1
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
2
|
Flegel WA, Srivastava K. When recombinant proteins can replace rare red cells in immunohematology workups. Transfusion 2021; 61:2204-2212. [PMID: 34060094 DOI: 10.1111/trf.16507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/26/2022]
Affiliation(s)
- Willy A Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Sun S, Mariappan M. C-terminal tail length guides insertion and assembly of membrane proteins. J Biol Chem 2020; 295:15498-15510. [PMID: 32878985 DOI: 10.1074/jbc.ra120.012992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/27/2020] [Indexed: 11/06/2022] Open
Abstract
A large number of newly synthesized membrane proteins in the endoplasmic reticulum (ER) are assembled into multiprotein complexes, but little is known about the mechanisms required for assembly membrane proteins. It has been suggested that membrane chaperones might exist, akin to the molecular chaperones that stabilize and direct the assembly of soluble protein complexes, but the mechanisms by which these proteins would bring together membrane protein components is unclear. Here, we have identified that the tail length of the C-terminal transmembrane domains (C-TMDs) determines efficient insertion and assembly of membrane proteins in the ER. We found that membrane proteins with C-TMD tails shorter than ∼60 amino acids are poorly inserted into the ER membrane, which suggests that translation is terminated before they are recognized by the Sec61 translocon for insertion. These C-TMDs with insufficient hydrophobicity are post-translationally recognized and retained by the Sec61 translocon complex, providing a time window for efficient assembly with TMDs from partner proteins. Retained TMDs that fail to assemble with their cognate TMDs are slowly translocated into the ER lumen and are recognized by the ER-associated degradation (ERAD) pathway for removal. In contrast, C-TMDs with sufficient hydrophobicity or tails longer than ∼80 residues are quickly released from the Sec61 translocon into the membrane or the ER lumen, resulting in inefficient assembly with partner TMDs. Thus, our data suggest that C-terminal tails harbor crucial signals for both the insertion and assembly of membrane proteins.
Collapse
Affiliation(s)
- Sha Sun
- Frome the Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, Connecticut, USA
| | - Malaiyalam Mariappan
- Frome the Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, Connecticut, USA.
| |
Collapse
|
4
|
Ubiquitination of disease-causing CFTR variants in a microsome-based assay. Anal Biochem 2020; 604:113829. [PMID: 32621804 DOI: 10.1016/j.ab.2020.113829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022]
Abstract
Soluble secreted proteins and membrane proteins are subjected to protein quality control pathways during their synthesis in the endoplasmic reticulum (ER) and delivery to other destinations. Foremost among these quality control pathways is the selection of misfolded proteins for ER-associated degradation (ERAD). A growing number of diseases, including Cystic Fibrosis, are linked to the ERAD pathway. In most cases, a membrane protein known as the Cystic Fibrosis Transmembrane Conductance Regulator, or CFTR, is prematurely degraded by ERAD. Cell-based assays and in vitro studies have elucidated factors required for the recognition and degradation of CFTR, yet mechanistic details on how these factors target specific disease-causing variants is limited. Given the possibility that variants might exhibit unique susceptibilities to ubiquitin modification, which is required for proteasome-mediated degradation, we devised an assay that recapitulates this event. Here, we demonstrate that ER-enriched membranes from transfected human cells support CFTR ubiquitination when combined with radiolabeled ubiquitin and isolated enzymes in the ubiquitination cascade. We also show that select disease-causing variants are ubiquitinated more extensively than wild-type channels and to varying degrees. Our system provides a platform to examine how other purified factors impact CFTR ubiquitination and the ubiquitination of additional disease-associated membrane proteins.
Collapse
|
5
|
Guerriero CJ, Gomez YK, Daskivich GJ, Reutter KR, Augustine AA, Weiberth KF, Nakatsukasa K, Grabe M, Brodsky JL. Harmonizing Experimental Data with Modeling to Predict Membrane Protein Insertion in Yeast. Biophys J 2019; 117:668-678. [PMID: 31399214 DOI: 10.1016/j.bpj.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Membrane proteins must adopt their proper topologies within biological membranes, but achieving the correct topology is compromised by the presence of marginally hydrophobic transmembrane helices (TMHs). In this study, we report on a new model membrane protein in yeast that harbors two TMHs fused to an unstable nucleotide-binding domain. Because the second helix (TMH2) in this reporter has an unfavorable predicted free energy of insertion, we employed established methods to generate variants that alter TMH2 insertion free energy. We first found that altering TMH2 did not significantly affect the extent of protein degradation by the cellular quality control machinery. Next, we correlated predicted insertion free energies from a knowledge-based energy scale with the measured apparent free energies of TMH2 insertion. Although the predicted and apparent insertion energies showed a similar trend, the predicted free-energy changes spanned an unanticipated narrow range. By instead using a physics-based model, we obtained a broader range of free energies that agreed considerably better with the magnitude of the experimentally derived values. Nevertheless, some variants still inserted better in yeast than predicted from energy-based scales. Therefore, molecular dynamics simulations were performed and indicated that the corresponding mutations induced conformational changes within TMH2, which altered the number of stabilizing hydrogen bonds. Together, our results offer insight into the ability of the cellular quality control machinery to recognize conformationally distinct misfolded topomers, provide a model to assess TMH insertion in vivo, and indicate that TMH insertion energy scales may be limited depending on the specific protein and the mutation present.
