterans Hospital, Research Service, 13000 Bruce B. Downs Blvd., Tampa, FL 33612 USA ,grid.170693.a0000 0001 2353 285XDepartment of Molecular Medicine, University of South Florida, Tampa, FL 33612 USA
| |
Collapse
|
32
|
Kashyap SN, Boyle NR, Roberson ED. Preclinical Interventions in Mouse Models of Frontotemporal Dementia Due to Progranulin Mutations. Neurotherapeutics 2023; 20:140-153. [PMID: 36781744 PMCID: PMC10119358 DOI: 10.1007/s13311-023-01348-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Heterozygous loss-of-function mutations in progranulin (GRN) cause frontotemporal dementia (FTD), a leading cause of early-onset dementia characterized clinically by behavioral, social, and language deficits. There are currently no FDA-approved therapeutics for FTD-GRN, but this has been an active area of investigation, and several approaches are now in clinical trials. Here, we review preclinical development of therapies for FTD-GRN with a focus on testing in mouse models. Since most FTD-GRN-associated mutations cause progranulin haploinsufficiency, these approaches focus on raising progranulin levels. We begin by considering the disorders associated with altered progranulin levels, and then review the basics of progranulin biology including its lysosomal, neurotrophic, and immunomodulatory functions. We discuss mouse models of progranulin insufficiency and how they have been used in preclinical studies on a variety of therapeutic approaches. These include approaches to raise progranulin expression from the normal allele or facilitate progranulin production by the mutant allele, as well as approaches to directly increase progranulin levels by delivery across the blood-brain barrier or by gene therapy. Several of these approaches have entered clinical trials, providing hope that new therapies for FTD-GRN may be the next frontier in the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
- Shreya N Kashyap
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Medical Scientist Training Program, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
33
|
Brandebura AN, Paumier A, Onur TS, Allen NJ. Astrocyte contribution to dysfunction, risk and progression in neurodegenerative disorders. Nat Rev Neurosci 2023; 24:23-39. [PMID: 36316501 DOI: 10.1038/s41583-022-00641-1] [Citation(s) in RCA: 126] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/06/2022]
Abstract
There is increasing appreciation that non-neuronal cells contribute to the initiation, progression and pathology of diverse neurodegenerative disorders. This Review focuses on the role of astrocytes in disorders including Alzheimer disease, Parkinson disease, Huntington disease and amyotrophic lateral sclerosis. The important roles astrocytes have in supporting neuronal function in the healthy brain are considered, along with studies that have demonstrated how the physiological properties of astrocytes are altered in neurodegenerative disorders and may explain their contribution to neurodegeneration. Further, the question of whether in neurodegenerative disorders with specific genetic mutations these mutations directly impact on astrocyte function, and may suggest a driving role for astrocytes in disease initiation, is discussed. A summary of how astrocyte transcriptomic and proteomic signatures are altered during the progression of neurodegenerative disorders and may relate to functional changes is provided. Given the central role of astrocytes in neurodegenerative disorders, potential strategies to target these cells for future therapeutic avenues are discussed.
