1
|
Nishiyama E, Ohshima K. Cross-Kingdom Commonality of a Novel Insertion Signature of RTE-Related Short Retroposons. Genome Biol Evol 2018; 10:1471-1483. [PMID: 29850801 PMCID: PMC6007223 DOI: 10.1093/gbe/evy098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2018] [Indexed: 12/15/2022] Open
Abstract
In multicellular organisms, such as vertebrates and flowering plants, horizontal transfer (HT) of genetic information is thought to be a rare event. However, recent findings unveiled unexpectedly frequent HT of RTE-clade LINEs. To elucidate the molecular footprints of the genomic integration machinery of RTE-related retroposons, the sequence patterns surrounding the insertion sites of plant Au-like SINE families were analyzed in the genomes of a wide variety of flowering plants. A novel and remarkable finding regarding target site duplications (TSDs) for SINEs was they start with thymine approximately one helical pitch (ten nucleotides) downstream of a thymine stretch. This TSD pattern was found in RTE-clade LINEs, which share the 3'-end sequence of these SINEs, in the genome of leguminous plants. These results demonstrably show that Au-like SINEs were mobilized by the enzymatic machinery of RTE-clade LINEs. Further, we discovered the same TSD pattern in animal SINEs from lizard and mammals, in which the RTE-clade LINEs sharing the 3'-end sequence with these animal SINEs showed a distinct TSD pattern. Moreover, a significant correlation was observed between the first nucleotide of TSDs and microsatellite-like sequences found at the 3'-ends of SINEs and LINEs. We propose that RTE-encoded protein could preferentially bind to a DNA region that contains a thymine stretch to cleave a phosphodiester bond downstream of the stretch. Further, determination of cleavage sites and/or efficiency of primer sites for reverse transcription may depend on microsatellite-like repeats in the RNA template. Such a unique mechanism may have enabled retroposons to successfully expand in frontier genomes after HT.
Collapse
Affiliation(s)
- Eri Nishiyama
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Kazuhiko Ohshima
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
2
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
3
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
4
|
Fulnečková J, Ševčíková T, Lukešová A, Sýkorová E. Transitions between the Arabidopsis-type and the human-type telomere sequence in green algae (clade Caudivolvoxa, Chlamydomonadales). Chromosoma 2015; 125:437-51. [PMID: 26596989 DOI: 10.1007/s00412-015-0557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022]
Abstract
Telomeres are nucleoprotein structures that distinguish native chromosomal ends from double-stranded breaks. They are maintained by telomerase that adds short G-rich telomeric repeats at chromosomal ends in most eukaryotes and determines the TnAmGo sequence of canonical telomeres. We employed an experimental approach that was based on detection of repeats added by telomerase to identify the telomere sequence type forming the very ends of chromosomes. Our previous studies that focused on the algal order Chlamydomonadales revealed several changes in telomere motifs that were consistent with the phylogeny and supported the concept of the Arabidopsis-type sequence being the ancestral telomeric motif for green algae. In addition to previously described independent transitions to the Chlamydomonas-type sequence, we report that the ancestral telomeric motif was replaced by the human-type sequence in the majority of algal species grouped within a higher order clade, Caudivolvoxa. The Arabidopsis-type sequence was apparently retained in the Polytominia clade. Regarding the telomere sequence, the Chlorogonia clade within Caudivolvoxa bifurcates into two groups, one with the human-type sequence and the other group with the Arabidopsis-type sequence that is solely formed by the Chlorogonium species. This suggests that reversion to the Arabidopsis-type telomeric motif occurred in the common ancestral Chlorogonium species. The human-type sequence is also synthesized by telomerases of algal strains from Arenicolinia, Dunaliellinia and Stephanosphaerinia, except a distinct subclade within Stephanosphaerinia, where telomerase activity was not detected and a change to an unidentified telomeric motif might arise. We discuss plausible reasons why changes in telomeric motifs were tolerated during evolution of green algae.