Collapse
Affiliation(s)
| | - Yessica K Gomez
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Grant J Daskivich
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karl-Richard Reutter
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew A Augustine
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kurt F Weiberth
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kunio Nakatsukasa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Biological Science, Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Michael Grabe
- Cardiovascular Research Institute, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
6
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
7
|
Coelho JPL, Stahl M, Bloemeke N, Meighen-Berger K, Alvira CP, Zhang ZR, Sieber SA, Feige MJ. A network of chaperones prevents and detects failures in membrane protein lipid bilayer integration. Nat Commun 2019; 10:672. [PMID: 30737405 PMCID: PMC6368539 DOI: 10.1038/s41467-019-08632-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/22/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental step in membrane protein biogenesis is their integration into the lipid bilayer with a defined orientation of each transmembrane segment. Despite this, it remains unclear how cells detect and handle failures in this process. Here we show that single point mutations in the membrane protein connexin 32 (Cx32), which cause Charcot-Marie-Tooth disease, can cause failures in membrane integration. This leads to Cx32 transport defects and rapid degradation. Our data show that multiple chaperones detect and remedy this aberrant behavior: the ER-membrane complex (EMC) aids in membrane integration of low-hydrophobicity transmembrane segments. If they fail to integrate, these are recognized by the ER-lumenal chaperone BiP. Ultimately, the E3 ligase gp78 ubiquitinates Cx32 proteins, targeting them for degradation. Thus, cells use a coordinated system of chaperones for the complex task of membrane protein biogenesis, which can be compromised by single point mutations, causing human disease.
Collapse
Affiliation(s)
- João P L Coelho
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias Stahl
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
- SciLifeLab, Department of Oncology-Pathology, Karolinska Institutet, Box 1031, 171 21 Solna, Stockholm, Sweden
| | - Nicolas Bloemeke
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kevin Meighen-Berger
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Carlos Piedrafita Alvira
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Stephan A Sieber
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Matthias J Feige
- Center for Integrated Protein Science at the Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany.
- Institute for Advanced Study, Technical University of Munich, Lichtenbergstr. 2a, 85748, Garching, Germany.
| |
Collapse
|
8
|
Roushar FJ, Gruenhagen TC, Penn WD, Li B, Meiler J, Jastrzebska B, Schlebach JP. Contribution of Cotranslational Folding Defects to Membrane Protein Homeostasis. J Am Chem Soc 2018; 141:204-215. [PMID: 30537820 DOI: 10.1021/jacs.8b08243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Membrane proteins are prone to misfolding and degradation within the cell, yet the nature of the conformational defects involved in this process remain poorly understood. The earliest stages of membrane protein folding are mediated by the Sec61 translocon, a molecular machine that facilitates the lateral partitioning of the polypeptide into the membrane. Proper membrane integration is an essential prerequisite for folding of the nascent chain. However, the marginal energetic drivers of this reaction suggest the translocon may operate with modest fidelity. In this work, we employed biophysical modeling in conjunction with quantitative biochemical measurements in order to evaluate the extent to which cotranslational folding defects influence membrane protein homeostasis. Protein engineering was employed to selectively perturb the topological energetics of human rhodopsin, and the expression and cellular trafficking of engineered variants were quantitatively compared. Our results reveal clear relationships between topological energetics and the efficiency of rhodopsin biogenesis, which appears to be limited by the propensity of a polar transmembrane domain to achieve its correct topological orientation. Though the polarity of this segment is functionally constrained, we find that its topology can be stabilized in a manner that enhances biogenesis without compromising the functional properties of rhodopsin. Furthermore, sequence alignments reveal this topological instability has been conserved throughout the course of evolution. These results suggest that topological defects significantly contribute to the inefficiency of membrane protein folding in the cell. Additionally, our findings suggest that the marginal stability of rhodopsin may represent an evolved trait.
