1
|
Kass B, Schemmert S, Zafiu C, Pils M, Bannach O, Kutzsche J, Bujnicki T, Willbold D. Aβ oligomer concentration in mouse and human brain and its drug-induced reduction ex vivo. Cell Rep Med 2022; 3:100630. [PMID: 35584626 PMCID: PMC9133466 DOI: 10.1016/j.xcrm.2022.100630] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/28/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
The elimination of amyloid beta (Aβ) oligomers is a promising strategy for therapeutic drug development of Alzheimer's disease (AD). AD mouse models that develop Aβ pathology have been used to demonstrate in vivo efficacy of compounds that later failed in clinical development. Here, we analyze the concentration and size distribution of Aβ oligomers in different transgenic mouse models of AD and in human brain samples by surface-based fluorescence intensity distribution analysis (sFIDA), a highly sensitive method for detecting and quantitating protein aggregates. We demonstrate dose- and time-dependent oligomer elimination by the compound RD2 in mouse and human AD brain homogenates as sources of native Aβ oligomers. Such ex vivo target engagement analyses with mouse- and human-brain-derived oligomers have the potential to enhance the translational value from pre-clinical proof-of-concept studies to clinical trials.
Collapse
Affiliation(s)
- Bettina Kass
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Sarah Schemmert
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Christian Zafiu
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany; attyloid GmbH, Düsseldorf, 40225, Germany
| | - Marlene Pils
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany; attyloid GmbH, Düsseldorf, 40225, Germany
| | - Oliver Bannach
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany; attyloid GmbH, Düsseldorf, 40225, Germany
| | - Janine Kutzsche
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Tuyen Bujnicki
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany
| | - Dieter Willbold
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, Jülich 52428, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany; attyloid GmbH, Düsseldorf, 40225, Germany; Priavoid GmbH, Düsseldorf, 40225, Germany.
| |
Collapse
|
2
|
Söldner CA, Sticht H, Horn AH. Molecular Simulations and Alzheimer׳s Disease. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11541-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
3
|
Mishra A, Bansal R, Sreenivasan S, Dash R, Joshi S, Singh R, Rathore AS, Goel G. Structure-Based Design of Small Peptide Ligands to Inhibit Early-Stage Protein Aggregation Nucleation. J Chem Inf Model 2020; 60:3304-3314. [DOI: 10.1021/acs.jcim.0c00226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Avinash Mishra
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rohit Bansal
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shravan Sreenivasan
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Rozaleen Dash
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Srishti Joshi
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Richa Singh
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Anurag S. Rathore
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
4
|
Lantz R, Busbee B, Wojcikiewicz EP, Du D. Effects of disulfide bond and cholesterol derivatives on human calcitonin amyloid formation. Biopolymers 2019; 111:e23343. [PMID: 31804717 DOI: 10.1002/bip.23343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Human calcitonin (hCT) is a 32-residue peptide that aggregates to form amyloid fibrils under appropriate conditions. In this study, we investigated the effect of the intramolecular disulfide bond formed at the N-terminal region of the peptide in the aggregation kinetics of hCT. Our results indicate that the presence of the disulfide bond in hCT plays a crucial role in forming the critical nucleus needed for fibril formation, facilitating the rate of hCT amyloidogenesis. Furthermore, we reported for the first time the effects of cholesterol, cholesterol sulfate, and 3β-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol) on the amyloid formation of oxidized hCT. Our results show that while cholesterol does not affect amyloidogenesis of oxidized hCT, high concentrations of cholesterol sulfate exhibits a moderate inhibiting activity on hCT amyloid formation. In particular, our results show that DC-cholesterol strongly inhibits amyloidogenesis of oxidized hCT in a dose-dependent manner. Further studies at different pH conditions imply the crucial impact of electrostatic and hydrogen bonding interactions in mediating the interplay of hCT and the surface of DC-cholesterol vesicles and the inhibiting function of DC-cholesterol on hCT fibrillization.
Collapse
Affiliation(s)
- Richard Lantz
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, U.S.A
| | - Brian Busbee
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, U.S.A
| | - Ewa P Wojcikiewicz
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, 33431, U.S.A
| | - Deguo Du
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL, 33431, U.S.A
| |
Collapse
|
5
|
Rubrofusarin inhibits Aβ aggregation and ameliorates memory loss in an Aβ-induced Alzheimer's disease-like mouse model. Food Chem Toxicol 2019; 132:110698. [PMID: 31348966 DOI: 10.1016/j.fct.2019.110698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 02/04/2023]
Abstract
The misfolding and aggregation of amyloid β (Aβ) peptide is a common histopathologic characteristic in patients with Alzheimer's disease, so is considered to play an critical role. In the present study, we examined the effect of rubrofusarin, an ingredient of Cassiae semen, on Aβ aggregation and memory loss in an AD mouse model. Rubrofusarin inhibited Aβ aggregation in a concentration-dependent manner. Moreover, rubrofusarin dis-aggregated preformed Aβ fibrils in a concentration-dependent manner. Although aggregated Aβ induced memory loss, Aβ pre-incubated with rubrofusarin failed to induce memory loss. Moreover, rubrofusarin administration ameliorated Aβ aggregates-induced memory loss. Finally, rubrofusarin reduced glial fibrillary acidic protein or Iba-1-positive area, markers of neuroinflammation, in the hippocampus of Aβ-treated mice. These results suggest that rubrofusarin can decrease Aβ fibril formation and ameliorate memory loss in the AD mouse model.
Collapse
|
6
|
Matthes D, Gapsys V, Griesinger C, de Groot BL. Resolving the Atomistic Modes of Anle138b Inhibitory Action on Peptide Oligomer Formation. ACS Chem Neurosci 2017; 8:2791-2808. [PMID: 28906103 DOI: 10.1021/acschemneuro.7b00325] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The diphenyl-pyrazole compound anle138b is a known inhibitor of oligomeric aggregate formation in vitro and in vivo. Therefore, anle138b is considered a promising drug candidate to beneficially interfere with neurodegenerative processes causing devastating pathologies in humans. The atomistic details of the aggregation inhibition mechanism, however, are to date unknown since the ensemble of small nonfibrillar aggregates is structurally heterogeneous and inaccessible to direct structural characterization. Here, we set out to elucidate anle138b's mode of action using all-atom molecular dynamics simulations on the multi-microsecond time scale. By comparing simulations of dimeric to tetrameric aggregates from fragments of four amyloidogenic proteins (Aβ, hTau40, hIAPP, and Sup35N) in the presence and absence of anle138b, we show that the compound reduces the overall number of intermolecular hydrogen bonds, disfavors the sampling of the aggregated state, and remodels the conformational distributions within the small oligomeric peptide aggregates. Most notably, anle138b preferentially interacts with the disordered structure ensemble via its pyrazole moiety, thereby effectively blocking interpeptide main chain interactions and impeding the spontaneous formation of ordered β-sheet structures, in particular those with out-of-register antiparallel β-strands. The structurally very similar compound anle234b was previously identified as inactive by in vitro experiments. Here, we show that anle234b has no significant effect on the aggregation process in terms of reducing the β-structure content. Moreover, we demonstrate that the hydrogen bonding capabilities are autoinhibited due to steric effects imposed by the molecular geometry of anle234b and thereby indirectly confirm the proposed inhibitory mechanism of anle138b. We anticipate that the prominent binding of anle138b to partially disordered and dynamical aggregate structures is a generic basis for anle138b's ability to suppress toxic oligomer formation in a wide range of amyloidogenic peptides and proteins.