Collapse
Affiliation(s)
- Ashley N Brandebura
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Adrien Paumier
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tarik S Onur
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nicola J Allen
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
34
|
MAPT genotype-dependent mitochondrial aberration and ROS production trigger dysfunction and death in cortical neurons of patients with hereditary FTLD. Redox Biol 2022; 59:102597. [PMID: 36599286 PMCID: PMC9817175 DOI: 10.1016/j.redox.2022.102597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
Tauopathies are a major type of proteinopathies underlying neurodegenerative diseases. Mutations in the tau-encoding MAPT-gene lead to hereditary cases of frontotemporal lobar degeneration (FTLD)-tau, which span a wide phenotypic and pathological spectrum. Some of these mutations, such as the N279K mutation, result in a shift of the physiological 3R/4R ratio towards the more aggregation prone 4R isoform. Other mutations such as V337M cause a decrease in the in vitro affinity of tau to microtubules and a reduced ability to promote microtubule assembly. Whether both mutations address similar downstream signalling cascades remains unclear but is important for potential rescue strategies. Here, we developed a novel and optimised forward programming protocol for the rapid and highly efficient production of pure cultures of glutamatergic cortical neurons from hiPSCs. We apply this protocol to delineate mechanisms of neurodegeneration in an FTLD-tau hiPSC-model consisting of MAPTN279K- or MAPTV337M-mutants and wild-type or isogenic controls. The resulting cortical neurons express MAPT-genotype-dependent dominant proteome clusters regulating apoptosis, ROS homeostasis and mitochondrial function. Related pathways are significantly upregulated in MAPTN279K neurons but not in MAPTV337M neurons or controls. Live cell imaging demonstrates that both MAPT mutations affect excitability of membranes as reflected in spontaneous and stimulus evoked calcium signals when compared to controls, albeit more pronounced in MAPTN279K neurons. These spontaneous calcium oscillations in MAPTN279K neurons triggered mitochondrial hyperpolarisation and fission leading to mitochondrial ROS production, but also ROS production through NOX2 acting together to induce cell death. Importantly, we found that these mechanisms are MAPT mutation-specific and were observed in MAPTN279K neurons, but not in MAPTV337M neurons, supporting a pathological role of the 4R tau isoform in redox disbalance and highlighting MAPT-mutation specific clinicopathological-genetic correlations, which may inform rescue strategies in different MAPT mutations.
Collapse
|
35
|
Alterations in Cerebellar Microtubule Cytoskeletal Network in a ValproicAcid-Induced Rat Model of Autism Spectrum Disorders. Biomedicines 2022; 10:biomedicines10123031. [PMID: 36551785 PMCID: PMC9776106 DOI: 10.3390/biomedicines10123031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental diseases characterised by deficits in social communication, restricted interests, and repetitive behaviours. The growing body of evidence points to a role for cerebellar changes in ASD pathology. Some of the findings suggest that not only motor problems but also social deficits, repetitive behaviours, and mental inflexibility associated with ASD are connected with damage to the cerebellum. However, the understanding of this brain structure's functions in ASD pathology needs future investigations. Therefore, in this study, we generated a rodent model of ASD through a single prenatal administration of valproic acid (VPA) into pregnant rats, followed by cerebellar morphological studies of the offspring, focusing on the alterations of key cytoskeletal elements. The expression (Western blot) of α/β-tubulin and the major neuronal MT-associated proteins (MAP) such as MAP-Tau and MAP1B, MAP2, MAP6 (STOP) along with actin-crosslinking αII-spectrin and neurofilament light polypeptide (NF-L) was investigated. We found that maternal exposure to VPA induces a significant decrease in the protein levels of α/β-tubulin, MAP-Tau, MAP1B, MAP2, and αII-spectrin. Moreover, excessive MAP-Tau phosphorylation at (Ser396) along with key Tau-kinases activation was indicated. Immunohistochemical staining showed chromatolysis in the cerebellum of autistic-like rats and loss of Purkinje cells shedding light on one of the possible molecular mechanisms underpinning neuroplasticity alterations in the ASD brain.
Collapse
|
36
|
Hedna R, Kovacic H, Pagano A, Peyrot V, Robin M, Devred F, Breuzard G. Tau Protein as Therapeutic Target for Cancer? Focus on Glioblastoma. Cancers (Basel) 2022; 14:5386. [PMID: 36358803 PMCID: PMC9653627 DOI: 10.3390/cancers14215386] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/27/2023] Open
Abstract
Despite being extensively studied for several decades, the microtubule-associated protein Tau has not finished revealing its secrets. For long, Tau has been known for its ability to promote microtubule assembly. A less known feature of Tau is its capability to bind to cancer-related protein kinases, suggesting a possible role of Tau in modulating microtubule-independent cellular pathways that are associated with oncogenesis. With the intention of finding new therapeutic targets for cancer, it appears essential to examine the interaction of Tau with these kinases and their consequences. This review aims at collecting the literature data supporting the relationship between Tau and cancer with a particular focus on glioblastoma tumors in which the pathological significance of Tau remains largely unexplored. We will first treat this subject from a mechanistic point of view showing the pivotal role of Tau in oncogenic processes. Then, we will discuss the involvement of Tau in dysregulating critical pathways in glioblastoma. Finally, we will outline promising strategies to target Tau protein for the therapy of glioblastoma.