Collapse
Affiliation(s)
- Francis J Roushar
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Timothy C Gruenhagen
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Wesley D Penn
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| | - Bian Li
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Jens Meiler
- Department of Chemistry , Vanderbilt University , Nashville , Tennessee 37235 , United States
| | - Beata Jastrzebska
- Department of Pharmacology , Case Western Reserve University , Cleveland , Ohio 44106 , United States
| | - Jonathan P Schlebach
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
9
|
Patel SJ, Van Lehn RC. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer. J Phys Chem B 2018; 122:10337-10348. [PMID: 30376710 DOI: 10.1021/acs.jpcb.8b06613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell membrane largely prevents the passive diffusion of charged molecules due to the large free energy barrier associated with translocating charged groups across the hydrophobic lipid bilayer core. Despite this barrier, some peptides can interconvert between transmembrane and surface-adsorbed states by "flipping" charged flanking loops across the bilayer on a surprisingly rapid second-minute time scale. The transmembrane helices of some multispanning membrane proteins undergo similar reorientation processes, suggesting that loop-flipping may be a mechanism for regulating membrane protein topology; however, the molecular mechanisms underlying this behavior remain unknown. In this work, we study the loop-flipping behavior exhibited by a peptide with a hydrophobic transmembrane helix, charged flanking loops, and a central, membrane-exposed aspartate residue of varying protonation state. We utilize all-atom temperature accelerated molecular dynamics simulations to predict the likelihood of loop-flipping without predefining specific loop-flipping pathways. We demonstrate that this approach can identify multiple possible flipping pathways, with the prevalence of each pathway depending on the protonation state of the central residue. In particular, we find that a charged central residue facilitates loop-flipping by stabilizing membrane water defects, enabling the "self-catalysis" of charge translocation. These findings provide detailed molecular-level insights into charged loop-flipping pathways that may generalize to other charge translocation processes, such as lipid flip-flop or the large-scale conformational rearrangements of multispanning membrane proteins.
Collapse
Affiliation(s)
- Samarthaben J Patel
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
10
|
Van Lehn RC, Zhang B, Miller TF. Regulation of multispanning membrane protein topology via post-translational annealing. eLife 2015; 4. [PMID: 26408961 PMCID: PMC4635508 DOI: 10.7554/elife.08697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis. DOI:http://dx.doi.org/10.7554/eLife.08697.001 Proteins are long chains of smaller molecules called amino acids, and are built inside cells by a molecular machine called the ribosome. Many important proteins must be inserted into the membrane that surrounds each cell in order to carry out their role. As these proteins are being built by the ribosome, they thread their way into a membrane-spanning channel (called the translocon) from the inner side of the membrane. Short segments of these integral membrane proteins (called transmembrane domains) then become embedded in the membrane, while other parts of the protein remain on either side of the membrane. For a membrane protein to work properly, the end of each of its transmembrane domains must be on the correct side of the membrane (i.e., the protein must obtain the correct ‘topology’). The conventional model for this process suggests that topology is fixed when the first transmembrane domain of a protein is initially integrated into the membrane, while the ribosome is still building the protein. This model can explain most integral membrane proteins, which only have a single topology. However, it cannot explain the family of membrane proteins that have an almost equal chance of adopting one of two different topologies (so-called ‘dual-topology proteins’). Van Lehn et al. have now used computer modeling to simulate how a bacterial protein called EmrE (which is a dual-topology protein) integrates into the membrane via the translocon. The results reveal that a few transmembrane domains in EmrE do not fully integrate into the membrane while the ribosome is building the protein. Instead, these transmembrane domains slowly integrate after the ribosome has finished its job. These findings contradict the conventional model and suggest that some membrane proteins only become fully integrated after the protein-building process is complete. The next step in this work is to experimentally test predictions from the computer simulations. DOI:http://dx.doi.org/10.7554/eLife.08697.002
Collapse
Affiliation(s)
- Reid C Van Lehn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
11
|
De Marothy MT, Elofsson A. Marginally hydrophobic transmembrane α-helices shaping membrane protein folding. Protein Sci 2015; 24:1057-74. [PMID: 25970811 DOI: 10.1002/pro.2698] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/24/2015] [Indexed: 01/12/2023]
Abstract
Cells have developed an incredible machinery to facilitate the insertion of membrane proteins into the membrane. While we have a fairly good understanding of the mechanism and determinants of membrane integration, more data is needed to understand the insertion of membrane proteins with more complex insertion and folding pathways. This review will focus on marginally hydrophobic transmembrane helices and their influence on membrane protein folding. These weakly hydrophobic transmembrane segments are by themselves not recognized by the translocon and therefore rely on local sequence context for membrane integration. How can such segments reside within the membrane? We will discuss this in the light of features found in the protein itself as well as the environment it resides in. Several characteristics in proteins have been described to influence the insertion of marginally hydrophobic helices. Additionally, the influence of biological membranes is significant. To begin with, the actual cost for having polar groups within the membrane may not be as high as expected; the presence of proteins in the membrane as well as characteristics of some amino acids may enable a transmembrane helix to harbor a charged residue. The lipid environment has also been shown to directly influence the topology as well as membrane boundaries of transmembrane helices-implying a dynamic relationship between membrane proteins and their environment.