Collapse
Affiliation(s)
- Dirk Matthes
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Vytautas Gapsys
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department
of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Bert L. de Groot
- Computational
Biomolecular Dynamics Group, Department of Theoretical and Computational
Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg
11, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Galati C, Spinella N, Renna L, Milardi D, Attanasio F, Sciacca MFM, Bongiorno C. Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2446-2453. [PMID: 29234579 PMCID: PMC5704750 DOI: 10.3762/bjnano.8.243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/19/2017] [Indexed: 06/07/2023]
Abstract
Although the formation of β-amyloid (Aβ) fibrils in neuronal tissues is a hallmark of Alzheimer disease (AD), small-sized Aβ oligomers rather than mature fibrils have been identified as the most neurotoxic species. Therefore, the design of new inhibitors, able to prevent the aggregation of Aβ, is believed to be a promising therapeutic approach to AD. Unfortunately, the short-lived intermediate structures that occur in a solution along the Aβ aggregation pathway escape conventional experimental investigations and there is urgent need of new tools aimed at the discovery of agents targeting monomeric Aβ and blocking the early steps of amyloid aggregation. Here, we show the combination of high-efficiency slides (HESs) with peptide microarrays as a promising tool for identifying small peptides that bind Aβ monomers. To this aim, HESs with two immobilized reference peptides, (i.e., KLVFF and Semax) with opposite behavior, were investigated for binding to fluorescently labeled Aβ peptide. Transmission electron microscopy was used to demonstrate Aβ fibrillar aggregates missing. The use of HESs was critical to ensure convenient output of the fluorescent microarrays. The resulting sensitivity, as well as the low sample consumption and the high potential for miniaturization, suggests that the proposed combination of peptide microarrays and highly efficient slides would be a very effective technology for molecule profiling in AD drug discovery.
Collapse
Affiliation(s)
- Clelia Galati
- STMicroelectronics, Stradale Primosole, 95121, Catania, Italy
| | | | - Lucio Renna
- STMicroelectronics, Stradale Primosole, 95121, Catania, Italy
| | - Danilo Milardi
- CNR-Istituto di Biostrutture e Bioimmagini, Catania, Italy
| | | | | | | |
Collapse
|
8
|
Stark T, Lieblein T, Pohland M, Kalden E, Freund P, Zangl R, Grewal R, Heilemann M, Eckert GP, Morgner N, Göbel MW. Peptidomimetics That Inhibit and Partially Reverse the Aggregation of Aβ1–42. Biochemistry 2017; 56:4840-4849. [DOI: 10.1021/acs.biochem.7b00223] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | | | | | | | | | | | - Rekha Grewal
- Institute
of Nutritional Sciences, Justus-Liebig-University Giessen, Wilhelmstrasse
20, D-35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
9
|
Kusakiewicz-Dawid A, Porada M, Ochędzan-Siodłak W, Broda MA, Bujak M, Siodłak D. Pyrazole amino acids: hydrogen bonding directed conformations of 3-amino-1H-pyrazole-5-carboxylic acid residue. J Pept Sci 2017; 23:716-726. [PMID: 28608410 DOI: 10.1002/psc.3018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/24/2017] [Accepted: 05/25/2017] [Indexed: 11/06/2022]
Abstract
A series of model compounds containing 3-amino-1H-pyrazole-5-carboxylic acid residue with N-terminal amide/urethane and C-terminal amide/hydrazide/ester groups were investigated by using NMR, Fourier transform infrared, and single-crystal X-ray diffraction methods, additionally supported by theoretical calculations. The studies demonstrate that the most preferred is the extended conformation with torsion angles ϕ and ψ close to ±180°. The studied 1H-pyrazole with N-terminal amide/urethane and C-terminal amide/hydrazide groups solely adopts this energetically favored conformation confirming rigidity of that structural motif. However, when the C-terminal ester group is present, the second conformation with torsion angles ϕ and ψ close to ±180° and 0°, respectively, is accessible. The conformational equilibrium is observed in NMR and Fourier transform infrared studies in solution in polar environment as well as in the crystal structures of other related compounds. The observed conformational preferences are clearly related to the presence of intramolecular interactions formed within the studied residue. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Monika Porada
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | | | - Małgorzata A Broda
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Maciej Bujak
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| | - Dawid Siodłak
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052, Opole, Poland
| |
Collapse
|
10
|
Bhat WF, Bhat SA, Bhat IA, Sohail A, Shah A, Bano B. Anti-fibrillogenic and fibril destabilizing effects of metal ions on cystatin fibrils. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Discovery and characterization of novel indole and 7-azaindole derivatives as inhibitors of β-amyloid-42 aggregation for the treatment of Alzheimer’s disease. Bioorg Med Chem Lett 2017; 27:1405-1411. [DOI: 10.1016/j.bmcl.2017.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/30/2017] [Accepted: 02/01/2017] [Indexed: 11/24/2022]
|
12
|
Ziehm T, Brener O, van Groen T, Kadish I, Frenzel D, Tusche M, Kutzsche J, Reiß K, Gremer L, Nagel-Steger L, Willbold D. Increase of Positive Net Charge and Conformational Rigidity Enhances the Efficacy of d-Enantiomeric Peptides Designed to Eliminate Cytotoxic Aβ Species. ACS Chem Neurosci 2016; 7:1088-96. [PMID: 27240424 DOI: 10.1021/acschemneuro.6b00047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder and the most common type of dementia. Until now, there is no curative therapy available. Previously, we selected the amyloid-beta (Aβ) targeting peptide D3 consisting of 12 d-enantiomeric amino acid residues by mirror image phage display as a potential drug candidate for the treatment of AD. In the current approach, we investigated the optimization potential of linear D3 with free C-terminus (D3COOH) by chemical modifications. First, the impact of the net charge was investigated and second, cyclization was introduced which is a well-known tool for the optimization of peptides for enhanced target affinity. Following this strategy, three D3 derivatives in addition to D3COOH were designed: C-terminally amidated linear D3 (D3CONH2), cyclic D3 (cD3), and cyclic D3 with an additional arginine residue (cD3r) to maintain the net charge of linear D3CONH2. These four compounds were compared to each other according to their binding affinities to Aβ(1-42), their efficacy to eliminate cytotoxic oligomers, and consequently their potency to neutralize Aβ(1-42) oligomer induced neurotoxicity. D3CONH2 and cD3r versions with equally increased net charge showed superior properties over D3COOH and cD3, respectively. The cyclic versions showed superior properties compared to their linear version with equal net charge, suggesting cD3r to be the most efficient compound among these four. Indeed, treatment of the transgenic AD mouse model Tg-SwDI with cD3r significantly enhanced spatial memory and cognition of these animals as revealed by water maze performance. Therefore, charge increase and cyclization imply suitable modification steps for an optimization approach of the Aβ targeting compound D3.
