1
|
Ma S, Qin Y, Ren W. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) in hematological diseases. Mol Med 2024; 30:165. [PMID: 39342091 PMCID: PMC11439276 DOI: 10.1186/s10020-024-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
The oncofetal mRNA-binding protein IGF2BP1 belongs to a conserved family of RNA-binding proteins. It primarily promotes RNA stability, regulates translation and RNA localization, and mediates gene expression through its downstream effectors. Numerous studies have demonstrated that IGF2BP1 plays crucial roles in embryogenesis and carcinogenesis. IGF2BP1-modulated cell proliferation, invasion, and chemo-resistance in solid tumors have attracted researchers' attention. Additionally, several studies have highlighted the importance of IGF2BP1 in hematologic malignancies and hematological genetic diseases, positioning it as a promising therapeutic target for hematological disorders. However, there is a lack of systematic summaries regarding the IGF2BP1 gene within the hematological field. In this review, we provide a comprehensive overview of the discovery and molecular structure of IGF2BP1, along with recent studies on its role in regulating embryogenesis. We also focus on the mechanisms by which IGF2BP1 regulates hematological malignancies through its interactions with its targeted mRNAs. Furthermore, we systematically elucidate the function and mechanism of IGF2BP1 in promoting fetal hemoglobin expression in adult hematopoietic stem/progenitor cells. Finally, we discuss the limitations and challenges of IGF2BP1 as a therapeutic target, offering insights into its prospects.
Collapse
Affiliation(s)
- Shuangping Ma
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| | - Yiran Qin
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Wenjie Ren
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China.
| |
Collapse
|
2
|
Forester CM, Oses-Prieto JA, Phillips NJ, Miglani S, Pang X, Byeon GW, DeMarco R, Burlingame A, Barna M, Ruggero D. Regulation of eIF4E guides a unique translational program to control erythroid maturation. SCIENCE ADVANCES 2022; 8:eadd3942. [PMID: 36563140 PMCID: PMC9788769 DOI: 10.1126/sciadv.add3942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/22/2022] [Indexed: 05/22/2023]
Abstract
Translation control is essential in balancing hematopoietic precursors and differentiation; however, the mechanisms underlying this program are poorly understood. We found that the activity of the major cap-binding protein eIF4E is unexpectedly regulated in a dynamic manner throughout erythropoiesis that is uncoupled from global protein synthesis rates. Moreover, eIF4E activity directs erythroid maturation, and increased eIF4E expression maintains cells in an early erythroid state associated with a translation program driving the expression of PTPN6 and Igf2bp1. A cytosine-enriched motif in the 5' untranslated region is important for eIF4E-mediated translation specificity. Therefore, selective translation of key target genes necessary for the maintenance of early erythroid states by eIF4E highlights a unique mechanism used by hematopoietic precursors to rapidly elicit erythropoietic maturation upon need.
Collapse
Affiliation(s)
- Craig M. Forester
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
- Division of Pediatric Hematology/Oncology/Bone Marrow Transplant, Children’s Hospital Colorado, University of Colorado-Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
| | - Juan A. Oses-Prieto
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nancy J. Phillips
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sohit Miglani
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaming Pang
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gun Woo Byeon
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Rachel DeMarco
- Department of Pediatrics, University of Colorado, Denver, CO 80045, USA
| | - Al Burlingame
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Maria Barna
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94309, USA
| | - Davide Ruggero
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco (UCSF), San Francisco, CA 94158, USA
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
3
|
Korn SM, Ulshöfer CJ, Schneider T, Schlundt A. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview. Structure 2021; 29:787-803. [PMID: 34022128 DOI: 10.1016/j.str.2021.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/12/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins (IMPs, IGF2BPs) act in mRNA transport and translational control but are oncofetal tumor marker proteins. The IMP protein family represents a number of bona fide multi-domain RNA-binding proteins with up to six RNA-binding domains, resulting in a high complexity of possible modes of interactions with target mRNAs. Their exact mechanism in stability control of oncogenic mRNAs is only partially understood. Our and other laboratories' recent work has significantly pushed the understanding of IMP protein specificities both toward RNA engagement and between each other from NMR and crystal structures serving the basis for systematic biochemical and functional investigations. We here summarize the known structural and biochemical information about IMP RNA-binding domains and their RNA preferences. The article also touches on the respective roles of RNA secondary and protein tertiary structures for specific RNA-protein complexes, including the limited knowledge about IMPs' protein-protein interactions, which are often RNA mediated.
Collapse
Affiliation(s)
- Sophie Marianne Korn
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Corinna Jessica Ulshöfer
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Tim Schneider
- Institute of Biochemistry, Justus-Liebig-University of Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
4
|
Novel Regulators of the IGF System in Cancer. Biomolecules 2021; 11:biom11020273. [PMID: 33673232 PMCID: PMC7918569 DOI: 10.3390/biom11020273] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 02/07/2023] Open
Abstract
The insulin-like growth factor (IGF) system is a dynamic network of proteins, which includes cognate ligands, membrane receptors, ligand binding proteins and functional downstream effectors. It plays a critical role in regulating several important physiological processes including cell growth, metabolism and differentiation. Importantly, alterations in expression levels or activation of components of the IGF network are implicated in many pathological conditions including diabetes, obesity and cancer initiation and progression. In this review we will initially cover some general aspects of IGF action and regulation in cancer and then focus in particular on the role of transcriptional regulators and novel interacting proteins, which functionally contribute in fine tuning IGF1R signaling in several cancer models. A deeper understanding of the biological relevance of this network of IGF1R modulators might provide novel therapeutic opportunities to block this system in neoplasia.
Collapse
|
5
|
Shen L, Lin D, Cheng L, Tu S, Wu H, Xu W, Pan Y, Wang X, Zhang J, Shao A. Is DNA Methylation a Ray of Sunshine in Predicting Meningioma Prognosis? Front Oncol 2020; 10:1323. [PMID: 33014773 PMCID: PMC7498674 DOI: 10.3389/fonc.2020.01323] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Meningioma is the most common intracranial tumor, and recent studies have drawn attention to the importance of further research on malignant meningioma. According to the World Health Organization (WHO) grading, meningioma is classified into 15 subtypes with three grades of malignancy. However, due to a lack of descriptions of molecular subtypes, genetic mutations, or other features, there were deficiencies in the WHO classification. The DNA methylation-based meningioma classification published in 2017 used DNA copy number analysis, mutation profiling, and RNA sequencing to distinguish six clinically relevant methylation classes, which contributed to a better prediction of tumor recurrence and prognosis. Further studies indicated that gene variation and gene mutations, such as those in neurofibromin 2 (NF2) and BRCA1, were related to the high WHO grade, malignant invasion, and recurrence. Among the mutant genes described above, some have been associated with differential DNA methylation. Herein, we searched for articles published in PubMed and Web of Science from January 2000 to May 2020 by entering the keywords “meningioma,” “methylation,” and “gene mutation,” and found a number of published studies that analyzed DNA methylation in meningiomas. In this review, we summarize the key findings of recent studies on methylation status and genetic mutations of meningioma and discuss the current deficits of the WHO grading. We also propose that a methylation-based meningioma classification could provide clues in the assessment of individual risk of meningioma recurrence, which is associated with clinical benefits for patients.
Collapse
Affiliation(s)
- Lu Shen
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lu Cheng
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Haijian Wu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuanbo Pan
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaochen Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Breast Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Wu J, Lu C, Ge S, Mei J, Li X, Guo W. Igf2bp1 is required for hepatic outgrowth during early liver development in zebrafish. Gene 2020; 744:144632. [PMID: 32240777 DOI: 10.1016/j.gene.2020.144632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 02/09/2023]
Abstract
IGF2BPs, a subclass of RNA-binding proteins, regulate cellular differentiation, proliferation and migration during multiple organs development, but their functions in liver development still remain unclear. Here, in this study, whole-mount in situ hybridization showed that igf2bp1 was constantly and stably expressed at early stages of embryo development in zebrafish. Both the morpholino-induced knockdown and CRISPR/Cas9-mediated knockout of igf2bp1 led to a reduced-size liver phenotype. Further analysis revealed that igf2bp1 is required for hepatic outgrowth, but not for hepatoblast specification and budding. Deficiency of igf2bp1 resulted in reduced cell proliferation, but had no effect on apoptosis. Therefore, we concluded that igf2bp1 is a critical factor to regulate hepatic outgrowth via cell proliferation during early liver development in zebrafish.
