1
|
Abel TR, Kosarek NN, Parvizi R, Jarnagin H, Torres GM, Bhandari R, Huang M, Toledo DM, Smith A, Popovich D, Mariani MP, Yang H, Wood T, Garlick J, Pioli PA, Whitfield ML. Single-cell epigenomic dysregulation of Systemic Sclerosis fibroblasts via CREB1/EGR1 axis in self-assembled human skin equivalents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586316. [PMID: 38585776 PMCID: PMC10996484 DOI: 10.1101/2024.03.22.586316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by skin fibrosis, internal organ involvement and vascular dropout. We previously developed and phenotypically characterized an in vitro 3D skin-like tissue model of SSc, and now analyze the transcriptomic (scRNA-seq) and epigenetic (scATAC-seq) characteristics of this model at single-cell resolution. SSc 3D skin-like tissues were fabricated using autologous fibroblasts, macrophages, and plasma from SSc patients or healthy control (HC) donors. SSc tissues displayed increased dermal thickness and contractility, as well as increased α-SMA staining. Single-cell transcriptomic and epigenomic analyses identified keratinocytes, macrophages, and five populations of fibroblasts (labeled FB1 - 5). Notably, FB1 APOE-expressing fibroblasts were 12-fold enriched in SSc tissues and were characterized by high EGR1 motif accessibility. Pseudotime analysis suggests that FB1 fibroblasts differentiate from a TGF-β1-responsive fibroblast population and ligand-receptor analysis indicates that the FB1 fibroblasts are active in macrophage crosstalk via soluble ligands including FGF2 and APP. These findings provide characterization of the 3D skin-like model at single cell resolution and establish that it recapitulates subsets of fibroblasts and macrophage phenotypes observed in skin biopsies.
Collapse
|
2
|
Dubey R, Prabhakar PK, Gupta J. Epigenetics: key to improve delayed wound healing in type 2 diabetes. Mol Cell Biochem 2022; 477:371-383. [PMID: 34739665 DOI: 10.1007/s11010-021-04285-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022]
Abstract
Diabetes-related delayed wound healing is a multifactorial, nuanced, and intertwined complication that causes substantial clinical morbidity. The etiology of diabetes and its related microvascular complications is affected by genes, diet, and lifestyle factors. Epigenetic modifications such as DNA methylation, histone modifications, and post-transcriptional RNA regulation (microRNAs) are subsequently recognized as key facilitators of the complicated interaction between genes and the environment. Current research suggests that diabetes-persuaded dysfunction of epigenetic pathways, which results in changed expression of genes in target cells and cause diabetes-related complications including cardiomyopathy, nephropathy, retinopathy, delayed wound healing, etc., which are foremost drivers to diabetes-related adverse outcomes. In this paper, we discuss the role of epigenetic mechanisms in controlling tissue repair, angiogenesis, and expression of growth factors, as well as recent findings that show the alteration of epigenetic events during diabetic wound healing.
Collapse
Affiliation(s)
- Rupal Dubey
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Physiotherapy and Paramedical Sciences, Lovely Professional University, 144411, Phagwara, Punjab, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, 144411, Phagwara, Punjab, India.
| |
Collapse
|
3
|
Identification and functional characterization of the transcription factor coding Dp1 gene in large yellow croaker Pseudosciaena crocea. Heliyon 2021; 7:e06299. [PMID: 33718639 PMCID: PMC7921785 DOI: 10.1016/j.heliyon.2021.e06299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/09/2020] [Accepted: 02/12/2021] [Indexed: 11/24/2022] Open
Abstract
The transcription factor Dp1, as a binding partner, often forms a dimerization complex with typical E2F to play a central role in regulating gene expression during G1/S cell cycle progression. In this study, a full-length dp1 cDNA (Pcdp1) was successfully cloned and characterized from the large yellow croaker Pseudosciaena crocea. The nucleotidic sequence of Pcdp1 is 1,427 bp long with an open reading frame (ORF) of 1,239 bp encoding a putative protein of 412 amino acids, a 5′-untranslated region of 116 bp and a 3′-untranslated region of 70 bp. Prediction of protein domains showed that PcDp1 contains a DNA-binding domain (DBD) with a DEF box, a dimerization domain and an acidic region at C terminus with transcription activity. Homology comparisons indicated that PcDp1 shared the highest sequence identity of 98.55% with Oreochromis niloticus dp1, followed by 88.72% identity with Danio rerio dp1 and a relatively low identity of 78.91–80.55% with its mammalian and amphibian counterparts. The mRNA of Pcdp1 showed ubiquitously expression in all analyzed tissues, with the highest level of expression in the body kidney. Moderate expression levels of Pcdp1 was found in several immune-related tissues including the gills, head kidney and liver, indicating that PcDp1 might play an important role in osmotic pressure regulation and immune response of the large yellow croaker. The subcellular localization of PcDp1 revealed that it is mainly distributed in the cytoplasm both in COS-7 and parenchymal cells of the spleen, head kidney and kidney tissues. Furthermore, the recombinant PcDp1 exhibited DNA-binding activity to E2F site in vitro. In conclusion, these results indicated that PcDp1 may participate in immune regulation and provide a foundation for further study of the regulatory mechanism of Dp1 in teleosts.