Collapse
Affiliation(s)
- Rayane Hedna
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Hervé Kovacic
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Alessandra Pagano
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Vincent Peyrot
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Maxime Robin
- Faculté de Pharmacie, Institut Méditerranéen de Biodiversité et Ecologie marine et continentale (IMBE), UMR 7263, CNRS, IRD 237, Aix-Marseille Université, 13005 Marseille, France
| | - François Devred
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| | - Gilles Breuzard
- Faculté des Sciences Médicales et Paramédicales, Institut de Neurophysiopathologie (INP), UMR 7051, CNRS, Aix Marseille Université, 13005 Marseille, France
| |
Collapse
|
37
|
Deterministic programming of human pluripotent stem cells into microglia facilitates studying their role in health and disease. Proc Natl Acad Sci U S A 2022; 119:e2123476119. [PMID: 36251998 PMCID: PMC9618131 DOI: 10.1073/pnas.2123476119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), are derived from yolk-sac macrophages that populate the developing CNS during early embryonic development. Once established, the microglia population is self-maintained throughout life by local proliferation. As a scalable source of microglia-like cells (MGLs), we here present a forward programming protocol for their generation from human pluripotent stem cells (hPSCs). The transient overexpression of PU.1 and C/EBPβ in hPSCs led to a homogenous population of mature microglia within 16 d. MGLs met microglia characteristics on a morphological, transcriptional, and functional level. MGLs facilitated the investigation of a human tauopathy model in cortical neuron-microglia cocultures, revealing a secondary dystrophic microglia phenotype. Single-cell RNA sequencing of microglia integrated into hPSC-derived cortical brain organoids demonstrated a shift of microglia signatures toward a more-developmental in vivo-like phenotype, inducing intercellular interactions promoting neurogenesis and arborization. Taken together, our microglia forward programming platform represents a tool for both reductionist studies in monocultures and complex coculture systems, including 3D brain organoids for the study of cellular interactions in healthy or diseased environments.
Collapse
|
38
|
TMAO to the rescue of pathogenic protein variants. Biochim Biophys Acta Gen Subj 2022; 1866:130214. [PMID: 35902028 DOI: 10.1016/j.bbagen.2022.130214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/11/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022]
Abstract
Trimethylamine N-oxide (TMAO) is a chemical chaperone found in various organisms including humans. Various studies unveiled that it is an excellent protein-stabilizing agent, and induces folding of unstructured proteins. It is also well established that it can counteract the deleterious effects of urea, salt, and hydrostatic pressure on macromolecular integrity. There is also existence of large body of data regarding its ability to restore functional deficiency of various mutant proteins or pathogenic variants by correcting misfolding defects and inhibiting the formation of high-order toxic protein oligomers. Since an important class of human disease called "protein conformational disorders" is due to protein misfolding and/or formation of high-order oligomers, TMAO stands as a promising molecule for the therapeutic intervention of such diseases. The present review has been designed to gather a comprehensive knowledge of the TMAO's effect on the functional restoration of various mutants, identify its shortcomings and explore its potentiality as a lead molecule. Future prospects have also been suitably incorporated.
Collapse
|
39
|
Huynh MB, Rebergue N, Merrick H, Gomez-Henao W, Jospin E, Biard DSF, Papy-Garcia D. HS3ST2 expression induces the cell autonomous aggregation of tau. Sci Rep 2022; 12:10850. [PMID: 35760982 PMCID: PMC9237029 DOI: 10.1038/s41598-022-13486-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
Heparan sulfates have long been known to intracellularly accumulate in Alzheimer's disease neurons, where they colocalize with neurofibrillary tangles made of abnormally phosphorylated and aggregated tau protein. However, the reasons and consequences of the heparan sulfates accumulation in the Alzheimer's cells are not yet well understood. Previously, we showed that the neural heparan sulfate 3-O-sulfotransferase HS3ST2 is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tauopathy. Using cell models of tauopathy we showed that intracellular 3-O-sulfatated heparan sulfates interact with tau inducing its abnormal phosphorylation. However, it is unknown whether HS3ST2 expression induces the intracellular aggregation of tau in cells. Here, by using replicative pEBV plasmids, we engineered HEK293 cells to stably express HS3ST2 together with human tau carrying or not the P301S mutation. We show that HS3ST2 gain of function induces the cell autonomous aggregation of tau not only in cells expressing tauP301S, but also in cells expressing the wild type tau. Our engineered cells mimicked both the HS intracellular accumulation observed in neurons of Alzheimer's disease and the tau aggregation characteristic of tauopathy development and evolution. These results give evidence that the neural HS3ST2 plays a critical role in the cell autonomous self-aggregation of tau.