Collapse
Affiliation(s)
- Junjie Wu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Yunnan Institute of Fisheries Sciences, Kunming 650111, China
| | - Chang Lu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Si Ge
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Mei
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohui Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjie Guo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Liu H, Zeng Z, Afsharpad M, Lin C, Wang S, Yang H, Liu S, Kelemen LE, Xu W, Ma W, Xiang Q, Mastriani E, Wang P, Wang J, Liu SL, Johnston RN, Köbel M. Overexpression of IGF2BP3 as a Potential Oncogene in Ovarian Clear Cell Carcinoma. Front Oncol 2020; 9:1570. [PMID: 32083017 PMCID: PMC7002550 DOI: 10.3389/fonc.2019.01570] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
Ovarian Clear Cell Carcinoma (OCCC) displays distinctive clinical and molecular characteristics and confers the worst prognosis among all ovarian carcinoma histotypes when diagnosed at advanced stage, because of the lack of effective therapy. IGF2BP3 is an RNA binding protein that modulates gene expression by post-transcriptional action. In this study, we investigated the roles of IGF2BP3 in the progression of OCCC. We used 328 OCCCs from the AOVT (the Alberta Ovarian Tumor Type study) and the COEUR (the Canadian Ovarian Experimental Unified Resource) cohorts to elucidate the associations between IGF2BP3 expression and clinicopathological parameters, with positive IGF2BP3 expression defined as diffuse block staining, being more frequently observed at stage III (P = 0.0056) and significantly associated with unfavorable overall survival (HR = 1.59, 95% CI 1.09-2.33) in multivariate analysis. IGF2BP3 mRNA gene expression was markedly increased in OCCC cell lines compared to normal tissues such as ovarian surface epithelium. We chose two IGF2BP3-overexpressing cell lines ES2 and OVMANA for in vitro and in vivo knockdown experiments. The proliferation and viability of both cell lines were significantly inhibited by two IGF2BP3 siRNAs and similar suppression was observed in cell migration and invasion by Wound Healing and Transwell assays. The percentage of apoptotic cancer cells was enhanced by both IGF2BP3 siRNAs. In vivo experiments showed significantly reduced sizes of tumors when treated with IGF2BP3 siRNA compared to controls. Furthermore, cancer metastasis-indicators MMP2 and MMP9 proteins were down-regulated. In conclusion, our study shows that IGF2BP3 expression is a promising biomarker for prognostication of women diagnosed with OCCC with multiple effects on key cell functions, supporting its role as an important cellular regulator with potential oncogenic activity, and as a potential target for future intervention strategies.
Collapse
Affiliation(s)
- Huidi Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Zheng Zeng
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Mitra Afsharpad
- Pathology and Laboratory Medicine, Calgary Laboratory Service, University of Calgary, Calgary, AB, Canada
| | - Caiji Lin
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Siwen Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Hao Yang
- Department of Pathology, Harbin Chest Hospital, Harbin, China
| | - Shuhong Liu
- Pathology and Laboratory Medicine, Calgary Laboratory Service, University of Calgary, Calgary, AB, Canada
| | - Linda E Kelemen
- Hollings Cancer Center and Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Wenwen Xu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Wenqing Ma
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Qian Xiang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Emilio Mastriani
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Pengfei Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Jiali Wang
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Shu-Lin Liu
- Genomics Research Center (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Harbin Medical University, Harbin, China.,HMU-UCCSM Centre for Infection and Genomics, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| | - Randal N Johnston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada.,Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Köbel
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada.,Pathology and Laboratory Medicine, Calgary Laboratory Service, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
Mackedenski S, Wang C, Li WM, Lee CH. Characterizing the interaction between insulin-like growth factor 2 mRNA-binding protein 1 (IMP1) and KRAS expression. Biochem J 2018; 475:2749-2767. [PMID: 30104206 DOI: 10.1042/bcj20180575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factor 2 mRNA-binding protein-1 (IMP1) has high affinity for KRAS mRNA, and it can regulate KRAS expression in cells. We first characterized the molecular interaction between IMP1 and KRAS mRNA. Using IMP1 variants with a point mutation in the GXXG motif at each KH domain, we showed that all KH domains play a critical role in the binding of KRAS RNA. We mapped the IMP1-binding sites on KRAS mRNA and show that IMP1 has the highest affinity for nts 1-185. Although it has lower affinity, IMP1 does bind to other coding regions and the 3'-UTR of KRAS mRNA. Eight antisense oligonucleotides (AONs) were designed against KRAS RNA in the nts 1-185 region, but only two, SM6 and SM7, show potent inhibition of the IMP1-KRAS RNA interaction in vitro To test the activity of these two AONs in SW480 human colon cancer cells, we used 2'-O-methyl-modified versions of SM6 and SM7 in an attempt to down-regulate KRAS expression. To our surprise, both SM6 and SM7 had no effect on KRAS mRNA and protein expression, but significantly inhibited IMP1 protein expression without altering IMP1 mRNA level. On the other hand, knockdown of IMP1 using siRNA lowered the expression of KRAS. Using Renilla luciferase as a reporter, we found that IMP1 translation is significantly reduced in SM7-treated cells with no change in let-7a levels. The present study shows that the regulation of KRAS expression by IMP1 is complex and may involve both the IMP1 protein and its mRNA transcript.
Collapse
Affiliation(s)
- Sebastian Mackedenski
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Chuyi Wang
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Wai-Ming Li
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Chow H Lee
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| |
Collapse
|
9
|
Xiong H, Zhao W, Wang J, Seifer BJ, Ye C, Chen Y, Jia Y, Chen C, Shen J, Wang L, Sui X, Zhou J. Oncogenic mechanisms of Lin28 in breast cancer: new functions and therapeutic opportunities. Oncotarget 2018; 8:25721-25735. [PMID: 28147339 PMCID: PMC5421965 DOI: 10.18632/oncotarget.14891] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/11/2017] [Indexed: 12/25/2022] Open
Abstract
The RNA binding protein Lin28 is best known for the critical role in cell development, recent researches also have implied its oncogenic function in various human cancers, including breast cancer. Specifically, aberrant Lin28 participates in multiple pathological processes, such as proliferation, metastasis, radiotherapy and chemotherapy resistance, metabolism, immunity and inflammation as well as stemness. In this review, we summarize the let-7-dependent and let-7-independent mechanism regulated by Lin28, focusing on its relation with tumor hallmarks in breast cancer, and subsequently discuss our present knowledge of Lin28 to develop a molecular-based therapeutic strategy against breast cancer.
Collapse
Affiliation(s)
- Hanchu Xiong
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Wenhe Zhao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Ji Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | | | - Chenyang Ye
- Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education), Second Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yunlu Jia
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jianguo Shen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xinbing Sui
- Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China.,Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
SRC Increases MYC mRNA Expression in Estrogen Receptor-Positive Breast Cancer via mRNA Stabilization and Inhibition of p53 Function. Mol Cell Biol 2018; 38:MCB.00463-17. [PMID: 29263157 DOI: 10.1128/mcb.00463-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor gene MYC is important in breast cancer, and its mRNA is maintained at a high level even in the absence of gene amplification. The mechanism(s) underlying increased MYC mRNA expression is unknown. Here, we demonstrate that MYC mRNA was stabilized upon estrogen stimulation of estrogen receptor-positive breast cancer cells via SRC-dependent effects on a recently described RNA-binding protein, IMP1 with an N-terminal deletion (ΔN-IMP1). We also show that loss of the tumor suppressor p53 increased MYC mRNA levels even in the absence of estrogen stimulation. However, in cells with wild-type p53, SRC acted to overcome p53-mediated inhibition of estrogen-stimulated cell cycle entry and progression. SRC thus promotes cell proliferation in two ways: by stabilizing MYC mRNA and by inhibiting p53 function. Since estrogen receptor-positive breast cancers typically express wild-type p53, these studies establish a rationale for p53 status to be predictive for effective SRC inhibitor treatment in this subtype of breast cancer.