Collapse
|
4
|
|
5
|
Chen Z, Chang WY, Etheridge A, Strickfaden H, Jin Z, Palidwor G, Cho JH, Wang K, Kwon SY, Doré C, Raymond A, Hotta A, Ellis J, Kandel RA, Dilworth FJ, Perkins TJ, Hendzel MJ, Galas DJ, Stanford WL. Reprogramming progeria fibroblasts re-establishes a normal epigenetic landscape. Aging Cell 2017; 16:870-887. [PMID: 28597562 PMCID: PMC5506428 DOI: 10.1111/acel.12621] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2017] [Indexed: 12/14/2022] Open
Abstract
Ideally, disease modeling using patient‐derived induced pluripotent stem cells (iPSCs) enables analysis of disease initiation and progression. This requires any pathological features of the patient cells used for reprogramming to be eliminated during iPSC generation. Hutchinson–Gilford progeria syndrome (HGPS) is a segmental premature aging disorder caused by the accumulation of the truncated form of Lamin A known as Progerin within the nuclear lamina. Cellular hallmarks of HGPS include nuclear blebbing, loss of peripheral heterochromatin, defective epigenetic inheritance, altered gene expression, and senescence. To model HGPS using iPSCs, detailed genome‐wide and structural analysis of the epigenetic landscape is required to assess the initiation and progression of the disease. We generated a library of iPSC lines from fibroblasts of patients with HGPS and controls, including one family trio. HGPS patient‐derived iPSCs are nearly indistinguishable from controls in terms of pluripotency, nuclear membrane integrity, as well as transcriptional and epigenetic profiles, and can differentiate into affected cell lineages recapitulating disease progression, despite the nuclear aberrations, altered gene expression, and epigenetic landscape inherent to the donor fibroblasts. These analyses demonstrate the power of iPSC reprogramming to reset the epigenetic landscape to a revitalized pluripotent state in the face of widespread epigenetic defects, validating their use to model the initiation and progression of disease in affected cell lineages.
Collapse
Affiliation(s)
- Zhaoyi Chen
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
| | - Wing Y. Chang
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Alton Etheridge
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Hilmar Strickfaden
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Zhigang Jin
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - Gareth Palidwor
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Ji-Hoon Cho
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Kai Wang
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - Sarah Y. Kwon
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
| | - Carole Doré
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Angela Raymond
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
| | - Akitsu Hotta
- Center for iPS Cell Research and Application (CiRA); Kyoto University; Kyoto Japan
| | - James Ellis
- Program in Developmental and Stem Cell Biology; The Hospital for Sick Children; Toronto Ontario Canada
- Department of Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Rita A. Kandel
- Pathology and Experimental Medicine; Mount Sinai Hospital; Toronto Ontario Canada
| | - F. Jeffrey Dilworth
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Theodore J. Perkins
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Bioinformatics Core Facility; The Sprott Centre for Stem Cell Research; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| | - Michael J. Hendzel
- Cross Cancer Institute and the Department of Experimental Oncology; Faculty of Medicine and Dentistry; University of Alberta; Edmonton Alberta Canada T6G 1Z2
| | - David J. Galas
- Pacific Northwest Diabetes Research Institute; 720 Broadway Seattle WA 98103 USA
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research; Regenerative Medicine Program; Ottawa Hospital Research Institute; Ottawa Ontario Canada K1H 8L6
- Department of Cellular and Molecular Medicine; University of Ottawa; Ottawa Ontario Canada
- Department of Chemical Engineering; University of Toronto; Toronto Ontario Canada
- Department of Biochemistry, Microbiology and Immunology; University of Ottawa; Ottawa Ontario Canada
