1
|
Yang Y, Tian Z, Song M, Ma C, Ge Z, Li P. Detecting the Critical States of Type 2 Diabetes Mellitus Based on Degree Matrix Network Entropy by Cross-Tissue Analysis. ENTROPY (BASEL, SWITZERLAND) 2022; 24:1249. [PMID: 36141135 PMCID: PMC9498060 DOI: 10.3390/e24091249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by multiple etiologies, the development of which can be divided into three states: normal state, critical state/pre-disease state, and disease state. To avoid irreversible development, it is important to detect the early warning signals before the onset of T2DM. However, detecting critical states of complex diseases based on high-throughput and strongly noisy data remains a challenging task. In this study, we developed a new method, i.e., degree matrix network entropy (DMNE), to detect the critical states of T2DM based on a sample-specific network (SSN). By applying the method to the datasets of three different tissues for experiments involving T2DM in rats, the critical states were detected, and the dynamic network biomarkers (DNBs) were successfully identified. Specifically, for liver and muscle, the critical transitions occur at 4 and 16 weeks. For adipose, the critical transition is at 8 weeks. In addition, we found some "dark genes" that did not exhibit differential expression but displayed sensitivity in terms of their DMNE score, which is closely related to the progression of T2DM. The information uncovered in our study not only provides further evidence regarding the molecular mechanisms of T2DM but may also assist in the development of strategies to prevent this disease.
Collapse
Affiliation(s)
- Yingke Yang
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhuanghe Tian
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Mengyao Song
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Chenxin Ma
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| | - Zhenyang Ge
- College of Agriculture, Henan University of Science and Technology, Luoyang 471023, China
| | - Peiluan Li
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Gao ZW, Liu C, Yang L, He T, Wu XN, Zhang HZ, Dong K. SPARC Overexpression Promotes Liver Cancer Cell Proliferation and Tumor Growth. Front Mol Biosci 2021; 8:775743. [PMID: 34912848 PMCID: PMC8668270 DOI: 10.3389/fmolb.2021.775743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Secreted protein acidic and rich in cysteine (SPARC) plays an important role in cancer development. The roles of SPARC in the liver hepatocellular carcinoma (LIHC) are unclear. Methods: GEPIA2 and UALCAN were used to analyze the SPARC mRNA expression levels in LIHC based on the TCGA database. The GEO database was used to verify the analysis results. Immunohistochemical (IHC) analysis was used to investigate the SPARC protein levels in LIHC tissues. The Kaplan-Meier (KM) plotter was used to analyze the correlation between SPARC and prognosis. The serum SPARC levels were measured by ELISA. CCK8 and murine xenograft models were used to investigate the effect of SPARC on the liver cancer growth in vitro and in vivo. SPARC-correlated genes were screened by LinkedOmics. Results: Based on the TCGA and GEO databases, the analysis showed that the SPARC mRNA expression levels were increased in tumor tissues and peripheral blood mononuclear cell (PBMC) from LIHC compared to normal controls. The IHC analysis showed an increased level of SPARC in LIHC tissues compared to adjacent non-tumor tissues. However, we found that the serum SPARC levels were lower in LIHC than those in healthy controls. The KM plotter showed that there was no significant correlation between the SPARC mRNA levels and overall survival. However, in sorafenib-treated LIHC patients, the high SPARC expression predicts favorable prognosis. Furthermore, the endogenous SPARC overexpression promotes liver cancer cell proliferation in vitro and tumor growth in vivo, while there was no significant effect of exogenous SPARC treatment on liver cancer cell proliferation. Function enrichment analysis of SPARC-correlated genes indicated a critical role of interaction with an extracellular matrix in SPARC-promoting cancer cell proliferation. Conclusion: SPARC mRNAs were increased in LIHC tumor tissues, and SPARC overexpression may promote the liver cancer growth. Further studies are needed to clarify the potential prognostic value of SPARC, both in tissues and in circulation.
Collapse
Affiliation(s)
- Zhao-Wei Gao
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Chong Liu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Lan Yang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ting He
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Xia-Nan Wu
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Hui-Zhong Zhang
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| | - Ke Dong
- Department of Clinical Laboratory, Tangdu Hospital, Air Force Medical University, xi'an, China
| |
Collapse
|
3
|
Yu L, Hua Z, Luo X, Zhao T, Liu Y. Systematic interaction of plasma albumin with the efficacy of chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2021; 1877:188655. [PMID: 34780933 DOI: 10.1016/j.bbcan.2021.188655] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 11/02/2021] [Accepted: 11/08/2021] [Indexed: 02/07/2023]
Abstract
Albumin, as the most abundant plasma protein, plays an integral role in the transport of a variety of exogenous and endogenous ligands in the bloodstream and extravascular spaces. For exogenous drugs, especially chemotherapeutic drugs, binding to and being delivered by albumin can significantly affect their efficacy. Meanwhile, albumin can also bind to many endogenous ligands, such as fatty acids, with important physiological significance that can affect tumor proliferation and metabolism. In this review, we summarize how albumin with unique properties affects chemotherapeutic drugs efficacy from the aspects of drug outcome in blood, toxicity, tumor accumulation and direct or indirect interactions with fatty acids, plus application of albumin-based carriers for anti-tumor drug delivery.
Collapse
Affiliation(s)
- Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinyi Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ting Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
4
|
Yoshida S, Asanoma K, Yagi H, Onoyama I, Hori E, Matsumura Y, Okugawa K, Yahata H, Kato K. Fibronectin mediates activation of stromal fibroblasts by SPARC in endometrial cancer cells. BMC Cancer 2021; 21:156. [PMID: 33579227 PMCID: PMC7881467 DOI: 10.1186/s12885-021-07875-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 02/03/2021] [Indexed: 12/29/2022] Open
Abstract
Background Matricellular glycoprotein, SPARC is a secreted molecule, that mediates the interaction between cells and extracellular matrix. SPARC functions as a regulator of matrix organization and modulates cell behavior. In various kinds of cancer, strong SPARC expression was observed in stromal tissues as well as in cancer epithelial cells. The function of SPARC in cancer cells is somewhat controversial and its impact on peritumoral stromal cells remains to be resolved. Methods We investigated the effects of SPARC expression in endometrial cancer cells on the surrounding stromal fibroblasts using in vitro co-culture system. Changes in characteristics of fibroblasts were examined by analysis of fibroblast-specific markers and in vitro contraction assay. Results SPARC induced AKT phosphorylation and epithelial-to-mesenchymal transition, consistent with previous reports. Cancer-associated fibroblasts of endometrial cancer expressed higher levels of mesenchymal- and fibroblast-associated factors and had a stronger contraction ability. Unexpectedly, cancer-associated fibroblasts expressed comparable levels of SPARC compared with fibroblasts from normal endometrium. However, co-culture of normal fibroblasts with SPARC-expressing Ishikawa cells resulted in activation of the fibroblasts. Immunodepletion of SPARC did not affect the activation of fibroblasts. Conclusions Our data indicated that SPARC activated fibroblasts only in the presence of fibronectin, which was abundantly secreted from SPARC-expressing endometrial cancer cells. These results suggested that a SPARC-fibronectin-mediated activation of fibroblasts might be involved in enhanced mobility and invasion of cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07875-9.
Collapse
Affiliation(s)
- Sachiko Yoshida
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kazuo Asanoma
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Yagi
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ichiro Onoyama
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Emiko Hori
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yumiko Matsumura
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kaoru Okugawa
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hideaki Yahata
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kiyoko Kato
- Department of Obstetrics and Gynecology, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Abstract
Cancer is a complex disease with high incidence and mortality rates. The important role played by the tumor microenvironment in regulating oncogenesis, tumor growth, and metastasis is by now well accepted in the scientific community. SPARC is known to participate in tumor-stromal interactions and impact cancer growth in ambiguous ways, which either enhance or suppress cancer aggressiveness, in a context-dependent manner. p53 transcription factor, a well-established tumor suppressor, has been reported to promote tumor growth in certain situations, such as hypoxia, thus displaying a duality in its action. Although both proteins are being tested in clinical trials, the synergistic relation between them is yet to be explored in clinical practice. In this review, we address the controversial roles of SPARC and p53 as double agents in cancer, briefly summarizing the interaction found between these two molecules and its importance in cancer.
Collapse
|
6
|
Zhang F, Zhang Y, Da J, Jia Z, Wu H, Gu K. Downregulation of SPARC Expression Decreases Cell Migration and Invasion Involving Epithelial-Mesenchymal Transition through the p-FAK/p-ERK Pathway in Esophageal Squamous Cell Carcinoma. J Cancer 2020; 11:414-420. [PMID: 31897236 PMCID: PMC6930426 DOI: 10.7150/jca.31427] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein overexpressed in various malignancies, including esophageal squamous cell carcinoma (ESCC), and is involved in tumor development and progression. This study was initially designed to investigate the biological roles of SPARC in ESCC cell lines by silencing SPARC expression. Methods: The expression of SPARC was examined in eight human ESCC cell lines. Eca109 and HKESC cell lines with high SPARC expression were selected and transiently transfected with SPARC-targeted small interfering RNAs (siRNAs) and subsequently evaluated its impact on cell proliferation, migration and invasion in vitro, as well as the underlying mechanism. Results: Knockdown of SPARC by the specified siRNAs in Eca109 and HKESC cell lines resulted in dramatically downregulation of SPARC expression, and significantly decreased cell migration and invasion involving epithelial-mesenchymal transition (EMT) in vitro. Moreover, SPARC-targeted siRNA reduced the activation of phosphorylated focal adhesion kinase (p-FAK) and extracellular regulated protein kinase (p-ERK). Furthermore, downregulation of either FAK or SPARC expression with specified siRNAs inhibited the phosphorylation of ERK and inhibited cell migration and invasion. However, decreased SPARC expression showed no impact on cell proliferation, survival or apoptosis of Eca109 and HKESC cells when comparing to control transfected groups. Conclusions: These results demonstrated that downregulation of SPARC could decrease cell migration and invasion involving EMT via the p-FAK/p-ERK pathway that might serve as a novel therapeutic target against ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangsheng Gu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
7
|
Gutiérrez-Martínez A, Sew WQG, Molano-Fernández M, Carretero-Junquera M, Herranz H. Mechanisms of oncogenic cell competition-Paths of victory. Semin Cancer Biol 2019; 63:27-35. [PMID: 31128299 DOI: 10.1016/j.semcancer.2019.05.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/13/2019] [Accepted: 05/21/2019] [Indexed: 12/17/2022]
Abstract
Cancer is a multistep process. In the early phases of this disease, mutations in oncogenes and tumor suppressors are thought to promote clonal expansion. These mutations can increase cell competitiveness, allowing tumor cells to grow within the tissue by eliminating wild type host cells. Recent studies have shown that cell competition can also function in later phases of cancer. Here, we examine the existing evidence linking cell competition and tumorigenesis. We focus on the mechanisms underlying cell competition and their contribution to disease pathogenesis.