Collapse
|
11
|
Zhao W, Lu D, Liu L, Cai J, Zhou Y, Yang Y, Zhang Y, Zhang J. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) promotes lung tumorigenesis via attenuating p53 stability. Oncotarget 2017; 8:93672-93687. [PMID: 29212181 PMCID: PMC5706827 DOI: 10.18632/oncotarget.21280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 09/13/2017] [Indexed: 01/10/2023] Open
Abstract
Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3/IMP3/KOC), initially identified as an RNA-binding protein, is highly expressed in embryonic tissues and a variety of cancers. Previously, our group reported that IGF2BP3 may serve as a potential diagnostic marker for lung cancer. However, little is known about the function of IGF2BP3 in lung cancer development. Here we demonstrate that IGF2BP3 expression was markedly increased in lung cancer tissues compared to normal tissues at both mRNA and protein levels. Overexpression of IGF2BP3 in lung cancer cells promoted cell proliferation, tumor migration and invasion in vitro and in vivo, whereas knockdown of IGF2BP3 exhibited opposite effects. Notably IGF2BP3 was directly associated with a deubiquitinase Ubiquitin specific peptidase 10 (USP10) and attenuated its function in stabilizing p53 protein. Silencing IGF2BP3 expression in lung cancer cells consistently increased the half-life and protein level of p53 and induced G0/G1 arrest. Thus, our data together demonstrate that IGF2BP3 promotes lung tumorigenesis via attenuating p53 protein stability.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China.,Present address: Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Dan Lu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Liang Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China
| | - Juan Cai
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Yu Zhou
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Ying Yang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Yu Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| | - Jun Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Medical Immunology, Ministry of Health (Peking University), Beijing, 100191, P.R. China
| |
Collapse
|
12
|
Xu Y, Zheng Y, Liu H, Li T. Modulation of IGF2BP1 by long non-coding RNA HCG11 suppresses apoptosis of hepatocellular carcinoma cells via MAPK signaling transduction. Int J Oncol 2017; 51:791-800. [PMID: 28677801 PMCID: PMC5564403 DOI: 10.3892/ijo.2017.4066] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/26/2017] [Indexed: 01/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy of the liver. HCG11 is a member of long non-coding family, upregulation of which in HCC was proved by our previous study. In the present study, the role of HCG11 in the development of HCC was detected by focusing on the interaction between HCG11 and its target protein insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1). The expression status of HCG11 and IGF2BP1 was first investigated with clinical HCC samples. Then the expressions of HCG11 and IGF2BP1 were both inhibited in the human HCC cell line HepG2 and the cell viability, proliferation, apoptosis and metastasis potential of HepG2 cells were assessed. At molecular level, the expression levels of p-ERK, p-JNK, p-p38, p21 and cleaved caspase-3 were also determined to explain the pathways involved in the function of HCG11 in the progression of HCC. Expression of HCG11 and IGF2BP1 were significantly higher in HCC tissues than those in para-tumor tissues. Knockdown of both indicators led to decreased cell viability, proliferation, and migration ability in HepG2 cells while the cell apoptosis and G1 cell cycle arrest were induced after knockdown of HCG11 and IGF2BP1. In addition, suppressed activity of HCG11 and IGF2BP1 blocked the phosphorylation of anti-apoptosis factors, including ERK, JNK and p38 while the mitochondrial apoptosis in HCC cells was initiated by activation of p21 and cleaved caspase-3. HCG11 exerted its effect on HCC via interaction with IGF2BP1, leading to activation of MAPK signaling, which eventually promoted the progression of HCC.
Collapse
Affiliation(s)
- Yantian Xu
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Yuanwen Zheng
- Department of Liver Transplantation and Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Hongyan Liu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Tao Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
13
|
IGF2BP1 overexpression causes fetal-like hemoglobin expression patterns in cultured human adult erythroblasts. Proc Natl Acad Sci U S A 2017; 114:E5664-E5672. [PMID: 28652347 DOI: 10.1073/pnas.1609552114] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Here we investigated in primary human erythroid tissues a downstream element of the heterochronic let-7 miRNA pathway, the insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1), for its potential to affect the hemoglobin profiles in human erythroblasts. Comparison of adult bone marrow to fetal liver lysates demonstrated developmental silencing in IGF2BP1. Erythroid-specific overexpression of IGF2BP1 caused a nearly complete and pancellular reversal of the adult pattern of hemoglobin expression toward a more fetal-like phenotype. The reprogramming of hemoglobin expression was achieved at the transcriptional level by increased gamma-globin combined with decreased beta-globin transcripts resulting in gamma-globin rising to 90% of total beta-like mRNA. Delta-globin mRNA was reduced to barely detectable levels. Alpha-globin levels were not significantly changed. Fetal hemoglobin achieved levels of 68.6 ± 3.9% in the IGF2BP1 overexpression samples compared with 5.0 ± 1.8% in donor matched transduction controls. In part, these changes were mediated by reduced protein expression of the transcription factor BCL11A. mRNA stability and polysome studies suggest IGF2BP1 mediates posttranscriptional loss of BCL11A. These results suggest a mechanism for chronoregulation of fetal and adult hemoglobin expression in humans.
Collapse
|
14
|
van Rensburg G, Mackedenski S, Lee CH. Characterizing the Coding Region Determinant-Binding Protein (CRD-BP)-Microphthalmia-associated Transcription Factor (MITF) mRNA interaction. PLoS One 2017; 12:e0171196. [PMID: 28182633 PMCID: PMC5300761 DOI: 10.1371/journal.pone.0171196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/18/2017] [Indexed: 11/22/2022] Open
Abstract
Coding region determinant-binding protein (CRD-BP) binds to the 3’-UTR of microphthalmia-associated transcription factor (MITF) mRNA to prevent its targeted degradation by miR-340. Here, we aim to further understand the molecular interaction between CRD-BP and MITF RNA. Using point mutation in the GXXG motif of each KH domains, we showed that all four KH domains of CRD-BP are important for their physical association with MITF RNA. We mapped the CRD-BP-binding site in the 3’-UTR of MITF RNA from nts 1330–1740 and showed that the 49-nt fragment 1621–1669 is the minimal size MITF RNA for binding. Upon deletion of nts 1621–1669 within the nts1550-1740 of MITF RNA, there was a 3-fold increase in dissociation constant Kd, which further confirms the critical role sequences within nts 1621–1669 in binding to CRD-BP. Amongst the eight antisense oligonucleotides designed against MITF RNA 1550–1740, we found MHO-1 and MHO-7 as potent inhibitors of the CRD-BP-MITF RNA interaction. Using RNase protection and fluorescence polarization assays, we showed that both MHO-1 and MHO-7 have affinity for the MITF RNA, suggesting that both antisense oligonucleotides inhibited CRD-BP-MITF RNA interaction by directly binding to MITF RNA. The new molecular insights provided in this study have important implications for understanding the oncogenic function of CRD-BP and development of specific inhibitors against CRD-BP-MITF RNA interaction.
Collapse
Affiliation(s)
- Gerrit van Rensburg
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Sebastian Mackedenski
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Chow H. Lee
- Chemistry Program, University of Northern British Columbia, Prince George, British Columbia, Canada
- * E-mail:
| |
Collapse
|
15
|
Role of let-7 family microRNA in breast cancer. Noncoding RNA Res 2016; 1:77-82. [PMID: 30159414 PMCID: PMC6096426 DOI: 10.1016/j.ncrna.2016.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 10/29/2016] [Accepted: 10/29/2016] [Indexed: 02/06/2023] Open
Abstract
Metastasis and resistance to therapy significantly contribute to cancer-related deaths. Growing body of evidence suggest that altered expression of microRNAs (miRNAs) is one of the root cause of adverse clinical outcome. miRNAs such as let-7 are the new fine tuners of signaling cascade and cellular processes which regulates the genes in post-transcriptional manner. In this review, we described the regulation of let-7 expression and the involvement of molecular factors in this process. We discussed the mechanism by which let-7 alter the expression of genes involved in the process of tumorigenesis. Further, we listed the pathways targeted by let-7 to reduce the burden of the tumor. In addition, we described the role of let-7 in breast cancer metastasis and stemness properties. This article will provide the in-depth insight into the biology of let-7 miRNA and its role in the breast cancer progression.