Collapse
Affiliation(s)
- Jana Fulnečková
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic.,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Biology and Ecology, Life Science Research Centre & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-71000, Ostrava, Czech Republic
| | - Alena Lukešová
- Institute of Soil Biology, Biology Centre Academy of Sciences of the Czech Republic, v.vi., Na Sádkách 7, CZ-37005, České Budějovice, Czech Republic
| | - Eva Sýkorová
- Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 135, CZ-61265, Brno, Czech Republic. .,Faculty of Science, and CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500, Brno, Czech Republic.
| |
Collapse
|
5
|
Osanai-Futahashi M, Fujiwara H. Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects. Mol Biol Evol 2011; 28:2983-6. [PMID: 21642634 DOI: 10.1093/molbev/msr135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the telomeres of the silkworm Bombyx mori, telomeric repeat-specific non-long terminal repeat (LTR) retrotransposon SARTBm1 is accumulated in the TTAGG telomeric repeats. Here, we identify novel telomeric repeat-specific non-LTR retrotransposons, SARTTc family, from the red flour beetle Tribolium castaneum in the unconventional TCAGG telomeric repeats. To compare the sequence specificity of SARTBm1 and SARTTc1, we developed a comparable ex vivo retrotransposition assay. Both SARTBm1 and SARTTc1 preferred the telomeric sequence of their hosts, suggesting that the target specificity of these retrotransposons coevolved with their host's telomeric repeats. Swapping experiment indicated that the endonuclease domain is involved in recognizing the target sequence. Moreover, SARTBm1 proteins could retrotranspose 3'untranslated region (UTR) sequence of SARTTc1 as well as their own 3'UTR, whereas SARTTc1 proteins could only retrotranspose their own 3'UTRs. These results provide insights to the mechanism and divergence of sequence specificity and 3'UTR recognition in non-LTR retrotransposons.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
6
|
Yoshitake K, Aoyagi H, Fujiwara H. Creation of a novel telomere-cutting endonuclease based on the EN domain of telomere-specific non-long terminal repeat retrotransposon, TRAS1. Mob DNA 2010; 1:13. [PMID: 20359340 PMCID: PMC2868851 DOI: 10.1186/1759-8753-1-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 04/01/2010] [Indexed: 12/25/2022] Open
Abstract
Background The ends of chromosomes, termed telomeres consist of repetitive DNA. The telomeric sequences shorten with cell division and, when telomeres are critically abbreviated, cells stop proliferating. However, in cancer cells, by the expression of telomerase which elongates telomeres, the cells can continue proliferating. Many approaches for telomere shortening have been pursued in the past, but to our knowledge, cutting telomeres in vivo has not so far been demonstrated. In addition, there is lack of information on the cellular effects of telomere shortening in human cells. Results Here, we created novel chimeric endonucleases to cut telomeres by fusing the endonuclease domain (TRAS1EN) of the silkworm's telomere specific non-long terminal repeat retrotransposon TRAS1 to the human telomere-binding protein, TRF1. An in vitro assay demonstrated that the TRAS1EN-TRF1 chimeric endonucleases (T-EN and EN-T) cut the human (TTAGGG)n repeats specifically. The concentration of TRAS1EN-TRF1 chimeric endonucleases necessary for the cleavage of (TTAGGG)n repeats was about 40-fold lower than that of TRAS1EN alone. When TRAS1EN-TRF1 endonucleases were introduced into human U2OS cancer cells using adenovirus vectors, the enzymes localized at telomeres of nuclei, cleaved and shortened the telomeric DNA by double-strand breaks. When human U2OS and HFL-1 fibroblast cells were infected with EN-T recombinant adenovirus, their cellular proliferation was suppressed for about 2 weeks after infection. In contrast, the TRAS1EN mutant (H258A) chimeric endonuclease fused with TRF1 (ENmut-T) did not show the suppression effect. The EN-T recombinant adenovirus induced telomere shortening in U2OS cells, activated the p53-dependent pathway and caused the senescence associated cellular responses, while the ENmut-T construct did not show such effects. Conclusions A novel TRAS1EN-TRF1 chimeric endonuclease (EN-T) cuts the human telomeric repeats (TTAGGG)n specifically in vitro and in vivo. Thus, the chimeric endonuclease which is expressed from an adenoviral vector can suppress cell proliferation of cancer cells.