Collapse
Affiliation(s)
- Alejandro Gutiérrez-Martínez
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Wei Qi Guinevere Sew
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Molano-Fernández
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Maria Carretero-Junquera
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark
| | - Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, Copenhagen 2200 N, Denmark.
| |
Collapse
|
8
|
Zhang M, Zhang X. The role of PI3K/AKT/FOXO signaling in psoriasis. Arch Dermatol Res 2018; 311:83-91. [PMID: 30483877 DOI: 10.1007/s00403-018-1879-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 11/18/2018] [Indexed: 12/12/2022]
Abstract
Phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) signaling pathway play a central role in multiple cellular functions such as cell proliferation and survival. The forkhead box O (FOXO) transcription factors are negatively regulated by the PI3K/AKT signaling pathway and considered to have inhibitory effect on cell proliferation. Psoriasis is a multifactorial disease with a strong genetic background and characterized by hyperproliferative keratinocyte. PI3K signaling regulates proliferation of keratinocyte by activating AKT and other targets, and by inducing FOXO downregulation. The amplification of PI3K and AKT and the loss of the FOXO are gradually being recognized in psoriatic lesions. The upstream and downstream of PI3K/AKT signaling molecules such as tumor suppressor phosphatase and tensin homolog (PTEN) and mammalian target of Rapamycin (mTOR), respectively, are also frequently altered in psoriasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and AKT in regulating hyperproliferation of keratinocyte, and the roles of the downstream targets FOXO in psoriasis. Finally, we summarized that PI3K/AKT/FOXO signaling and its upstream and downstream molecule which could be underlying therapeutic target for psoriasis. This article is part of a special issue entitled: PI3K-AKT-FOXO axis in psoriasis.
Collapse
Affiliation(s)
- Miao Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyan Zhang
- Department of Dermatology, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
9
|
Bawazeer S, Sabry D, Mahmoud RH, Elhanbuli HM, Yassen NN, Abdelhafez MN. Association of SPARC gene polymorphisms rs3210714 and rs7719521 with VEGF expression and utility of Nottingham Prognostic Index scoring in breast cancer in a sample of Egyptian women. Mol Biol Rep 2018; 45:2313-2324. [PMID: 30259245 DOI: 10.1007/s11033-018-4394-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 09/17/2018] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most common malignancy in women. To our knowledge, there is no single study conducted on the role of secreted protein acidic and rich in cysteine (SPARC) gene polymorphism in breast cancer risk or prognosis. The present study aims to investigate the probable role of SPARC genetic polymorphisms in development of breast cancer; their correlation with immunohistochemical expression of VEGF; and their association with breast cancer prognosis in the Egyptian population. The study sample included 238 Egyptian females who were divided into two groups: breast cancer group (118 patients) and healthy control group (120 subjects). SPARC gene single nucleotide polymorphisms rs3210714 and rs7719521 were genotyped. Allelic and genotypic frequencies were determined in both groups and association with ductal breast carcinoma, clinicopathological and prognostic characters were determined. For SPARC rs3210714, a significant difference was observed in the codominant model and both A and G alleles' frequencies between breast cancer patients and control group (P < 0.001). For rs7719521, a significant difference in codominant and dominant models as well as in both A and C alleles' frequencies between breast cancer and control groups (P < 0.001) was observed. A significant relation was found between SPARC rs3210714 and rs7719521, and immunohistochemical expression of VEGF (P = 0.046 and P = 0.027, respectively). SPARC rs7719521 showed a significant association with Nottingham Prognostic Index (NPI) (P = 0.032). The present study revealed that SPARC rs3210714 and rs7719521 polymorphisms are associated with breast cancer risk and its prognosis. Therefore, these SNPs may be useful in predicting the increased risk of breast cancer.
Collapse
Affiliation(s)
- Sultan Bawazeer
- Umm Al-Qura University, Mecca, Saudi Arabia.,Asklepios Hospital, Hamburg University, Hamburg, Germany
| | - Dina Sabry
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt.
| | - Hala M Elhanbuli
- Department of Pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | | | - Marwa N Abdelhafez
- Department of Medical Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
10
|
Zhao P, Wang Y, Wu A, Rao Y, Huang Y. Roles of Albumin-Binding Proteins in Cancer Progression and Biomimetic Targeted Drug Delivery. Chembiochem 2018; 19:1796-1805. [PMID: 29920893 DOI: 10.1002/cbic.201800201] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Nutrient transporters have attracted significant attention for their promising application in biomimetic delivery. Due to the active consumption of nutrients, cancer cells generally overexpress nutrient transporters to meet their increased need for energy and materials. For example, albumin-binding proteins (ABPs) are highly overexpressed in malignant cells, stromal cells, and tumor vessel endothelial cells responsible for albumin uptake. ABP (e.g., SPARC) is a promising target for tumor-specific drug delivery, and albumin has been widely used as a biomimetic delivery carrier. Apart from the transportation function, ABPs are closely associated with neoplasia, invasion, and metastasis. Herein, a summary of the roles of ABP in cancer progression and the application of albumin-based biomimetic tumor-targeted delivery through the ABP pathway is presented.
Collapse
Affiliation(s)
- Pengfei Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,Zhejiang Academy of Medical Science, 182 Tianmushan Road, Hangzhou, 310013, P.R. China
| | - Yonghui Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Aihua Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China
| | - Yuefeng Rao
- The First Affiliated Hospital of the College of Medicine, Zhejiang University, Hangzhou, 310003, P.R. China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, P.R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
11
|
Qu X, Gao D, Ren Q, Jiang X, Bai J, Sheng L. miR-211 inhibits proliferation, invasion and migration of cervical cancer via targeting SPARC. Oncol Lett 2018; 16:853-860. [PMID: 29963155 PMCID: PMC6019960 DOI: 10.3892/ol.2018.8735] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/11/2018] [Indexed: 12/15/2022] Open
Abstract
Cervical cancer remains one of the most frequent gynecological malignancies among females around the world. Therefore, fully understanding the molecular mechanisms underlying the progression of cervical cancer may be critical for the development of effective therapeutic strategies against cervical cancer. The object was to evaluate the potential effect of miR-211 and verify its influence on the function of secreted protein acidic and rich in cysteine (SPARC) in cervical cancer. It was demonstrated that miR-211 was downregulated in cervical cancer cell lines (HeLa and C33A) and cervical cancer specimens, while SPARC expression level was higher in tumor tissues. We also revealed miR-211 upregulated expression could inhibit cells proliferation, migration and invasion in vivo. SPARC was confirmed as a direct and functional target of miR-211 and the inverse relationship between them was also observed. The results of the present study suggest that miR-211 reduced cancer growth, migration and invasion, and suppresses the SPARC expression in cervical cancer. This newly identified miR-211 may provide further insight into the progression and offers a promising target for cervical cancer therapy.
Collapse
Affiliation(s)
- Xuqin Qu
- Reproductive Center, Yantaishan Hospital, Yantai, Shandong 264001, P.R. China
| | - Dezhen Gao
- Department of Blood Transfusion, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| | - Qingxia Ren
- Clinical Laboratory, People's Hospital of Rizhao, Rizhao, Shandong 276826, P.R. China
| | - Xiufang Jiang
- Department of Obstetrics, People's Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Jianhua Bai
- Department of Obstetrics, People's Hospital of Zhangqiu District, Jinan, Shandong 250200, P.R. China
| | - Li Sheng
- Clinical Laboratory, Yuhuangding Hospital, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
12
|
The molecular mechanism of anticancer action of novel octahydropyrazino[2,1-a:5,4-a']diisoquinoline derivatives in human gastric cancer cells. Invest New Drugs 2018; 36:970-984. [PMID: 29549610 PMCID: PMC6244973 DOI: 10.1007/s10637-018-0584-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/01/2018] [Indexed: 02/08/2023]
Abstract
Objective The aim of the current study was to examine the anticancer activity and the detailed mechanism of novel diisoquinoline derivatives in human gastric cancer cells (AGS). Methods The viability of AGS cells was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Cell cycle analysis and apoptosis assay were performed by standard flow cytometric method. Confocal microscopy bioimaging was used to demonstrate the expression of pivotal proteins engaged in apoptosis (caspase-8, caspase-3, p53) and cell signaling (AKT, ERK1/2). Results All compounds decreased the number of viable cells in a dose-dependent manner after 24 and 48 h of incubation, although compound 2 was a more cytotoxic agent, with IC50 values of 21 ± 2 and 6 ± 2 μM, compared to 80 ± 2 and 45 ± 2 μM for etoposide. The cytotoxic and antiproliferative effects of novel compounds were associated with the induction of apoptosis. The highest percentage of early and late apoptotic cells was observed after 48 h of incubation with compound 2 (89.9%). The value was higher compared to compound 1 (20.4%) and etoposide (24.1%). The novel diisoquinoline derivatives decreased the expression of AKT and ERK1/2. Their mechanism was associated with p53-mediated apoptosis, accumulation of cells in the G2/M phase of cell cycle and inhibition of topoisomerase II. Conclusion These data strongly support compound 2 as a promising molecule for treatment of gastric cancer.
Collapse
|
13
|
Abstract
Dysregulation of microRNAs (miRNAs/miRs) is frequently associated with cancer progression. Altered expression of miR-211 has been observed in various types of human cancer; however, its expression and role in prostate cancer (PCa) remains unknown. In the present study, the expression of miR-211 in PCa cell lines and tissues was measured by reverse transcription-quantitative PCR (qPCR), revealing that miR-211 was downregulated in PCa cell lines and tissues. Further analysis revealed that low miR-211 was associated with the tumor stage and Gleason score. With the assistance of miR-211 mimics and inhibitor, it was also revealed that the overexpression of miR-211 could inhibit PCa cell proliferation in vitro. Conversely, downregulated miR-211 expression promotes PCa cell proliferation. In addition, the secreted protein acidic and rich in cysteine (SPARC) was identified as a target of miR-211 in the PCa cell lines, and SPARC expression was inversely associated with miR-211. In conclusion, it was demonstrated that the miR-211 expression was downregulated in PCa cell lines and tissues. Additionally, miR-211 could inhibit PCa cell proliferation partially by downregulating SPARC. Therefore, miR-211 may be a potential therapeutic target for PCa treatment in the future.