Collapse
|
16
|
Stoskus M, Eidukaite A, Griskevicius L. Defining the significance of IGF2BP1 overexpression in t(12;21)(p13;q22)-positive leukemia REH cells. Leuk Res 2016; 47:16-21. [DOI: 10.1016/j.leukres.2016.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 01/06/2016] [Accepted: 05/15/2016] [Indexed: 12/27/2022]
|
17
|
|
18
|
Regulation of Stem Cell Self-Renewal and Oncogenesis by RNA-Binding Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 907:153-88. [PMID: 27256386 DOI: 10.1007/978-3-319-29073-7_7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Throughout their life span, multicellular organisms rely on stem cell systems. During development pluripotent embryonic stem cells give rise to all cell types that make up the organism. After birth, tissue stem cells maintain properly functioning tissues and organs under homeostasis as well as promote regeneration after tissue damage or injury. Stem cells are capable of self-renewal, which is the ability to divide indefinitely while retaining the potential of differentiation into multiple cell types. The ability to self-renew, however, is a double-edged sword; the molecular mechanisms of self-renewal can be a target of malignant transformation driving tumor development and progression. Growing lines of evidence have shown that RNA-binding proteins (RBPs) play pivotal roles in the regulation of self-renewal by modulating metabolism of coding and non-coding RNAs both in normal tissues and in cancers. In this review, we discuss our current understanding of tissue stem cell systems and how RBPs regulate stem cell fates as well as how the regulatory functions of RBPs contribute to oncogenesis.
Collapse
|
19
|
Shih JW, Wang LY, Hung CL, Kung HJ, Hsieh CL. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism. Int J Mol Sci 2015; 16:28943-78. [PMID: 26690121 PMCID: PMC4691085 DOI: 10.3390/ijms161226138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/17/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.
Collapse
Affiliation(s)
- Jing-Wen Shih
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| | - Ling-Yu Wang
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
| | - Hsing-Jien Kung
- Integrated Translational Lab, The Center of Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA 95817, USA.
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan.
| | - Chia-Ling Hsieh
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan.
| |
Collapse
|
20
|
Abstract
Insulin-like growth factor II mRNA-binding protein (IMP3) is an oncofetal protein involved in embryogenesis, which is expressed in a variety of malignant neoplasms. It is rarely expressed in normal adult tissue and benign tumors. The aim of this study was to evaluate the expression of IMP3 in benign and malignant serous tumors of the ovary. Seventy-nine ovarian tumors were examined for IMP3 expression by immunohistochemical analysis, comprising 16 benign serous tumors, 19 borderline serous tumors, and 44 serous carcinomas. Positive staining was defined as brown staining in the cytoplasm. Negative staining was defined as absent staining or staining of <5% of tumor cells. The intensity of staining (weak, moderate, and strong) and percentage (0% to 100%) of neoplastic cells staining positive for cytoplasmic IMP3 staining were recorded in each case. Moderate to strong cytoplasmic staining for IMP3 was observed in 30 of 44 (68%) serous carcinomas of the ovary; in contrast, <5% of the borderline and benign serous tumors expressed IMP3 ranging from weak to strong cytoplasmic staining. Statistically, the difference in IMP3 expression between these groups of tumors was highly significant (P<0.0001). Our findings demonstrate moderate to strong expression of IMP3 in the majority of ovarian serous carcinomas as compared with benign/borderline serous tumors, which demonstrated weak to strong expression in a small minority (<5%) of the tumors. Thus, IMP3 may be a useful adjunctive tool in the pathologic evaluation of ovarian serous tumors.
Collapse
|
21
|
Fakhraldeen SA, Clark RJ, Roopra A, Chin EN, Huang W, Castorino J, Wisinski KB, Kim T, Spiegelman VS, Alexander CM. Two Isoforms of the RNA Binding Protein, Coding Region Determinant-binding Protein (CRD-BP/IGF2BP1), Are Expressed in Breast Epithelium and Support Clonogenic Growth of Breast Tumor Cells. J Biol Chem 2015; 290:13386-400. [PMID: 25861986 DOI: 10.1074/jbc.m115.655175] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
CRD-BP/IGF2BP1 has been characterized as an "oncofetal" RNA binding protein typically highly expressed in embryonic tissues, suppressed in normal adult tissues, but induced in many tumor types. In this study, we show that adult breast tissues express ubiquitous but low levels of CRD-BP protein and mRNA. Although CRD-BP mRNA expression is induced in breast tumor cells, levels remain ∼1000-fold lower than in embryonic tissues. Despite low expression levels, CRD-BP is required for clonogenic growth of breast cancer cells. We reveal that because the most common protein isoform in normal adult breast and breast tumors has an N-terminal deletion (lacking two RNA recognition motif (RRM) domains) and is therefore missing antibody epitopes, CRD-BP expression has been under-reported by previous studies. We show that a CRD-BP mutant mouse strain retains expression of the shorter transcript (ΔN-CRD-BP), which originates in intron 2, suggesting that the impact of complete ablation of this gene in mice is not yet known. Either the full-length CRD-BP or the N-terminally truncated version can rescue the clonogenicity of CRD-BP knockdown breast cancer cells, suggesting that clonogenic function is served by either CRD-BP isoform. In summary, although CRD-BP expression levels are low in breast cancer cells, this protein is necessary for clonogenic activity.
Collapse
Affiliation(s)
| | - Rod J Clark
- From the McArdle Laboratory for Cancer Research and
| | | | - Emily N Chin
- From the McArdle Laboratory for Cancer Research and
| | | | - John Castorino
- the School of Natural Sciences, Hampshire College, Amherst, Massachusetts 01002
| | | | - TaeWon Kim
- Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705-2276 and
| | - Vladimir S Spiegelman
- Dermatology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705-2276 and
| | | |
Collapse
|
22
|
Barnes M, van Rensburg G, Li WM, Mehmood K, Mackedenski S, Chan CM, King DT, Miller AL, Lee CH. Molecular insights into the coding region determinant-binding protein-RNA interaction through site-directed mutagenesis in the heterogeneous nuclear ribonucleoprotein-K-homology domains. J Biol Chem 2014; 290:625-39. [PMID: 25389298 DOI: 10.1074/jbc.m114.614735] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of its four heterogeneous nuclear RNP-K-homology (KH) domains to physically associate with oncogenic mRNAs is a major criterion for the function of the coding region determinant-binding protein (CRD-BP). However, the particular RNA-binding role of each of the KH domains remains largely unresolved. Here, we mutated the first glycine to an aspartate in the universally conserved GXXG motif of the KH domain as an approach to investigate their role. Our results show that mutation of a single GXXG motif generally had no effect on binding, but the mutation in any two KH domains, with the exception of the combination of KH3 and KH4 domains, completely abrogated RNA binding in vitro and significantly retarded granule formation in zebrafish embryos, suggesting that any combination of at least two KH domains cooperate in tandem to bind RNA efficiently. Interestingly, we found that any single point mutation in one of the four KH domains significantly impacted CRD-BP binding to mRNAs in HeLa cells, suggesting that the dynamics of the CRD-BP-mRNA interaction vary over time in vivo. Furthermore, our results suggest that different mRNAs bind preferentially to distinct CRD-BP KH domains. The novel insights revealed in this study have important implications on the understanding of the oncogenic mechanism of CRD-BP as well as in the future design of inhibitors against CRD-BP function.
