1
|
Worst EG, Finkler M, Schenkelberger M, Kurt Ö, Helms V, Noireaux V, Ott A. A Methylation-Directed, Synthetic Pap Switch Based on Self-Complementary Regulatory DNA Reconstituted in an All E. coli Cell-Free Expression System. ACS Synth Biol 2021; 10:2725-2739. [PMID: 34550672 DOI: 10.1021/acssynbio.1c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyelonephritis-associated pili (pap) enable migration of the uropathogenic Escherichia coli strain (UPEC) through the urinary tract. UPEC can switch between a stable 'ON phase' where the corresponding pap genes are expressed and a stable 'OFF phase' where their transcription is repressed. Hereditary DNA methylation of either one of two GATC motives within the regulatory region stabilizes the respective phase over many generations. The underlying molecular mechanism is only partly understood. Previous investigations suggest that in vivo phase-variation stability results from cooperative action of the transcriptional regulators Lrp and PapI. Here, we use an E. coli cell-free expression system to study molecular functions of the pap regulatory region based on a specially designed, synthetic construct flanked by two reporter genes encoding fluorescent proteins for simple readout. On the basis of our observations we suggest that besides Lrp, the conformation of the self-complementary regulatory DNA plays a strong role in the regulation of phase-variation. Our work not only contributes to better understand the phase variation mechanism, but it represents a successful start for mimicking stable, hereditary, and strong expression control based on methylation. The conformation of the regulatory DNA corresponds to a Holliday junction. Gene expression must be expected to respond if opposite arms of the junction are drawn outward.
Collapse
Affiliation(s)
- Emanuel G. Worst
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Marc Finkler
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Marc Schenkelberger
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Ömer Kurt
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| | - Volkhard Helms
- Universität des Saarlandes, Center for Bioinformatics, Saarbrücken, 66041, Germany
| | - Vincent Noireaux
- University of Minnesota, School of Physics and Astronomy, Minneapolis, Minnesota 55455, United States
| | - Albrecht Ott
- Universität des Saarlandes, Center for Biophysics, Saarbrücken, 66123, Germany
| |
Collapse
|
2
|
Peinado RDS, Olivier DS, Eberle RJ, de Moraes FR, Amaral MS, Arni RK, Coronado MA. Binding studies of a putative C. pseudotuberculosis target protein from Vitamin B 12 Metabolism. Sci Rep 2019; 9:6350. [PMID: 31015525 PMCID: PMC6478909 DOI: 10.1038/s41598-019-42935-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
Vitamin B12 acts as a cofactor for various metabolic reactions important in living organisms. The Vitamin B12 biosynthesis is restricted to prokaryotes, which means, all eukaryotic organisms must acquire this molecule through diet. This study presents the investigation of Vitamin B12 metabolism and the characterization of precorrin-4 C(11)-methyltransferase (CobM), an enzyme involved in the biosynthesis of Vitamin B12 in Corynebacterium pseudotuberculosis. The analysis of the C. pseudotuberculosis genome identified two Vitamin B12-dependent pathways, which can be strongly affected by a disrupted vitamin metabolism. Molecular dynamics, circular dichroism, and NMR-STD experiments identified regions in CobM that undergo conformational changes after s-adenosyl-L-methionine binding to promote the interaction of precorrin-4, a Vitamin B12 precursor. The binding of s-adenosyl-L-methionine was examined along with the competitive binding of adenine, dATP, and suramin. Based on fluorescence spectroscopy experiments the dissociation constant for the four ligands and the target protein could be determined; SAM (1.4 ± 0.7 µM), adenine (17.8 ± 1.5 µM), dATP (15.8 ± 2.0 µM), and Suramin (6.3 ± 1.1 µM). The results provide rich information for future investigations of potential drug targets within the C. pseudotuberculosis's Vitamin B12 metabolism and related pathways to reduce the pathogen's virulence in its hosts.
Collapse
Affiliation(s)
- Rafaela Dos S Peinado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Danilo S Olivier
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Raphael J Eberle
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Fabio R de Moraes
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil
| | - Marcos S Amaral
- Institute of Physics, Federal University of Mato Grosso do Sul, Campo Grande, MS, 79090-700, Brazil
| | - Raghuvir K Arni
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| | - Monika A Coronado
- Multiuser Center for Biomolecular Innovation, Departament of Physics, Instituto de Biociências Letras e Ciências Exatas (Ibilce), Universidade Estadual Paulista (UNESP), São Jose do Rio Preto-SP, 15054-000, Brazil.
| |
Collapse
|
3
|
Wang J, Cao L, Yang X, Wu Q, Lu L, Wang Z. Transcriptional analysis reveals the critical role of RNA polymerase-binding transcription factor, DksA, in regulating multi-drug resistance of Escherichia coli. Int J Antimicrob Agents 2018; 52:63-69. [PMID: 29746997 DOI: 10.1016/j.ijantimicag.2018.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/28/2018] [Accepted: 05/01/2018] [Indexed: 11/30/2022]
Abstract
The objective of this study was to comprehensively identify the target genes regulated by the RNA polymerase-binding transcription factor DksA in Escherichia coli, and to clarify the role of DksA in multi-drug resistance. A clinical E. coli strain, E8, was selected to construct the dksA gene deletion mutant by using the Red recombination system. The minimum inhibitory concentrations of 12 antibiotics in the E8ΔdksA (mutant) were markedly lower than those in the wild-type strain, E8. Genes expressed differentially in the wild-type and dksA mutant were detected using RNA-Seq, and were validated by performing quantitative real-time polymerase chain reaction. In total, 168 differentially expressed genes were identified in E8ΔdksA, including 81 upregulated and 87 downregulated genes. Many of the genes identified are involved in metabolism, two-component systems, transcriptional regulators and transport/membrane proteins. Interestingly, genes encoding the transcriptional regulator, MarR, which is known to repress the multiple drug resistance operon, marRAB; MdfA, a transport protein that exhibits multi-drug efflux activities; and oligopeptide transport system proteins OppA and OppD were among those differentially expressed, and could potentially contribute to the increased drug susceptibility of E8ΔdksA. In conclusion, DksA plays an important role in the multi-drug resistance of this E. coli strain, and directly or indirectly regulates the expression of several genes related to antibiotic resistance.