Collapse
Affiliation(s)
- M B Huynh
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - N Rebergue
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - H Merrick
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - W Gomez-Henao
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- Departamento de Bioquímica, Laboratorio Internacional Gly-CRRET-UNAM, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - E Jospin
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
| | - D S F Biard
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France
- CEA, Institut de Biologie François Jacob (IBFJ), SEPIA, Université Paris-Saclay, Fontenay-aux-Roses, France
| | - D Papy-Garcia
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Univ Paris Est Creteil (UPEC), F-94010 Creteil, France.
| |
Collapse
|
40
|
Gallo D, Ruiz A, Sánchez-Juan P. Genetic architecture of primary tauopathies. Neuroscience 2022; 518:27-37. [PMID: 35609758 DOI: 10.1016/j.neuroscience.2022.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/26/2022]
Abstract
Primary Tauopathies are a group of diseases defined by the accumulation of Tau, in which the alteration of this protein is the primary driver of the neurodegenerative process. In addition to the classical syndromes (Pick's disease (PiD), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease (AGD)), new entities, like primary age-related Tauopathy (PART), have been recently described. Except for the classical Richardson's syndrome phenotype in PSP, the correlation between the clinical picture of the primary Tauopathies and underlying pathology is poor. This fact has challenged genetic studies. However, thanks to multicenter collaborations, several genome-wide association studies are helping us unravel the genetic structure of these diseases. The most relevant risk factor revealed by these studies is the Tau gene (MAPT), which, in addition to mutations causing rare familial forms, plays a fundamental role in sporadic cases of PSP and CBD in which there is a strong predominance of the H1 and H1c haplotypes. But outside of MAPT, several other genes have been robustly associated with PSP. These findings, pointing towards multifactorial causation, imply the participation of several pathways involving the myelin sheath integrity, the endoplasmic reticulum unfolded protein response, microglia, intracellular vesicle trafficking, or the ubiquitin-proteasome system. Additionally, GWAS show a high degree of genetic overlap across different Tauopathies. This is especially salient between PSP and CBD, but also GWAS studying the recently described PART phenotype shows genetic overlap with genes that promote Tau pathology and with others associated with Alzheimer's disease.
Collapse
|
41
|
Islam M, Shen F, Regmi D, Du D. Therapeutic strategies for tauopathies and drug repurposing as a potential approach. Biochem Pharmacol 2022; 198:114979. [PMID: 35219701 PMCID: PMC9159505 DOI: 10.1016/j.bcp.2022.114979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/21/2022] [Indexed: 11/26/2022]
Abstract
Tauopathies are neurodegenerative diseases characterized by the deposition of abnormal tau in the brain. To date, there are no disease-modifying therapies approved by the U.S. Food and Drug Administration (US FDA) for the treatment of tauopathies. In the past decades, extensive efforts have been provided to develop disease-modifying therapies to treat tauopathies. Specifically, exploring existing drugs with the intent of repurposing for the treatment of tauopathies affords a reasonable alternative to discover potent drugs for treating these formidable diseases. Drug repurposing will not only reduce formulation and development stage effort and cost but will also take a key advantage of the established toxicological studies, which is one of the main causes of clinical trial failure of new molecules. In this review, we provide an overview of the current treatment strategies for tauopathies and the recent progress in drug repurposing as an alternative approach to treat tauopathies.