Collapse
Affiliation(s)
- Mark Barnes
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Gerrit van Rensburg
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Wai-Ming Li
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Kashif Mehmood
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Sebastian Mackedenski
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Ching-Man Chan
- the Division of Life Science and The Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and
| | - Dustin T King
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada
| | - Andrew L Miller
- the Division of Life Science and The Key State Laboratory for Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, and the Marine Biological Laboratory, Woods Hole, Massachusetts 02543
| | - Chow H Lee
- From the Chemistry Program, University of Northern British Columbia, Prince George, British Columbia V2N 4Z9, Canada,
| |
Collapse
|
23
|
Faye MD, Holcik M. The role of IRES trans-acting factors in carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:887-97. [PMID: 25257759 DOI: 10.1016/j.bbagrm.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 02/06/2023]
Abstract
Regulation of protein expression through RNA metabolism is a key aspect of cellular homeostasis. Upon specific cellular stresses, distinct transcripts are selectively controlled to modify protein output in order to quickly and appropriately respond to stress. Reprogramming of the translation machinery is one node of this strict control that typically consists of an attenuation of the global, cap-dependent translation and accompanying switch to alternative mechanisms of translation initiation, such as internal ribosome entry site (IRES)-mediated initiation. In cancer, many aspects of the RNA metabolism are frequently misregulated to provide cancer cells with a growth and survival advantage. This includes changes in the expression and function of RNA binding proteins termed IRES trans-acting factors (ITAFs) that are central to IRES translation. In this review, we will examine select emerging, as well as established, ITAFs with important roles in cancer initiation and progression, and in particular their role in IRES-mediated translation. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Mame Daro Faye
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada; Department of Pediatrics, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada.
| |
Collapse
|
24
|
Mahaira LG, Katsara O, Pappou E, Iliopoulou EG, Fortis S, Antsaklis A, Fotinopoulos P, Baxevanis CN, Papamichail M, Perez SA. IGF2BP1 expression in human mesenchymal stem cells significantly affects their proliferation and is under the epigenetic control of TET1/2 demethylases. Stem Cells Dev 2014; 23:2501-12. [PMID: 24915579 DOI: 10.1089/scd.2013.0604] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a population of cells harboring in many tissues with the ability to differentiate toward many different lineages. Unraveling the molecular profile of MSCs is of great importance due to the fact that these cells are very often used in preclinical and clinical studies. We have previously reported the expression of insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) an oncofetal mRNA-binding protein-in different stem cell types such as bone marrow (BM)-MSC and umbilical cord blood (UCB)-hematopoietic stem cells. Here, we demonstrate that MSCs of adipose tissue, BM, and UC origin have a differential pattern of IGF2BP1 and ten-eleven-translocate 1/2 (TET1/2) expression that could correlate with their proliferation potential. Upon IGF2BP1 interference, a significant reduction of cell proliferation is observed, accompanied by reduced expression of c-MYC and GLI1 and increased p21. We also present, for the first time, evidence that IGF2BP1 is epigenetically regulated by TET1 and TET2 demethylases. Specifically, we show that TET1 directly binds to the promoter of IGF2BP1 gene and affects the hydroxymethylation status of its promoter. These results indicate that IGF2BP1 and TET1/2 contribute to the stemness of MSCs, at least regarding their proliferative potential.
Collapse
Affiliation(s)
- Louisa G Mahaira
- 1 Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital , Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tumor-Suppressive Lipoxygenases Inhibit the Expression of c-mycmRNA Coding Region Determinant-Binding Protein/Insulin-Like Growth Factor II mRNA-Binding Protein 1 in Human Prostate Carcinoma PC-3 Cells. Biosci Biotechnol Biochem 2014; 73:1811-7. [DOI: 10.1271/bbb.90185] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Gutschner T, Hämmerle M, Pazaitis N, Bley N, Fiskin E, Uckelmann H, Heim A, Groβ M, Hofmann N, Geffers R, Skawran B, Longerich T, Breuhahn K, Schirmacher P, Mühleck B, Hüttelmaier S, Diederichs S. Insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) is an important protumorigenic factor in hepatocellular carcinoma. Hepatology 2014; 59:1900-11. [PMID: 24395596 DOI: 10.1002/hep.26997] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 01/03/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatocarcinogenesis is a stepwise process. It involves several genetic and epigenetic alterations, e.g., loss of tumor suppressor gene expression (TP53, PTEN, RB) as well as activation of oncogenes (c-MYC, MET, BRAF, RAS). However, the role of RNA-binding proteins (RBPs), which regulate tumor suppressor and oncogene expression at the posttranscriptional level, are not well understood in hepatocellular carcinoma (HCC). Here we analyzed RBPs induced in human liver cancer, revealing 116 RBPs with a significant and more than 2-fold higher expression in HCC compared to normal liver tissue. We focused our subsequent analyses on the Insulin-like growth factor 2 messenger RNA (mRNA)-binding protein 1 (IGF2BP1) representing the most strongly up-regulated RBP in HCC in our cohort. Depletion of IGF2BP1 from multiple liver cancer cell lines inhibits proliferation and induces apoptosis in vitro. Accordingly, murine xenograft assays after stable depletion of IGF2BP1 reveal that tumor growth, but not tumor initiation, strongly depends on IGF2BP1 in vivo. At the molecular level, IGF2BP1 binds to and stabilizes the c-MYC and MKI67 mRNAs and increases c-Myc and Ki-67 protein expression, two potent regulators of cell proliferation and apoptosis. These substrates likely mediate the impact of IGF2BP1 in human liver cancer, but certainly additional target genes contribute to its function. CONCLUSION The RNA-binding protein IGF2BP1 is an important protumorigenic factor in liver carcinogenesis. Hence, therapeutic targeting of IGF2BP1 may offer options for intervention in human HCC.
Collapse
Affiliation(s)
- Tony Gutschner
- Helmholtz-University-Group "Molecular RNA Biology & Cancer," German Cancer Research Center DKFZ & Institute of Pathology, University Hospital Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu X, Ye H, Li L, Li W, Zhang Y, Zhang JY. Humoral autoimmune responses to insulin-like growth factor II mRNA-binding proteins IMP1 and p62/IMP2 in ovarian cancer. J Immunol Res 2014; 2014:326593. [PMID: 24872956 PMCID: PMC4020369 DOI: 10.1155/2014/326593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/23/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023] Open
Abstract
Ovarian cancer is one of the leading causes of cancer-related deaths among women. There is an urgent need of better approaches for the identification of appropriate biomarkers in the early detection of ovarian cancer. The aim of this study was to elucidate the significance of autoantibodies against insulin-like growth factor II mRNA-binding proteins (IMPs) in patients with ovarian cancer. In this study, autoantibody responses to two members (IMP1 and p62/IMP2) of IMPs were evaluated by enzyme-linked immunosorbent assay (ELISA), western blotting, and indirect immunofluorescence assay in sera from patients with ovarian cancer and normal human individuals. The results have demonstrated that both IMP1 and p62/IMP2 can induce relatively higher frequency of autoantibody responses in patients with ovarian cancer (26.5% and 29.4%) compared to normal individuals (P<0.01). Our preliminary data suggest that IMP1 and p62/IMP2 can stimulate autoimmune responses in ovarian cancer, and anti-IMP1 and anti-p62/IMP2 autoantibodies could be used as potential biomarkers in immunodiagnosis of ovarian cancer.