Collapse
Affiliation(s)
- Jiawei Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Li Cao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaowen Yang
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qingmin Wu
- Key Laboratory of Animal Epidemiology and Zoonosis of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lin Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Zhen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing, China.
| |
Collapse
|
4
|
Rauf S, Zhang L, Ali A, Ahmad J, Liu Y, Li J. Nanopore-Based, Label-Free, and Real-Time Monitoring Assay for DNA Methyltransferase Activity and Inhibition. Anal Chem 2017; 89:13252-13260. [DOI: 10.1021/acs.analchem.7b03278] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sana Rauf
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Ling Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Asghar Ali
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jalal Ahmad
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
5
|
Chen S, Ma H, Li W, Nie Z, Yao S. An entropy-driven signal amplifying strategy for real-time monitoring of DNA methylation process and high-throughput screening of methyltransferase inhibitors. Anal Chim Acta 2017; 970:57-63. [DOI: 10.1016/j.aca.2017.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022]
|
6
|
Casadesús J. Bacterial DNA Methylation and Methylomes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 945:35-61. [PMID: 27826834 DOI: 10.1007/978-3-319-43624-1_3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Formation of C5-methylcytosine, N4-methylcytosine, and N6-methyladenine in bacterial genomes is postreplicative and involves transfer of a methyl group from S-adenosyl-methionine to a base embedded in a specific DNA sequence context. Most bacterial DNA methyltransferases belong to restriction-modification systems; in addition, "solitary" or "orphan" DNA methyltransferases are frequently found in the genomes of bacteria and phage. Base methylation can affect the interaction of DNA-binding proteins with their cognate sites, either by a direct effect (e.g., steric hindrance) or by changes in DNA topology. In both Alphaproteobacteria and Gammaproteobacteria, the roles of DNA base methylation are especially well known for N6-methyladenine, including control of chromosome replication, nucleoid segregation, postreplicative correction of DNA mismatches, cell cycle-coupled transcription, formation of bacterial cell lineages, and regulation of bacterial virulence. Technical procedures that permit genome-wide analysis of DNA methylation are nowadays expanding our knowledge of the extent, evolution, and physiological significance of bacterial DNA methylation.
Collapse
Affiliation(s)
- Josep Casadesús
- Departamento de Genética, Universidad de Sevilla, Apartado 1095, Seville, 41080, Spain.
| |
Collapse
|
7
|
Barel I, Reich NO, Brown FLH. Extracting enzyme processivity from kinetic assays. J Chem Phys 2015; 143:224115. [DOI: 10.1063/1.4937155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Itay Barel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - Norbert O. Reich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
| | - Frank L. H. Brown
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
8
|
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res 2015; 43:4296-308. [PMID: 25845600 PMCID: PMC4417163 DOI: 10.1093/nar/gkv251] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 11/21/2014] [Accepted: 03/11/2015] [Indexed: 12/31/2022] Open
Abstract
DNA adenine methyltransferase (Dam) is widespread and conserved among the γ-proteobacteria. Methylation of the Ade in GATC sequences regulates diverse bacterial cell functions, including gene expression, mismatch repair and chromosome replication. Dam also controls virulence in many pathogenic Gram-negative bacteria. An unexplained and perplexing observation about Escherichia coli Dam (EcoDam) is that there is no obvious relationship between the genes that are transcriptionally responsive to Dam and the promoter-proximal presence of GATC sequences. Here, we demonstrate that EcoDam interacts with a 5-base pair non-cognate sequence distinct from GATC. The crystal structure of a non-cognate complex allowed us to identify a DNA binding element, GTYTA/TARAC (where Y = C/T and R = A/G). This element immediately flanks GATC sites in some Dam-regulated promoters, including the Pap operon which specifies pyelonephritis-associated pili. In addition, Dam interacts with near-cognate GATC sequences (i.e. 3/4-site ATC and GAT). Taken together, these results imply that Dam, in addition to being responsible for GATC methylation, could also function as a methylation-independent transcriptional repressor.
Collapse
Affiliation(s)
- John R Horton
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xing Zhang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Pollak AJ, Reich NO. DNA Adenine Methyltransferase Facilitated Diffusion Is Enhanced by Protein–DNA “Roadblock” Complexes That Induce DNA Looping. Biochemistry 2015; 54:2181-92. [DOI: 10.1021/bi501344r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Adam J. Pollak
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| | - Norbert O. Reich
- Department
of Chemistry and
Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782. [PMID: 25642218 PMCID: PMC4294202 DOI: 10.3389/fmicb.2014.00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences' Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.
Collapse
Affiliation(s)
- Kathy T Mou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | | | | | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| |
Collapse
|
11
|
Leonard MT, Davis-Richardson AG, Ardissone AN, Kemppainen KM, Drew JC, Ilonen J, Knip M, Simell O, Toppari J, Veijola R, Hyöty H, Triplett EW. The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Front Microbiol 2014; 5:361. [PMID: 25101067 PMCID: PMC4101878 DOI: 10.3389/fmicb.2014.00361] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/26/2014] [Indexed: 12/02/2022] Open
Abstract
Despite the large interest in the human microbiome in recent years, there are no reports of bacterial DNA methylation in the microbiome. Here metagenomic sequencing using the Pacific Biosciences platform allowed for rapid identification of bacterial GATC methylation status of a bacterial species in human stool samples. For this work, two stool samples were chosen that were dominated by a single species, Bacteroides dorei. Based on 16S rRNA analysis, this species represented over 45% of the bacteria present in these two samples. The B. dorei genome sequence from these samples was determined and the GATC methylation sites mapped. The Bacteroides dorei genome from one subject lacked any GATC methylation and lacked the DNA adenine methyltransferase genes. In contrast, B. dorei from another subject contained 20,551 methylated GATC sites. Of the 4970 open reading frames identified in the GATC methylated B. dorei genome, 3184 genes were methylated as well as 1735 GATC methylations in intergenic regions. These results suggest that DNA methylation patterns are important to consider in multi-omic analyses of microbiome samples seeking to discover the diversity of bacterial functions and may differ between disease states.
Collapse
Affiliation(s)
- Michael T Leonard
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Austin G Davis-Richardson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Alexandria N Ardissone
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Kaisa M Kemppainen
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jennifer C Drew
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| | - Jorma Ilonen
- Department of Clinical Microbiology, University of Eastern Finland Kuopio, Finland ; Immunogenetics Laboratory, University of Turku Turku, Finland
| | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital Helsinki, Finland ; Diabetes and Obesity Research Program, University of Helsinki Helsinki, Finland ; Department of Pediatrics, Tampere University Hospital Tampere, Finland
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, University of Turku Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, University of Turku Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, Oulu University Hospital, University of Oulu Oulu, Finland
| | - Heikki Hyöty
- School of Medicine, University of Tampere Tampere, Finland
| | - Eric W Triplett
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida Gainesville, FL, USA
| |
Collapse
|
12
|
Quach QH, Chung BH. A signal-on fluorescent assay for DNA methyltransferase activity using a methylation-resistant endonuclease. Analyst 2014; 139:2674-7. [DOI: 10.1039/c3an02129g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Abstract
In prokaryotes, alteration in gene expression was observed with the modification of DNA, especially DNA methylation. Such changes are inherited from generation to generation with no alterations in the DNA sequence and represent the epigenetic signal in prokaryotes. DNA methyltransferases are enzymes involved in DNA modification and thus in epigenetic regulation of gene expression. DNA methylation not only affects the thermodynamic stability of DNA, but also changes its curvature. Methylation of specific residues on DNA can affect the protein-DNA interactions. DNA methylation in prokaryotes regulates a number of physiological processes in the bacterial cell including transcription, DNA mismatch repair and replication initiation. Significantly, many reports have suggested a role of DNA methylation in regulating the expression of a number of genes in virulence and pathogenesis thus, making DNA methlytransferases novel targets for the designing of therapeutics. Here, we summarize the current knowledge about the influence of DNA methylation on gene regulation in different bacteria, and on bacterial virulence.