- Ottawa Institute of Systems Biology; Ottawa Ontario Canada
| |
Collapse
|
6
|
Thomas RJ, Oleinik N, Panneer Selvam S, Vaena SG, Dany M, Nganga RN, Depalma R, Baron KD, Kim J, Szulc ZM, Ogretmen B. HPV/E7 induces chemotherapy-mediated tumor suppression by ceramide-dependent mitophagy. EMBO Mol Med 2017; 9:1030-1051. [PMID: 28606997 PMCID: PMC5538428 DOI: 10.15252/emmm.201607088] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 05/01/2017] [Accepted: 05/04/2017] [Indexed: 12/21/2022] Open
Abstract
Human papillomavirus (HPV) infection is linked to improved survival in response to chemo-radiotherapy for patients with oropharynx head and neck squamous cell carcinoma (HNSCC). However, mechanisms involved in increased HNSCC cell death by HPV signaling in response to therapy are largely unknown. Here, using molecular, pharmacologic and genetic tools, we show that HPV early protein 7 (E7) enhances ceramide-mediated lethal mitophagy in response to chemotherapy-induced cellular stress in HPV-positive HNSCC cells by selectively targeting retinoblastoma protein (RB). Inhibition of RB by HPV-E7 relieves E2F5, which then associates with DRP1, providing a scaffolding platform for Drp1 activation and mitochondrial translocation, leading to mitochondrial fission and increased lethal mitophagy. Ectopic expression of a constitutively active mutant RB, which is not inhibited by HPV-E7, attenuated ceramide-dependent mitophagy and cell death in HPV(+) HNSCC cells. Moreover, mutation of E2F5 to prevent Drp1 activation inhibited mitophagy in HPV(+) cells. Activation of Drp1 with E2F5-mimetic peptide for inducing Drp1 mitochondrial localization enhanced ceramide-mediated mitophagy and led to tumor suppression in HPV-negative HNSCC-derived xenograft tumors in response to cisplatin in SCID mice.
Collapse
Affiliation(s)
- Raquela J Thomas
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Natalia Oleinik
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Shanmugam Panneer Selvam
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Silvia G Vaena
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Mohammed Dany
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Rose N Nganga
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Ryan Depalma
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Kyla D Baron
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Jisun Kim
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Zdzislaw M Szulc
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
7
|
Rudkouskaya A, Welch I, Dagnino L. ILK modulates epithelial polarity and matrix formation in hair follicles. Mol Biol Cell 2013; 25:620-32. [PMID: 24371086 PMCID: PMC3937088 DOI: 10.1091/mbc.e13-08-0499] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Integrin-linked kinase–deficient hair follicles fail to develop apical–basal polarity and show impaired specification of the hair matrix cell lineage. Exogenous laminin-511 restores matrix cell formation. Hair follicle morphogenesis requires coordination of multiple signals and communication between its epithelial and mesenchymal constituents. Cell adhesion protein platforms, which include integrins and integrin-linked kinase (ILK), are critical for hair follicle formation. However, their precise contribution to this process is poorly understood. We show that in the absence of ILK, the hair follicle matrix lineage fails to develop, likely due to abnormalities in development of apical–basal cell polarity, as well as in laminin-511 and basement membrane assembly at the tip of the hair bud. These defects also result in impaired specification of hair matrix and absence of precortex and inner sheath root cell lineages. The molecular pathways affected in ILK-deficient follicles are similar to those in the absence of epidermal integrin β1 and include Wnt, but not sonic hedgehog, signaling. ILK-deficient hair buds also show abnormalities in the dermal papilla. Addition of exogenous laminin-511 restores morphological and molecular markers associated with hair matrix formation, indicating that ILK regulates hair bud cell polarity and functions upstream from laminin-511 assembly to regulate the developmental progression of hair follicles beyond the germ stage.