Collapse
Affiliation(s)
- Peng Hao
- Department of Urology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Bo Kang
- Central Sterile Supply Department, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guoqing Yao
- Department of Surgery 1, The 224th Hospital of Chinese People's Liberation Army, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenqi Hao
- Department of Clinical Medicine, School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feihong Ma
- Department of Interventional Radiology, First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| |
Collapse
|
14
|
Shin J, Shim HG, Hwang T, Kim H, Kang SH, Dho YS, Park SH, Kim SJ, Park CK. Restoration of miR-29b exerts anti-cancer effects on glioblastoma. Cancer Cell Int 2017; 17:104. [PMID: 29176935 PMCID: PMC5693545 DOI: 10.1186/s12935-017-0476-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is known as one of the most fatal forms of cancer. MicroRNAs have been widely implicated in the regulation of mammalian development and pathogenesis. The brain-enriched miR-29 subfamilies are known to be exclusively expressed in the developing brain, and they are aberrantly down-regulated in GBM. This study aims to elucidate the role of miR-29b in GBM development and the feasibility of therapeutic targeting using conjugated nanoparticles. Methods After confirmation of miR-29b expression levels in GBM tissues by analysis of open source data, the anticancer effect of miR-29b was tested by the introduction of syn-hsa-miR-29b-3p in the A172 GBM cell line. In vitro studies of cell viability and apoptosis and ex vivo study using GBM tissue slice cultures from 3 patients and nanoparticle delivery of miR-29b were performed. Results We discovered an increase in apoptotic cell populations with the introduction of miR-29b in the GBM cell line. An established human-derived GBM tissue slice culture system confirmed the anticancer effect of miR-29b-conjugated nanoparticles. Using PCR array, we found that exogenous miR-29b inhibits the expression of COL1A2, COL3A1, COL4A1, ELN, ITGA11, MMP24, and SPARC, which mediates an anticancer effect. Conclusions miR-29b may serve as a putative therapeutic molecule when its expression is restored using a nanoparticle delivery system in GBM.
Collapse
Affiliation(s)
- Jaekyung Shin
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Hyun Geun Shim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Taeyoung Hwang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Hyungsin Kim
- Department of Neurosurgery, Korea University College of Medicine, Seoul, South Korea
| | - Shin-Hyuk Kang
- Department of Neurosurgery, Korea University College of Medicine, Seoul, South Korea
| | - Yun-Sik Dho
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Chul-Kee Park
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|
15
|
Aseer KR, Silvester AJ, Kumar A, Choi MS, Yun JW. SPARC paucity alleviates superoxide-mediated oxidative stress, apoptosis, and autophagy in diabetogenic hepatocytes. Free Radic Biol Med 2017; 108:874-895. [PMID: 28499910 DOI: 10.1016/j.freeradbiomed.2017.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 05/05/2017] [Accepted: 05/08/2017] [Indexed: 12/14/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is known to play a previously unappreciated role in diabetes, but its precise mechanism in liver/hepatocyte pathology remains unknown. Inhibition of SPARC is critical in resolving candidate pathogenic events such as production of reactive oxygen species (ROS), which are broadly considered for their roles in diabetes, and is capable of protecting functional hepatocytes. Here, we provide in vitro and in vivo evidence demonstrating pathological correlations between SPARC and streptozotocin (STZ)-induced diabetic rat livers as well as cultured hepatocytes induced by diabetogenic stimuli. Under these conditions, transient SPARC silencing was carried out to investigate the role of SPARC in the pathogenesis of pro-diabetic hepatocyte damage and dysfunction. The constitutive expression of SPARC in hepatocytes was up-regulated under a diabetic environment. In addition, Nox4-dependent superoxide generation contributed to increased expression of SPARC, and this was inhibited by tiron and pharmacological or genetic inactivation of Nox4-containing NADPH oxidase. Remarkably, SPARC deficiency inhibited diabetic stimuli-induced elevation of superoxide production and resolved salient features of hepatocyte damage such as impaired cytoprotection, inflammation, apoptosis, and autophagy. At the same time, links between SPARC, integrin-β1, Nox4-derived superoxide, and JNK signaling provide a basis for these phenotypes. Taken together with the observations that SPARC deficiency had protective effects on hepatocytes via a favorable inhibition profile, functional knowledge of SPARC may offer a unique therapeutic approach to preserve hepatocellular fate decisions in diabetes.
Collapse
Affiliation(s)
- Kanikkai Raja Aseer
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | | | - Anuj Kumar
- Bioinformatics and Documentation Laboratory, Uttarakhand Council for Biotechnology, Dehradun 248007, India
| | - Myung-Sook Choi
- Department of Food Science and Nutrition & Center for Food and Nutritional Genomics Research, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea.
| |
Collapse
|
16
|
Deng B, Qu L, Li J, Fang J, Yang S, Cao Z, Mei Z, Sun X. MiRNA-211 suppresses cell proliferation, migration and invasion by targeting SPARC in human hepatocellular carcinoma. Sci Rep 2016; 6:26679. [PMID: 27230656 PMCID: PMC4882485 DOI: 10.1038/srep26679] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that the expression of miR-211 was downregulated in hepatocellular carcinoma (HCC). However, the molecular function and mechanism of miR-211 in HCC growth and invasion are largely unclear. We found that miR-211 is downregulated in HCC tissues and cell lines, respectively. Further results showed that low miR-211 associated with TNM stage, vein invasion status, and poor prognosis. Ectopic expression of miR-211 effectively suppressed HCC cell proliferation, migration and invasion both in vitro and in vivo. We identified SPARC as a bona fide target of miR-211, and overexpression of miR-211 decreased the mRNA and protein expression of SPARC. Finally, we confirmed that the overexpression of SPARC in miR-211-expressing HCC cells can partially restore the inhibitory effect of miR-211. Taken together, our results demonstrated that loss of miR-211 expression and thus uncontrolled SPARC overexpression might drive progression of HCC, which may provide a novel therapeutic strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Biao Deng
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Lei Qu
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Jinfang Li
- Department of Neurology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jiaqing Fang
- Department of Gastroenterology, Tianyou Hospital, TongJi University, 500 Zhennan Road, Shanghai, 200331, China
| | - Shouwen Yang
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Zhongwei Cao
- Department of Gastroenterology, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xing Sun
- Department of General Surgery, Shanghai First People's Hospital, Shanghai Jiao Tong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
17
|
The secreted protein acidic and rich in cysteine is a critical mediator of cell death program induced by WIN/TRAIL combined treatment in osteosarcoma cells. Int J Oncol 2015; 48:1039-44. [PMID: 26698404 DOI: 10.3892/ijo.2015.3307] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/05/2015] [Indexed: 11/05/2022] Open
Abstract
Secreted protein acidic and rich in cysteine (SPARC) is a multi-functional protein which modulates cell-cell and cell-matrix interactions. In cancer cells, SPARC behaves as a tumor promoter in a number of tumors, but it can also act as a tumor suppressor factor. Our previous results showed that the synthetic cannabinoid WIN55,212-2 (WIN), a potent cannabinoid receptor agonist, is able to sensitize osteosarcoma MG63 cells to TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis which is accompanied with endoplasmic reticulum (ER)-stress induction and the increase in autophagic markers. In the present investigation, we studied the role of SPARC in WIN/TRAIL-induced apoptosis demonstrating that WIN increased the level of SPARC protein and mRNA in a time-dependent manner. This event was functional to WIN/TRAIL-dependent apoptosis as demonstrated by RNA interfering analysis which indicated that SPARC-silenced cells were less sensitive to cytotoxic effects induced by the combined treatment. Our experiments also demonstrate that SPARC interacts with caspase-8 thus probably favoring its translocation to plasma membrane and the activation of extrinsic apoptotic pathway. In conclusion, to the best of our knowledge, our results are the first to show that WIN-dependent increase in the level of SPARC plays a critical role in sensitizing osteosarcoma cells to TRAIL action.
Collapse
|
18
|
Salvatierra E, Alvarez MJ, Leishman CC, Rivas Baquero E, Lutzky VP, Chuluyan HE, Podhajcer OL. SPARC Controls Melanoma Cell Plasticity through Rac1. PLoS One 2015; 10:e0134714. [PMID: 26248315 PMCID: PMC4527691 DOI: 10.1371/journal.pone.0134714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
Cell transition to a more aggressive mesenchymal-like phenotype is a hallmark of cancer progression that involves different steps and requires tightly regulated cell plasticity. SPARC (Secreted Protein Acidic and Rich in Cysteine) is a matricellular protein that promotes this transition in various malignant cell types, including melanoma cells. We found that suppression of SPARC expression in human melanoma cells compromised cell migration, adhesion, cytoskeleton structure, and cell size. These changes involved the Akt/mTOR pathway. Re-expression of SPARC or protein addition restored all the cell features. Suppression of SPARC expression was associated with increased Rac1-GTP levels and its membrane localization. Expression of the dominant negative mutant of Rac1 counteracted almost all the changes observed in SPARC-deficient cells. Overall, these data suggest that most of the SPARC-mediated effects occurred mainly through the blockade of Rac1 activity.