Collapse
Affiliation(s)
- Ritesh Kumar
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India,
| | | |
Collapse
|
14
|
McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PCF. Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol 2013; 168:172-88. [PMID: 22889062 PMCID: PMC3570013 DOI: 10.1111/j.1476-5381.2012.02134.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 07/04/2012] [Accepted: 07/14/2012] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Multiple antibiotic resistant strains of plague are emerging, driving a need for the development of novel antibiotics effective against Yersinia pestis. DNA adenine methylation regulates numerous fundamental processes in bacteria and alteration of DNA adenine methlytransferase (Dam) expression is attenuating for several pathogens, including Y. pestis. The lack of a functionally similar enzyme in humans makes Dam a suitable target for development of novel therapeutics for plague. EXPERIMENTAL APPROACH Compounds were evaluated for their ability to inhibit Dam activity in a high-throughput screening assay. DNA was isolated from Yersinia grown in the presence of lead compounds and restricted to determine the effect of inhibitors on DNA methylation. Transcriptional analysis was undertaken to determine the effect of an active inhibitor on virulence-associated phenotypes. KEY RESULTS We have identified a series of aryl stibonic acids which inhibit Dam in vitro. The most active, 4-stibonobenzenesulfonic acid, exhibited a competitive mode of inhibition with respect to DNA and a K(i) of 6.46 nM. One compound was found to inhibit DNA methylation in cultured Y. pestis. The effects of this inhibition on the physiology of the cell were widespread, and included altered expression of known virulence traits, including iron acquisition and Type III secretion. CONCLUSIONS AND IMPLICATIONS We have identified a novel class of potent Dam inhibitors. Treatment of bacterial cell cultures with these inhibitors resulted in a decrease in DNA methylation. Expression of virulence factors was affected, suggesting these inhibitors may attenuate bacterial infectivity and function as antibiotics.
Collapse
Affiliation(s)
- J C McKelvie
- School of Chemistry, University of Southampton, UK
| | | | | | | | | | | |
Collapse
|
15
|
Pollak AJ, Reich NO. Proximal recognition sites facilitate intrasite hopping by DNA adenine methyltransferase: mechanistic exploration of epigenetic gene regulation. J Biol Chem 2012; 287:22873-81. [PMID: 22570478 DOI: 10.1074/jbc.m111.332502] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The methylation of adenine in palindromic 5'-GATC-3' sites by Escherichia coli Dam supports diverse roles, including the essential regulation of virulence genes in several human pathogens. As a result of a unique hopping mechanism, Dam methylates both strands of the same site prior to fully dissociating from the DNA, a process referred to as intrasite processivity. The application of a DpnI restriction endonuclease-based assay allowed the direct interrogation of this mechanism with a variety of DNA substrates. Intrasite processivity is disrupted when the DNA flanking a single GATC site is longer than 400 bp on either side. Interestingly, the introduction of a second GATC site within this flanking DNA reinstates intrasite methylation of both sites. Our results show that intrasite methylation occurs only when GATC sites are clustered, as is found in gene segments both known and postulated to undergo in vivo epigenetic regulation by Dam methylation. We propose a model for intrasite methylation in which Dam bound to flanking DNA is an obligate intermediate. Our results provide insights into how intrasite processivity, which appears to be context-dependent, may contribute to the diverse biological roles that are carried out by Dam.
Collapse
Affiliation(s)
- Adam J Pollak
- Department of Chemistry and Biochemistry University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
16
|
Hobley G, McKelvie JC, Harmer JE, Howe J, Oyston PC, Roach PL. Development of rationally designed DNA N6 adenine methyltransferase inhibitors. Bioorg Med Chem Lett 2012; 22:3079-82. [DOI: 10.1016/j.bmcl.2012.03.072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 03/16/2012] [Accepted: 03/19/2012] [Indexed: 01/12/2023]
|
17
|
Jiang C, Yan CY, Huang C, Jiang JH, Yu RQ. A bioluminescence assay for DNA methyltransferase activity based on methylation-resistant cleavage. Anal Biochem 2012; 423:224-8. [DOI: 10.1016/j.ab.2012.01.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 01/15/2012] [Accepted: 01/17/2012] [Indexed: 10/14/2022]
|
18
|
Malygin EG, Hattman S. DNA methyltransferases: mechanistic models derived from kinetic analysis. Crit Rev Biochem Mol Biol 2012; 47:97-193. [PMID: 22260147 DOI: 10.3109/10409238.2011.620942] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The sequence-specific transfer of methyl groups from donor S-adenosyl-L-methionine (AdoMet) to certain positions of DNA-adenine or -cytosine residues by DNA methyltransferases (MTases) is a major form of epigenetic modification. It is virtually ubiquitous, except for some notable exceptions. Site-specific methylation can be regarded as a means to increase DNA information capacity and is involved in a large spectrum of biological processes. The importance of these functions necessitates a deeper understanding of the enzymatic mechanism(s) of DNA methylation. DNA MTases fall into one of two general classes; viz. amino-MTases and [C5-cytosine]-MTases. Amino-MTases, common in prokaryotes and lower eukaryotes, catalyze methylation of the exocyclic amino group of adenine ([N6-adenine]-MTase) or cytosine ([N4-cytosine]-MTase). In contrast, [C5-cytosine]-MTases methylate the cyclic carbon-5 atom of cytosine. Characteristics of DNA MTases are highly variable, differing in their affinity to their substrates or reaction products, their kinetic parameters, or other characteristics (order of substrate binding, rate limiting step in the overall reaction). It is not possible to present a unifying account of the published kinetic analyses of DNA methylation because different authors have used different substrate DNAs and/or reaction conditions. Nevertheless, it would be useful to describe those kinetic data and the mechanistic models that have been derived from them. Thus, this review considers in turn studies carried out with the most consistently and extensively investigated [N6-adenine]-, [N4-cytosine]- and [C5-cytosine]-DNA MTases.