Collapse
Affiliation(s)
- Xinxin Liu
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Biological Sciences & Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Hua Ye
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Biological Sciences & Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Liuxia Li
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wenjie Li
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yi Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian-Ying Zhang
- Center for Tumor Biotherapy, The First Affiliated Hospital & College of Public Health, Zhengzhou University, Zhengzhou, Henan 450052, China
- Department of Biological Sciences & Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
28
|
Zhou X, Zhang CZ, Lu SX, Chen GG, Li LZ, Liu LL, Yi C, Fu J, Hu W, Wen JM, Yun JP. miR-625 suppresses tumour migration and invasion by targeting IGF2BP1 in hepatocellular carcinoma. Oncogene 2014; 34:965-77. [PMID: 24632613 DOI: 10.1038/onc.2014.35] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 12/29/2013] [Accepted: 01/01/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies and the third leading cause of cancer-related deaths worldwide. Tumour metastasis is one of the major causes of high mortality. microRNAshave been implicated in HCC metastasis. In this study, we found that miR-625 was frequently downregulated in HCC samples. A decrease in miR-625 was significantly correlated with lymph node anddistance metastasis (P=0.013), the presence of portal venous invasion (P=0.036), tumor-node-metastasis (TNM) stage (P=0.027) and unfavourable overall survival (P=0.003). Compared with primary tumours, miR-625 expression was markedly reduced in portal venous metastatic tumours. Re-expression of miR-625 in HCC cells was remarkably effective in suppressing cell migration andinvasiveness in vitro and in vivo. Mechanistically, miR-625 was confirmed to downregulate IGF2 mRNA-binding protein 1(IGF2BP1) directly, the expression of which was inversely correlated with the level of miR-625 in HCC cell lines and tissues. High expression of IGF2BP1 was frequently found in HCC samples, and associated with poor prognosis. Knockdown of endogenous IGF2BP1 by siRNA exhibited similar effects as the overexpression of miR-625, whereas overexpression of IGF2BP1 (without the 3'-UTR) abrogated miR-625-mediated metastasis inhibition. Interference of the PTEN/HSP27 pathway contributed to miR-625-mediated metastasis inhibition. Taken together, our data suggest that miR-625 might function as an antimetastatic miRNA to have an important role in HCC progression by modulating the IGF2BP1/PTEN pathway. The newly identified miR-625/IGF2BP1 axis represents a new potential therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- X Zhou
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China [3] Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - C Z Zhang
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - S-X Lu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - G G Chen
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - L-Z Li
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - L-L Liu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - C Yi
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J Fu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - W Hu
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - J-M Wen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - J-P Yun
- 1] Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China [2] Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
29
|
Assessing specific oligonucleotides and small molecule antibiotics for the ability to inhibit the CRD-BP-CD44 RNA interaction. PLoS One 2014; 9:e91585. [PMID: 24622399 PMCID: PMC3951440 DOI: 10.1371/journal.pone.0091585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/12/2014] [Indexed: 11/19/2022] Open
Abstract
Studies on Coding Region Determinant-Binding Protein (CRD-BP) and its orthologs have confirmed their functional role in mRNA stability and localization. CRD-BP is present in extremely low levels in normal adult tissues, but it is over-expressed in many types of aggressive human cancers and in neonatal tissues. Although the exact role of CRD-BP in tumour progression is unclear, cumulative evidence suggests that its ability to physically associate with target mRNAs is an important criterion for its oncogenic role. CRD-BP has high affinity for the 3′UTR of the oncogenic CD44 mRNA and depletion of CRD-BP in cells led to destabilization of CD44 mRNA, decreased CD44 expression, reduced adhesion and disruption of invadopodia formation. Here, we further characterize the CRD-BP-CD44 RNA interaction and assess specific antisense oligonucleotides and small molecule antibiotics for their ability to inhibit the CRD-BP-CD44 RNA interaction. CRD-BP has a high affinity for binding to CD44 RNA nts 2862–3055 with a Kd of 645 nM. Out of ten antisense oligonucleotides spanning nts 2862–3055, only three antisense oligonucleotides (DD4, DD7 and DD10) were effective in competing with CRD-BP for binding to 32P-labeled CD44 RNA. The potency of DD4, DD7 and DD10 in inhibiting the CRD-BP-CD44 RNA interaction in vitro correlated with their ability to specifically reduce the steady-state level of CD44 mRNA in cells. The aminoglycoside antibiotics neomycin, paramomycin, kanamycin and streptomycin effectively inhibited the CRD-BP-CD44 RNA interaction in vitro. Assessing the potential inhibitory effect of aminoglycoside antibiotics including neomycin on the CRD-BP-CD44 mRNA interaction in cells proved difficult, likely due to their propensity to non-specifically bind nucleic acids. Our results have important implications for future studies in finding small molecules and nucleic acid-based inhibitors that interfere with protein-RNA interactions.
Collapse
|
30
|
Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 2013; 52:101-12. [PMID: 24055342 DOI: 10.1016/j.molcel.2013.08.027] [Citation(s) in RCA: 866] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 05/22/2013] [Accepted: 08/06/2013] [Indexed: 12/22/2022]
Abstract
Abundantly expressed in fetal tissues and adult muscle, the developmentally regulated H19 long noncoding RNA (lncRNA) has been implicated in human genetic disorders and cancer. However, how H19 acts to regulate gene function has remained enigmatic, despite the recent implication of its encoded miR-675 in limiting placental growth. We noted that vertebrate H19 harbors both canonical and noncanonical binding sites for the let-7 family of microRNAs, which plays important roles in development, cancer, and metabolism. Using H19 knockdown and overexpression, combined with in vivo crosslinking and genome-wide transcriptome analysis, we demonstrate that H19 modulates let-7 availability by acting as a molecular sponge. The physiological significance of this interaction is highlighted in cultures in which H19 depletion causes precocious muscle differentiation, a phenotype recapitulated by let-7 overexpression. Our results reveal an unexpected mode of action of H19 and identify this lncRNA as an important regulator of the major let-7 family of microRNAs.
Collapse
Affiliation(s)
- Amanda N Kallen
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
IMP1 promotes choriocarcinoma cell migration and invasion through the novel effectors RSK2 and PPME1. Gynecol Oncol 2013; 131:182-90. [PMID: 23911878 DOI: 10.1016/j.ygyno.2013.07.106] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Oncofetal protein insulin-like growth factor II mRNA-binding protein 1 (IMP1) regulates cellular proliferation and migration. Expression of IMP1 is limited to a few adult human tissues. However, it commonly expresses in a variety of cancers. Our objective was to study the regulatory mechanism of IMP1 on the cellular functions of choriocarcinoma (CC) JAR cells. METHODS IMP1 protein levels were measured in CC tissues via immunohistochemistry. Specific siRNAs were used to down-regulate gene expressions. The abilities of migration and invasion were estimated by wound-healing and Matrigel chamber assays. The profile of IMP1-binding genes was investigated with an Agilent microarray. RT-qPCR, RNA immunoprecipitation, and IMP1 rescue experiments were performed to confirm the association between IMP1 and its binding genes. Gene expression was further analyzed by using RT-PCR and Western blotting. RESULTS Strong IMP1 expressions were frequently detected in CC tissues. Knockdown of IMP1 expression in JAR cells inhibited cell migration and invasion, but did not affect cellular proliferation and morphology. Microarray and RNA-immunoprecipitation results revealed several candidate genes regulated by IMP1. Among them, ribosomal protein S6 kinase (RSK2) and protein phosphatase methylesterase 1 (PPME1) were confirmed to be down-regulated in IMP1-depleted JAR cells. Re-expression of IMP1 into the cells restored the expressions of RSK2 and PPME1. Furthermore, the depletion of RSK2 or PPME1 decreased the migration and invasion of JAR cells. CONCLUSION Our results suggest that IMP1 plays an essential role in the regulation of migration and invasion of human CC cells, possibly through the novel effectors RSK2 and PPME1.
Collapse
|
32
|
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 2012; 70:2657-75. [PMID: 23069990 PMCID: PMC3708292 DOI: 10.1007/s00018-012-1186-z] [Citation(s) in RCA: 543] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.
Collapse
|
33
|
Le HTT, Sorrell AM, Siddle K. Two isoforms of the mRNA binding protein IGF2BP2 are generated by alternative translational initiation. PLoS One 2012; 7:e33140. [PMID: 22427968 PMCID: PMC3299737 DOI: 10.1371/journal.pone.0033140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/09/2012] [Indexed: 12/11/2022] Open
Abstract
IGF2BP2 is a member of a family of mRNA binding proteins that, collectively, have been shown to bind to several different mRNAs in mammalian cells, including one of the mRNAs encoding insulin-like growth factor-2. Polymorphisms in the Igf2bp2 gene are associated with risk of developing type 2 diabetes, but detailed functional characterisation of IGF2BP2 protein is lacking. By immunoblotting with C-terminally reactive antibodies we identified a novel IGF2BP2 isoform with a molecular weight of 58 kDa in both human and rodents, that is expressed at somewhat lower levels than the full-length 65 kDa protein. We demonstrated by mutagenesis that this isoform is generated by alternative translation initiation at the internal Met69. It lacks a conserved N-terminal RNA Recognition Motif (RRM) and would be predicted to differ functionally from the canonical full length isoform. We further investigated IGF2BP2 mRNA transcripts by amplification of cDNA using 5'-RACE. We identified multiple transcription start sites of the human, mouse and rat Igf2bp2 genes in a highly conserved region only 50-90 nts upstream of the major translation start site, ruling out the existence of N-terminally extended isoforms. We conclude that structural heterogeneity of IGF2BP2 protein should be taken into account when considering cellular function.