Collapse
Affiliation(s)
- Majedul Islam
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| | - Fengyun Shen
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deepika Regmi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, United States.
| |
Collapse
|
42
|
Neuroprotective Effects of Green Tea Seed Isolated Saponin Due to the Amelioration of Tauopathy and Alleviation of Neuroinflammation: A Therapeutic Approach to Alzheimer's Disease. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072079. [PMID: 35408478 PMCID: PMC9000224 DOI: 10.3390/molecules27072079] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/07/2023]
Abstract
Tauopathy is one of the major causes of neurodegenerative disorders and diseases such as Alzheimer’s disease (AD). Hyperphosphorylation of tau proteins by various kinases leads to the formation of PHF and NFT and eventually results in tauopathy and AD; similarly, neuroinflammation also exaggerates and accelerates neuropathy and neurodegeneration. Natural products with anti-tauopathy and anti-neuroinflammatory effects are highly recommended as safe and feasible ways of preventing and /or treating neurodegenerative diseases, including AD. In the present study, we isolated theasaponin E1 from ethanol extract of green tea seed and evaluated its therapeutic inhibitory effects on tau hyper-phosphorylation and neuroinflammation in neuroblastoma (SHY-5Y) and glioblastoma (HTB2) cells, respectively, to elucidate the mechanism of the inhibitory effects. The expression of tau-generating and phosphorylation-promoting genes under the effects of theasaponin E1 were determined and assessed by RT- PCR, ELISA, and western blotting. It was found that theasaponin E1 reduced hyperphosphorylation of tau and Aβ concentrations significantly, and dose-dependently, by suppressing the expression of GSK3 β, CDK5, CAMII, MAPK, EPOE4(E4), and PICALM, and enhanced the expression of PP1, PP2A, and TREM2. According to the ELISA and western blotting results, the levels of APP, Aβ, and p-tau were reduced by treatment with theasaponin E1. Moreover, theasaponin E1 reduced inflammation by suppressing the Nf-kB pathway and dose-dependently reducing the levels of inflammatory cytokines such as IL-1beta, IL-6, and TNF-alpha etc.
Collapse
|
43
|
Fagan SG, Bechet S, Dev KK. Fingolimod Rescues Memory and Improves Pathological Hallmarks in the 3xTg-AD Model of Alzheimer's Disease. Mol Neurobiol 2022; 59:1882-1895. [PMID: 35031916 PMCID: PMC8882098 DOI: 10.1007/s12035-021-02613-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/19/2021] [Indexed: 10/26/2022]
Abstract
Therapeutic strategies for Alzheimer's disease (AD) have largely focused on the regulation of amyloid pathology while those targeting tau pathology, and inflammatory mechanisms are less explored. In this regard, drugs with multimodal and concurrent targeting of Aβ, tau, and inflammatory processes may offer advantages. Here, we investigate one such candidate drug in the triple transgenic 3xTg-AD mouse model of AD, namely the disease-modifying oral neuroimmunomodulatory therapeutic used in patients with multiple sclerosis, called fingolimod. In this study, administration of fingolimod was initiated after behavioral symptoms are known to emerge, at 6 months of age. Treatment continued to 12 months when behavioral tests were performed and thereafter histological and biochemical analysis was conducted on postmortem tissue. The results demonstrate that fingolimod reverses deficits in spatial working memory at 8 and 12 months of age as measured by novel object location and Morris water maze tests. Inflammation in the brain is alleviated as demonstrated by reduced Iba1-positive and CD3-positive cell number, less ramified microglial morphology, and improved cytokine profile. Finally, treatment with fingolimod was shown to reduce phosphorylated tau and APP levels in the hippocampus and cortex. These results highlight the potential of fingolimod as a multimodal therapeutic for the treatment of AD.
Collapse
Affiliation(s)
- Steven G Fagan
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| | - Sibylle Bechet
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Kumlesh K Dev
- Drug Development, School of Medicine, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
44
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
45
|
Kühn R, Mahajan A, Canoll P, Hargus G. Human Induced Pluripotent Stem Cell Models of Frontotemporal Dementia With Tau Pathology. Front Cell Dev Biol 2021; 9:766773. [PMID: 34858989 PMCID: PMC8631302 DOI: 10.3389/fcell.2021.766773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/27/2021] [Indexed: 12/04/2022] Open
Abstract
Neurodegenerative dementias are the most common group of neurodegenerative diseases affecting more than 40 million people worldwide. One of these diseases is frontotemporal dementia (FTD), an early onset dementia and one of the leading causes of dementia in people under the age of 60. FTD is a heterogeneous group of neurodegenerative disorders with pathological accumulation of particular proteins in neurons and glial cells including the microtubule-associated protein tau, which is deposited in its hyperphosphorylated form in about half of all patients with FTD. As for other patients with dementia, there is currently no cure for patients with FTD and thus several lines of research focus on the characterization of underlying pathogenic mechanisms with the goal to identify therapeutic targets. In this review, we provide an overview of reported disease phenotypes in induced pluripotent stem cell (iPSC)-derived neurons and glial cells from patients with tau-associated FTD with the aim to highlight recent progress in this fast-moving field of iPSC disease modeling. We put a particular focus on genetic forms of the disease that are linked to mutations in the gene encoding tau and summarize mutation-associated changes in FTD patient cells related to tau splicing and tau phosphorylation, microtubule function and cell metabolism as well as calcium homeostasis and cellular stress. In addition, we discuss challenges and limitations but also opportunities using differentiated patient-derived iPSCs for disease modeling and biomedical research on neurodegenerative diseases including FTD.