Collapse
Affiliation(s)
- Ernst G Malygin
- Institute of Molecular Biology, State Research Center of Virology and Biotechnology Vector, Novosibirsk, Russia
| | | |
Collapse
|
19
|
Direct and continuous fluorescence-based measurements of Pyrococcus horikoshii DNA N-6 adenine methyltransferase activity. Anal Biochem 2011; 418:204-12. [PMID: 21839719 DOI: 10.1016/j.ab.2011.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 07/20/2011] [Indexed: 12/18/2022]
Abstract
N-6 methylation of adenine destabilises duplex DNA and this can increase the proportion of DNA that dissociates into single strands. We have investigated utilising this property to measure the DNA adenine methyltransferase-catalyzed conversion of hemimethylated to fully methylated DNA through a simple, direct, fluorescence-based assay. The effects of methylation on the kinetics and thermodynamics of hybridisation were measured by comparing a fully methylated oligonucleotide product and a hemimethylated oligonucleotide substrate using a 13-bp duplex labeled on adjacent strands with a fluorophore (fluorescein) and quencher (dabcyl). Enzymatic methylation of the hemimethylated GATC site resulted in destabilisation of the duplex, increasing the proportion of dissociated DNA, and producing an observable increase in fluorescence. The assay provides a direct measurement of methylation rate in real time and is highly reproducible, with a coefficient of variance over 48 independent measurements of 3.6%. DNA methylation rates can be measured as low as 3.55 ± 1.84 fmols(-1) in a 96-well plate format, and the assay has been used to kinetically characterise the Pyrococcus horikoshii DNA adenine methyltransferase.
Collapse
|
20
|
Aktas M, Gleichenhagen J, Stoll R, Narberhaus F. S-adenosylmethionine-binding properties of a bacterial phospholipid N-methyltransferase. J Bacteriol 2011; 193:3473-81. [PMID: 21602340 PMCID: PMC3133305 DOI: 10.1128/jb.01539-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 05/10/2011] [Indexed: 11/20/2022] Open
Abstract
The presence of the membrane lipid phosphatidylcholine (PC) in the bacterial membrane is critically important for many host-microbe interactions. The phospholipid N-methyltransferase PmtA from the plant pathogen Agrobacterium tumefaciens catalyzes the formation of PC by a three-step methylation of phosphatidylethanolamine via monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine. The methyl group is provided by S-adenosylmethionine (SAM), which is converted to S-adenosylhomocysteine (SAH) during transmethylation. Despite the biological importance of bacterial phospholipid N-methyltransferases, little is known about amino acids critical for binding to SAM or phospholipids and catalysis. Alanine substitutions in the predicted SAM-binding residues E58, G60, G62, and E84 in A. tumefaciens PmtA dramatically reduced SAM-binding and enzyme activity. Homology modeling of PmtA satisfactorily explained the mutational results. The enzyme is predicted to exhibit a consensus topology of the SAM-binding fold consistent with cofactor interaction as seen with most structurally characterized SAM-methyltransferases. Nuclear magnetic resonance (NMR) titration experiments and (14)C-SAM-binding studies revealed binding constants for SAM and SAH in the low micromolar range. Our study provides first insights into structural features and SAM binding of a bacterial phospholipid N-methyltransferase.
Collapse
Affiliation(s)
| | | | - Raphael Stoll
- Biomolecular NMR, Ruhr-Universität Bochum, Bochum, Germany
| | | |
Collapse
|
21
|
Husain N, Obranic S, Koscinski L, Seetharaman J, Babic F, Bujnicki JM, Maravic-Vlahovicek G, Sivaraman J. Structural basis for the methylation of A1408 in 16S rRNA by a panaminoglycoside resistance methyltransferase NpmA from a clinical isolate and analysis of the NpmA interactions with the 30S ribosomal subunit. Nucleic Acids Res 2010; 39:1903-18. [PMID: 21062819 PMCID: PMC3061052 DOI: 10.1093/nar/gkq1033] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
NpmA, a methyltransferase that confers resistance to aminoglycosides was identified in an Escherichia coli clinical isolate. It belongs to the kanamycin–apramycin methyltransferase (Kam) family and specifically methylates the 16S rRNA at the N1 position of A1408. We determined the structures of apo-NpmA and its complexes with S-adenosylmethionine (AdoMet) and S-adenosylhomocysteine (AdoHcy) at 2.4, 2.7 and 1.68 Å, respectively. We generated a number of NpmA variants with alanine substitutions and studied their ability to bind the cofactor, to methylate A1408 in the 30S subunit, and to confer resistance to kanamycin in vivo. Residues D30, W107 and W197 were found to be essential. We have also analyzed the interactions between NpmA and the 30S subunit by footprinting experiments and computational docking. Helices 24, 42 and 44 were found to be the main NpmA-binding site. Both experimental and theoretical analyses suggest that NpmA flips out the target nucleotide A1408 to carry out the methylation. NpmA is plasmid-encoded and can be transferred between pathogenic bacteria; therefore it poses a threat to the successful use of aminoglycosides in clinical practice. The results presented here will assist in the development of specific NpmA inhibitors that could restore the potential of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Nilofer Husain
- Department of Biological Sciences, 14 Science drive 4, National University of Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bheemanaik S, Sistla S, Krishnamurthy V, Arathi S, Desirazu NR. Kinetics of Methylation by EcoP1I DNA Methyltransferase. Enzyme Res 2010; 2010:302731. [PMID: 21048863 PMCID: PMC2962900 DOI: 10.4061/2010/302731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022] Open
Abstract
EcoP1I DNA MTase (M.EcoP1I), an N6-adenine MTase from bacteriophage P1, is a part of the EcoP1I restriction-modification (R-M) system which belongs to the Type III R-M system. It recognizes the sequence 5′-AGACC-3′ and methylates the internal adenine. M.EcoP1I requires Mg2+ for the transfer of methyl groups to DNA. M.EcoP1I is shown to exist as dimer in solution, and even at high salt concentrations (0.5 M) the dimeric M.EcoP1I does not dissociate into monomers suggesting a strong interaction between the monomer subunits. Preincubation and isotope partitioning studies with M.EcoP1I indicate a kinetic mechanism where the duplex DNA binds first followed by AdoMet. Interestingly, M.EcoP1I methylates DNA substrates in the presence of Mn2+ and Ca2+ other than Mg2+ with varying affinities. Amino acid analysis and methylation assays in the presence of metal ions suggest that M.EcoP1I has indeed two metal ion-binding sites [358ID(x)n … ExK401 and 600DxDxD604 motif]. EcoP1I DNA MTase catalyzes the transfer of methyl groups using a distributive mode of methylation on DNA containing more than one recognition site. A chemical modification of EcoP1I DNA MTase using N-ethylmaleimide resulted in an irreversible inactivation of enzyme activity suggesting the possible role of cysteine residues in catalysis.