Collapse
Affiliation(s)
- Alena Rudkouskaya
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5C1, Canada Children's Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
8
|
Chang WY, Lavoie JR, Kwon SY, Chen Z, Manias JL, Behbahani J, Ling V, Kandel RA, Stewart DJ, Stanford WL. Feeder-independent derivation of induced-pluripotent stem cells from peripheral blood endothelial progenitor cells. Stem Cell Res 2012; 10:195-202. [PMID: 23291290 DOI: 10.1016/j.scr.2012.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Revised: 11/24/2012] [Accepted: 11/24/2012] [Indexed: 11/19/2022] Open
Abstract
Induced-pluripotent stem cells (iPSCs) are a potential alternative cell source in regenerative medicine, which includes the use of differentiated iPSCs for cell therapies to treat coronary artery and/or peripheral arterial diseases. Late-outgrowth endothelial progenitor cells (late-EPCs) are a unique primary cell present in peripheral blood that exhibit high proliferative capacity, are being used in a wide variety of clinical trials, and have the ability to differentiate into mature endothelial cells. The objective of this study was to reprogram peripheral blood-derived late-EPCs to a pluripotent state under feeder-free and defined culture conditions. Late-EPCs that were retrovirally transduced with OCT4, SOX2, KLF4, c-MYC, and iPSC colonies were derived in feeder-free and defined media conditions. EPC-iPSCs expressed pluripotent markers, were capable of differentiating to cells from all three germ-layers, and retained a normal karyotype. Transcriptome analyses demonstrated that EPC-iPSCs exhibit a global gene expression profile similar to human embryonic stem cells (hESCs). We have generated iPSCs from late-EPCs under feeder-free conditions. Thus, peripheral blood-derived late-outgrowth EPCs represent an alternative cell source for generating iPSCs.
Collapse
Affiliation(s)
- Wing Y Chang
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rafehi H, El-Osta A, Karagiannis TC. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications 2012; 26:554-61. [PMID: 22739801 DOI: 10.1016/j.jdiacomp.2012.05.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 05/03/2012] [Accepted: 05/22/2012] [Indexed: 12/14/2022]
Abstract
The incidence of diabetes mellitus, a chronic metabolic disease associated with both predisposing genetic and environmental factors, is increasing globally. As a result, it is expected that there will also be an increasing incidence of diabetic complications which arise as a result of poor glycemic control. Complications include cardiovascular diseases, nephropathy, retinopathy and diabetic foot ulcers. The findings of several major clinical trials have identified that diabetic complications may arise even after many years of proper glycemic control. This has led to the concept of persistent epigenetic changes. Various epigenetic mechanisms have been identified as important contributors to the pathogenesis of diabetes and diabetic complications. The aim of this review is to provide an overview of the pathobiology of type 2 diabetes with an emphasis on complications, particularly diabetic foot ulcers. An overview of epigenetic mechanisms is provided and the focus is on the emerging evidence for aberrant epigenetic mechanisms in diabetic foot ulcers.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
10
|
A screening of a library of T7 phage-displayed peptide identifies E2F-4 as an etoposide-binding protein. Molecules 2011; 16:4278-94. [PMID: 21610657 PMCID: PMC6263361 DOI: 10.3390/molecules16054278] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/22/2011] [Accepted: 05/16/2011] [Indexed: 12/22/2022] Open
Abstract
Etoposide (VP-16) is an anti-tumor compound that targets topoisomerase II (top II). In this study, we have identified an alternative binding protein of etoposide by screening a library of T7 phage-displayed peptides. After four rounds of selection using a biotinylated etoposide derivative immobilized on a streptavidin-coated plate, T7 phage particles that display a 16-mer peptide NSSASSRGNSSSNSVY (ETBP16) or a 10-mer NSLRKYSKLK (ETBP10) were enriched with the ratio of 40 or 11 out of the 69 clones, respectively. Binding of etoposide to these peptides was confirmed by surface plasmon resonance (SPR) analysis, which showed ETBP16 and ETBP10 to have a kinetic constant of 4.85 × 10−5 M or 6.45 × 10−5 M, respectively. ETBP16 displays similarity with the ser-rich domain in E2F-4, a transcription factor in cell cycle-regulated genes, suggesting that etoposide might interact with E2F-4 via this domain. SPR analysis confirmed the specific binding of etoposide to recombinant E2F-4 is in the order of 10−5 M. Furthermore, etoposide was shown to inhibit luciferase reporter gene expression mediated by the heterodimeric E2F-4/DP complex. Taken together, our results suggest that etoposide directly binds to E2F-4 and inhibits subsequent gene transcription mediated by heterodimeric E2F-4/DP complexes in the nucleus.