Collapse
Affiliation(s)
- Minttu T De Marothy
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| | - Arne Elofsson
- Department of Biochemistry and Biophysics Science for Life Laboratory, Stockholm University, Solna, SE-171 21, Sweden
| |
Collapse
|
12
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
13
|
Schlebach JP, Sanders CR. Influence of Pathogenic Mutations on the Energetics of Translocon-Mediated Bilayer Integration of Transmembrane Helices. J Membr Biol 2014; 248:371-81. [PMID: 25192979 DOI: 10.1007/s00232-014-9726-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/26/2014] [Indexed: 11/27/2022]
Abstract
Aberrant protein folding and assembly contribute to a number of diseases, and efforts to rationalize how pathogenic mutations cause this phenomenon represent an important imperative in biochemical research. However, for α-helical membrane proteins, this task is complicated by the fact that membrane proteins require intricate machinery to achieve structural and functional maturity under cellular conditions. In this work, we utilized the ΔG predictor algorithm ( www.dgpred.cbr.su.se ) to survey 470 known pathogenic mutations occurring in five misfolding-prone α-helical membrane proteins for their predicted effects on the translocon-mediated membrane integration of transmembrane helices, a critical step in biosynthesis and folding of nascent membrane proteins. The results suggest that about 10 % of these mutations are likely to have adverse effects on the topogenesis of nascent membrane proteins. These results suggest that the misfolding of a modest but nonetheless significant subset of pathogenic variants may begin at the translocon. Potential implications for therapeutic design and personalized medicine are discussed.
Collapse
Affiliation(s)
- Jonathan P Schlebach
- Department of Biochemistry and Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | | |
Collapse
|
14
|
Dou D, da Silva DV, Nordholm J, Wang H, Daniels R. Type II transmembrane domain hydrophobicity dictates the cotranslational dependence for inversion. Mol Biol Cell 2014; 25:3363-74. [PMID: 25165139 PMCID: PMC4214783 DOI: 10.1091/mbc.e14-04-0874] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The cellular hydrophobicity threshold for the inversion of Sec-dependent Nin-Cout (type II) transmembrane domains is dictated by whether their membrane integration occurs cotranslationally or posttranslationally. Membrane insertion by the Sec61 translocon in the endoplasmic reticulum (ER) is highly dependent on hydrophobicity. This places stringent hydrophobicity requirements on transmembrane domains (TMDs) from single-spanning membrane proteins. On examining the single-spanning influenza A membrane proteins, we found that the strict hydrophobicity requirement applies to the Nout-Cin HA and M2 TMDs but not the Nin-Cout TMDs from the type II membrane protein neuraminidase (NA). To investigate this discrepancy, we analyzed NA TMDs of varying hydrophobicity, followed by increasing polypeptide lengths, in mammalian cells and ER microsomes. Our results show that the marginally hydrophobic NA TMDs (ΔGapp > 0 kcal/mol) require the cotranslational insertion process for facilitating their inversion during translocation and a positively charged N-terminal flanking residue and that NA inversion enhances its plasma membrane localization. Overall the cotranslational inversion of marginally hydrophobic NA TMDs initiates once ∼70 amino acids past the TMD are synthesized, and the efficiency reaches 50% by ∼100 amino acids, consistent with the positioning of this TMD class in type II human membrane proteins. Inversion of the M2 TMD, achieved by elongating its C-terminus, underscores the contribution of cotranslational synthesis to TMD inversion.