Collapse
|
23
|
Antibiotic sensitivity profiles determined with an Escherichia coli gene knockout collection: generating an antibiotic bar code. Antimicrob Agents Chemother 2010; 54:1393-403. [PMID: 20065048 DOI: 10.1128/aac.00906-09] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
We have defined a sensitivity profile for 22 antibiotics by extending previous work testing the entire KEIO collection of close to 4,000 single-gene knockouts in Escherichia coli for increased susceptibility to 1 of 14 different antibiotics (ciprofloxacin, rifampin [rifampicin], vancomycin, ampicillin, sulfamethoxazole, gentamicin, metronidazole, streptomycin, fusidic acid, tetracycline, chloramphenicol, nitrofurantoin, erythromycin, and triclosan). We screened one or more subinhibitory concentrations of each antibiotic, generating more than 80,000 data points and allowing a reduction of the entire collection to a set of 283 strains that display significantly increased sensitivity to at least one of the antibiotics. We used this reduced set of strains to determine a profile for eight additional antibiotics (spectinomycin, cephradine, aztreonem, colistin, neomycin, enoxacin, tobramycin, and cefoxitin). The profiles for the 22 antibiotics represent a growing catalog of sensitivity fingerprints that can be separated into two components, multidrug-resistant mutants and those mutants that confer relatively specific sensitivity to the antibiotic or type of antibiotic tested. The latter group can be represented by a set of 20 to 60 strains that can be used for the rapid typing of antibiotics by generating a virtual bar code readout of the specific sensitivities. Taken together, these data reveal the complexity of intrinsic resistance and provide additional targets for the design of codrugs (or combinations of drugs) that potentiate existing antibiotics.
Collapse
|
24
|
Coffin SR, Reich NO. Escherichia coli DNA adenine methyltransferase: intrasite processivity and substrate-induced dimerization and activation. Biochemistry 2009; 48:7399-410. [PMID: 19580332 DOI: 10.1021/bi9008006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylation of GATC sites in Escherichia coli by DNA adenine methyltransferase (EcoDam) is essential for proper DNA replication timing, gene regulation, and mismatch repair. The low cellular concentration of EcoDam and the high number of GATC sites in the genome (approximately 20000) support the reliance on methylation efficiency-enhancing strategies such as extensive intersite processivity. Here, we present evidence that EcoDam has evolved other unique mechanisms of activation not commonly observed with restriction-modification methyltransferases. EcoDam dimerizes on short, synthetic DNA, resulting in enhanced catalysis; however, dimerization is not observed on large genomic DNA where the potential for intersite processive methylation precludes any dimerization-dependent activation. An activated form of the enzyme is apparent on large genomic DNA and can also be achieved with high concentrations of short, synthetic substrates. We suggest that this activation is inherent on polymeric DNA where either multiple GATC sites are available for methylation or the partitioning of the enzyme onto nonspecific DNA is favored. Unlike other restriction-modification methyltransferases, EcoDam carries out intrasite processive catalysis whereby the enzyme-DNA complex methylates both strands of an unmethylated GATC site prior to dissociation from the DNA. This occurs with short 21 bp oligonucleotides and is highly dependent upon salt concentrations. Kinetic modeling which invokes enzyme activation by both dimerization and excess substrate provides mechanistic insights into key regulatory checkpoints for an enzyme involved in multiple, diverse biological pathways.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, USA
| | | |
Collapse
|
25
|
Peterson SN, Reich NO. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol 2008; 383:92-105. [PMID: 18706913 DOI: 10.1016/j.jmb.2008.07.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 07/30/2008] [Accepted: 07/31/2008] [Indexed: 10/21/2022]
Abstract
Escherichia coli DNA adenine methyltransferase (Dam) and Leucine-responsive regulatory protein (Lrp) are key regulators of the pap operon, which codes for the pilus proteins necessary for uropathogenic E. coli cellular adhesion. The pap operon is regulated by a phase variation mechanism in which the methylation states of two GATC sites in the pap regulatory region and the binding position of Lrp determine whether the pilus genes are expressed. The post-replicative reassembly of Dam, Lrp, and the local regulator PapI onto a hemimethylated pap intermediate is a critical step of the phase variation switching mechanism and is not well understood. We show that Lrp, in the presence and in the absence of PapI and nonspecific DNA, specifically protects pap regulatory GATC sites from Dam methylation when allowed to compete with Dam for assembly on unmethylated and hemimethylated pap DNA. The methylation protection is dependent upon the concentration of Lrp and does not occur with non-regulatory GATC sites. Our data suggest that only at low Lrp concentrations will Dam compete effectively for binding and methylation of the proximal GATC site, leading to a phase switch resulting in the expression of pili.
Collapse
Affiliation(s)
- Stacey N Peterson
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
26
|
Critical residues for cofactor binding and catalytic activity in the aminoglycoside resistance methyltransferase Sgm. J Bacteriol 2008; 190:5855-61. [PMID: 18586937 DOI: 10.1128/jb.00076-08] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The 16S rRNA methyltransferase Sgm from "Micromonospora zionensis" confers resistance to aminoglycoside antibiotics by specific modification of the 30S ribosomal A site. Sgm is a member of the FmrO family, distant relatives of the S-adenosyl-L-methionine (SAM)-dependent RNA subfamily of methyltransferase enzymes. Using amino acid conservation across the FmrO family, seven putative key amino acids were selected for mutation to assess their role in forming the SAM cofactor binding pocket or in methyl group transfer. Each mutated residue was found to be essential for Sgm function, as no modified protein could effectively support bacterial growth in liquid media containing gentamicin or methylate 30S subunits in vitro. Using isothermal titration calorimetry, Sgm was found to bind SAM with a K(D) (binding constant) of 17.6 microM, and comparable values were obtained for one functional mutant (N179A) and four proteins modified at amino acids predicted to be involved in catalysis in methyl group transfer. In contrast, none of the G135, D156, or D182 Sgm mutants bound the cofactor, confirming their role in creating the SAM binding pocket. These results represent the first functional characterization of any FmrO methyltransferase and may provide a basis for a further structure-function analysis of these aminoglycoside resistance determinants.