Collapse
Affiliation(s)
| | | | - Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
34
|
Wang X, Cao L, Wang Y, Wang X, Liu N, You Y. Regulation of let-7 and its target oncogenes (Review). Oncol Lett 2012; 3:955-960. [PMID: 22783372 DOI: 10.3892/ol.2012.609] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are highly evolutionarily-conserved non-coding small RNAs, which were first identified in Caenorhabditis elegans. Let-7 miRNA is involved in the regulation of gene expression in cells. Several novel factors and feedback loops involved in the regulation of the synthesis of let-7 have been identified and additional let-7 target genes have been found. Let-7 has also been shown to be significantly correlated with the occurrence and development of cancer and the results of preliminary studies suggest that it is involved in the regulation of oncogenic pathways in numerous types of tumors. Let-7 is, therefore, a potential molecular target for tumor therapy. Thus, this review examined let-7 and the correlation between let-7 and oncogenic pathways in cancer.
Collapse
Affiliation(s)
- Xirui Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | | | | | | | | | | |
Collapse
|
35
|
Gu W, Katz Z, Wu B, Park HY, Li D, Lin S, Wells AL, Singer RH. Regulation of local expression of cell adhesion and motility-related mRNAs in breast cancer cells by IMP1/ZBP1. J Cell Sci 2012; 125:81-91. [PMID: 22266909 PMCID: PMC3269024 DOI: 10.1242/jcs.086132] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2011] [Indexed: 02/05/2023] Open
Abstract
Metastasis involves tumor cell detachment from the primary tumor, and acquisition of migratory and invasive capabilities. These capabilities are mediated by multiple events, including loss of cell-cell contact, an increase in focal adhesion turnover and failure to maintain a normal cell polarity. We have previously reported that silencing of the expression of the zipcode-binding protein IMP1/ZBP1 in breast tumor patients is associated with metastasis. IMP1/ZBP1 selectively binds to a group of mRNAs that encode important mediators for cell adhesion and motility. Here, we show that in both T47D and MDA231 human breast carcinoma cells IMP1/ZBP1 functions to suppress cell invasion. Binding of ZBP1 to the mRNAs encoding E-cadherin, β-actin, α-actinin and the Arp2/3 complex facilitates localization of the mRNAs, which stabilizes cell-cell connections and focal adhesions. Our studies suggest a novel mechanism through which IMP1/ZBP1 simultaneously regulates the local expression of many cell-motility-related mRNAs to maintain cell adherence and polarity, decrease focal adhesion turnover and maintain a persistent and directional motility.
Collapse
Affiliation(s)
- Wei Gu
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
- Authors for correspondence (; )
| | - Zachary Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Bin Wu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Hye Yoon Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Deling Li
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Stanley Lin
- Department of Pathophysiology, The Key Immunopathology Laboratory of Guangdong Province, Shantou University Medical College, Shantou, Guangdong Province, 515031, China
| | - Amber L. Wells
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx NY 10461, USA
| | - Robert H. Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx NY 10461, USA
- Authors for correspondence (; )
| |
Collapse
|
36
|
Hamdorf M, Berger A, Schüle S, Reinhardt J, Flory E. PKCδ-induced PU.1 phosphorylation promotes hematopoietic stem cell differentiation to dendritic cells. Stem Cells 2011; 29:297-306. [PMID: 21732487 DOI: 10.1002/stem.564] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human CD34(+) hematopoietic stem cells (HSCs) exhibit the potential to differentiate into a variety of specialized blood cells. The distinct intracellular mechanisms that control cell fate and lineage commitment of these multipotent cells are not well defined. In this study, we investigate and modulate the signaling processes during HSC differentiation toward myeloid dendritic cells (mDCs). DC differentiation induced by the cytokines Granulocyte macrophage colony-stimulating factor (GM-CSF) and Interleukin-4 (IL-4) led to activation of the Extracellular-signal-regulated kinase (ERK), protein kinase C (PKC), and Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) but not the SAPK/c-Jun NH(2) -terminal kinase and p38 mitogen-activated protein kinase signaling pathways. From the activated signaling pathways the PKC isoform δ was found to phosphorylate the transcription factor PU.1, which is described as one of the key factors for myeloid HSC differentiation. On molecular level, PKCδ regulated PU.1 activity by affecting its transactivation activity, whereas its DNA binding activity remained unaffected. This was accompanied by PKCδ-induced phosphorylation of the PU.1 transactivation domain. Furthermore, treatment with PKC- and ERK1/2-specific signaling inhibitors impaired both HSC differentiation toward mDCs as well as phosphorylation-mediated transactivation activity of PU.1. Taken together, these results provide new insights into the molecular mechanisms promoting the differentiation process of HSCs toward mDCs and introduce the PKC isoform δ as critical mediator.
Collapse
Affiliation(s)
- Matthias Hamdorf
- Division of Medical Biotechnology, Paul-Ehrlich-Institut, Langen, Germany
| | | | | | | | | |
Collapse
|
37
|
Ohdaira H, Sekiguchi M, Miyata K, Yoshida K. MicroRNA-494 suppresses cell proliferation and induces senescence in A549 lung cancer cells. Cell Prolif 2011; 45:32-8. [PMID: 22151897 DOI: 10.1111/j.1365-2184.2011.00798.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES MicroRNAs (miRNAs) are small functional RNAs that regulate mRNAs for degradation or translational suppression. In the present study, we aimed to reveal functional importance of miRNA-494 (miR-494) in A549 human lung cancer cells. MATERIALS AND METHODS We established A549 cells that constitutively expressed miR-494. Next, we sought to investigate insulin-like growth factor 2 mRNA-binding protein 1 (IGF2BP1) mRNA as an miR-494 target. For this, we constructed a reporter plasmid bearing potential miR-494 binding sequences derived from the 3'-untranslated region (3'-UTR) of IGF2BP1 mRNA in the 3'-UTR of the luciferase gene. RESULTS Through comparison between miR-494 expressing cells and control cells, we revealed that miR-494 suppressed cell proliferation and colony forming activity, and induced senescence. Reporter activity was inhibited by miR-494. In addition, IGF2BP1 mRNA levels were down-regulated in A549 cells that constitutively expressed miR-494. IGF2BP1 has been shown to bind and suppress IGF2 mRNA, and this could be a reason why IGF2BP1 can regulate cell function. Therefore, we analysed IGF2 mRNA levels and revealed that IGF2 was up-regulated in A549 cells that constitutively expressed miR-494. Finally, elevated IGF2 mRNA levels in A549 cells that constitutively expressed miR-494 were suppressed to basal level by an miR-494 inhibitor. CONCLUSIONS Taken together, IGF2BP1 and its downstream target IGF2 could be a crucial axis for miR-494 in regulation of the destiny of A549 cells.