Collapse
Affiliation(s)
- Tamar Ziehm
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas van Groen
- Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35233, United States
| | - Inga Kadish
- Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham (UAB), Birmingham, Alabama 35233, United States
| | - Daniel Frenzel
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Kerstin Reiß
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex
Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
13
|
Rudolph S, Klein AN, Tusche M, Schlosser C, Elfgen A, Brener O, Teunissen C, Gremer L, Funke SA, Kutzsche J, Willbold D. Competitive Mirror Image Phage Display Derived Peptide Modulates Amyloid Beta Aggregation and Toxicity. PLoS One 2016; 11:e0147470. [PMID: 26840229 PMCID: PMC4740492 DOI: 10.1371/journal.pone.0147470] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/04/2016] [Indexed: 11/29/2022] Open
Abstract
Alzheimer´s disease is the most prominent type of dementia and currently no causative treatment is available. According to recent studies, oligomeric species of the amyloid beta (Aβ) peptide appear to be the most toxic Aβ assemblies. Aβ monomers, however, may be not toxic per se and may even have a neuroprotective role. Here we describe a competitive mirror image phage display procedure that allowed us to identify preferentially Aβ1–42 monomer binding and thereby stabilizing peptides, which destabilize and thereby eliminate toxic oligomer species. One of the peptides, called Mosd1 (monomer specific d-peptide 1), was characterized in more detail. Mosd1 abolished oligomers from a mixture of Aβ1–42 species, reduced Aβ1–42 toxicity in cell culture, and restored the physiological phenotype in neuronal cells stably transfected with the gene coding for human amyloid precursor protein.
Collapse
Affiliation(s)
- Stephan Rudolph
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Antonia Nicole Klein
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Christine Schlosser
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Anne Elfgen
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Oleksandr Brener
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Charlotte Teunissen
- Neurochemistry Laboratory and Biobank, VU University Medical Center Amsterdam, The Netherlands
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Susanne Aileen Funke
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
- Fakultät Angewandte Naturwissenschaften, Hochschule für angewandte Wissenschaften Coburg, 96450 Coburg, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
14
|
Brener O, Dunkelmann T, Gremer L, van Groen T, Mirecka EA, Kadish I, Willuweit A, Kutzsche J, Jürgens D, Rudolph S, Tusche M, Bongen P, Pietruszka J, Oesterhelt F, Langen KJ, Demuth HU, Janssen A, Hoyer W, Funke SA, Nagel-Steger L, Willbold D. QIAD assay for quantitating a compound's efficacy in elimination of toxic Aβ oligomers. Sci Rep 2015; 5:13222. [PMID: 26394756 PMCID: PMC4585794 DOI: 10.1038/srep13222] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/21/2015] [Indexed: 02/07/2023] Open
Abstract
Strong evidence exists for a central role of amyloid β-protein (Aβ) oligomers in the pathogenesis of Alzheimer’s disease. We have developed a fast, reliable and robust in vitro assay, termed QIAD, to quantify the effect of any compound on the Aβ aggregate size distribution. Applying QIAD, we studied the effect of homotaurine, scyllo-inositol, EGCG, the benzofuran derivative KMS88009, ZAβ3W, the D-enantiomeric peptide D3 and its tandem version D3D3 on Aβ aggregation. The predictive power of the assay for in vivo efficacy is demonstrated by comparing the oligomer elimination efficiency of D3 and D3D3 with their treatment effects in animal models of Alzheimer´s disease.
Collapse
Affiliation(s)
- Oleksandr Brener
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tina Dunkelmann
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Lothar Gremer
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas van Groen
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ewa A Mirecka
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Inga Kadish
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Antje Willuweit
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich (FZJ), 52425 Jülich, Germany
| | - Janine Kutzsche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Dagmar Jürgens
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Stephan Rudolph
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Markus Tusche
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany
| | - Patrick Bongen
- Institute for Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, 52426 Jülich, Germany
| | - Jörg Pietruszka
- Institute for Bioorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, 52426 Jülich, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Filipp Oesterhelt
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich (FZJ), 52425 Jülich, Germany
| | - Hans-Ulrich Demuth
- Fraunhofer Institute for Cell Therapy and Immunology, Dep. Molecular Drug Biochemistry and Therapy, 06120 Halle, Germany
| | - Arnold Janssen
- Institute of Mathematics, Lehrstuhl für Statistik und Wahrscheinlichkeitstheorie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Wolfgang Hoyer
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Susanne A Funke
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Bioanalytik, Hochschule für Angewandte Wissenschaften, Coburg, Germany
| | - Luitgard Nagel-Steger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Research Centre Jülich, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
15
|
|
16
|
Kroth H, Ansaloni A, Varisco Y, Jan A, Sreenivasachary N, Rezaei-Ghaleh N, Giriens V, Lohmann S, López-Deber MP, Adolfsson O, Pihlgren M, Paganetti P, Froestl W, Nagel-Steger L, Willbold D, Schrader T, Zweckstetter M, Pfeifer A, Lashuel HA, Muhs A. Discovery and structure activity relationship of small molecule inhibitors of toxic β-amyloid-42 fibril formation. J Biol Chem 2012; 287:34786-800. [PMID: 22891248 DOI: 10.1074/jbc.m112.357665] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence implicates Aβ peptides self-assembly and fibril formation as crucial events in the pathogenesis of Alzheimer disease. Thus, inhibiting Aβ aggregation, among others, has emerged as a potential therapeutic intervention for this disorder. Herein, we employed 3-aminopyrazole as a key fragment in our design of non-dye compounds capable of interacting with Aβ42 via a donor-acceptor-donor hydrogen bond pattern complementary to that of the β-sheet conformation of Aβ42. The initial design of the compounds was based on connecting two 3-aminopyrazole moieties via a linker to identify suitable scaffold molecules. Additional aryl substitutions on the two 3-aminopyrazole moieties were also explored to enhance π-π stacking/hydrophobic interactions with amino acids of Aβ42. The efficacy of these compounds on inhibiting Aβ fibril formation and toxicity in vitro was assessed using a combination of biophysical techniques and viability assays. Using structure activity relationship data from the in vitro assays, we identified compounds capable of preventing pathological self-assembly of Aβ42 leading to decreased cell toxicity.