Collapse
|
27
|
Coffin SR, Reich NO. Modulation of Escherichia coli DNA methyltransferase activity by biologically derived GATC-flanking sequences. J Biol Chem 2008; 283:20106-16. [PMID: 18502761 DOI: 10.1074/jbc.m802502200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Escherichia coli DNA adenine methyltransferase (EcoDam) methylates the N-6 position of the adenine in the sequence 5'-GATC-3' and plays vital roles in gene regulation, mismatch repair, and DNA replication. It remains unclear how the small number of critical GATC sites involved in the regulation of replication and gene expression are differentially methylated, whereas the approximately 20,000 GATCs important for mismatch repair and dispersed throughout the genome are extensively methylated. Our prior work, limited to the pap regulon, showed that methylation efficiency is controlled by sequences immediately flanking the GATC sites. We extend these studies to include GATC sites involved in diverse gene regulatory and DNA replication pathways as well as sites previously shown to undergo differential in vivo methylation but whose function remains to be assigned. EcoDam shows no change in affinity with variations in flanking sequences derived from these sources, but methylation kinetics varied 12-fold. A-tracts immediately adjacent to the GATC site contribute significantly to these differences in methylation kinetics. Interestingly, only when the poly(A) is located 5' of the GATC are the changes in methylation kinetics revealed. Preferential methylation is obscured when two GATC sites are positioned on the same DNA molecule, unless both sites are surrounded by large amounts of nonspecific DNA. Thus, facilitated diffusion and sequences immediately flanking target sites contribute to higher order specificity for EcoDam; we suggest that the diverse biological roles of the enzyme are in part regulated by these two factors, which may be important for other enzymes that sequence-specifically modify DNA.
Collapse
Affiliation(s)
- Stephanie R Coffin
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA
| | | |
Collapse
|
28
|
Youngblood B, Bonnist E, Dryden DTF, Jones AC, Reich NO. Differential stabilization of reaction intermediates: specificity checkpoints for M.EcoRI revealed by transient fluorescence and fluorescence lifetime studies. Nucleic Acids Res 2008; 36:2917-25. [PMID: 18385156 PMCID: PMC2396439 DOI: 10.1093/nar/gkn131] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
M.EcoRI, a bacterial sequence-specific S-adenosyl-l-methionine-dependent DNA methyltransferase, relies on a complex conformational mechanism to achieve its remarkable specificity, including DNA bending, base flipping and intercalation into the DNA. Using transient fluorescence and fluorescence lifetime studies with cognate and noncognate DNA, we have characterized several reaction intermediates involving the WT enzyme. Similar studies with a bending-impaired, enhanced-specificity M.EcoRI mutant show minimal differences with the cognate DNA, but significant differences with noncognate DNA. These results provide a plausible explanation of the way in which destabilization of reaction intermediates can lead to changes in substrate specificity.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
29
|
Evdokimov AA, Sclavi B, Zinoviev VV, Malygin EG, Hattman S, Buckle M. Study of Bacteriophage T4-encoded Dam DNA (Adenine-N6)-methyltransferase Binding with Substrates by Rapid Laser UV Cross-linking. J Biol Chem 2007; 282:26067-76. [PMID: 17630395 DOI: 10.1074/jbc.m700866200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA methyltransferases of the Dam family (including bacteriophage T4-encoded Dam DNA (adenine-N(6))-methyltransferase (T4Dam)) catalyze methyl group transfer from S-adenosyl-L-methionine (AdoMet), producing S-adenosyl-L-homocysteine (AdoHcy) and methylated adenine residues in palindromic GATC sequences. In this study, we describe the application of direct (i.e. no exogenous cross-linking reagents) laser UV cross-linking as a universal non-perturbing approach for studying the characteristics of T4Dam binding with substrates in the equilibrium and transient modes of interaction. UV irradiation of the enzyme.substrate complexes using an Nd(3+):yttrium aluminum garnet laser at 266 nm resulted in up to 3 and >15% yields of direct T4Dam cross-linking to DNA and AdoMet, respectively. Consequently, we were able to measure equilibrium constants and dissociation rates for enzyme.substrate complexes. In particular, we demonstrate that both reaction substrates, specific DNA and AdoMet (or product AdoHcy), stabilized the ternary complex. The improved substrate affinity for the enzyme in the ternary complex significantly reduced dissociation rates (up to 2 orders of magnitude). Several of the parameters obtained (such as dissociation rate constants for the binary T4Dam.AdoMet complex and for enzyme complexes with a nonfluorescent hemimethylated DNA duplex) were previously inaccessible by other means. However, where possible, the results of laser UV cross-linking were compared with those of fluorescence analysis. Our study suggests that rapid laser UV cross-linking efficiently complements standard DNA methyltransferase-related tools and is a method of choice to probe enzyme-substrate interactions in cases in which data cannot be acquired by other means.
Collapse
Affiliation(s)
- Alexey A Evdokimov
- Federal State Research Institute State Research Center of Virology and Biotechnology Vector, Novosibirsk 630559, Russia
| | | | | | | | | | | |
Collapse
|
30
|
Wood RJ, Maynard-Smith MD, Robinson VL, Oyston PC, Titball RW, Roach PL. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide. PLoS One 2007; 2:e801. [PMID: 17726531 PMCID: PMC1949145 DOI: 10.1371/journal.pone.0000801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 08/05/2007] [Indexed: 11/19/2022] Open
Abstract
Background DNA adenine methylation plays an important role in several critical bacterial processes including mismatch repair, the timing of DNA replication and the transcriptional control of gene expression. The dependence of bacterial virulence on DNA adenine methyltransferase (Dam) has led to the proposal that selective Dam inhibitors might function as broad spectrum antibiotics. Methodology/Principal Findings Herein we report the expression and purification of Yersinia pestis Dam and the development of a continuous fluorescence based assay for DNA adenine methyltransferase activity that is suitable for determining the kinetic parameters of the enzyme and for high throughput screening against potential Dam inhibitors. The assay utilised a hemimethylated break light oligonucleotide substrate containing a GATC methylation site. When this substrate was fully methylated by Dam, it became a substrate for the restriction enzyme DpnI, resulting in separation of fluorophore (fluorescein) and quencher (dabcyl) and therefore an increase in fluorescence. The assays were monitored in real time using a fluorescence microplate reader in 96 well format and were used for the kinetic characterisation of Yersinia pestis Dam, its substrates and the known Dam inhibitor, S-adenosylhomocysteine. The assay has been validated for high throughput screening, giving a Z-factor of 0.71±0.07 indicating that it is a sensitive assay for the identification of inhibitors. Conclusions/Significance The assay is therefore suitable for high throughput screening for inhibitors of DNA adenine methyltransferases and the kinetic characterisation of the inhibition.