Collapse
Affiliation(s)
- Edgardo Salvatierra
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-CONICET, Buenos Aires, C1405, Argentina
| | - Mariano J. Alvarez
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-CONICET, Buenos Aires, C1405, Argentina
| | - Claudia C. Leishman
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-CONICET, Buenos Aires, C1405, Argentina
| | - Elvia Rivas Baquero
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-CONICET, Buenos Aires, C1405, Argentina
| | - Viviana P. Lutzky
- Laboratory of Immunomodulators, School of Medicine, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-University of Buenos Aires, Buenos Aires, Argentina
| | - H. Eduardo Chuluyan
- Laboratory of Immunomodulators, School of Medicine, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-University of Buenos Aires, Buenos Aires, Argentina
| | - Osvaldo L. Podhajcer
- Laboratory of Molecular and Cellular Therapy, Instituto Leloir-CONICET, Buenos Aires, C1405, Argentina
- * E-mail:
| |
Collapse
|
19
|
Thomas SL, Schultz CR, Mouzon E, Golembieski WA, El Naili R, Radakrishnan A, Lemke N, Poisson LM, Gutiérrez JA, Cottingham S, Rempel SA. Loss of Sparc in p53-null Astrocytes Promotes Macrophage Activation and Phagocytosis Resulting in Decreased Tumor Size and Tumor Cell Survival. Brain Pathol 2015; 25:391-400. [PMID: 24862407 PMCID: PMC4520390 DOI: 10.1111/bpa.12161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/19/2014] [Indexed: 12/26/2022] Open
Abstract
Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. In vitro, the loss of Sparc in p53‐null astrocytes resulted in an increase in cell proliferation, but a loss of tumorigenicity. At 7 days after intracranial implantation, Sparc‐null tumors had decreased tumor cell survival, proliferation and reduced tumor size. The loss of Sparc promoted microglia/macrophage activation and phagocytosis of tumor cells. Our results indicate that the loss of p53 by deletion/mutation in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance.
Collapse
Affiliation(s)
- Stacey L Thomas
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Chad R Schultz
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Ezekiell Mouzon
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - William A Golembieski
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| | - Reima El Naili
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Archanna Radakrishnan
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Nancy Lemke
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI
| | - Laila M Poisson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI
| | | | - Sandra Cottingham
- Department of Neuropathology and Clinical Neurosciences, Spectrum Health System, Grand Rapids, MI
| | - Sandra A Rempel
- Department of Neurosurgery, Barbara Jane Levy Laboratory of Molecular Neuro-Oncology and Hermelin Brain Tumor Center, Henry Ford Hospital, Detroit, MI.,Department of Clinical Neurosciences, Laboratory of Molecular Neuro-Oncology, Division of Neurosurgery, Spectrum Health System, Grand Rapids, MI
| |
Collapse
|
20
|
Neuzillet C, Tijeras-Raballand A, Cros J, Faivre S, Hammel P, Raymond E. Stromal expression of SPARC in pancreatic adenocarcinoma. Cancer Metastasis Rev 2014; 32:585-602. [PMID: 23690170 DOI: 10.1007/s10555-013-9439-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) stands as the poorest prognostic tumor of the digestive tract, with a 5-year survival rate of less than 5%. Therapeutic options for unresectable PDAC are extremely limited and there is a pressing need for expanded therapeutic approaches to improve current options available with gemcitabine-based regimens. With PDAC displaying one of the most prominent desmoplastic stromal reactions of all carcinomas, recent research has focused on the microenvironment surrounding PDAC cells. Secreted protein acid and rich in cysteine (SPARC), which is overexpressed in PDAC, may display tumor suppressor functions in several cancers (e.g., in colorectal, ovarian, prostate cancers, and acute myelogenous leukemia) but also appears to be overexpressed in other tumor types (e.g., breast cancer, melanoma, and glioblastoma). The apparent contradictory functions of SPARC may yield inhibition of angiogenesis via inhibition of vascular endothelial growth factor, while promoting epithelial-to-mesenchymal transition and invasion through matrix metalloprotease expression. This feature is of particular interest in PDAC where SPARC overexpression in the stroma stands along with inhibition of angiogenesis and promotion of cancer cell invasion and metastasis. Several therapeutic strategies to deplete stromal tissue have been developed. In this review, we focused on key preclinical and clinical data describing the role of SPARC in PDAC biology, the properties, and mechanisms of delivery of drugs that interact with SPARC and discuss the proof-of-concept clinical trials using nab-paclitaxel.
Collapse
Affiliation(s)
- Cindy Neuzillet
- Department of Medical Oncology (INSERM U728-PRES Paris 7 Diderot), Beaujon University Hospital, Assistance Publique-Hôpitaux de Paris, 100 boulevard du Général Leclerc, 92110, Clichy-La-Garenne, France
| | | | | | | | | | | |
Collapse
|
21
|
Mateo F, Meca-Cortés O, Celià-Terrassa T, Fernández Y, Abasolo I, Sánchez-Cid L, Bermudo R, Sagasta A, Rodríguez-Carunchio L, Pons M, Cánovas V, Marín-Aguilera M, Mengual L, Alcaraz A, Schwartz S, Mellado B, Aguilera KY, Brekken R, Fernández PL, Paciucci R, Thomson TM. SPARC mediates metastatic cooperation between CSC and non-CSC prostate cancer cell subpopulations. Mol Cancer 2014; 13:237. [PMID: 25331979 PMCID: PMC4210604 DOI: 10.1186/1476-4598-13-237] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 10/08/2014] [Indexed: 12/29/2022] Open
Abstract
Background Tumor cell subpopulations can either compete with each other for nutrients and physical space within the tumor niche, or co-operate for enhanced survival, or replicative or metastatic capacities. Recently, we have described co-operative interactions between two clonal subpopulations derived from the PC-3 prostate cancer cell line, in which the invasiveness of a cancer stem cell (CSC)-enriched subpopulation (PC-3M, or M) is enhanced by a non-CSC subpopulation (PC-3S, or S), resulting in their accelerated metastatic dissemination. Methods M and S secretomes were compared by SILAC (Stable Isotope Labeling by Aminoacids in Cell Culture). Invasive potential in vitro of M cells was analyzed by Transwell-Matrigel assays. M cells were co-injected with S cells in the dorsal prostate of immunodeficient mice and monitored by bioluminescence for tumor growth and metastatic dissemination. SPARC levels were determined by immunohistochemistry and real-time RT-PCR in tumors and by ELISA in plasma from patients with metastatic or non-metastatic prostate cancer. Results Comparative secretome analysis yielded 213 proteins differentially secreted between M and S cells. Of these, the protein most abundantly secreted in S relative to M cells was SPARC. Immunodepletion of SPARC inhibited the enhanced invasiveness of M induced by S conditioned medium. Knock down of SPARC in S cells abrogated the capacity of its conditioned medium to enhance the in vitro invasiveness of M cells and compromised their potential to boost the metastatic behavior of M cells in vivo. In most primary human prostate cancer samples, SPARC was expressed in the epithelial tumoral compartment of metastatic cases. Conclusions The matricellular protein SPARC, secreted by a prostate cancer clonal tumor cell subpopulation displaying non-CSC properties, is a critical mediator of paracrine effects exerted on a distinct tumor cell subpopulation enriched in CSC. This paracrine interaction results in an enhanced metastatic behavior of the CSC-enriched tumor subpopulation. SPARC is expressed in the neoplastic cells of primary prostate cancer samples from metastatic cases, and could thus constitute a tumor progression biomarker and a therapeutic target in advanced prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-237) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Timothy M Thomson
- Department of Cell Biology, Molecular Biology Institute of Barcelona, National Research Council (CSIC), c, Baldiri Reixac 15-21, Barcelona 08028, Spain.
| |
Collapse
|
22
|
Ryall CL, Viloria K, Lhaf F, Walker AJ, King A, Jones P, Mackintosh D, McNeice R, Kocher H, Flodstrom-Tullberg M, Edling C, Hill NJ. Novel role for matricellular proteins in the regulation of islet β cell survival: the effect of SPARC on survival, proliferation, and signaling. J Biol Chem 2014; 289:30614-30624. [PMID: 25204658 DOI: 10.1074/jbc.m114.573980] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the mechanisms regulating islet growth and survival is critical for developing novel approaches to increasing or sustaining β cell mass in both type 1 and type 2 diabetes patients. Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that is important for the regulation of cell growth and adhesion. Increased SPARC can be detected in the serum of type 2 diabetes patients. The aim of this study was to investigate the role of SPARC in the regulation of β cell growth and survival. We show using immunohistochemistry that SPARC is expressed by stromal cells within islets and can be detected in primary mouse islets by Western blot. SPARC is secreted at high levels by pancreatic stellate cells and is regulated by metabolic parameters in these cells, but SPARC expression was not detectable in β cells. In islets, SPARC expression is highest in young mice, and is also elevated in the islets of non-obese diabetic (NOD) mice compared with controls. Purified SPARC inhibits growth factor-induced signaling in both INS-1 β cells and primary mouse islets, and inhibits IGF-1-induced proliferation of INS-1 β cells. Similarly, exogenous SPARC prevents IGF-1-induced survival of primary mouse islet cells. This study identifies the stromal-derived matricellular protein SPARC as a novel regulator of islet survival and β cell growth.
Collapse
Affiliation(s)
- Claire L Ryall
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Katrina Viloria
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Fadel Lhaf
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Anthony J Walker
- School of Life Sciences, and Kingston University, Kingston upon Thames, United Kingdom
| | - Aileen King
- Diabetes Research Group, Division of Reproduction & Endocrinology, King's College London, London, United Kingdom
| | - Peter Jones
- Diabetes Research Group, Division of Reproduction & Endocrinology, King's College London, London, United Kingdom
| | - David Mackintosh
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom
| | - Rosemary McNeice
- School of Mathematics, Kingston University, Kingston upon Thames, United Kingdom
| | - Hemant Kocher
- Barts Cancer Institute, and Queen Mary University of London, London, United Kingdom
| | - Malin Flodstrom-Tullberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Charlotte Edling
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom, and
| | - Natasha J Hill
- Diabetes and Cardiovascular Research Group, Kingston University, Kingston upon Thames, United Kingdom.
| |
Collapse
|
23
|
Ribeiro N, Sousa SR, Brekken RA, Monteiro FJ. Role of SPARC in bone remodeling and cancer-related bone metastasis. J Cell Biochem 2014; 115:17-26. [PMID: 24038053 DOI: 10.1002/jcb.24649] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 08/13/2013] [Indexed: 12/23/2022]
Abstract
There is a growing socioeconomic recognition that clinical bone diseases such as bone infections, bone tumors and osteoporotic bone loss mainly associated with ageing, are major issues in today's society. SPARC (secreted protein, acidic and rich in cysteine), a matricellular glycoprotein, may be a promising therapeutic target for preventing or treating bone-related diseases. In fact, SPARC is associated with tissue remodeling, repair, development, cell turnover, bone mineralization and may also participate in growth and progression of tumors, namely cancer-related bone metastasis. Yet, the function of SPARC in such biological processes is poorly understood and controversial. The main objective of this work is to review the current knowledge related to the activity of SPARC in bone remodeling, tumorigenesis, and bone metastasis. Progress in understanding SPARC biology may provide novel strategies for bone regeneration and the development of anti-angiogenic, anti-proliferative, or counter-adhesive treatments specifically against bone metastasis.