Collapse
Affiliation(s)
- Dan Dou
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Diogo V da Silva
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Johan Nordholm
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Hao Wang
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| | - Robert Daniels
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University,
SE-106 91 Stockholm, Sweden
| |
Collapse
|
15
|
Virkki MT, Agrawal N, Edsbäcker E, Cristobal S, Elofsson A, Kauko A. Folding of Aquaporin 1: multiple evidence that helix 3 can shift out of the membrane core. Protein Sci 2014; 23:981-92. [PMID: 24777974 PMCID: PMC4088982 DOI: 10.1002/pro.2483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 12/29/2022]
Abstract
The folding of most integral membrane proteins follows a two-step process: initially, individual transmembrane helices are inserted into the membrane by the Sec translocon. Thereafter, these helices fold to shape the final conformation of the protein. However, for some proteins, including Aquaporin 1 (AQP1), the folding appears to follow a more complicated path. AQP1 has been reported to first insert as a four-helical intermediate, where helix 2 and 4 are not inserted into the membrane. In a second step, this intermediate is folded into a six-helical topology. During this process, the orientation of the third helix is inverted. Here, we propose a mechanism for how this reorientation could be initiated: first, helix 3 slides out from the membrane core resulting in that the preceding loop enters the membrane. The final conformation could then be formed as helix 2, 3, and 4 are inserted into the membrane and the reentrant regions come together. We find support for the first step in this process by showing that the loop preceding helix 3 can insert into the membrane. Further, hydrophobicity curves, experimentally measured insertion efficiencies and MD-simulations suggest that the barrier between these two hydrophobic regions is relatively low, supporting the idea that helix 3 can slide out of the membrane core, initiating the rearrangement process.
Collapse
Affiliation(s)
- Minttu T Virkki
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Nitin Agrawal
- Department of Biosciences, Biochemistry, Åbo AkademiTurku, FI-20520, Finland
| | - Elin Edsbäcker
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Susana Cristobal
- Department of Clinical and Experimental Medicine, Cell Biology, Faculty of Health Science, Linköping UniversityLinköping, Sweden
- Department of Physiology, IKERBASQUE, Basque Foundation for Science, Faculty of Medicine and Dentistry, University of the Basque CountryLeioa, Spain
| | - Arne Elofsson
- Department of Biochemistry and Biophysics and Science for Life Laboratory, Stockholm UniversitySolna, SE-171 21, Sweden
| | - Anni Kauko
- Department of Biosciences, Biochemistry, Åbo AkademiTurku, FI-20520, Finland
| |
Collapse
|
16
|
Feige MJ, Hendershot LM. Quality control of integral membrane proteins by assembly-dependent membrane integration. Mol Cell 2013; 51:297-309. [PMID: 23932713 DOI: 10.1016/j.molcel.2013.07.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/28/2013] [Accepted: 07/09/2013] [Indexed: 02/07/2023]
Abstract
Cell-surface multiprotein complexes are synthesized in the endoplasmic reticulum (ER), where they undergo cotranslational membrane integration and assembly. The quality control mechanisms that oversee these processes remain poorly understood. We show that less hydrophobic transmembrane (TM) regions derived from several single-pass TM proteins can enter the ER lumen completely. Once mislocalized, they are recognized by the Hsp70 chaperone BiP. In a detailed analysis for one of these proteins, the αβT cell receptor (αβTCR), we show that unassembled ER-lumenal subunits are rapidly degraded, whereas specific subunit interactions en route to the native receptor promote membrane integration of the less hydrophobic TM segments, thereby stabilizing the protein. For the TCR α chain, both complete ER import and subunit assembly depend on the same pivotal residue in its TM region. Thus, membrane integration linked to protein assembly allows cellular quality control of membrane proteins and connects the lumenal ER chaperone machinery to membrane protein biogenesis.
Collapse
Affiliation(s)
- Matthias J Feige
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | | |
Collapse
|
17
|
Roy S, Roy SJ, Pinard S, Agulleiro MJ, Cerdá-Reverter JM, Parent JL, Gallo-Payet N. The C-terminal domains of melanocortin-2 receptor (MC2R) accessory proteins (MRAP1) influence their localization and ACTH-induced cAMP production. Gen Comp Endocrinol 2012; 176:265-74. [PMID: 22366472 DOI: 10.1016/j.ygcen.2012.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/01/2012] [Accepted: 02/05/2012] [Indexed: 01/13/2023]
Abstract
ACTH binding to the human melanocortin-2 receptor (MC2R) requires the presence of the MC2R accessory protein1 isoforms, MRAPα or MRAPβ. This study evaluated the role of the isoform-specific C-terminal domains of MRAP with regard to their cellular localization, topology, interaction with MRAP2 and cAMP production. When stably expressed in HEK293/FRT cells or in B16-G4F mouse melanoma cells (an MSH receptor-deficient cell clone), MRAPα and MRAPdCT (truncated MRAP1, N-terminal only) localized mainly around the nuclear envelope and within dense intracellular endosomes, while MRAPβ exhibited a strong localization at the plasma membrane, and partially with rapid recycling endosomes. MRAPβ and MRAPdCT both exhibited dual-topology (N(cyto)/C(exo) and N(exo)/C(cyto)) at the plasma membrane whereas MRAPα exhibited only N(cyto)/C(exo) topology at the plasma membrane while adopting dual-topology in intracellular compartments. Both MRAPα and MRAP2 colocalized in intracellular compartments, as opposed to weak colocalization between MRAPβ and MRAP2. MRAP2 and MC2R enhanced the expression of MRAP1 isoforms and vice versa. Moreover, in both HEK293/FRT and B16-G4F cells, ACTH failed to activate MC2R unless MRAP1 was present. MRAP1 expression enhanced MC2R cell-surface expression as well as concentration-dependent cAMP accumulation. In the presence of human or zebrafish MC2R, MRAPβ induced the highest cAMP accumulation while MRAPdCT induced the lowest. Together, the present findings indicate that the C-terminal domains of MRAP dictate their intracellular localization in addition to regulating ACTH-induced cAMP production. These preferential localizations suggest that MRAPα is involved in MC2R targeting to the plasma membrane, while MRAPβ may enhance ACTH-MC2R coupling to cAMP production.