Collapse
Affiliation(s)
- Robert J. Wood
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- * To whom correspondence should be addressed. E-mail: (RW); (PR)
| | | | - Victoria L. Robinson
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Petra C.F. Oyston
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Rick W. Titball
- Chemical and Biological Sciences, Defence Science and Technology Laboratory, Salisbury, United Kingdom
| | - Peter L. Roach
- School of Chemistry, University of Southampton, Southampton, United Kingdom
- * To whom correspondence should be addressed. E-mail: (RW); (PR)
| |
Collapse
|
31
|
Youngblood B, Shieh FK, Buller F, Bullock T, Reich NO. S-adenosyl-L-methionine-dependent methyl transfer: observable precatalytic intermediates during DNA cytosine methylation. Biochemistry 2007; 46:8766-75. [PMID: 17616174 DOI: 10.1021/bi7005948] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S-adenosyl-L-methionine- (AdoMet-) dependent methyltransferases are widespread, play critical roles in diverse biological pathways, and are antibiotic and cancer drug targets. Presently missing from our understanding of any AdoMet-dependent methyl-transfer reaction is a high-resolution structure of a precatalytic enzyme/AdoMet/DNA complex. The catalytic mechanism of DNA cytosine methylation was studied by structurally and functionally characterizing several active site mutants of the bacterial enzyme M.HhaI. The 2.64 A resolution protein/DNA/AdoMet structure of the inactive C81A M.HhaI mutant suggests that active site water, an approximately 13 degree tilt of the target base toward the active site nucleophile, and the presence or absence of the cofactor methylsulfonium are coupled via a hydrogen-bonding network involving Tyr167. The active site in the mutant complex is assembled to optimally align the pyrimidine for nucleophilic attack and subsequent methyl transfer, consistent with previous molecular dynamics ab initio and quantum mechanics/molecular mechanics calculations. The mutant/DNA/AdoHcy structure (2.88 A resolution) provides a direct comparison to the postcatalytic complex. A third C81A ternary structure (2.22 A resolution) reveals hydrolysis of AdoMet to adenosine in the active site, further validating the coupling between the methionine portion of AdoMet and ultimately validating the structural observation of a prechemistry/postchemistry water network. Disruption of this hydrogen-bonding network by a Tyr167 to Phe167 mutation does not alter the kinetics of nucleophilic attack or methyl transfer. However, the Y167F mutant shows detectable changes in kcat, caused by the perturbed kinetics of AdoHcy release. These results provide a basis for including an extensive hydrogen-bonding network in controlling the rate-limiting product release steps during cytosine methylation.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106-9510, USA
| | | | | | | | | |
Collapse
|
32
|
Bheemanaik S, Reddy Y, Rao D. Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 2006; 399:177-90. [PMID: 16987108 PMCID: PMC1609917 DOI: 10.1042/bj20060854] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA MTases (methyltransferases) catalyse the transfer of methyl groups to DNA from AdoMet (S-adenosyl-L-methionine) producing AdoHcy (S-adenosyl-L-homocysteine) and methylated DNA. The C5 and N4 positions of cytosine and N6 position of adenine are the target sites for methylation. All three methylation patterns are found in prokaryotes, whereas cytosine at the C5 position is the only methylation reaction that is known to occur in eukaryotes. In general, MTases are two-domain proteins comprising one large and one small domain with the DNA-binding cleft located at the domain interface. The striking feature of all the structurally characterized DNA MTases is that they share a common core structure referred to as an 'AdoMet-dependent MTase fold'. DNA methylation has been reported to be essential for bacterial virulence, and it has been suggested that DNA adenine MTases (Dams) could be potential targets for both vaccines and antimicrobials. Drugs that block Dam could slow down bacterial growth and therefore drug-design initiatives could result in a whole new generation of antibiotics. The transfer of larger chemical entities in a MTase-catalysed reaction has been reported and this represents an interesting challenge for bio-organic chemists. In general, amino MTases could therefore be used as delivery systems for fluorescent or other reporter groups on to DNA. This is one of the potential applications of DNA MTases towards developing non-radioactive DNA probes and these could have interesting applications in molecular biology. Being nucleotide-sequence-specific, DNA MTases provide excellent model systems for studies on protein-DNA interactions. The focus of this review is on the chemistry, enzymology and structural aspects of exocyclic amino MTases.
Collapse
Affiliation(s)
| | - Yeturu V. R. Reddy
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Desirazu N. Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Youngblood B, Reich NO. Conformational transitions as determinants of specificity for the DNA methyltransferase EcoRI. J Biol Chem 2006; 281:26821-31. [PMID: 16845123 DOI: 10.1074/jbc.m603388200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in DNA bending and base flipping in a previously characterized specificity-enhanced M.EcoRI DNA adenine methyltransferase mutant suggest a close relationship between precatalytic conformational transitions and specificity (Allan, B. W., Garcia, R., Maegley, K., Mort, J., Wong, D., Lindstrom, W., Beechem, J. M., and Reich, N. O. (1999) J. Biol. Chem. 274, 19269-19275). The direct measurement of the kinetic rate constants for DNA bending, intercalation, and base flipping with cognate and noncognate substrates (GAATTT, GGATTC) of wild type M.EcoRI using fluorescence resonance energy transfer and 2-aminopurine fluorescence studies reveals that DNA bending precedes both intercalation and base flipping, and base flipping precedes intercalation. Destabilization of these intermediates provides a molecular basis for understanding how conformational transitions contribute to specificity. The 3500- and 23,000-fold decreases in sequence specificity for noncognate sites GAATTT and GGATTC are accounted for largely by an approximately 2500-fold increase in the reverse rate constants for intercalation and base flipping, respectively. Thus, a predominant contribution to specificity is a partitioning of enzyme intermediates away from the Michaelis complex prior to catalysis. Our results provide a basis for understanding enzyme specificity and, in particular, sequence-specific DNA modification. Because many DNA methyltransferases and DNA repair enzymes induce similar DNA distortions, these results are likely to be broadly relevant.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California, Santa Barbara 93106-9510, USA
| | | |
Collapse
|
34
|
Youngblood B, Shieh FK, De Los Rios S, Perona JJ, Reich NO. Engineered Extrahelical Base Destabilization Enhances Sequence Discrimination of DNA Methyltransferase M.HhaI. J Mol Biol 2006; 362:334-46. [PMID: 16919299 DOI: 10.1016/j.jmb.2006.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 07/01/2006] [Accepted: 07/14/2006] [Indexed: 11/19/2022]
Abstract
Improved sequence specificity of the DNA cytosine methyltransferase HhaI was achieved by disrupting interactions at a hydrophobic interface between the active site of the enzyme and a highly conserved flexible loop. Transient fluorescence experiments show that mutations disrupting this interface destabilize the positioning of the extrahelical, "flipped" cytosine base within the active site. The ternary crystal structure of the F124A M.HhaI bound to cognate DNA and the cofactor analogue S-adenosyl-l-homocysteine shows an increase in cavity volume between the flexible loop and the core of the enzyme. This cavity disrupts the interface between the loop and the active site, thereby destabilizing the extrahelical target base. The favored partitioning of the base-flipped enzyme-DNA complex back to the base-stacked intermediate results in the mutant enzyme discriminating better than the wild-type enzyme against non-cognate sites. Building upon the concepts of kinetic proofreading and our understanding of M.HhaI, we describe how a 16-fold specificity enhancement achieved with a double mutation at the loop/active site interface is acquired through destabilization of intermediates prior to methyltransfer rather than disruption of direct interactions between the enzyme and the substrate for M.HhaI.