Collapse
Affiliation(s)
- Nilza Ribeiro
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre, 823, 4150-180, Porto, Portugal; Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia (FEUP), Universidade do Porto, Rua Roberto Frias, s/n, 4200-465, Porto, Portugal
| | | | | | | |
Collapse
|
24
|
Zhao H, Iwasaki M, Yang J, Savage S, Ma D. Hypoxia-inducible factor-1: A possible link between inhalational anesthetics and tumor progression? ACTA ACUST UNITED AC 2014; 52:70-6. [DOI: 10.1016/j.aat.2014.05.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/07/2014] [Indexed: 01/10/2023]
|
25
|
Nagaraju GP, Dontula R, El-Rayes BF, Lakka SS. Molecular mechanisms underlying the divergent roles of SPARC in human carcinogenesis. Carcinogenesis 2014; 35:967-73. [PMID: 24675529 DOI: 10.1093/carcin/bgu072] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Communication between the cell and its surrounding environment, consisting of proteinaceous (non-living material) and extracellular matrix (ECM), is important for biophysiological and chemical signaling. This signaling results in a range of cellular activities, including cell division, adhesion, differentiation, invasion, migration and angiogenesis. The ECM non-structural secretory glycoprotein called secreted protein, acidic and rich in cysteine (SPARC), plays a significant role in altering cancer cell activity and the tumor's microenvironment (TME). However, the role of SPARC in cancer research has been the subject of controversy. This review mainly focuses on recent advances in understanding the contradictory nature of SPARC in relation to ECM assembly, cancer cell proliferation, adhesion, migration, apoptosis and tumor growth.
Collapse
Affiliation(s)
- Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA and
| | | | | | | |
Collapse
|
26
|
Alachkar H, Santhanam R, Maharry K, Metzeler KH, Huang X, Kohlschmidt J, Mendler JH, Benito JM, Hickey C, Neviani P, Dorrance AM, Anghelina M, Khalife J, Tarighat SS, Volinia S, Whitman SP, Paschka P, Hoellerbauer P, Wu YZ, Han L, Bolon BN, Blum W, Mrózek K, Carroll AJ, Perrotti D, Andreeff M, Caligiuri MA, Konopleva M, Garzon R, Bloomfield CD, Marcucci G. SPARC promotes leukemic cell growth and predicts acute myeloid leukemia outcome. J Clin Invest 2014; 124:1512-24. [PMID: 24590286 DOI: 10.1172/jci70921] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022] Open
Abstract
Aberrant expression of the secreted protein, acidic, cysteine-rich (osteonectin) (SPARC) gene, which encodes a matricellular protein that participates in normal tissue remodeling, is associated with a variety of diseases including cancer, but the contribution of SPARC to malignant growth remains controversial. We previously reported that SPARC was among the most upregulated genes in cytogenetically normal acute myeloid leukemia (CN-AML) patients with gene-expression profiles predictive of unfavorable outcome, such as mutations in isocitrate dehydrogenase 2 (IDH2-R172) and overexpression of the oncogenes brain and acute leukemia, cytoplasmic (BAALC) and v-ets erythroblastosis virus E26 oncogene homolog (ERG). In contrast, SPARC was downregulated in CN-AML patients harboring mutations in nucleophosmin (NPM1) that are associated with favorable prognosis. Based on these observations, we hypothesized that SPARC expression is clinically relevant in AML. Here, we found that SPARC overexpression is associated with adverse outcome in CN-AML patients and promotes aggressive leukemia growth in murine models of AML. In leukemia cells, SPARC expression was mediated by the SP1/NF-κB transactivation complex. Furthermore, secreted SPARC activated the integrin-linked kinase/AKT (ILK/AKT) pathway, likely via integrin interaction, and subsequent β-catenin signaling, which is involved in leukemia cell self-renewal. Pharmacologic inhibition of the SP1/NF-κB complex resulted in SPARC downregulation and leukemia growth inhibition. Together, our data indicate that evaluation of SPARC expression has prognosticative value and SPARC is a potential therapeutic target for AML.
Collapse
|
27
|
Sugitani S, Tsuruma K, Ohno Y, Kuse Y, Yamauchi M, Egashira Y, Yoshimura S, Shimazawa M, Iwama T, Hara H. The potential neuroprotective effect of human adipose stem cells conditioned medium against light-induced retinal damage. Exp Eye Res 2013; 116:254-64. [PMID: 24076412 DOI: 10.1016/j.exer.2013.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/16/2022]
Abstract
Human adipose-derived stem cells (hASCs) are present in adult adipose tissue and have been reported to secrete various factors that have neuroprotective effects. In the present study, we examined whether hASC-conditioned medium (hASC-CM) was effective against experimental degenerative retinal disease. Mature adipocytes (MAs) and hASCs were isolated from human subcutaneous adipose tissue. The isolated hASCs were identified based on their capacity for bone and neural differentiation. The effects of hASC-CM against tunicamycin-, H2O2-, and light-induced retinal photoreceptor damage were evaluated in vitro by measuring cell death. Moreover, we identified various factors present in hASC-CM using antibody arrays. Retinal damage induced in mice by exposure to white light was studied in vivo, and photoreceptor damage was evaluated according to the thickness of the outer nuclear layer and electroretinography results. In addition, the effect of hASC-CM on Akt phosphorylation at Ser473 was confirmed by western blotting. Finally, the effects of the secreted proteins identified in the hASC-CM on light-induced damage were evaluated in vivo. Isolated hASCs differentiated to osteocytes and neurons. hASC-CM protected against tunicamycin-, H2O2-, and light-induced cell death. In addition, hASC-CM inhibited photoreceptor degeneration and retinal dysfunction after exposure to light. Several proteins secreted by hASCs, such as the tissue inhibitor of metalloproteinase-1 (TIMP-1) and the secreted protein acidic and rich in cysteine (SPARC), protected against light-induced damage in vitro and in vivo. The results of the present study showed that hASC-CM has neuroprotective effects against light-induced retinal damage and suggest that hASCs have a therapeutic potential in retinal degenerative diseases via their secreted proteins, without requiring transplantation.
Collapse
Affiliation(s)
- Sou Sugitani
- Department of Biofunctional Evaluation, Molecular Pharmacology, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
An XJ, Li YQ, Qu XY, Zhang J, Zhang LY, Wang M, Zhu L, Chen SY, Chen HX, Tu YT, Zhou YW, Huang CZ. Silencing endothelin-3 expression attenuates the malignant behaviors of human melanoma cells by regulating SPARC levels. ACTA ACUST UNITED AC 2013; 33:581-586. [PMID: 23904381 DOI: 10.1007/s11596-013-1162-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 04/26/2013] [Indexed: 11/29/2022]
Abstract
Endothelin-3 (ET-3) is aberrantly expressed in both metastatic melanoma tissues and cultured melanoma cells. Our previous work showed that ET-3 could promote survival of metastatic melanoma cells via its altered expression. In this study, we investigated the mechanisms responsible for these gene-induced phenotypes in melanoma cells. An ET-3 gene sequence-specific shRNA vector pLVTHM-ET3-RNAi was constructed and transfected into human malignant melanoma cells A375 and MMRU, and the resultant molecular events and cellular changes were examined. As compared with the empty-vector group, cell proliferation was slowed down, and the growth inhibition rates were 38.9% in A375 cells and 38.4% in MMRU cells after transfection. In addition, cell invasion capability was also inhibited, with a reduction of 62.2% in A375 cells and 54.3% in MMRU cells. The percentage of apoptotic cells was found to increase. Meanwhile, in both cell lines, secreted protein acidic and rich in cysteine (SPARC) levels were down-regulated together with inhibition of its upstream signaling molecule, NF-κB. Thus, the current results suggested that down-regulated expression of ET3 attenuates the malignant behaviors of human melanoma cells partially by decreasing the expression of SPARC and NF-κB.
Collapse
Affiliation(s)
- Xiang-Jie An
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan-Qiu Li
- Department of Dermatology, Zhongshan Hospital, Wuhan, 430033, China
| | - Xiao-Ying Qu
- Department of Dermatology, No.457 Airforce Hospital, Wuhan, 430012, China
| | - Jing Zhang
- Department of Dermatology, Wuhan General Hospital of Guangzhou Command, Wuhan, 430070, China
| | - Ling-Yun Zhang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Wang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zhu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-Yuan Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Xiang Chen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ya-Ting Tu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu-Wen Zhou
- Department of Dermatology and Skin Science, University of British Columbia, Vancouver, V5Z 4E8, Canada.
| | - Chang-Zheng Huang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
29
|
Alam R, Schultz CR, Golembieski WA, Poisson LM, Rempel SA. PTEN suppresses SPARC-induced pMAPKAPK2 and inhibits SPARC-induced Ser78 HSP27 phosphorylation in glioma. Neuro Oncol 2013; 15:451-61. [PMID: 23382286 DOI: 10.1093/neuonc/nos326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Secreted protein acidic and rich in cysteine (SPARC) is overexpressed in astrocytomas (World Health Organization grades II-IV). We previously demonstrated that SPARC promotes glioma migration and invasion-in part, by activating the P38 mitogen-activated protein kinase (MAPK)-heat shock protein (HSP)27 signaling pathway. The commonly lost tumor suppressor phosphatase and tensin homolog (PTEN) suppresses SPARC-induced migration, which is accompanied by suppression of Shc-Ras-Raf-MEK-ERK1/2 and Akt signaling. As PTEN completely suppresses SPARC-induced migration, we proposed that PTEN must also interfere with SPARC-induced HSP27 signaling. Therefore, this study determined the effects of PTEN expression on SPARC-induced expression and phosphorylation of HSP27. METHODS Control and SPARC-expressing clones transfected with control- or PTEN-expression plasmids were plated on fibronectin-coated tissue culture plates for 3, 6, 24, and 48 h and then lysed. Equal amounts of protein were subjected to Western blot and densitometric analyses. RESULTS The results show that SPARC enhances phosphorylated (p)P38 MAPK, phosphorylated MAPK-activated protein kinase 2 (pMAPKAPK2), and serine (Ser)78 HSP27 phosphorylation relative to total HSP27. PTEN suppresses pAkt and pMAPKAPK2, suggesting that PTEN effects are downstream of pP38 MAPK. PTEN suppressed SPARC-induced sustained phosphorylation at Ser78 HSP27. As the level of total HSP27 differed based on the presence of SPARC or PTEN, the ratios of phosphorylation-specific to total HSP27 were examined. The data demonstrate that SPARC-induced phosphorylation at Ser78 remains elevated despite increasing levels of total HSP27. In contrast, PTEN inhibits SPARC-induced increases in Ser78 HSP27 phosphorylation relative to total HSP27. CONCLUSION These data describe a novel mechanism whereby PTEN inhibits SPARC-induced migration through suppression and differential regulation of pAkt and the P38 MAPK-MAPKAPK2-HSP27 signaling pathway.