Collapse
Affiliation(s)
- Kazutoshi Yoshitake
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg 501, Kashiwa, 277-8562, Japan.
| | | | | |
Collapse
|
7
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
8
|
Villarreal LP, Witzany G. Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 2009; 262:698-710. [PMID: 19833132 DOI: 10.1016/j.jtbi.2009.10.014] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 09/28/2009] [Accepted: 10/08/2009] [Indexed: 02/06/2023]
Abstract
In contrast with former definitions of life limited to membrane-bound cellular life forms which feed, grow, metabolise and replicate (i) a role of viruses as genetic symbionts, (ii) along with peripheral phenomena such as cryptobiosis and (iii) the horizontal nature of genetic information acquisition and processing broaden our view of the tree of life. Some researchers insist on the traditional textbook conviction of what is part of the community of life. In a recent review [Moreira, D., Lopez-Garcia, P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311.] they assemble four main arguments which should exclude viruses from the tree of life because of their inability to self-sustain and self-replicate, their polyphyly, the cellular origin of their cell-like genes and the volatility of their genomes. In this article we will show that these features are not coherent with current knowledge about viruses but that viral agents play key roles within the roots and stem of the tree of life.
Collapse
Affiliation(s)
- Luis P Villarreal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
9
|
Repanas K, Fuentes G, Cohen SX, Bonvin AMJJ, Perrakis A. Insights into the DNA cleavage mechanism of human LINE-1 retrotransposon endonuclease. Proteins 2009; 74:917-28. [PMID: 18767160 DOI: 10.1002/prot.22201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The human LINE-1 endonuclease (L1-EN) contributes in defining the genomic integration sites of the abundant human L1 and Alu retrotransposons. LINEs have been considered as possible vehicles for gene delivery and understanding the mechanism of L1-EN could help engineering them as genetic tools. We tested the in vitro activity of point mutants in three L1-EN residues--Asp145, Arg155, Ile204--that are key for DNA cleavage, and determined their crystal structures. The L1-EN structure remains overall unaffected by the mutations, which change the enzyme activity but leave DNA cleavage sequence specificity mostly unaffected. To better understand the mechanism of L1-EN, we performed molecular dynamics simulations using as model the structures of wild type EN-L1, of two betaB6-betaB5 loop exchange mutants we have described previously to be important for DNA recognition, of the R155A mutant from this study, and of the homologous TRAS1 endonuclease: all confirm a rigid scaffold. The simulations crucially indicate that the betaB6-betaB5 loop shows an anticorrelated motion with the surface loops betaA6-betaA5 and betaB3-alphaB1. The latter loop harbors N118, a residue that alters DNA cleavage specificity in homologous endonucleases, and implies that the plasticity and correlated motion of these loops has a functional importance in DNA recognition and binding. To further explore how these loops are possibly involved in DNA binding, we docked computationally two DNA substrates to our structure, one involving a flipped-out nucleotide downstream the scissile phosphodiester; and one not. The models for both scenarios are feasible and agree with the hypotheses derived from the dynamic simulations. The reduced cleavage activity we have observed for the I204Y mutant above however, favors the flipped out nucleotide model.
Collapse
Affiliation(s)
- Kostas Repanas
- Division of Molecular Cancer Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
10
|
Repanas K, Zingler N, Layer LE, Schumann GG, Perrakis A, Weichenrieder O. Determinants for DNA target structure selectivity of the human LINE-1 retrotransposon endonuclease. Nucleic Acids Res 2007; 35:4914-26. [PMID: 17626046 PMCID: PMC1950540 DOI: 10.1093/nar/gkm516] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human LINE-1 endonuclease (L1-EN) is the targeting endonuclease encoded by the human LINE-1 (L1) retrotransposon. L1-EN guides the genomic integration of new L1 and Alu elements that presently account for ∼28% of the human genome. L1-EN bears considerable technological interest, because its target selectivity may ultimately be engineered to allow the site-specific integration of DNA into defined genomic locations. Based on the crystal structure, we generated L1-EN mutants to analyze and manipulate DNA target site recognition. Crystal structures and their dynamic and functional analysis show entire loop grafts to be feasible, resulting in altered specificity, while individual point mutations do not change the nicking pattern of L1-EN. Structural parameters of the DNA target seem more important for recognition than the nucleotide sequence, and nicking profiles on DNA oligonucleotides in vitro are less well defined than the respective integration site consensus in vivo. This suggests that additional factors other than the DNA nicking specificity of L1-EN contribute to the targeted integration of non-LTR retrotransposons.