Collapse
Affiliation(s)
- Heiko Kroth
- AC Immune SA, PSE Building B, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cernescu M, Stark T, Kalden E, Kurz C, Leuner K, Deller T, Göbel M, Eckert GP, Brutschy B. Laser-Induced Liquid Bead Ion Desorption Mass Spectrometry: An Approach to Precisely Monitor the Oligomerization of the β-Amyloid Peptide. Anal Chem 2012; 84:5276-84. [DOI: 10.1021/ac300258m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mihaela Cernescu
- Institute for Physical and Theoretical
Chemistry, Goethe-University, Frankfurt/M,
Germany, 60438
| | - Tina Stark
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Elisabeth Kalden
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Christopher Kurz
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Kristina Leuner
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Thomas Deller
- Institute of Clinical Neuroanatomy,
Dr. Senckenberg Anatomy, Goethe-University, Neuroscience Center, Frankfurt/M, Germany, 60590
| | - Michael Göbel
- Institute
for Organic Chemistry
and Chemical Biology, Goethe-University, Frankfurt/M, Germany, 60438
| | - Gunter P. Eckert
- Department of Pharmacology, Biocentre, Goethe-University, Frankfurt/M, Germany, 60438
| | - Bernhard Brutschy
- Institute for Physical and Theoretical
Chemistry, Goethe-University, Frankfurt/M,
Germany, 60438
| |
Collapse
|
18
|
Abstract
The combination of two different and independently acting compounds into one covalently linked hybrid compound can convey synergy from the effects of both independently acting moieties to the new composite compound, leading to a pharmacological potency greater than the sum of each individual moiety's potencies. Here, we review a variety of such hybrid compounds, which can consist of various functional parts, molecular recognition or subcellular targeting moieties, or combinations thereof, acting either simultaneously or sequentially. Such moieties within a hybrid compound can consist of a variety of substance classes, including small organic molecules, polypeptides or nucleic acids identified either via rational molecular design or selection from libraries. Precedent for hybrid compounds comes from naturally occurring proteins and small molecules, such as botulinum toxin and bleomycin, which are secreted by micro-organisms. We review the high degree of suitability of hybrid compounds for the treatment of multifactorial diseases by simultaneously hitting several targets along an identified disease pathway. Examples are hybrid compounds against Alzheimer's disease, against the cancer-relevant phosphoinisitide-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) and epidermal growth factor signaling cascade, or in antimalarial therapy via simultaneous hitting of different mechanisms of hemozoin formation. Molecular recognition by peptides or aptamers (recognition-specific RNA or peptide sequences) can be combined with the transport of small molecule β-sheet breakers or toxins, or targeting to ubiquitin-dependent proteolysis. The vision of molecular nanomachines is currently realized in sequentially acting modular nanotransporters, consisting of four modules including a target, a membrane and nuclear translocation sequence, as well as a drug attachment domain. Through the rational combination of existing drugs and the synergy of their effects, a rapid amplification of their potency may be achieved, greatly accelerating drug development. A further enhancement of simultaneous multitarget action is enabled through the design of multifunctional hybrid drugs with sequential effects that make these hybrid molecules resemble intelligent nanomachines.
Collapse
|
19
|
Wang C, Yang A, Li X, Li D, Zhang M, Du H, Li C, Guo Y, Mao X, Dong M, Besenbacher F, Yang Y, Wang C. Observation of molecular inhibition and binding structures of amyloid peptides. NANOSCALE 2012; 4:1895-909. [PMID: 22334382 DOI: 10.1039/c2nr11508e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Unveiling interactions between labeling molecules and amyloid fibrils is essential to develop new detection methods for studying amyloid structures under various conditions. This review endeavours to reflect the progress in studying interactions between molecular inhibitors and amyloid peptides using a series of experimental approaches, such as X-ray diffraction, nuclear magnetic resonance, scanning probe microscopy, and electron microscopy. The revealed binding mechanisms of anti-amyloid drugs and target proteins could benefit the rational design of drugs for prevention or treatment of amyloidal diseases.
Collapse
Affiliation(s)
- Chenxuan Wang
- National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Grasso G. The use of mass spectrometry to study amyloid-β peptides. MASS SPECTROMETRY REVIEWS 2011; 30:347-365. [PMID: 21500241 DOI: 10.1002/mas.20281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/06/2009] [Accepted: 11/06/2009] [Indexed: 05/30/2023]
Abstract
Amyloid-β peptide (Aβ) varies in size from 39 to 43 amino acids and arises from sequential β- and γ-secretase processing of the amyloid precursor protein. Whereas the non-pathological role for Aβ is yet to be established, there is no disputing that Aβ is now widely regarded as central to the development of Alzheimer's disease (AD). The so named "amyloid cascade hypothesis" states that disease progression is the result of an increased Aβ burden in affected areas of the brain. To elucidate the Aβ role in AD, many analytical approaches have been proposed as suitable tools to investigate not only the total Aβ load but also many other issues that are considered crucial for AD, such as: (i) the aggregation state in which Aβ is present; (ii) its interaction with other species or metals; (iii) its ability to induce oxidative stress; and (iv) its degradative pathways. This review provides an insight into the use of mass spectrometry (MS) in the field of Aβ investigation aimed to assess its role in AD. In particular, the different MS-based approaches applied in vitro and in vivo that can provide detailed information on the above-mentioned issues are reviewed. Moreover, the advantages offered by the MS methods over all the other techniques are highlighted, together with the recent developments and uses of combined analytical approaches to detect and characterize Aβ.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Chemistry Department, Università di Catania, Viale Andrea Doria 6, Catania 95125, Italy.