Collapse
Affiliation(s)
- Ridwan Alam
- Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Hermelin Brain Tumor Center, Department of Neurosurgery, Education and Research Bldg., Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
| | | | | | | | | |
Collapse
|
30
|
Zhu XC, Dong QZ, Zhang XF, Deng B, Jia HL, Ye QH, Qin LX, Wu XZ. microRNA-29a suppresses cell proliferation by targeting SPARC in hepatocellular carcinoma. Int J Mol Med 2012; 30:1321-6. [PMID: 23023935 DOI: 10.3892/ijmm.2012.1140] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 07/25/2012] [Indexed: 01/29/2023] Open
Abstract
In the present study, we constructed a lentivirus vector encoding the miR-29a precursor and established two stably infected cell lines, PLC-29a and 97L-29a. The overexpression of miR-29a was confirmed by TaqMan RT-PCR and significantly suppressed the growth of the hepatocellular carcinoma cell lines MHCC-97L and PLC. Dual-luciferase reporter assays indicated that the SPARC mRNA 3'UTR was directly targeted by miR-29a since the mutated 3'UTR was not affected. Silencing SPARC expression by RNAi knockdown resulted in a similar effect as miR-29a overexpression on hepatocellular carcinoma (HCC) cell growth regulation. Anti-miR-29a oligonucleotides (AMOs) upregulated the levels of SPARC in the HCC cells. The phosphorylation of AKT/mTOR downstream of SPARC was inhibited in miR-29a-overexpressing HCC cells. We further examined and compared the expression levels of miR-29a in HCC tissues and the corresponding nearby non-cancerous liver tissues of 110 patients with HCC by qRT-PCR, and significantly lower expression of miR-29a was observed in the tissues affected by HCC. Our findings demonstrate that the expression of miR-29a is important in the regulation of the SPARC-AKT pathway and HCC growth.
Collapse
Affiliation(s)
- Xu-Chao Zhu
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai 200032, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Scheibe F, Klein O, Klose J, Priller J. Mesenchymal stromal cells rescue cortical neurons from apoptotic cell death in an in vitro model of cerebral ischemia. Cell Mol Neurobiol 2012; 32:567-76. [PMID: 22290155 DOI: 10.1007/s10571-012-9798-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Accepted: 01/06/2012] [Indexed: 01/01/2023]
Abstract
Cell therapy with mesenchymal stromal cells (MSCs) was found to protect neurons from damage after experimental stroke and is currently under investigation in clinical stroke trials. In order to elucidate the mechanisms of MSC-induced neuroprotection, we used the in vitro oxygen–glucose deprivation (OGD) model of cerebral ischemia. Co-culture of primary cortical neurons with MSCs in a transwell co-culture system for 48 h prior to OGD-reduced neuronal cell death by 30-35%. Similar protection from apoptosis was observed with MSC-conditioned media when added 48 h or 30 min prior to OGD, or even after OGD. Western blot analysis revealed increased phosphorylation of STAT3 and Akt in neuronal cultures after treatment with MSC-conditioned media. Inhibition of the PI3K/Akt pathway completely abolished the neuroprotective potential of MSC-conditioned media, suggesting that MSCs can improve neuronal survival by an Akt-dependent anti-apoptotic signaling cascade. Using mass spectrometry, we identified plasminogen activator inhibitor-1 as an active compound in MSC-conditioned media. Thus, paracrine factors secreted by MSCs protect neurons from apoptotic cell death in the OGD model of cerebral ischemia.
Collapse
Affiliation(s)
- Franziska Scheibe
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | |
Collapse
|
32
|
Winder T, Wilson PM, Yang D, Zhang W, Ning Y, Power DG, Bohanes P, Gerger A, Tang LH, Shah M, Lenz HJ. An individual coding polymorphism and the haplotype of the SPARC gene predict gastric cancer recurrence. THE PHARMACOGENOMICS JOURNAL 2012; 13:342-8. [PMID: 22491017 DOI: 10.1038/tpj.2012.11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 02/14/2012] [Accepted: 03/05/2012] [Indexed: 02/08/2023]
Abstract
The 5-year survival rate for gastric adenocarcinoma (GA) remains only 40% and biomarkers to identify patients at high risk of tumor recurrence are urgently needed. Secreted protein acidic and rich in cysteine (SPARC) is an extracellular matrix glycoprotein that mediates cell matrix interactions, and upregulation of SPARC can promote tumor progression and metastasis. This study investigated whether single-nucleotide polymorphisms (SNPs) in SPARC impact the prognosis of GA. Blood or formalin-fixed, paraffin-embedded tissues were obtained from 137 GA patients at the University of Southern California and Memorial Sloan-Kettering Cancer Center medical facilities. DNA was isolated and five SNPs in the SPARC 3'-untranslated region (UTR) were evaluated by DNA sequencing or PCR-restriction fragment length polymorphism. Associations between SNPs and time to tumor recurrence (TTR) were analyzed using Kaplan-Meier curves, log-rank tests, and likelihood-ratio test within logistic or Cox regression model as appropriate. Patients carrying at least one G allele of the SPARC rs1059829 polymorphism (GG, AG) showed a median TTR of 3.7 years compared with 2.1 years TTR for patients with AA (hazard ratio (HR) 0.57; P=0.033). In a multivariate analysis adjusted for T and N category as covariates and stratified by race, hospital and chemotherapy, patients with at least one SPARC rs1059829 G allele (GG, AG) remained significantly associated with superior TTR than patients with AA genotype (adjusted P=0.026). In addition, patients harboring the G-A-A haplotype had the highest risk of tumor recurrence (HR 1.892; adjusted P=0.016). Our findings suggest that SPARC 3'-UTR SNPs may be useful in predicting GA patients at increased risk of recurrence.
Collapse
Affiliation(s)
- T Winder
- Division of Medical Oncology, University of Southern California/Norris Comprehensive Cancer Center, Keck School of Medicine, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Schultz CR, Golembieski WA, King DA, Brown SL, Brodie C, Rempel SA. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival. Mol Cancer 2012; 11:20. [PMID: 22480225 PMCID: PMC3349587 DOI: 10.1186/1476-4598-11-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 04/05/2012] [Indexed: 12/18/2022] Open
Abstract
Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting pAKT. 4) Combined inhibition of HSP27 and pAKT is more effective than TMZ treatment alone. Conclusions We conclude that inhibition of HSP27 alone, or in combination with pAKT inhibitor IV, may be an effective therapeutic approach to inhibit SPARC-induced glioma cell invasion and survival in SPARC-positive/PTEN-wildtype and SPARC-positive/PTEN-null tumors, respectively.
Collapse
Affiliation(s)
- Chad R Schultz
- The Barbara Jane Levy Laboratory of Molecular Neuro-Oncology, Henry Ford Hospital, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
34
|
Roos WP, Kaina B. DNA damage-induced cell death: from specific DNA lesions to the DNA damage response and apoptosis. Cancer Lett 2012; 332:237-48. [PMID: 22261329 DOI: 10.1016/j.canlet.2012.01.007] [Citation(s) in RCA: 663] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/10/2012] [Indexed: 01/22/2023]
Abstract
DNA damaging agents are potent inducers of cell death triggered by apoptosis. Since these agents induce a plethora of different DNA lesions, it is firstly important to identify the specific lesions responsible for initiating apoptosis before the apoptotic executing pathways can be elucidated. Here, we describe specific DNA lesions that have been identified as apoptosis triggers, their repair and the signaling provoked by them. We discuss methylating agents such as temozolomide, ionizing radiation and cisplatin, all of them are important in cancer therapy. We show that the potentially lethal events for the cell are O(6)-methylguanine adducts that are converted by mismatch repair into DNA double-strand breaks (DSBs), non-repaired N-methylpurines and abasic sites as well as bulky adducts that block DNA replication leading to DSBs that are also directly induced following ionizing radiation. Transcriptional inhibition may also contribute to apoptosis. Cells are equipped with sensors that detect DNA damage and relay the signal via kinases to executors, who on their turn evoke a process that inhibits cell cycle progression and provokes DNA repair or, if this fails, activate the receptor and/or mitochondrial apoptotic cascade. The main DNA damage recognition factors MRN and the PI3 kinases ATM, ATR and DNA-PK, which phosphorylate a multitude of proteins and thus induce the DNA damage response (DDR), will be discussed as well as the downstream players p53, NF-κB, Akt and survivin. We review data and models describing the signaling from DNA damage to the apoptosis executing machinery and discuss the complex interplay between cell survival and death.