Collapse
Affiliation(s)
- Kostas Repanas
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
| | - Nora Zingler
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
| | - Liliana E. Layer
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
| | - Gerald G. Schumann
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
| | - Anastassis Perrakis
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
| | - Oliver Weichenrieder
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands and Paul-Ehrlich-Institut, Section PR2/Retroelements, 63225 Langen, Germany
- *To whom correspondence should be addressed.+4970716011358+4970716011353
| |
Collapse
|
11
|
Maita N, Aoyagi H, Osanai M, Shirakawa M, Fujiwara H. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res 2007; 35:3918-27. [PMID: 17537809 PMCID: PMC1919474 DOI: 10.1093/nar/gkm397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/25/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022] Open
Abstract
R1Bm is a long interspersed element (LINE) inserted into a specific sequence within 28S rDNA of the silkworm genome. Of two open reading frames (ORFs) of R1Bm, ORF2 encodes a reverse transcriptase (RT) and an endonuclease (EN) domain which digests specifically both top and bottom strand of the target sequence in 28S rDNA. To elucidate the sequence specificity of EN domain of R1Bm (R1Bm EN), we examined the cleavage tendency for the target sequences, and found that 5'-A(G/C)(A/T)!(A/G)T-3' is the consensus sequence (! = cleavage site). We also determined the crystal structure of R1Bm EN at 2.0 A resolution. Its structure was basically similar to AP endonuclease family, but had a special beta-hairpin at the edge of the DNA binding surface, which is a common feature among EN of LINEs. Point-mutations on the DNA binding surface of R1Bm EN significantly decreased the cleavage activities, but did not affect the sequence recognition in most residues. However, two mutants Y98A and N180A had altered cleavage patterns, suggesting an important role of these residues (Y98 and N180) for the sequence recognition of R1Bm EN. In addition, Y98A mutant showed another cleavage pattern, that implies de novo design of novel sequence-specific EN.
Collapse
Affiliation(s)
- Nobuo Maita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Hideyuki Aoyagi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Mizuko Osanai
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Shirakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Haruhiko Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
12
|
Affiliation(s)
- Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109-0606, USA.
| |
Collapse
|
13
|
Ago H, Oda M, Takahashi M, Tsuge H, Ochi S, Katunuma N, Miyano M, Sakurai J. Structural basis of the sphingomyelin phosphodiesterase activity in neutral sphingomyelinase from Bacillus cereus. J Biol Chem 2006; 281:16157-67. [PMID: 16595670 DOI: 10.1074/jbc.m601089200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sphingomyelinase (SMase) from Bacillus cereus (Bc-SMase) hydrolyzes sphingomyelin to phosphocholine and ceramide in a divalent metal ion-dependent manner. Bc-SMase is a homologue of mammalian neutral SMase (nSMase) and mimics the actions of the endogenous mammalian nSMase in causing differentiation, development, aging, and apoptosis. Thus Bc-SMase may be a good model for the poorly characterized mammalian nSMase. The metal ion activation of sphingomyelinase activity of Bc-SMase was in the order Co2+ > or = Mn2+ > or = Mg2+ >> Ca2+ > or = Sr2+. The first crystal structures of Bc-SMase bound to Co2+, Mg2+, or Ca2+ were determined. The water-bridged double divalent metal ions at the center of the cleft in both the Co2+- and Mg2+-bound forms were concluded to be the catalytic architecture required for sphingomyelinase activity. In contrast, the architecture of Ca2+ binding at the site showed only one binding site. A further single metal-binding site exists at one side edge of the cleft. Based on the highly conserved nature of the residues of the binding sites, the crystal structure of Bc-SMase with bound Mg2+ or Co2+ may provide a common structural framework applicable to phosphohydrolases belonging to the DNase I-like folding superfamily. In addition, the structural features and site-directed mutagenesis suggest that the specific beta-hairpin with the aromatic amino acid residues participates in binding to the membrane-bound sphingomyelin substrate.