Collapse
|
11
|
Rafehi H, El-Osta A, Karagiannis TC. Genetic and epigenetic events in diabetic wound healing. Int Wound J 2010; 8:12-21. [PMID: 21159125 DOI: 10.1111/j.1742-481x.2010.00745.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The prevalence of the chronic metabolic disorder, diabetes mellitus, is expected to increase in the coming years and worldwide pandemic levels are predicted. Inevitably, this will be accompanied by an increase in the prevalence of diabetic complications, including diabetic foot ulcers. At present, treatment options for diabetic foot ulcers are in many cases insufficient, and progression of the condition results in the requirement for limb amputation in a proportion of patients. To improve therapy, an increase in our understanding of the pathobiology of diabetic complications such as impaired wound healing is necessary. In this review, recent advances in molecular aspects of normal and impaired diabetic wound healing are discussed. Furthermore, investigations of the role of epigenetic processes in the pathogenesis of impaired diabetic wound healing are now emerging. Indeed, epigenetic changes have already been identified as key factors in diabetes and related complications and these are overviewed in this review.
Collapse
Affiliation(s)
- Haloom Rafehi
- Epigenomic Medicine, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | | | | |
Collapse
|
12
|
Hypoxia inducible microRNA 210 attenuates keratinocyte proliferation and impairs closure in a murine model of ischemic wounds. Proc Natl Acad Sci U S A 2010; 107:6976-81. [PMID: 20308562 DOI: 10.1073/pnas.1001653107] [Citation(s) in RCA: 212] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ischemia complicates wound closure. Here, we are unique in presenting a murine ischemic wound model that is based on bipedicle flap approach. Using this model of ischemic wounds we have sought to elucidate how microRNAs may be implicated in limiting wound re-epithelialization under hypoxia, a major component of ischemia. Ischemia, evaluated by laser Doppler as well as hyperspectral imaging, limited blood flow and lowered tissue oxygen saturation. EPR oximetry demonstrated that the ischemic wound tissue had pO(2) <10 mm Hg. Ischemic wounds suffered from compromised macrophage recruitment and delayed wound epithelialization. Specifically, epithelial proliferation, as determined by Ki67 staining, was compromised. In vivo imaging showed massive hypoxia inducible factor-1alpha (HIF-1alpha) stabilization in ischemic wounds, where HIF-1alpha induced miR-210 expression that, in turn, silenced its target E2F3, which was markedly down-regulated in the wound-edge tissue of ischemic wounds. E2F3 was recognized as a key facilitator of cell proliferation. In keratinocytes, knock-down of E2F3 limited cell proliferation. Forced stabilization of HIF-1alpha using Ad-VP16- HIF-1alpha under normoxic conditions up-regulated miR-210 expression, down-regulated E2F3, and limited cell proliferation. Studies using cellular delivery of miR-210 antagomir and mimic demonstrated a key role of miR-210 in limiting keratinocyte proliferation. In summary, these results are unique in presenting evidence demonstrating that the hypoxia component of ischemia may limit wound re-epithelialization by stabilizing HIF-1alpha, which induces miR-210 expression, resulting in the down-regulation of the cell-cycle regulatory protein E2F3.
Collapse
|
13
|
Abstract
In this chapter we review protocols for transient transfection of primary keratinocytes. The ability to transfect primary epidermal cells regardless of their differentiation status allows the biochemical and molecular characterization of multiple proteins. We review methods to analyze exogenous protein abundance in transfected keratinocytes by immunoblot and immunoprecipitation. We also present protocols to determine the subcellular distribution of these proteins by indirect immunofluorescence microscopy approaches.
Collapse
Affiliation(s)
- Lina Dagnino
- Department of Physiology & Pharmacology, Child Health Research Institute and Lawson Health Research Institute, University of Western Ontario, London, ON, Canada
| | | | | |
Collapse
|
14
|
p110 CUX1 cooperates with E2F transcription factors in the transcriptional activation of cell cycle-regulated genes. Mol Cell Biol 2008; 28:3127-38. [PMID: 18347061 DOI: 10.1128/mcb.02089-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The transcription factor p110 CUX1 was shown to stimulate cell proliferation by accelerating entry into S phase. As p110 CUX1 can function as a transcriptional repressor or activator depending on promoter context, we investigated its mechanism of transcriptional activation using the DNA polymerase alpha gene promoter as a model system. Linker-scanning analysis revealed that a low-affinity E2F binding site is required for transcriptional activation. Moreover, coexpression with a dominant-negative mutant of DP-1 suggested that endogenous E2F factors are indeed needed for p110-mediated activation. Tandem affinity purification, coimmunoprecipitation, chromatin immunoprecipitation, and reporter assays indicated that p110 CUX1 can engage in weak protein-protein interactions with E2F1 and E2F2, stimulate their recruitment to the DNA polymerase alpha gene promoter, and cooperate with these factors in transcriptional activation. On the other hand, in vitro assays suggested that the interaction between CUX1 and E2F1 either is not direct or is regulated by posttranslational modifications. Genome-wide location analysis revealed that targets common to p110 CUX1 and E2F1 included many genes involved in cell cycle, DNA replication, and DNA repair. Comparison of the degree of enrichment for various E2F factors suggested that binding of p110 CUX1 to a promoter will favor the specific recruitment of E2F1, and to a lesser extent E2F2, over E2F3 and E2F4. Reporter assays on a subset of common targets confirmed that p110 CUX1 and E2F1 cooperate in their transcriptional activation. Overall, our results show that p110 CUX1 and E2F1 cooperate in the regulation of many cell cycle genes.