Collapse
Affiliation(s)
- Wynand P Roos
- Department of Toxicology, University of Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | | |
Collapse
|
35
|
Tsuruta T, Aihara Y, Kanno H, Funase M, Murayama T, Osawa M, Fujii H, Kubo O, Okada Y. Shared molecular targets in pediatric gliomas and ependymomas. Pediatr Blood Cancer 2011; 57:1117-23. [PMID: 21298772 DOI: 10.1002/pbc.23009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 12/08/2010] [Indexed: 11/11/2022]
Abstract
BACKGROUND Recent advances in multidisciplinary treatment approaches have improved the overall prognosis of pediatric brain tumors, but some patients remain refractory to treatment and do poorly. Several molecularly targeted therapies are under development for the treatment of brain tumors, and high-grade gliomas in adults are a particular area of study. PROCEDURE To better understand if these new therapies can be used in pediatric populations, we examined the expression of the following seven marker genes involved in signaling pathways targeted by new therapies: β-catenin, suppressor of fused (SUFU), erythroblastic leukemia viral oncogene homolog (ERBB) 2, platelet-derived growth factor receptorα (PDGFRα), proliferating cell nuclear antigen (PCNA), secreted protein acid and rich in cysteine (SPARC), and granulocyte colony-stimulating factor receptor (G-CSFR). Samples from 27 patients with the primitive neuroectodermal tumor (PNET)/medulloblastomas (MBs) (n = 8), ependymomas (n = 5), or gliomas (n = 14) were assessed by quantitative real-time PCR. [Correction made here after initial online publication]. We assigned an EXP score to compare across samples and determined the levels of gene expression among tumor cell types. RESULTS Gene expression varied among the different tumors, but, within a tumor type, clear expression patterns were seen. The expression of SUFU, ERBB2, and PCNA in metastatic MBs were greater than that seen in non-metastatic MBs. Most glioma cases highly expressed PDGFRα and G-CSFR. Additionally, the expression patterns of gliomas and ependymomas were similar (r = 0.77, P = 0.04), but PNET/MBs substantially differed from gliomas (r = -0.37, P = 0.41) or ependymomas (r = 0.23, P = 0.62). CONCLUSIONS The development of new drugs targeting up-regulated pathways may be useful for the treatment of pediatric brain tumors. As new drugs are developed, gliomas and ependymomas may be treated with similar compounds.
Collapse
Affiliation(s)
- Toshihisa Tsuruta
- Department of Clinical Examination, National Hospital Organization Kumamoto Medical Center, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu H, Zhang H, Jiang X, Ma Y, Xu Y, Feng S, Liu F. Knockdown of Secreted Protein Acidic and Rich in Cysteine (SPARC) Expression Diminishes Radiosensitivity of Glioma Cells. Cancer Biother Radiopharm 2011; 26:705-15. [DOI: 10.1089/cbr.2011.0987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Haiyan Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
- Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu Province, China
| | - Haowen Zhang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Xin Jiang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yan Ma
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Xu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Shuang Feng
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| | - Fenju Liu
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
37
|
Rivera LB, Brekken RA. SPARC promotes pericyte recruitment via inhibition of endoglin-dependent TGF-β1 activity. ACTA ACUST UNITED AC 2011; 193:1305-19. [PMID: 21708981 PMCID: PMC3216331 DOI: 10.1083/jcb.201011143] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SPARC prevents endoglin association with αV integrin, which blocks the activation of TGF-β signaling and promotes pericyte migration to nascent blood vessels. Pericytes migrate to nascent vessels and promote vessel stability. Recently, we reported that secreted protein acidic and rich in cysteine (SPARC)–deficient mice exhibited decreased pericyte-associated vessels in an orthotopic model of pancreatic cancer, suggesting that SPARC influences pericyte behavior. In this paper, we report that SPARC promotes pericyte migration by regulating the function of endoglin, a TGF-β1 accessory receptor. Primary SPARC-deficient pericytes exhibited increased basal TGF-β1 activity and decreased cell migration, an effect blocked by inhibiting TGF-β1. Furthermore, TGF-β–mediated inhibition of pericyte migration was dependent on endoglin and αV integrin. SPARC interacted directly with endoglin and reduced endoglin interaction with αV integrin. SPARC deficiency resulted in endoglin-mediated blockade of pericyte migration, aberrant association of endoglin in focal complexes, an increase in αV integrins present in endoglin immunoprecipitates, and enhanced αV integrin–mediated activation of TGF-β. These results demonstrate that SPARC promotes pericyte migration by diminishing TGF-β activity and identify a novel function for endoglin in controlling pericyte behavior.
Collapse
Affiliation(s)
- Lee B Rivera
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
38
|
The regulatory function of SPARC in vascular biology. Cell Mol Life Sci 2011; 68:3165-73. [PMID: 21822645 DOI: 10.1007/s00018-011-0781-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/21/2023]
Abstract
SPARC is a matricellular protein, able to modulate cell/ECM interactions and influence cell responses to growth factors, and therefore is particularly attuned to contribute to physiological processes involving changes in ECM and cell mobilization. Indeed, the list of biological processes affected by SPARC includes wound healing, tumor progression, bone formation, fibrosis, and angiogenesis. The process of angiogenesis is complex and involves a number of cellular processes such as endothelial cell proliferation, migration, ECM degradation, and synthesis, as well as pericyte recruitment to stabilize nascent vessels. In this review, we will summarize current results that explore the function of SPARC in the regulation of angiogenic events with a particular emphasis on the modulation of growth factor activity by SPARC in the context of blood vessel formation. The primary function of SPARC in angiogenesis remains unclear, as SPARC activity in some circumstances promotes angiogenesis and in others is more consistent with an anti-angiogenic activity. Undoubtedly, the mercurial nature of SPARC belies a redundancy of functional proteins in angiogenesis as well as cell-type-specific activities that alter signal transduction events in response to unique cellular milieus. Nonetheless, the investigation of cellular mechanisms that define functional activities of SPARC continue to contribute novel and exciting paradigms to vascular biology.
Collapse
|
39
|
SPARC functions as an anti-stress factor by inactivating p53 through Akt-mediated MDM2 phosphorylation to promote melanoma cell survival. Oncogene 2011; 30:4887-900. [DOI: 10.1038/onc.2011.198] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
40
|
Jacob K, Quang-Khuong DA, Jones DTW, Witt H, Lambert S, Albrecht S, Witt O, Vezina C, Shirinian M, Faury D, Garami M, Hauser P, Klekner A, Bognar L, Farmer JP, Montes JL, Atkinson J, Hawkins C, Korshunov A, Collins VP, Pfister SM, Tabori U, Jabado N. Genetic aberrations leading to MAPK pathway activation mediate oncogene-induced senescence in sporadic pilocytic astrocytomas. Clin Cancer Res 2011; 17:4650-60. [PMID: 21610151 DOI: 10.1158/1078-0432.ccr-11-0127] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oncogenic BRAF/Ras or NF1 loss can potentially trigger oncogene-induced senescence (OIS) through activation of the mitogen-activated protein kinase (MAPK) pathway. Somatic genetic abnormalities affecting this pathway occur in the majority of pilocytic astrocytomas (PA), the most prevalent brain neoplasm in children. We investigated whether OIS is induced in PA. EXPERIMENTAL DESIGN We tested expression of established senescence markers in three independent cohorts of sporadic PA. We also assessed for OIS in vitro, using forced expression of wild-type and V600E-mutant BRAF in two astrocytic cell lines: human telomerase reverse transcriptase (hTERT)-immortalized astrocytes and fetal astrocytes. RESULTS Our results indicate that PAs are senescent as evidenced by marked senescence-associated acidic β-galactosidase activity, low KI-67 index, and induction of p16(INK4a) but not p53 in the majority of 52 PA samples (46 of 52; 88.5%). Overexpression of a number of senescence-associated genes [CDKN2A (p16), CDKN1A (p21), CEBPB, GADD45A, and IGFBP7] was shown at the mRNA level in two independent PA tumor series. In vitro, sustained activation of wild-type or mutant BRAF induced OIS in both astrocytic cell lines. Loss of p16(INK4a) in immortalized astrocytes abrogated OIS, indicative of the role of this pathway in mediating this phenomenon in astrocytes. OIS is a mechanism of tumor suppression that restricts the progression of benign tumors. We show that it is triggered in PAs through p16(INK4a) pathway induction following aberrant MAPK activation. CONCLUSIONS OIS may account for the slow growth pattern in PA, the lack of progression to higher-grade astrocytomas, and the high overall survival of affected patients.
Collapse
Affiliation(s)
- Karine Jacob
- Department of Human Genetics, McGill University Health Center Research Institute, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Anti-cancer role of SPARC, an inhibitor of adipogenesis. Cancer Treat Rev 2011; 37:559-66. [PMID: 21237573 DOI: 10.1016/j.ctrv.2010.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/01/2010] [Accepted: 12/07/2010] [Indexed: 12/17/2022]
Abstract
SPARC (a secreted protein acidic and rich in cysteine) has a reputation for being potent anti-cancer and anti-obesity molecule. It is one of the first known matricellular protein that modulates interactions between cells and extracellular matrix (ECM) and is associated with the 'balance' of white adipose tissue (WAT) as well as lipogenesis and lipolysis during adipogenesis. Adipogenesis is an indication for the development of obesity and has been related to a wide variety of cancers including breast cancer, endometrial cancer, esophageal cancer, etc. Adipogenesis mainly involves ECM remodeling, changes in cell-ECM interactions, and cytoskeletal rearrangement. SPARC can also prevent hypertrophy of adipocytes and hyperplasia of adipocyte progenitors. In addition to SPARC's inhibitory role in adipogenesis, it has also been known to be involved in cell cycle, cell proliferation, cell invasion, adhesion, migration, angiogenesis and apoptosis. Molecular cancer biology and clinical biochemistry have significantly enhanced our understanding of the mechanisms that motivate the anti-cancer and anti-obesity action of SPARC. Recent studies elucidating the signaling pathways that are activated by SPARC can help develop the beneficial aspects of SPARC for cancer therapy and obesity prevention. This review focuses on the anti-cancer role of SPARC as it pertains to obesity.
Collapse
|
42
|
Fenouille N, Puissant A, Dufies M, Robert G, Jacquel A, Ohanna M, Deckert M, Pasquet JM, Mahon FX, Cassuto JP, Raynaud S, Tartare-Deckert S, Auberger P. Persistent Activation of the Fyn/ERK Kinase Signaling Axis Mediates Imatinib Resistance in Chronic Myelogenous Leukemia Cells through Upregulation of Intracellular SPARC. Cancer Res 2010; 70:9659-70. [DOI: 10.1158/0008-5472.can-10-2034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
43
|
Fenouille N, Robert G, Tichet M, Puissant A, Dufies M, Rocchi S, Ortonne JP, Deckert M, Ballotti R, Tartare-Deckert S. The p53/p21Cip1/ Waf1 pathway mediates the effects of SPARC on melanoma cell cycle progression. Pigment Cell Melanoma Res 2010; 24:219-32. [PMID: 20955243 DOI: 10.1111/j.1755-148x.2010.00790.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Secreted protein acidic and rich in cysteine (SPARC), or osteonectin, belongs to the family of matricellular proteins that modulate cell-matrix interactions and cellular functions. SPARC is highly expressed in melanoma, and we reported that SPARC promotes epithelial/mesenchymal-like changes and cell migration. Here, we used siRNA and conditional shRNA to investigate the contribution of tumor-derived SPARC to melanoma cell growth in vitro and in vivo. We found that depletion of SPARC induces G2/M cell cycle arrest and tumor growth inhibition with activation of p53 and induction of p21(Cip1/Waf1) acting as a checkpoint, preventing efficient mitotic progression. In addition, we demonstrate that reduced mesenchymal features and the invasive potential of SPARC-silenced cells are independent of p21(Cip1/Waf1) induction and cell cycle arrest. Importantly, overexpression of SPARC reduces p53 protein levels and leads to an increase in cell number during exponential growth. Our findings indicate that in addition to its well-known function as a mediator of melanoma cell migration and tumor-host interactions, SPARC regulates, in a cell-autonomous manner, cell cycle progression and proliferation through the p53/p21(Cip1/Waf1) pathway.