Collapse
Affiliation(s)
- Hideo Ago
- Structural Biophysics Laboratory, RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Kaneda K, Sekiguchi J, Shida T. Role of the tryptophan residue in the vicinity of the catalytic center of exonuclease III family AP endonucleases: AP site recognition mechanism. Nucleic Acids Res 2006; 34:1552-63. [PMID: 16540594 PMCID: PMC1408312 DOI: 10.1093/nar/gkl059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The mechanisms by which AP endonucleases recognize AP sites have not yet been determined. Based on our previous study with Escherichia coli exonuclease III (ExoIII), the ExoIII family AP endonucleases probably recognize the DNA-pocket formed at an AP site. The indole ring of a conserved tryptophan residue in the vicinity of the catalytic site presumably intercalates into this pocket. To test this hypothesis, we constructed a series of mutants of ExoIII and human APE1. Trp-212 of ExoIII and Trp-280 of APE1 were critical to the AP endonuclease activity and binding to DNA containing an AP site. To confirm the ability of the tryptophan residue to intercalate with the AP site, we examined the interaction between an oligopeptide containing a tryptophan residue and an oligonucleotide containing AP sites, using spectrofluorimetry and surface plasmon resonance (SPR) technology. The tryptophan residue of the oligopeptide specifically intercalated into an AP site of DNA. The tryptophan residue in the vicinity of the catalytic site of the ExoIII family AP endonucleases plays a key role in the recognition of AP sites.
Collapse
Affiliation(s)
| | | | - Toshio Shida
- To whom correspondence should be addressed. Tel: +81 268 21 5346; Fax: +81 268 21 5346;
| |
Collapse
|
15
|
Schön I, Arkhipova IR. Two families of non-LTR retrotransposons, Syrinx and Daphne, from the Darwinulid ostracod, Darwinula stevensoni. Gene 2006; 371:296-307. [PMID: 16469453 DOI: 10.1016/j.gene.2005.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 10/25/2022]
Abstract
Two novel families of non-LTR retrotransposons, named Syrinx and Daphne, were cloned and characterized in a putative ancient asexual ostracod Darwinula stevensoni. Phylogenetic analysis reveals that Daphne is the founding member of a novel clade of non-LTR retroelements, which also contains retrotransposon families from the sea urchin and the silkworm and forms a sister clade to L2-like elements. The Syrinx family of non-LTR retrotransposons exhibits evidence of relatively recent activity, manifested in high levels of sequence similarity between individual copies and a three- to ten-fold excess of synonymous substitutions, which is indicative of purifying selection. The Daphne family may have very few copies with intact open reading frames, and exhibits neutral within-family ratio of non-synonymous to synonymous substitutions. It can additionally be characterized by formation of inverted truncated head-to-head structures. All of these features make recent activity less likely than in the Syrinx family. Our results are discussed in light of the evolutionary consequences of long-term asexuality in general and in D. stevensoni in particular.
Collapse
Affiliation(s)
- Isabelle Schön
- Freshwater Biology Section, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, B-1000 Brussels, Belgium
| | | |
Collapse
|
16
|
Fujiwara H, Osanai M, Matsumoto T, Kojima KK. Telomere-specific non-LTR retrotransposons and telomere maintenance in the silkworm, Bombyx mori. Chromosome Res 2005; 13:455-67. [PMID: 16132811 DOI: 10.1007/s10577-005-0990-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Most insects have telomeres that consist of pentanucleotide (TTAGG) telomeric repeats, which are synthesized by telomerase. However, all species in Diptera so far examined and several species in other orders of insect have lost the (TTAGG)n repeats, suggesting that some of them recruit telomerase-independent telomere maintenance. The silkworm, Bombyx mori, retains the TTAGG motifs in the chromosomal ends but expresses quite a low level of telomerase activity in all stages of various tissues. Just proximal to a 6-8-kb stretch of the TTAGG repeats in B. mori, more than 1000 copies of non-LTR retrotransposons, designated TRAS and SART families, occur among the telomeric repeats and accumulate. TRAS and SART are abundantly transcribed and actively retrotransposed into TTAGG telomeric repeats in a highly sequence-specific manner. They have three possible mechanisms to ensure specific integration into the telomeric repeats. This article focuses on the telomere structure and telomere-specific non-LTR retrotransposons in B. mori and discusses the mechanisms for telomere maintenance in this insect.
Collapse
Affiliation(s)
- Haruhiko Fujiwara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwano-ha, 277-8562 Kashiwa, Japan.
| | | | | | | |
Collapse
|