| |
Collapse
|
21
|
Loughlin WA, Tyndall JDA, Glenn MP, Hill TA, Fairlie DP. Update 1 of: Beta-Strand Mimetics. Chem Rev 2011; 110:PR32-69. [DOI: 10.1021/cr900395y] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wendy A. Loughlin
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Joel D. A. Tyndall
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Matthew P. Glenn
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - Timothy A. Hill
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| | - David P. Fairlie
- School of Science, Nathan Campus, Griffith University, Brisbane, QLD 4111, Australia, and Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia This is a Chemical Reviews Perennial Review. The root paper of this title was published in Chem. Rev. 2004, 104 (12), 6085−6117, DOI: 10.1021/cr040648k; Published (Web) Nov. 4, 2004. Updates to the text appear in red type
| |
Collapse
|
22
|
Hochdörffer K, März-Berberich J, Nagel-Steger L, Epple M, Meyer-Zaika W, Horn AHC, Sticht H, Sinha S, Bitan G, Schrader T. Rational design of β-sheet ligands against Aβ42-induced toxicity. J Am Chem Soc 2011; 133:4348-58. [PMID: 21381732 DOI: 10.1021/ja107675n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A β-sheet-binding scaffold was equipped with long-range chemical groups for tertiary contacts toward specific regions of the Alzheimer's Aβ fibril. The new constructs contain a trimeric aminopyrazole carboxylic acid, elongated with a C-terminal binding site, whose influence on the aggregation behavior of the Aβ(42) peptide was studied. MD simulations after trimer docking to the anchor point (F19/F20) suggest distinct groups of complex structures each of which featured additional specific interactions with characteristic Aβ regions. Members of each group also displayed a characteristic pattern in their antiaggregational behavior toward Aβ. Specifically, remote lipophilic moieties such as a dodecyl, cyclohexyl, or LPFFD fragment can form dispersive interactions with the nonpolar cluster of amino acids between I31 and V36. They were shown to strongly reduce Thioflavine T (ThT) fluorescence and protect cells from Aβ lesions (MTT viability assays). Surprisingly, very thick fibrils and a high β-sheet content were detected in transmission electron microscopy (TEM) and CD spectroscopic experiments. On the other hand, distant single or multiple lysines which interact with the ladder of stacked E22 residues found in Aβ fibrils completely dissolve existing β-sheets (ThT, CD) and lead to unstructured, nontoxic material (TEM, MTT). Finally, the triethyleneglycol spacer between heterocyclic β-sheet ligand and appendix was found to play an active role in destabilizing the turn of the U-shaped protofilament. Fluorescence correlation spectroscopy (FCS) and sedimentation velocity analysis (SVA) provided experimental evidence for some smaller benign aggregates of very thin, delicate structure (TEM, MTT). A detailed investigation by dynamic light scattering (DLS) and other methods proved that none of the new ligands acts as a colloid. The evolving picture for the disaggregation mechanism by these new hybrid ligands implies transformation of well-ordered fibrils into less structured aggregates with a high molecular weight. In the few cases where fibrillar components remain, these display a significantly altered morphology and have lost their acute cellular toxicity.
Collapse
Affiliation(s)
- Katrin Hochdörffer
- Universität Duisburg-Essen, Fachbereich Chemie, Universitätstrasse 5, 45117 Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Shah D, Shaikh AR, Peng X, Rajagopalan R. Effects of arginine on heat-induced aggregation of concentrated protein solutions. Biotechnol Prog 2011; 27:513-20. [DOI: 10.1002/btpr.563] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/13/2010] [Indexed: 11/06/2022]
|
24
|
Müller-Schiffmann A, März-Berberich J, Andreyeva A, Rönicke R, Bartnik D, Brener O, Kutzsche J, Horn AHC, Hellmert M, Polkowska J, Gottmann K, Reymann KG, Funke SA, Nagel-Steger L, Moriscot C, Schoehn G, Sticht H, Willbold D, Schrader T, Korth C. Gesteigerte Wirksamkeit durch Synergismus: Verknüpfung unabhängiger Wirkstoffklassen zu Hybridsubstanzen. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.201004437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Müller-Schiffmann A, März-Berberich J, Andreyeva A, Rönicke R, Bartnik D, Brener O, Kutzsche J, Horn AHC, Hellmert M, Polkowska J, Gottmann K, Reymann KG, Funke SA, Nagel-Steger L, Moriscot C, Schoehn G, Sticht H, Willbold D, Schrader T, Korth C. Combining Independent Drug Classes into Superior, Synergistically Acting Hybrid Molecules. Angew Chem Int Ed Engl 2010; 49:8743-6. [DOI: 10.1002/anie.201004437] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Funke SA, van Groen T, Kadish I, Bartnik D, Nagel-Steger L, Brener O, Sehl T, Batra-Safferling R, Moriscot C, Schoehn G, Horn AHC, Müller-Schiffmann A, Korth C, Sticht H, Willbold D. Oral treatment with the d-enantiomeric peptide D3 improves the pathology and behavior of Alzheimer's Disease transgenic mice. ACS Chem Neurosci 2010; 1:639-48. [PMID: 22778851 DOI: 10.1021/cn100057j] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 07/21/2010] [Indexed: 11/28/2022] Open
Abstract
Several lines of evidence suggest that the amyloid-β-peptide (Aβ) plays a central role in the pathogenesis of Alzheimer's disease (AD). Not only Aβ fibrils but also small soluble Aβ oligomers in particular are suspected to be the major toxic species responsible for disease development and progression. The present study reports on in vitro and in vivo properties of the Aβ targeting d-enantiomeric amino acid peptide D3. We show that next to plaque load and inflammation reduction, oral application of the peptide improved the cognitive performance of AD transgenic mice. In addition, we provide in vitro data elucidating the potential mechanism underlying the observed in vivo activity of D3. These data suggest that D3 precipitates toxic Aβ species and converts them into nonamyloidogenic, nonfibrillar, and nontoxic aggregates without increasing the concentration of monomeric Aβ. Thus, D3 exerts an interesting and novel mechanism of action that abolishes toxic Aβ oligomers and thereby supports their decisive role in AD development and progression.
Collapse
Affiliation(s)
| | - Thomas van Groen
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Inga Kadish
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Dirk Bartnik
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie and BMFZ, 40225 Düsseldorf, Germany
| | - Luitgard Nagel-Steger
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie and BMFZ, 40225 Düsseldorf, Germany
| | - Oleksandr Brener
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie and BMFZ, 40225 Düsseldorf, Germany
| | - Torsten Sehl
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie and BMFZ, 40225 Düsseldorf, Germany
| | | | - Christine Moriscot
- CEA
- CNRS
- Université Joseph Fourier
- Unit for Virus Host Cell Interactions, 6, rue Jules Horowitz BP 181, F38042 Grenoble, France
| | - Guy Schoehn
- CEA
- CNRS
- Université Joseph Fourier
- Unit for Virus Host Cell Interactions, 6, rue Jules Horowitz BP 181, F38042 Grenoble, France
| | - Anselm H. C. Horn
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Biochemie, 91054 Erlangen, Germany
| | | | - Carsten Korth
- Heinrich-Heine-Universität Düsseldorf, Institut für Neuropathologie, 40225 Düsseldorf, Germany
| | - Heinrich Sticht
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institut für Biochemie, 91054 Erlangen, Germany
| | - Dieter Willbold
- Forschungszentrum Jülich, ISB-3, 52425 Jülich, Germany
- Heinrich-Heine-Universität Düsseldorf, Institut für Physikalische Biologie and BMFZ, 40225 Düsseldorf, Germany
- CEA
| |
Collapse
|
27
|
Youssef AM, Neeland EG, Villanueva EB, White MS, El-Ashmawy IM, Patrick B, Klegeris A, Abd-El-Aziz AS. Synthesis and biological evaluation of novel pyrazole compounds. Bioorg Med Chem 2010; 18:5685-96. [DOI: 10.1016/j.bmc.2010.06.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 11/24/2022]
|
28
|
Abstract
The aggregation of numerous peptides or proteins has been linked to the onset of disease, including Abeta (amyloid beta-peptide) in AD (Alzheimer's disease), asyn (alpha-synuclein) in Parkinson's disease and amylin in Type 2 diabetes. Diverse amyloidogenic proteins can often be cut down to an SRE (self-recognition element) of as few as five residues that retains the ability to aggregate. SREs can be used as a starting point for aggregation inhibitors. In particular, N-methylated SREs can bind to a target on one side, but have hydrogen-bonding blocked on their methylated face, interfering with further assembly. We applied this strategy to develop Abeta toxicity inhibitors. Our compounds, and a range of compounds from the literature, were compared under the same conditions, using biophysical and toxicity assays. Two N-methylated D-peptide inhibitors with unnatural side chains were the most effective and can reverse Abeta-induced inhibition of LTP (long-term potentiation) at concentrations as low as 10 nM. An SRE in asyn (VAQKTV) was identified using solid-state NMR. When VAQKTV was N-methylated, it was able to disrupt asyn aggregation. N-methylated derivatives of the SRE of amylin are also able to inhibit amylin aggregation.