Collapse
Affiliation(s)
- Rebekka Kühn
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Aayushi Mahajan
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States.,Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
46
|
Siano G, Falcicchia C, Origlia N, Cattaneo A, Di Primio C. Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction. Int J Mol Sci 2021; 22:ijms221810145. [PMID: 34576308 PMCID: PMC8466023 DOI: 10.3390/ijms221810145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Roma, Italy
- Correspondence: (A.C.); (C.D.P.)
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
- Correspondence: (A.C.); (C.D.P.)
| |
Collapse
|
47
|
Leveille E, Ross OA, Gan-Or Z. Tau and MAPT genetics in tauopathies and synucleinopathies. Parkinsonism Relat Disord 2021; 90:142-154. [PMID: 34593302 PMCID: PMC9310195 DOI: 10.1016/j.parkreldis.2021.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/25/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
MAPT encodes the microtubule-associated protein tau, which is the main component of neurofibrillary tangles (NFTs) and found in other protein aggregates. These aggregates are among the pathological hallmarks of primary tauopathies such as frontotemporal dementia (FTD). Abnormal tau can also be observed in secondary tauopathies such as Alzheimer's disease (AD) and synucleinopathies such as Parkinson's disease (PD). On top of pathological findings, genetic data also links MAPT to these disorders. MAPT variations are a cause or risk factors for many tauopathies and synucleinopathies and are associated with certain clinical and pathological features in affected individuals. In addition to clinical, pathological, and genetic overlap, evidence also suggests that tau and alpha-synuclein may interact on the molecular level, and thus might collaborate in the neurodegenerative process. Understanding the role of MAPT variations in tauopathies and synucleinopathies is therefore essential to elucidate the role of tau in the pathogenesis and phenotype of those disorders, and ultimately to develop targeted therapies. In this review, we describe the role of MAPT genetic variations in tauopathies and synucleinopathies, several genotype-phenotype and pathological features, and discuss their implications for the classification and treatment of those disorders.
Collapse
Affiliation(s)
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA; Department of Clinical Genomics, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-hospital), McGill University, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada.
| |
Collapse
|
48
|
Epibrassinolide prevents tau hyperphosphorylation via GSK3β inhibition in vitro and improves Caenorhabditis elegans lifespan and motor deficits in combination with roscovitine. Amino Acids 2021; 53:1373-1389. [PMID: 34386848 DOI: 10.1007/s00726-021-03027-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 01/17/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) is considered an important element of glycogen metabolism; however, it has many other regulatory roles. Changes in the GSK3β signaling mechanism have been associated with various disorders, such as Alzheimer's disease (AD), type II diabetes, and cancer. Although the effects of GSK3β inhibitors on reducing the pathological effects of AD have been described, an effective inhibitor has not yet been developed. Epibrassinolide (EBR), a brassinosteroid (BR), is structurally similar to mammalian steroid hormones. Our studies have shown that EBR has an inhibitory effect on GSK3β in different cell lines. Roscovitine (ROSC), a cyclin-dependent kinase (CDK) inhibitor, has also been identified as a potential GSK3 inhibitor. Within the scope of this study, we propose that EBR and/or ROSC might have mechanistic action in AD models. To test this hypothesis, we used in vitro models and Caenorhabditis elegans (C. elegans) AD strains. Finally, EBR treatment successfully protected cells from apoptosis and increased the inhibitory phosphorylation of GSK3β. In addition, EBR and/or ROSC treatment had a positive effect on the survival rates of C. elegans strains. More interestingly, the paralysis phenotype of the C. elegans AD model due to Aβ42 toxicity was prevented by EBR and/or ROSC. Our findings suggest that EBR and ROSC administration have neuroprotective effects on both in vitro and C. elegans models via inhibitory GSK3β phosphorylation at Ser9.