Collapse
|
15
|
Ikebe D, Wang B, Suzuki H, Kato M. Suppression of keratinocyte stratification by a dominant negative JunB mutant without blocking cell proliferation. Genes Cells 2007; 12:197-207. [PMID: 17295839 DOI: 10.1111/j.1365-2443.2007.01043.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Keratinocytes make a stratified epidermoid structure when cultured at an air-liquid interface. The three-dimensional (3D) culture of keratinocytes has been successfully used for more than 25 years, but it is still unclear why keratinocytes stratify in response to air exposure. AP-1 proteins are ubiquitous transcription factors that regulate many biological processes, including cell proliferation, differentiation and apoptosis. We established HaCaT-JunBDeltaN, a human keratinocyte cell line that expressed a mutant JunB with a dominant negative effect on AP-1 activity. Stratification of HaCaT-JunBDeltaN cells was markedly suppressed in a 3D culture condition, in which HaCaT cells stratified similarly to stratified squamous epithelia. However, HaCaT-JunBDeltaN cells had proliferation activities that were closely equivalent to those of HaCaT cells, under both two-dimensional (2D) and 3D culture conditions. To screen for the candidate gene responsible for the different stratification ability, we examined the gene expression profile of HaCaT cells before and after air exposure. Several genes with an antioxidative function, such as aldo-keto reductase and selenoprotein P were highly expressed after air exposure in HaCaT cells but not in HaCaT-JunBDeltaN cells. Our findings indicate the presence of a novel role of AP-1 activity when HaCaT cells make a stratified epidermoid structure under 3D culture conditions.
Collapse
Affiliation(s)
- Dai Ikebe
- Department of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | |
Collapse
|
16
|
Ivanova IA, Dagnino L. Activation of p38- and CRM1-dependent nuclear export promotes E2F1 degradation during keratinocyte differentiation. Oncogene 2007; 26:1147-54. [PMID: 16924238 DOI: 10.1038/sj.onc.1209894] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 06/28/2006] [Accepted: 06/30/2006] [Indexed: 11/09/2022]
Abstract
E2F factors modulate a plethora of cell functions, including proliferation, differentiation, DNA repair and apoptosis. We have shown that differentiation in primary epidermal keratinocytes leads to E2F1 downregulation via activation of protein kinase C and p38 mitogen-activated protein kinase. We now demonstrate that E2F1 downregulation in differentiating keratinocytes involves its ubiquitination, as well as proteasomal degradation subsequent to CRM1-dependent nuclear export. E2F1 nuclear export specifically in response to differentiation requires regions adjacent to the cyclin A-binding domain in the N-terminus of this protein. Significantly, inhibition of p38 interferes with nuclear export and degradation of E2F1 during differentiation, but has no effect on E2F1 in undifferentiated cells. Thus, induction of differentiation in epidermal keratinocytes activates a specific program for post-transcriptional downregulation of E2F1, which involves signaling through p38 and activation of nuclear export pathways.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Physiology and Pharmacology and Regulatory Biology, University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
17
|
Ivanova IA, D'Souza SJA, Dagnino L. E2F1 stability is regulated by a novel-PKC/p38beta MAP kinase signaling pathway during keratinocyte differentiation. Oncogene 2006; 25:430-7. [PMID: 16116476 DOI: 10.1038/sj.onc.1208999] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
E2F transcription factors regulate proliferation, differentiation, DNA repair and apoptosis. Tight E2F regulation is crucial for epidermal formation and regeneration. However, virtually nothing is known about the molecular events modulating E2F during epidermal keratinocyte differentiation. Elucidation of these events is essential to understand epidermal morphogenesis, transformation and repair. Here we show that, in differentiating keratinocytes, Ca(2+)-induced protein kinase C (PKC) activation downregulates E2F1 protein levels. Further, we have identified PKC delta and eta as those isoforms specifically involved in induction of E2F1 proteasomal degradation. We also demonstrate that E2F1 downregulation by novel PKC isozymes requires activation of p38beta mitogen-activated protein kinase (MAPK). This is the first example of regulation in the E2F transcription factor family by activation of PKC and MAPK in the context of biologically significant differentiation stimuli in epithelia.