Collapse
|
29
|
Song H, Ritz S, Knoll W, Sinner EK. Conformation and topology of amyloid beta-protein adsorbed on a tethered artificial membrane probed by surface plasmon field-enhanced fluorescence spectroscopy. J Struct Biol 2009; 168:117-24. [PMID: 19576283 DOI: 10.1016/j.jsb.2009.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 06/04/2009] [Accepted: 06/24/2009] [Indexed: 10/20/2022]
Abstract
Progressive depositions of cerebral amyloid are primary neuropathologic features of Alzheimer's disease (AD). The amyloid is composed of a 39-42 amino acid peptide called the amyloid beta-protein (Abeta). Repeated investigation suggests that the conformational transition of Abeta from alpha-helix or random coil to beta-sheet structure plays a key role in the inappropriate accumulation of cerebral amyloid plaques. In this manuscript, we describe a fluorescence-based immunoassay technology to investigate the conformation and topology of Abeta peptides interacting with peptide-tethered planar lipid bilayers. Dual monoclonal antibodies (mAbs) labelled with fluorophores were employed to recognise a linear N- and a beta-sheet C-terminus of Abeta peptides on the model membrane, respectively. Kinetics of antibody-Abeta binding were determined by surface plasmon field-enhanced fluorescence spectroscopy (SPFS). The conformational transition of Abeta by melatonin, a defined beta-sheet breaker, was probed using paired monoclonal antibodies. The Abeta interaction with the membrane was evaluated by carefully analyzing the change in kinetic/affinity parameters in the presence or absence of melatonin. These results show that SPFS can be used to examine conformational transition of Abeta on an artificial membrane, providing a novel and versatile platform for conveniently monitoring protein-membrane interaction and screening for new beta-sheet breakers.
Collapse
Affiliation(s)
- Haipeng Song
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | | | | |
Collapse
|
30
|
Nagel-Steger L, Demeler B, Meyer-Zaika W, Hochdörffer K, Schrader T, Willbold D. Modulation of aggregate size- and shape-distributions of the amyloid-beta peptide by a designed beta-sheet breaker. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:415-22. [PMID: 19238376 DOI: 10.1007/s00249-009-0416-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/26/2009] [Accepted: 02/02/2009] [Indexed: 11/28/2022]
Abstract
A peptide with 42 amino acid residues (Abeta42) plays a key role in the pathogenesis of the Alzheimer's disease. It is highly prone to self aggregation leading to the formation of fibrils which are deposited in amyloid plaques in the brain of diseased individuals. In our study we established a method to analyze the aggregation behavior of the Abeta peptide with a combination of sedimentation velocity centrifugation and enhanced data evaluation software as implemented in the software package UltraScan. Important information which becomes accessible by this methodology is the s-value distribution and concomitantly also the shape-distribution of the Abeta peptide aggregates generated by self-association. With this method we characterized the aggregation modifying effect of a designed beta-sheet breaker molecule. This compound is built from three head-to-tail connected aminopyrazole moieties and represents a derivative of the already described Tripyrazole. By addition of this compound to a solution of the Abeta42 peptide the maximum of the s-value distribution was clearly shifted to smaller s-values as compared to solutions where only the vehicle DMSO was added. This shift to smaller s-values was stable for at least 7 days. The information about size- and shape-distributions present in aggregated Abeta42 solutions was confirmed by transmission electron microscopy and by measurement of amyloid formation by thioflavin T fluorescence.
Collapse
Affiliation(s)
- Luitgard Nagel-Steger
- Institute for Physical Biology, Geb.26.12.U1, Heinrich-Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
31
|
Demeler B, Brookes E, Nagel-Steger L. Analysis of heterogeneity in molecular weight and shape by analytical ultracentrifugation using parallel distributed computing. Methods Enzymol 2009; 454:87-113. [PMID: 19216924 DOI: 10.1016/s0076-6879(08)03804-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
A computational approach for fitting sedimentation velocity experiments from an analytical ultracentrifuge in a model-independent fashion is presented. This chapter offers a recipe for obtaining high-resolution information for both the shape and the molecular weight distributions of complex mixtures that are heterogeneous in shape and molecular weight and provides suggestions for experimental design to optimize information content. A combination of three methods is used to find the solution most parsimonious in parameters and to verify the statistical confidence intervals of the determined parameters. A supercomputer implementation with a MySQL database back end is integrated into the UltraScan analysis software. The UltraScan LIMS Web portal is used to perform the calculations through a Web interface. The performance and limitations of the method when employed for the analysis of complex mixtures are demonstrated using both simulated data and experimental data characterizing amyloid aggregation.
Collapse
Affiliation(s)
- Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | |
Collapse
|
32
|
Bourguet E, Correia I, Dorgeret B, Chassaing G, Sicsic S, Ongeri S. Synthesis and conformational studies of pseudopeptides containing an unsymmetrical triazine scaffold. J Pept Sci 2008; 14:596-609. [DOI: 10.1002/psc.944] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
33
|
Abstract
Amyloid formation typically follows a time course in which there is a long lag period followed by a rapid formation of fibrils. In this review, I show that the standard mechanisms of polymerization need to be expanded to consider that the monomeric proteins/peptides involved in amyloid formation are intrinsically disordered and exist as an ensemble of disordered-collapsed states. The review focuses primarily on events which occur in the long lag period defining these as protein folding issues, coupled with formation of oligomers. Experimental methods to explore folding and oligomerization issues over a wide range of protein concentrations using primarily fluorescence and 19F-NMR methods are discussed.