Collapse
Affiliation(s)
- Simon Roy
- Service d'Endocrinologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | |
Collapse
|
18
|
Matsumura Y, David LL, Skach WR. Role of Hsc70 binding cycle in CFTR folding and endoplasmic reticulum-associated degradation. Mol Biol Cell 2011; 22:2797-809. [PMID: 21697503 PMCID: PMC3154877 DOI: 10.1091/mbc.e11-02-0137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Hsc70 plays a productive role during cotranslational cystic fibrosis transmembrane conductance regulator folding that is outweighed by its dominant contribution to posttranslational targeting to the ubiquitin-proteasome system. Moreover, the outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is governed by regulatory cochaperones. The Hsp/c70 cytosolic chaperone system facilitates competing pathways of protein folding and degradation. Here we use a reconstituted cell-free system to investigate the mechanism and extent to which Hsc70 contributes to these co- and posttranslational decisions for the membrane protein cystic fibrosis transmembrane conductance regulator (CFTR). Hsc70 binding to CFTR was destabilized by the C-terminal domain of Bag-1 (CBag), which stimulates client release by accelerating ADP-ATP exchange. Addition of CBag during CFTR translation slightly increased susceptibility of the newly synthesized protein to degradation, consistent with a profolding function for Hsc70. In contrast, posttranslational destabilization of Hsc70 binding nearly completely blocked CFTR ubiquitination, dislocation from the endoplasmic reticulum, and proteasome-mediated cleavage. This effect required molar excess of CBag relative to Hsc70 and was completely reversed by the CBag-binding subdomain of Hsc70. These results demonstrate that the profolding role of Hsc70 during cotranslational CFTR folding is counterbalanced by a dominant and essential role in posttranslational targeting to the ubiquitin-proteasome system. Moreover, the degradative outcome of Hsc70 binding appears highly sensitive to the duration of its binding cycle, which is in turn governed by the integrated expression of regulatory cochaperones.
Collapse
Affiliation(s)
- Yoshihiro Matsumura
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
19
|
Pratt EB, Tewson P, Bruederle CE, Skach WR, Shyng SL. N-terminal transmembrane domain of SUR1 controls gating of Kir6.2 by modulating channel sensitivity to PIP2. ACTA ACUST UNITED AC 2011; 137:299-314. [PMID: 21321069 PMCID: PMC3047609 DOI: 10.1085/jgp.201010557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Functional integrity of pancreatic adenosine triphosphate (ATP)-sensitive potassium (K(ATP)) channels depends on the interactions between the pore-forming potassium channel subunit Kir6.2 and the regulatory subunit sulfonylurea receptor 1 (SUR1). Previous studies have shown that the N-terminal transmembrane domain of SUR1 (TMD0) interacts with Kir6.2 and is sufficient to confer high intrinsic open probability (P(o)) and bursting patterns of activity observed in full-length K(ATP) channels. However, the nature of TMD0-Kir6.2 interactions that underlie gating modulation is not well understood. Using two previously described disease-causing mutations in TMD0 (R74W and E128K), we performed amino acid substitutions to study the structural roles of these residues in K(ATP) channel function in the context of full-length SUR1 as well as TMD0. Our results revealed that although R74W and E128K in full-length SUR1 both decrease surface channel expression and reduce channel sensitivity to ATP inhibition, they arrive there via distinct mechanisms. Mutation of R74 uniformly reduced TMD0 protein levels, suggesting that R74 is necessary for stability of TMD0. In contrast, E128 mutations retained TMD0 protein levels but reduced functional coupling between TMD0 and Kir6.2 in mini-K(ATP) channels formed by TMD0 and Kir6.2. Importantly, E128K full-length channels, despite having a greatly reduced P(o), exhibit little response to phosphatidylinositol 4,5-bisphosphate (PIP(2)) stimulation. This is reminiscent of Kir6.2 channel behavior in the absence of SUR1 and suggests that TMD0 controls Kir6.2 gating by modulating Kir6.2 interactions with PIP(2). Further supporting this notion, the E128W mutation in full-length channels resulted in channel inactivation that was prevented or reversed by exogenous PIP(2). These results identify a critical determinant in TMD0 that controls Kir6.2 gating by controlling channel sensitivity to PIP(2). Moreover, they uncover a novel mechanism of K(ATP) channel inactivation involving aberrant functional coupling between SUR1 and Kir6.2.