Collapse
Affiliation(s)
- Ben Youngblood
- Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106-9510, USA
| | | | | | | | | |
Collapse
|
35
|
Ratel D, Ravanat JL, Charles MP, Platet N, Breuillaud L, Lunardi J, Berger F, Wion D. Undetectable levels of N6-methyl adenine in mouse DNA: Cloning and analysis of PRED28, a gene coding for a putative mammalian DNA adenine methyltransferase. FEBS Lett 2006; 580:3179-84. [PMID: 16684535 DOI: 10.1016/j.febslet.2006.04.074] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 04/25/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Three methylated bases, 5-methylcytosine, N4-methylcytosine and N6-methyladenine (m6A), can be found in DNA. However, to date, only 5-methylcytosine has been detected in mammalian genomes. To reinvestigate the presence of m6A in mammalian DNA, we used a highly sensitive method capable of detecting one N6-methyldeoxyadenosine per million nucleosides. Our results suggest that the total mouse genome contains, if any, less than 10(3) m6A. Experiments were next performed on PRED28, a putative mammalian N6-DNA methyltransferase. The murine PRED28 encodes two alternatively spliced RNA. However, although recombinant PRED28 proteins are found in the nucleus, no evidence for an adenine-methyltransferase activity was detected.
Collapse
Affiliation(s)
- David Ratel
- INSERM U318, UJFG, CHU Michallon, 38043 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Mashhoon N, Pruss C, Carroll M, Johnson PH, Reich NO. Selective Inhibitors of Bacterial DNA Adenine Methyltransferases. ACTA ACUST UNITED AC 2006; 11:497-510. [PMID: 16760373 DOI: 10.1177/1087057106287933] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The authors describe the discovery and characterization of several structural classes of small-molecule inhibitors of bacterial DNA adenine methyltransferases. These enzymes are essential for bacterial virulence (DNA adenine methyltransferase [DAM]) and cell viability (cell cycle–regulated methyltransferase [CcrM]). Using a novel high-throughput fluorescence-based assay and recombinant DAM and CcrM, the authors screened a diverse chemical library. They identified 5 major structural classes of inhibitors composed of more than 350 compounds: cyclopentaquinolines, phenyl vinyl furans, pyrimidine-diones, thiazolidine-4-ones, and phenyl-pyrroles. DNA binding assays were used to identify compounds that interact directly with DNA. Potent compounds selective for the bacterial target were identified, whereas other compounds showed greater selectivity for the mammalian DNA cytosine methyltransferase, Dnmt1. Enzyme inhibition analysis identified mechanistically distinct compounds that interfered with DNA or cofactor binding. Selected compounds demonstrated cell-based efficacy. These small-molecule DNA methyltransferase inhibitors provide useful reagents to probe the role of DNA methylation and may form the basis of developing novel antibiotics.
Collapse
Affiliation(s)
- Neda Mashhoon
- EpiGenX Pharmaceuticals, Pacific Technology Center, Santa Barbara, CA 93106, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
Contrary to mammalian DNA, which is thought to contain only 5-methylcytosine (m5C), bacterial DNA contains two additional methylated bases, namely N6-methyladenine (m6A), and N4-methylcytosine (m4C). However, if the main function of m5C and m4C in bacteria is protection against restriction enzymes, the roles of m6A are multiple and include, for example, the regulation of virulence and the control of many bacterial DNA functions such as the replication, repair, expression and transposition of DNA. Interestingly, even if adenine methylation is usually considered a bacterial DNA feature, the presence of m6A has been found in protist and plant DNAs. Furthermore, indirect evidence suggests the presence of m6A in mammal DNA, raising the possibility that this base has remained undetected due to the low sensitivity of the analytical methods used. This highlights the importance of considering m6A as the sixth element of DNA.
Collapse
Affiliation(s)
- David Ratel
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | | | - François Berger
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
| | - Didier Wion
- Neurosciences précliniques
INSERM : U318Université Joseph Fourier - Grenoble ICHU Grenoble 38043 Grenoble Cedex 9,FR
- * Correspondence should be adressed to: Didier Wion
| |
Collapse
|
38
|
Abstract
N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.
Collapse
Affiliation(s)
- Didier Wion
- INSERM U318, CHU Michallon, Université Joseph Fourier, 38043 Grenoble, France.
| | | |
Collapse
|
39
|
Peterson SN, Reich NO. GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression. J Mol Biol 2005; 355:459-72. [PMID: 16321401 DOI: 10.1016/j.jmb.2005.11.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/28/2005] [Accepted: 11/01/2005] [Indexed: 11/18/2022]
Abstract
Escherichia coli DNA adenine methyltransferase (Dam) plays essential roles in DNA replication, mismatch repair and gene regulation. The differential methylation by Dam of the two GATC sequences in the pap promoter regulates the expression of pili genes necessary for uropathogenic E.coli cellular adhesion. Dam processively methylates GATC sites in various DNA substrates, yet the two pap GATC sites are not processively methylated. We previously proposed that the flanking sequences surrounding the two pap GATC sites contribute to the enzyme's distributive methylation. We show here that replacement of the poorly methylated pap GATC sites with sites predicted to be processively methylated indeed results in an increase in Dam processivity. The increased processivity is due to a change in the methyltransfer kinetics and not the binding efficiency of Dam. A competition experiment in which the flanking sequences of only one pap GATC site were altered demonstrates that the GATC flanking sequences directly regulate the enzyme's catalytic efficiency. The GATC flanking sequences in Dam-regulated promoters in E.coli and other bacteria are similar to those in the pap promoter. Gene regulation from some of these promoters involves mechanisms and proteins that are quite different from those in the pap operon. Further, GATC sequences previously identified to remain unmethylated within the E.coli genome, but whose function remains largely unassigned, are flanked by sequences predicted to be poorly methylated. We conclude that the GATC flanking sequences may be critical for expression of pap and other Dam-regulated genes by affecting the activity of Dam at such sites and, thus, its processivity. A model is proposed, illustrating how the sequences flanking the GATC sites in Dam-regulated promoters may contribute to this epigenetic mechanism of gene expression, and how flanking sequences contribute to the diverse biological roles of Dam.
Collapse
Affiliation(s)
- Stacey N Peterson
- Program in Biomolecular Science and Engineering and the Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | |
Collapse
|