Collapse
Affiliation(s)
- Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
34
|
Abstract
Pharmacological treatment in Alzheimer's disease (AD) accounts for 10-20% of direct costs, and fewer than 20% of AD patients are moderate responders to conventional drugs (donepezil, rivastigmine, galantamine, memantine), with doubtful cost-effectiveness. Both AD pathogenesis and drug metabolism are genetically regulated complex traits in which hundreds of genes cooperatively participate. Structural genomics studies demonstrated that more than 200 genes might be involved in AD pathogenesis regulating dysfunctional genetic networks leading to premature neuronal death. The AD population exhibits a higher genetic variation rate than the control population, with absolute and relative genetic variations of 40-60% and 0.85-1.89%, respectively. AD patients also differ in their genomic architecture from patients with other forms of dementia. Functional genomics studies in AD revealed that age of onset, brain atrophy, cerebrovascular hemodynamics, brain bioelectrical activity, cognitive decline, apoptosis, immune function, lipid metabolism dyshomeostasis, and amyloid deposition are associated with AD-related genes. Pioneering pharmacogenomics studies also demonstrated that the therapeutic response in AD is genotype-specific, with apolipoprotein E (APOE) 4/4 carriers the worst responders to conventional treatments. About 10-20% of Caucasians are carriers of defective cytochrome P450 (CYP) 2D6 polymorphic variants that alter the metabolism and effects of AD drugs and many psychotropic agents currently administered to patients with dementia. There is a moderate accumulation of AD-related genetic variants of risk in CYP2D6 poor metabolizers (PMs) and ultrarapid metabolizers (UMs), who are the worst responders to conventional drugs. The association of the APOE-4 allele with specific genetic variants of other genes (e.g., CYP2D6, angiotensin-converting enzyme [ACE]) negatively modulates the therapeutic response to multifactorial treatments affecting cognition, mood, and behavior. Pharmacogenetic and pharmacogenomic factors may account for 60-90% of drug variability in drug disposition and pharmacodynamics. The incorporation of pharmacogenetic/pharmacogenomic protocols to AD research and clinical practice can foster therapeutics optimization by helping to develop cost-effective pharmaceuticals and improving drug efficacy and safety.
Collapse
Affiliation(s)
- Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute for CNS Disorders, Bergondo, Coruña, Spain
| |
Collapse
|
35
|
Abstract
The Abeta peptide assembles into a variety of distinct types of structures in vitro and in the brain which have different biological consequences. Differential effects of inhibitory small molecules suggest that a sequential monomer - oligomer - fibril mechanism is overly simplistic and that soluble toxic oligomers and fibrils can be formed in common or separate pathways depending on the local environment. As a result, the effects of inhibitors are often assay-dependent because multiple pathways are operating. This review discusses strategies for teasing apart the intricate protein-protein interactions that result in Abeta assembly.
Collapse
Affiliation(s)
- Harry LeVine
- Department of Molecular and Cellular Biochemistry, Chandler School of Medicine and the Center on Aging, University of Kentucky, KY, USA.
| |
Collapse
|
36
|
Affiliation(s)
- Wolfgang H Binder
- Vienna University of Technology, Institute of Applied Synthetic Chemistry, Vienna, Austria.
| | | |
Collapse
|
37
|
Rzepecki P, Geib N, Peifer M, Biesemeier F, Schrader T. Synthesis and Binding Studies of Alzheimer Ligands on Solid Support. J Org Chem 2007; 72:3614-24. [PMID: 17428094 DOI: 10.1021/jo061918x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aminopyrazole derivatives constitute the first class of nonpeptidic rationally designed beta-sheet ligands. Here we describe a double solid-phase protocol for both synthesis and affinity testing. The presented solid-phase synthesis of four types of hybrid compounds relies on the Fmoc strategy and circumvents subsequent HPLC purification by precipitating the final product from organic solution in pure form. Hexa- and octapeptide pendants with internal di- and tetrapeptide bridges are now amenable in high yields to combinatorial synthesis of compound libraries for high-throughput screening purposes. Solid-phase peptide synthesis (SPPS) on an acid-resistant PAM allows us, after PMB deprotection, to subject the free aminopyrazole binding sites in an immobilized state to on-bead assays with fluorescence-labeled peptides. From the fluorescence emission intensity decrease, individual binding constants can be calculated via reference curves by simple application of the law of mass action. Gratifyingly, host/guest complexation can be monitored quantitatively even for those ligands, which are almost insoluble in water.
Collapse
Affiliation(s)
- Petra Rzepecki
- Fachbereich Chemie, Universität Marburg, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Wang W, Weisz K. Characterization of peptide-pyrazole interactions in solution by low-temperature NMR studies. Chemistry 2006; 13:854-61. [PMID: 17086564 DOI: 10.1002/chem.200600591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complexation of the amino- and carboxyl-protected tripeptide Piv-L-Val-L-Val-L-Val-tBu with 3-methylpyrazole and 3-amino-5-methylpyrazole was studied by low-temperature NMR experiments in a freonic solvent. The peptide forms an extended beta-type structure at all temperatures and associates through hydrogen bonding with the two pyrazole-based beta-sheet ligands. A detailed structural characterization of the formed complexes by one- and two-dimensional NMR experiments under slow exchange conditions was made possible by employing very low temperatures. The tripeptide associates to stable antiparallel dimers that are symmetrically capped on both sides by two pyrazole receptors to form 2:2 complexes. Amide groups of two neighboring residues in an extended conformation are involved in cyclic hydrogen bonds to the pyrazole. Based on amide chemical shift changes, the relative strength of intermolecular hydrogen bonds can be assessed and correlated with the electronic effects of the substituents on the pyrazole.
Collapse
Affiliation(s)
- Wei Wang
- Freie Universität Berlin, Institut für Organische Chemie, Takustrasse 3, 14195 Berlin, Germany
| | | |
Collapse
|
40
|
Li X, Miltschitzky S, König B. Luminescent pyrimidine hydrazide oligomers with peptide affinity. Bioorg Med Chem 2006; 14:6075-84. [PMID: 16714117 DOI: 10.1016/j.bmc.2006.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/04/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
The modular synthesis of pyrimidine oligohydrazides and their peptide binding ability are reported. Ethylene glycol substituents ensure water solubility of the compounds. The pattern of hydrogen bond donors and hydrogen bond acceptors resembles the functionalities of a peptide backbone, and intramolecular hydrogen bonds restrict conformational mobility. The pyrimidine heterocycles show emission at 423 nm if either excited with light of 320 nm or by a FRET process from a nearby Trp residue. This property is useful for the luminescent detection of interactions with peptides and proteins.