Collapse
Affiliation(s)
- Nina Fenouille
- INSERM, U895, University of Nice-Sophia Antipolis, Nice, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Portela M, Casas-Tinto S, Rhiner C, López-Gay JM, Domínguez O, Soldini D, Moreno E. Drosophila SPARC Is a Self-Protective Signal Expressed by Loser Cells during Cell Competition. Dev Cell 2010; 19:562-73. [DOI: 10.1016/j.devcel.2010.09.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/03/2010] [Accepted: 08/17/2010] [Indexed: 12/26/2022]
|
45
|
Yin J, Chen G, Liu Y, Liu S, Wang P, Wan Y, Wang X, Zhu J, Gao H. Downregulation of SPARC expression decreases gastric cancer cellular invasion and survival. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2010; 29:59. [PMID: 20525171 PMCID: PMC2892439 DOI: 10.1186/1756-9966-29-59] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 06/02/2010] [Indexed: 12/21/2022]
Abstract
Background Secreted protein acidic and rich in cysteine (SPARC) plays a key role in the development of many tissues and organ types. Aberrant SPARC expression was found in a wide variety of human cancers, contributes to tumor development. Because SPARC was found to be overexpressed in human gastric cancer tissue, we therefore to explore the expression of SPARC in gastric cancer lines and the carcinogenic mechanisms. Methods SPARC expression was evaluated in a panel of human gastric cancer cell lines. MGC803 and HGC 27 gastric cancer cell lines expressing high level of SPARC were transiently transfected with SPARC-specific small interfering RNAs and subsequently evaluated for effects on invasion and proliferation. Results Small interfering RNA-mediated knockdown of SPARC in MGC803 and HGC 27 gastric cancer cells dramatically decreased their invasion. Knockdown of SPARC was also observed to significantly increase the apoptosis of MGC803 and HGC 27 gastric cancer cells compared with control transfected group. Conclusions Our data showed that downregulating of SPARC inhibits invasion and growth of human gastric cancer cells. Thus, targeting of SPARC could be an effective therapeutic approach against gastric cancer.
Collapse
Affiliation(s)
- Jie Yin
- Department of General Surgery, Peking University First Hospital, Beijing, 100034, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Song H, Guan Y, Zhang L, Li K, Dong C. SPARC interacts with AMPK and regulates GLUT4 expression. Biochem Biophys Res Commun 2010; 396:961-6. [PMID: 20460104 DOI: 10.1016/j.bbrc.2010.05.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 11/25/2022]
Abstract
AMP-activated protein kinase (AMPK) is a critical regulator of glucose metabolism. To elucidate the biochemical mechanisms by which AMPK regulates glucose and fat metabolism, we conducted a yeast two-hybrid screen to identify its interacting partners. A yeast two-hybrid system was used to screen a mouse embryo cDNA library for proteins able to bind mouse AMPK alpha 1. We also demonstrated an endogenous interaction between AMPK alpha 1 and its interacting partner by co-immunoprecipitation of the endogenous proteins using specific antibodies in HepG2 cells, and in rat kidney, liver, skeletal muscle, and fat tissue. We show that secreted protein acidic and rich in cysteine (SPARC) is an AMPK-interacting protein, and the two proteins enhance each other. AMPK activation increases SPARC expression, and knockdown of AMPK to inhibit endogenous AMPK expression reduces SPARC protein levels. On the other hand, SPARC siRNA reduces AICAR-stimulated AMPK phosphorylation. SPARC affects AMPK-mediated glucose metabolism through regulation of Glut4 expression in L6 myocytes. Our findings suggest that SPARC may be involved in regulating glucose metabolism via AMPK activation. These results provide a starting point for efforts to clarify the relationship between AMPK and SPARC, and deepen our understanding of their roles in fat and glucose metabolism.
Collapse
Affiliation(s)
- Haiyan Song
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Harbin Medical University, Xuefu Road 246, Harbin 150080, China.
| | | | | | | | | |
Collapse
|
47
|
Abstract
There is growing interest in dietary phytochemicals as potential cancer chemopreventive agents. Resveratrol (3,4',5-trihydroxy-trans-stilbene), a naturally occurring phytoalexin that is present in grapes, red wine, berries and peanuts, has been studied extensively for its ability to interfere with multistage carcinogenesis. Resveratrol is known to have antioxidant, anti-inflammatory and antiproliferative effects on a variety of cancer cells in vitro and in various animal models. However, the effect(s) of resveratrol in vivo on humans are still controversial. This study discusses current knowledge with regard to the effects of resveratrol in relation to its potential as a chemopreventive and/or chemotherapeutic molecule against human gliomas.
Collapse
|
48
|
Ma CHE, Bampton ETW, Evans MJ, Taylor JSH. Synergistic effects of osteonectin and brain-derived neurotrophic factor on axotomized retinal ganglion cells neurite outgrowth via the mitogen-activated protein kinase-extracellular signal-regulated kinase 1/2 pathways. Neuroscience 2010; 165:463-74. [PMID: 19837135 DOI: 10.1016/j.neuroscience.2009.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 10/06/2009] [Accepted: 10/13/2009] [Indexed: 11/19/2022]
Abstract
Our previous study identified osteonectin (ON) in a screen of factors made by Schwann cells (SCs) which promoted peripheral and central neurons survival and neuritogenesis, however, the mechanisms of ON promoting effects are largely unknown. In the present study, we investigated the effects of ON-deficient SC-conditioned medium (SCCM) and molecular mechanisms of ON, in regulating retinal ganglion cells (RGCs) survival and neurite outgrowth. Neonatal rat RGCs and SCs were purified by immunopanning technique. RGC survival and neuritogenesis reduced significantly when treated with either ON-null mice SCCM or ON-immunodepleted (IP) SCCM (P<0.05). In contrast to wild type SCCM, in the presence of a tyrosine kinase receptor (Trk) inhibitor (K252a), ON-null mice SCCM-induced neuritogenesis were further reduced by 24%. The Trk-mediated signaling pathways became more sensitive to K252a inhibition in the absence of ON. We also showed the synergistic effects of ON and brain-derived neurotrophic factor (BDNF) in promoting RGCs growth and the involvement of ON in two major neurotrophin-mediated signaling pathways, PI-3K-Akt and MAPK-Erk1/2. ON alone activated Akt phosphorylation and increased survival. Blockage of TrkB signalling pathway by TrkB-Fc chimera (BDNF scavenger) or K252a in ON-treated cultures reduced Akt-P level significantly. This suggests that ON induces BDNF synthesis and secretion from RGCs. The enhancement of neuritogenesis and Erk1/2 phosphorylation by ON in BDNF-treated cultures further demonstrate the signaling pathways responsible for the synergistic effect of ON on BDNF-induced neurite outgrowth. To the best of our knowledge, this is the first report showing the synergistic effects of ON on classical neurotrophins which participate in the same signalling pathways in regulating RGC neurite outgrowth.
Collapse
Affiliation(s)
- C H E Ma
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| | | | | | | |
Collapse
|
49
|
Abstract
One of the most prominent transformation-associated changes in the sugar chains of glycoproteins is an increase in the large N-glycans of cell surface glycoprotein. beta1,4-galactosyltransferase V (beta1,4GalT V) could effectively galactosylate the GlcNAcbeta1-->6 branch which is a marker of glioma. The expression of beta1,4GalT V is increased in the process of glioma development. beta1,4GalT V regulates the invasion, growth in vivo and in vitro of glioma cells. Downregulation of beta1,4GalT V expression increases the sensitivity of malignant glioma cells to DNA damage drugs. Furthermore, beta1,4GalT V regulates Ras and AKT signaling involving in glioma behaviors. Meanwhile, Ras/MAPK and PI3K/AKT signaling pathways are involved in the transcription regulation of beta1,4GalT V gene. E1AF transcription factor, a downstream target of Ras/MAPK and PI3K/AKT signaling pathways, regulates the transcription of beta1,4GalT V in cooperation with Sp1 transcription factor. The contribution of beta1,4GalT V in glioma development is further confirmed in glioma-initiation cells. beta1,4GalT V regulates the self-renewal of glioma-initiation cells. We now present evidence that beta1,4GalT V functions as a positive growth regulator in glioma and might represent a novel target in glioma therapy.
Collapse
|
50
|
Abstract
Hypoxia has been recognized as one of the fundamentally important features of solid tumors and plays a critical role in various cellular and physiologic events, including cell proliferation, survival, angiogenesis, immunosurveillance, metabolism, as well as tumor invasion and metastasis. These responses to hypoxia are at least partially orchestrated by activation of the hypoxia-inducible factors (HIFs). HIF-1 is a key regulator of the response of mammalian cells to oxygen deprivation and plays critical roles in the adaptation of tumor cells to a hypoxic microenvironment. Hypoxia and overexpression of HIF-1 have been associated with radiation therapy and chemotherapy resistance, an increased risk of invasion and metastasis, and a poor clinical prognosis of solid tumors. The discovery of HIF-1 signaling has led to a rapidly increasing understanding of the complex mechanisms involved in tumor hypoxia and has helped greatly in screening novel anticancer agents. In this review, we will first introduce the cellular responses to hypoxia and HIF-1 signaling pathway in hypoxia, and then summarize the multifaceted role of hypoxia in the hallmarks of human cancers.
Collapse
Affiliation(s)
- Kai Ruan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | | |
Collapse
|