Collapse
Affiliation(s)
- I A Ivanova
- Department of Physiology and Pharmacology, University of Western Ontario, London Ontario, Canada N6A 5C1
| | | | | |
Collapse
|
18
|
Abstract
Skin replacement has been a challenging task for surgeons ever since the introduction of skin grafts by Reverdin in 1871. Recently, skin grafting has evolved from the initial autograft and allograft preparations to biosynthetic and tissue-engineered living skin replacements. This has been fostered by the dramatically improved survival rates of major burns where the availability of autologous normal skin for grafting has become one of the limiting factors. The ideal properties of a temporary and a permanent skin substitute have been well defined. Tissue-engineered skin replacements: cultured autologous keratinocyte grafts, cultured allogeneic keratinocyte grafts, autologous/allogeneic composites, acellular biological matrices, and cellular matrices including such biological substances as fibrin sealant and various types of collagen, hyaluronic acid etc. have opened new horizons to deal with such massive skin loss. In extensive burns it has been shown that skin substitution with cultured grafts can be a life-saving measure where few alternatives exist. Future research will aim to create skin substitutes with cultured epidermis that under appropriate circumstances may provide a wound cover that could be just as durable and esthetically acceptable as conventional split-thickness skin grafts. Genetic manipulation may in addition enhance the performance of such cultured skin substitutes. If cell science, molecular biology, genetic engineering, material science and clinical expertise join their efforts to develop optimized cell culture techniques and synthetic or biological matrices then further technical advances might well lead to the production of almost skin like new tissue-engineered human skin products resembling natural human skin.
Collapse
Affiliation(s)
- Raymund E Horch
- Department of Plastic and Hand Surgery, University of Erlangen-Nürnberg, Erlangen, D-91054, Germany.
| | | | | | | | | |
Collapse
|
19
|
Vespa A, D'Souza SJA, Dagnino L. A novel role for integrin-linked kinase in epithelial sheet morphogenesis. Mol Biol Cell 2005; 16:4084-95. [PMID: 15975904 PMCID: PMC1196321 DOI: 10.1091/mbc.e05-02-0087] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Integrin-linked kinase (ILK) is a multidomain protein involved in cell motility and cell-extracellular matrix interactions. ILK is found in integrin-containing focal adhesions in undifferentiated primary epidermal keratinocytes. Induction of keratinocyte differentiation by treatment with Ca(2+) triggers formation of cell-cell junctions, loss of focal adhesions, and ILK distribution to cell borders. We now show that Ca(2+) treatment of keratinocytes induces rapid (<or=1 h) translocation to the cell membrane of the adherens junction (AJ) proteins E-cadherin and beta-catenin. This is followed by slower (>6 h) localization of tight junction (TJ) proteins. The kinetics of ILK movement toward the cell periphery mimics that of AJ components, suggesting that ILK plays a role in the early formation of cell-cell contacts. Whereas the N terminus in ILK mediates localization to cell borders, expression of an ILK deletion mutant incapable of localizing to the cell membrane (ILK 191-452) interferes with translocation of E-cadherin/beta-catenin to cell borders, precluding Ca(2+)-induced AJ formation. Cells expressing ILK 191-452 also fail to form TJ and sealed cell-cell borders and do not form epithelial sheets. Thus, we have uncovered a novel role for ILK in epithelial cell-cell adhesion, independent of its well-established role in integrin-mediated adhesion and migration.
Collapse
Affiliation(s)
- Alisa Vespa
- Department of Physiology and Pharmacology and Regulatory Biology and Functional Genomics Research Group, Siebens-Drake Research Institute, London, Ontario N6A 5C1, Canada
| | | | | |
Collapse
|