Collapse
Affiliation(s)
- Emily B Pratt
- Department of Biochemistry and Molecular Biology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
20
|
Pandey RN, Yaganti S, Coffey S, Frisbie J, Alnajjar K, Goldstein D. Expression and immunolocalization of aquaporins HC-1, -2, and -3 in Cope's gray treefrog, Hyla chrysoscelis. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:86-94. [DOI: 10.1016/j.cbpa.2010.04.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 01/13/2023]
|
21
|
Recombinant blood group proteins for use in antibody screening and identification tests. Curr Opin Hematol 2009; 16:473-9. [DOI: 10.1097/moh.0b013e3283319a06] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Brach T, Soyk S, Müller C, Hinz G, Hell R, Brandizzi F, Meyer AJ. Non-invasive topology analysis of membrane proteins in the secretory pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:534-41. [PMID: 18939964 DOI: 10.1111/j.1365-313x.2008.03704.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We present a novel method to experimentally visualize in vivo the topology of transmembrane proteins residing in the endoplasmic reticulum (ER) membrane or passing through the secretory pathway on their way to their final destination. This approach, so-called redox-based topology analysis (ReTA), is based on fusion of transmembrane proteins with redox-sensitive GFP (roGFP) and ratiometric imaging. The ratio images provide direct information on the orientation of roGFP relative to the membrane as the roGFP fluorescence alters with changes in the glutathione redox potential across the ER membrane. As proof of concept, we produced binary read-outs using oxidized roGFP inside the ER lumen and reduced roGFP on the cytosolic side of the membrane for both N- and C-terminal fusions of single and multi-spanning membrane proteins. Further, successive deletion of hydrophobic domains from the C-terminus of the K/HDEL receptor ERD2 resulted in alternating localization of roGFP and a topology model for AtERD2 with six transmembrane domains.
Collapse
Affiliation(s)
- Thorsten Brach
- Heidelberg Institute for Plant Science, University of Heidelberg, Im Neuenheimer Feld 360, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
23
|
Daniel CJ, Conti B, Johnson AE, Skach WR. Control of translocation through the Sec61 translocon by nascent polypeptide structure within the ribosome. J Biol Chem 2008; 283:20864-73. [PMID: 18480044 PMCID: PMC2475691 DOI: 10.1074/jbc.m803517200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Indexed: 12/21/2022] Open
Abstract
During polytopic protein biogenesis, multiple transmembrane segments (TMs) must pass through the ribosome exit tunnel and into the Sec61 translocon prior to insertion into the endoplasmic reticulum membrane. To investigate how movement of a newly synthesized TM along this integration pathway might be influenced by synthesis of a second TM, we used photocross-linking probes to detect the proximity of ribosome-bound nascent polypeptides to Sec61alpha. Probes were inserted at sequential sites within TM2 of the aquaporin-1 water channel by in vitro translation of truncated mRNAs. TM2 first contacted Sec61alpha when the probe was positioned approximately 38 residues from the ribosome peptidyltransferase center, and TM2-Sec61alpha photoadducts decreased markedly when the probe was >80 residues from the peptidyltransferase center. Unexpectedly, as nascent chain length was gradually extended, photocross-linking at multiple sites within TM2 abruptly and transiently decreased, indicating that TM2 initially entered, withdrew, and then re-entered Sec61alpha. This brief reduction in TM2 photocross-linking coincided with TM3 synthesis. Replacement of TM3 with a secretory reporter domain or introduction of proline residues into TM3 changed the TM2 cross-linking profile and this biphasic behavior. These findings demonstrate that the primary and likely secondary structure of the nascent polypeptide within the ribosome exit tunnel can influence the timing with which topogenic determinants contact, enter, and pass through the translocon.