Collapse
|
49
|
Schnöder L, Tomic I, Schwindt L, Helm D, Rettel M, Schulz-Schaeffer W, Krause E, Rettig J, Fassbender K, Liu Y. P38α-MAPK phosphorylates Snapin and reduces Snapin-mediated BACE1 transportation in APP-transgenic mice. FASEB J 2021; 35:e21691. [PMID: 34118085 DOI: 10.1096/fj.202100017r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 11/11/2022]
Abstract
Amyloid β peptide (Aβ) is the major pathogenic molecule in Alzheimer's disease (AD). BACE1 enzyme is essential for the generation of Aβ. Deficiency of p38α-MAPK in neurons increases lysosomal degradation of BACE1 and decreases Aβ deposition in the brain of APP-transgenic mice. However, the mechanisms mediating effects of p38α-MAPK are largely unknown. In this study, we used APP-transgenic mice and cultured neurons and observed that deletion of p38α-MAPK specifically in neurons decreased phosphorylation of Snapin at serine, increased retrograde transportation of BACE1 in axons and reduced BACE1 at synaptic terminals, which suggests that p38α-MAPK deficiency promotes axonal transportation of BACE1 from its predominant locations, axonal terminals, to lysosomes in the cell body. In vitro kinase assay revealed that p38α-MAPK directly phosphorylates Snapin. By further performing mass spectrometry analysis and site-directed mutagenic experiments in SH-SY5Y cell lines, we identified serine residue 112 as a p38α-MAPK-phosphorylating site on Snapin. Replacement of serine 112 with alanine did abolish p38α-MAPK knockdown-induced reduction of BACE1 activity and protein level, and transportation to lysosomes in SH-SY5Y cells. Taken together, our study suggests that activation of p38α-MAPK phosphorylates Snapin and inhibits the retrograde transportation of BACE1 in axons, which might exaggerate amyloid pathology in AD brain.
Collapse
Affiliation(s)
- Laura Schnöder
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Inge Tomic
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Laura Schwindt
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Dominic Helm
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory, Proteomics Core Facility, Heidelberg, Germany
| | | | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Jens Rettig
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Klaus Fassbender
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Yang Liu
- Department of Neurology, Saarland University, Homburg/Saar, Germany.,German Institute for Dementia Prevention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
50
|
The relationship of soluble TREM2 to other biomarkers of sporadic Alzheimer's disease. Sci Rep 2021; 11:13050. [PMID: 34158530 PMCID: PMC8219697 DOI: 10.1038/s41598-021-92101-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022] Open
Abstract
Microglial activation is a central player in the pathophysiology of Alzheimer’s disease (AD). The soluble fragment of triggering receptor expressed on myeloid cells 2 (sTREM2) can serve as a marker for microglial activation and has been shown to be overexpressed in AD. However, the relationship of sTREM2 with other AD biomarkers has not been extensively studied. We investigated the relationship between cerebrospinal fluid (CSF) sTREM2 and other AD biomarkers and examined the correlation of plasma sTREM2 with CSF sTREM2 in a cohort of individuals with AD and without AD. Participants were consecutively recruited from Asan Medical Center from 2018 to 2020. Subjects were stratified by their amyloid positivity and clinical status. Along with other AD biomarkers, sTREM2 level was measured in the plasma as well as CSF. In 101 patients with either amyloid-positive or negative status, CSF sTREM2 was closely associated with CSF T-tau and P-tau and not with Abeta42. CSF sTREM2 levels were found to be strongly correlated with CSF neurofilament light chain. The comparison of CSF and plasma sTREM2 levels tended to have an inverse correlation. Plasma sTREM2 and P-tau levels were oppositely influenced by age. Our results suggest that neuroinflammation may be closely associated with tau-induced neurodegeneration.
Collapse
|