Collapse
Affiliation(s)
- Xiaoqiang Li
- Institut für Organische Chemie, Universität Regensburg, Germany
| | | | | |
Collapse
|
41
|
Elgersma RC, Meijneke T, Posthuma G, Rijkers DTS, Liskamp RMJ. Self-Assembly of Amylin(20–29) Amide-Bond Derivatives into Helical Ribbons and Peptide Nanotubes rather than Fibrils. Chemistry 2006; 12:3714-25. [PMID: 16528792 DOI: 10.1002/chem.200501374] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Uncontrolled aggregation of proteins or polypeptides can be detrimental for normal cellular processes in healthy organisms. Proteins or polypeptides that form these amyloid deposits differ in their primary sequence but share a common structural motif: the (anti)parallel beta sheet. A well-accepted approach for interfering with beta-sheet formation is the design of soluble beta-sheet peptides to disrupt the hydrogen-bonding network; this ultimately leads to the disassembly of the aggregates or fibrils. Here, we describe the synthesis, spectroscopic analysis, and aggregation behavior, imaged by electron microscopy, of several backbone-modified amylin(20-29) derivatives. It was found that these amylin derivatives were not able to form fibrils and to some extent were able to inhibit fibril growth of native amylin(20-29). However, two of the amylin peptides were able to form large supramolecular assemblies, like helical ribbons and peptide nanotubes, in which beta-sheet formation was clearly absent. This was quite unexpected since these peptides have been designed as soluble beta-sheet breakers for disrupting the characteristic hydrogen-bonding network of (anti)parallel beta sheets. The increased hydrophobicity and the presence of essential amino acid side chains in the newly designed amylin(20-29) derivatives were found to be the driving force for self-assembly into helical ribbons and peptide nanotubes. This example of controlled and desired peptide aggregation may be a strong impetus for research on bionanomaterials in which special shapes and assemblies are the focus of interest.
Collapse
Affiliation(s)
- Ronald C Elgersma
- Department of Medicinal Chemistry, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Török M, Abid M, Mhadgut SC, Török B. Organofluorine Inhibitors of Amyloid Fibrillogenesis†. Biochemistry 2006; 45:5377-83. [PMID: 16618127 DOI: 10.1021/bi0601104] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design and application of an effective, new class of organofluorine inhibitors of amyloid fibrillogenesis are described. Based on experimental evidence a core structure containing indol-3-yl, trifluoromethyl, hydroxyl, and carboxylic acid ester functions has been designed. Several substituted derivatives of this core structure have been synthesized, using various indole derivatives. While all inhibitor candidates have shown considerable effect (20-70% inhibition) in structure-activity relationship studies (inhibitor/Abeta = 10 ratio), several compounds have demonstrated excellent activity (93-96% inhibition). Using concentration dependence studies, the activity of the most active molecules have been quantified. These inhibitors practically completely block the fibril formation of Abeta(1)(-)(40), as shown by maximum inhibition values (IC(max) = 98-100%). The median inhibitor concentration values (IC(50) = 0.23-0.53 mol(inhibitor)/mol(A)(beta)) demonstrate favorable stoichiometry for the inhibition. The respective elimination of the functional groups from the core structure has resulted in a partial or complete loss of activity, indicating the significant role of each group. Experiments with these derivatives suggest the particular importance of the acidic hydroxyl group during peptide-inhibitor interaction.
Collapse
Affiliation(s)
- Marianna Török
- Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
This review considers the design, synthesis, and mechanistic assessment of peptide-based fibrillogenesis inhibitors, mainly focusing on beta-amyloid, but generalizable to other aggregating proteins and peptides. In spite of revision of the "amyloid hypothesis," the investigation and development of fibrillogenesis inhibitors remain important scientific and therapeutic goals for at least three reasons. First, it is still premature to dismiss fibrils altogether as sources of cytotoxicity. Second, a "fibrillogenesis inhibitor" is typically identified experimentally as such, but these compounds may also bind to intermediates in the fibrillogenesis pathway and have hard-to-predict consequences, including improved clearance of more cytotoxic soluble oligomers. Third, inhibitors are valuable structural probes, as the entire field of enzymology attests. Screening procedures for selection of random inhibitory sequences are briefly considered, but the bulk of the review concentrates on rationally designed fibrillogenesis inhibitors. Among these are internal segments of fibril-forming peptides, amino acid substitutions and side chain modifications of fibrillogenic domains, insertion of prolines into or adjacent to fibrillogenic domains, modification of peptide termini, modification of peptide backbone atoms (including N-methylation), peptide cyclization, use of D-amino acids in fibrillogenic domains, and nonpeptidic beta-sheet mimics. Finally, we consider methods of assaying fibrillogenesis inhibitors, including pitfalls in these assays. We consider binding of inhibitor peptides to their targets, but because this is a specific application of the more general and much larger problem of assessing protein-protein interactions, this topic is covered only briefly. Finally, we consider potential applications of inhibitor peptides to therapeutic strategies.
Collapse
|
44
|
Abstract
The increasing use of recombinantly expressed therapeutic proteins in the pharmaceutical industry has highlighted issues such as their stability during long-term storage and means of efficacious delivery that avoid adverse immunogenic side effects. Controlled chemical modifications, such as substitutions, acylation and PEGylation, have fulfilled some but not all of their promises, while hydrogels and lipid-based formulations could well be developed into generic delivery systems. Strategies to curb the aggregation and misfolding of proteins during storage are likely to benefit from the recent surge of interest in protein fibrillation. This might in turn lead to generally accepted guidelines and tests to avoid unforeseen adverse effects in drug delivery.
Collapse
Affiliation(s)
- Sven Frokjaer
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100 Copenhagen O, Denmark
| | | |
Collapse
|
45
|
Pagel K, Vagt T, Koksch B. Directing the secondary structure of polypeptides at will: from helices to amyloids and back again? Org Biomol Chem 2005; 3:3843-50. [PMID: 16239998 DOI: 10.1039/b510098d] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An ageing society faces an increasing number of neurodegenerative diseases such as Alzheimer's, Parkinson's, and Creutzfeld-Jacob disease. The deposition of amyloid fibrils is a pathogenic factor causing the destruction of neuronal tissue. Amyloid-forming proteins are mainly alpha-helical in their native conformation, but undergo an alpha-helix to beta-strand conversion before or during fibril formation. Partially unfolded or misfolded beta-sheet fragments are discussed as direct precursors of amyloids. To potentially cure neurodegenerative diseases we need to understand the complex folding mechanisms that shift the equilibrium from the functional to the pathological isoform of the proteins involved. This paper describes a novel approach that allows us to study the interplay between peptide primary structure and environmental conditions for peptide and protein folding in its whole complexity on a molecular level. This de novo designed peptide system may achieve selective inhibition of fibril formation.
Collapse
Affiliation(s)
- Kevin Pagel
- Freie Universität Berlin, Institut für Chemie-Organische Chemie, Takustrasse 3, 14195, Berlin, Germany
| | | | | |
Collapse
|