Collapse
Affiliation(s)
- Colin J Daniel
- Department of Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
24
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
25
|
Buck TM, Wagner J, Grund S, Skach WR. A novel tripartite motif involved in aquaporin topogenesis, monomer folding and tetramerization. Nat Struct Mol Biol 2007; 14:762-9. [PMID: 17632520 DOI: 10.1038/nsmb1275] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 06/22/2007] [Indexed: 12/24/2022]
Abstract
Aquaporin (AQP) folding in the endoplasmic reticulum is characterized by two distinct pathways of membrane insertion that arise from divergent residues within the second transmembrane segment. We now show that in AQP1 these residues (Asn49 and Lys51) interact with Asp185 at the C terminus of TM5 to form a polar, quaternary structural motif that influences multiple stages of folding. Asn49 and Asp185 form an intramolecular hydrogen bond needed for proper helical packing, monomer formation and function. In contrast, Lys51 interacts with Asp185 on an adjacent monomer to stabilize the AQP1 tetramer. Although these residues are unique to AQP1, they share a highly conserved architecture whose functional properties can be transferred to other family members. These findings suggest a general mechanism by which evolutionary divergence of membrane proteins can confer new functional properties via alternative folding pathways that give rise to a common final structure.
Collapse
Affiliation(s)
- Teresa M Buck
- Department of Biochemistry and Molecular Biology, Oregon Health & Sciences University, 3181 SW Sam Jackson Park Rd., Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
26
|
Cheng Z, Gilmore R. Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nat Struct Mol Biol 2006; 13:930-6. [PMID: 16980973 DOI: 10.1038/nsmb1146] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 08/25/2006] [Indexed: 11/08/2022]
Abstract
Integral membrane proteins are cotranslationally inserted into the endoplasmic reticulum via the protein translocation channel, or translocon, which mediates the transport of lumenal domains, retention of cytosolic domains and integration of transmembrane spans into the phospholipid bilayer. Upon translocon binding, transmembrane spans interact with a lateral gate, which regulates access to membrane phospholipids, and a lumenal gate, which controls the translocation of soluble domains. We analyzed the in vivo kinetics of integration of model membrane proteins in Saccharomyces cerevisiae using ubiquitin translocation assay reporters. Our findings indicate that the conformational changes in the translocon that permit opening of the lumenal and lateral channel gates occur less rapidly than elongation of the nascent polypeptide. Transmembrane spans and lumenal domains are therefore exposed to the cytosol during integration of a polytopic membrane protein, which may pose a challenge to the fidelity of membrane protein integration.
Collapse
Affiliation(s)
- Zhiliang Cheng
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605-2324, USA
| | | |
Collapse
|
27
|
Pitonzo D, Skach WR. Molecular mechanisms of aquaporin biogenesis by the endoplasmic reticulum Sec61 translocon. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:976-88. [PMID: 16782047 DOI: 10.1016/j.bbamem.2006.04.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/27/2006] [Accepted: 04/14/2006] [Indexed: 11/29/2022]
Abstract
The past decade has witnessed remarkable advances in our understanding of aquaporin (AQP) structure and function. Much, however, remains to be learned regarding how these unique and vitally important molecules are generated in living cells. A major obstacle in this respect is that AQP biogenesis takes place in a highly specialized and relatively inaccessible environment formed by the ribosome, the Sec61 translocon and the ER membrane. This review will contrast the folding pathways of two AQP family members, AQP1 and AQP4, and attempt to explain how six TM helices can be oriented across and integrated into the ER membrane in the context of current (and somewhat conflicting) translocon models. These studies indicate that AQP biogenesis is intimately linked to translocon function and that the ribosome and translocon form a highly dynamic molecular machine that both interprets and is controlled by specific information encoded within the nascent AQP polypeptide. AQP biogenesis thus has wide ranging implications for mechanisms of translocon function and general membrane protein folding pathways.
Collapse
Affiliation(s)
- David Pitonzo
- Department of Biochemistry and Molecular Biology, Oregon Health and Sciences University Portland, Oregon, 3181 SW Sam Jackson Park Rd L-224 Portland, Oregon 97239, USA
| | | |
Collapse
|
28
|
van Anken E, Braakman I. Versatility of the endoplasmic reticulum protein folding factory. Crit Rev Biochem Mol Biol 2005; 40:191-228. [PMID: 16126486 DOI: 10.1080/10409230591008161] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The endoplasmic reticulum (ER) is dedicated to import, folding and assembly of all proteins that travel along or reside in the secretory pathway of eukaryotic cells. Folding in the ER is special. For instance, newly synthesized proteins are N-glycosylated and by default form disulfide bonds in the ER, but not elsewhere in the cell. In this review, we discuss which features distinguish the ER as an efficient folding factory, how the ER monitors its output and how it disposes of folding failures.
Collapse
Affiliation(s)
- Eelco van Anken
- Department of Cellular Protein Chemistry, Bijvoet Center, Utrecht University, The Netherlands
| | | |
Collapse
|