Collapse
Affiliation(s)
- H Ohdaira
- Department of Life Sciences, Meiji University, Kawasaki, Kanagawa, Japan
| | | | | | | |
Collapse
|
38
|
Kishida Y, Natsume A, Kondo Y, Takeuchi I, An B, Okamoto Y, Shinjo K, Saito K, Ando H, Ohka F, Sekido Y, Wakabayashi T. Epigenetic subclassification of meningiomas based on genome-wide DNA methylation analyses. Carcinogenesis 2011; 33:436-41. [PMID: 22102699 DOI: 10.1093/carcin/bgr260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are among the most common intracranial tumors and are mostly curable by surgical resection. However, some populations of meningiomas with benign histological profiles show malignant behavior. The reasons for this inconsistency are yet to be ascertained, and novel diagnostic criteria other than the histological one are urgently needed. The aim of the present study is to subclassify meningiomas from the viewpoint of gene methylation and to determine the subgroup with malignant characteristics. Thirty meningiomas were analyzed using microarrays for 6157 genes and were classified into three clusters on the basis of their methylation status; these were found to be independent of the histological grading. One of the clusters showed a high frequency of recurrence, with a marked accumulation of methylation in a subset of genes. We hypothesized that the aggressive meningiomas universally share characteristic methylation in certain genes; therefore, we chose the genes that strongly contributed to cluster formation. The quantified methylation values of five chosen genes (HOXA6, HOXA9, PENK, UPK3A and IGF2BP1) agreed well with microarray findings, and a scoring system consisting of the five genes significantly correlated with a high frequency of recurrence in an additional validation set of 32 patients. Of particular note is that three cases with malignant transformation already showed hypermethylation at histologically benign stage. In conclusion, a subgroup of meningiomas is characterized by aberrant hypermethylation of the subset of genes in the early stage of tumorigenesis, and our findings highlight the possibility of speculating potential malignancy of meningiomas by assessing methylation status.
Collapse
Affiliation(s)
- Yugo Kishida
- Department of Neurosurgery, Nagoya University School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Noubissi FK, Nikiforov MA, Colburn N, Spiegelman VS. Transcriptional Regulation of CRD-BP by c-myc: Implications for c-myc Functions. Genes Cancer 2011; 1:1074-82. [PMID: 21779431 DOI: 10.1177/1947601910395581] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 11/19/2010] [Accepted: 11/29/2010] [Indexed: 11/15/2022] Open
Abstract
The coding region determinant binding protein, CRD-BP, is a multifunctional RNA binding protein involved in different processes such as mRNA turnover, translation control, and localization. It is mostly expressed in fetal and neonatal tissues, where it regulates many transcripts essential for normal embryonic development. CRD-BP is scarce or absent in normal adult tissues but reactivated and/or overexpressed in various neoplastic and preneoplastic tumors and in most cell lines. Its expression has been associated with the most aggressive form of some cancers. CRD-BP is an important regulator of different genes including a variety of oncogenes or proto-oncogenes (c-myc, β-TrCP1, GLI1, etc.). Regulation of CRD-BP expression is critical for proper control of its targets as its overexpression may play an important role in abnormal cell proliferation, suppression of apoptosis, invasion, and metastasis. Molecular bases of the regulatory mechanisms governing CRD-BP expression are still not completely elucidated. In this article, we have identified c-myc as a novel transcriptional regulator of CRD-BP. We show that c-myc binds to CRD-BP promoter and induces its transcription. This induction of CRD-BP expression contributes to the role of c-myc in the regulation of translation, increase in cell size, and acceleration of cell cycle progression via a mechanism involving upregulation of β-TrCP1 levels and activities and accelerated degradation of PDCD4.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Dermatology and Paul P. Carbone Comprehensive Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | | | | |
Collapse
|
40
|
Barh D, Malhotra R, Ravi B, Sindhurani P. MicroRNA let-7: an emerging next-generation cancer therapeutic. ACTA ACUST UNITED AC 2011; 17:70-80. [PMID: 20179807 PMCID: PMC2826782 DOI: 10.3747/co.v17i1.356] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, various RNA-based technologies have been under evaluation as potential next-generation cancer therapeutics. Micrornas (miRNAS), known to regulate the cell cycle and development, are deregulated in various cancers. Thus, they might serve as good targets or candidates in an exploration of anticancer therapeutics. One attractive candidate for this purpose is let-7 ("lethal-7"). Let-7 is underexpressed in various cancers, and restoration of its normal expression is found to inhibit cancer growth by targeting various oncogenes and inhibiting key regulators of several mitogenic pathways. In vivo, let-7 administration was found effective against mouse-model lung and breast cancers, and our computational prediction supports the possible effectiveness of let-7 in estrogen receptor (ER)-positive metastatic breast cancer. Data also suggest that let-7 regulates apoptosis and cancer stem cell (CSC) differentiation and can therefore be tested as a potential therapeutic in cancer treatment. However, the exact role of let-7 in cancer is not yet fully understood. There is a need to understand the causative molecular basis of let-7 alterations in cancer and to develop proper delivery systems before proceeding to therapeutic applications. This article attempts to highlight certain critical aspects of let-7's therapeutic potential in cancer.
Collapse
Affiliation(s)
- D Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, India.
| | | | | | | |
Collapse
|
41
|
Stoskus M, Gineikiene E, Valceckiene V, Valatkaite B, Pileckyte R, Griskevicius L. Identification of characteristic IGF2BP expression patterns in distinct B-ALL entities. Blood Cells Mol Dis 2011; 46:321-6. [PMID: 21414819 DOI: 10.1016/j.bcmd.2011.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/28/2011] [Accepted: 02/14/2011] [Indexed: 01/26/2023]
Abstract
Insulin-like growth factor 2 mRNA-binding proteins IGF2BP1, IGF2BP2, and IGF2BP3 have been shown to have diagnostic and prognostic utility in a number of epithelial and soft tissue tumors. Still, little is known about the expression of these molecules in different types of leukemia and our study aims to fill this gap. By using an RT-qPCR approach, we have systemically analyzed the expression of three IGF2BP coding genes in normal hematopoietic tissues and distinct acute lymphoblastic leukemia (ALL) entities. We show that low/negative IGF2BP1 and IGF2BP3 and high IGF2BP2 levels are characteristic to healthy donor bone marrow and peripheral blood whereas different B-ALL entities displayed characteristic perturbations of IGF2BP expression patterns. Namely, we have identified significant associations of overexpressed IGF2BP1 with ETV6/RUNX1-positive (r(2)=0.7891, y=0.8105x-0.4471, p<0.0001), underexpressed IGF2BP2 with E2A/PBX1-positive (p<0.01), and overexpressed IGF2BP2 and IGF2BP3 with MLL/AF4-positive (r(2)=0.6571, y=0.1507x-0.2722, p<0.0001, and r(2)=0.7022, y=0.6482x-0.7660, p<0.0001, respectively) leukemia. Secondly, based on transcript expression dynamics during follow-up, we conclude that overexpression of only IGF2BP1 is inherent characteristic of ETV6/RUNX1-positive leukemic blasts in contrast to IGF2BP3 which remained stably expressed throughout the monitoring period and upon the achievement of molecular remission. Finally, our data suggest that IGF2BP3 might be a marker of disease aggressiveness in BCR/ABL1-positive ALL as consistently increasing levels of this transcript during follow-up predicted eventual leukemia relapse by three months. Altogether, our results highlight the potential utility of IGF2BP profiling in precursor B lymphoid neoplasms as the functions of IGF2BPs in normal and malignant hematopoiesis are further delineated.
Collapse
Affiliation(s)
- Mindaugas Stoskus
- Hematology, Oncology, and Transfusion Medicine Center, Vilnius University Hospital, Santariskiu Clinics, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
42
|
Katsara O, Mahaira LG, Iliopoulou EG, Moustaki A, Antsaklis A, Loutradis D, Stefanidis K, Baxevanis CN, Papamichail M, Perez SA. Effects of donor age, gender, and in vitro cellular aging on the phenotypic, functional, and molecular characteristics of mouse bone marrow-derived mesenchymal stem cells. Stem Cells Dev 2011; 20:1549-61. [PMID: 21204633 DOI: 10.1089/scd.2010.0280] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are a very important adult stem cell population with a multitude of potential applications in regenerative medicine. The thorough characterization of the bone marrow MSC (BM-MSC) population derived from the BALB/c species was essential, considering the significance of the murine model amongst animal models. In the present study, we examined the effect of gender, age, and in vitro culture on the basic properties (proliferation, differentiation, and immunosuppressive potential) of BM-MSCs. We found a decline in the progenitor frequencies from the BM of adult mice, lower MSC frequencies in all female donors, and an increase in the BM-MSC proliferation rate upon in vitro propagation. We also examined BM-MSCs for the expression of the 3 major embryonic stem cell transcription factors, Oct3/4, Sox-2, and Nanog, as well as 2 mRNA binding proteins, coding region determinant binding protein/insulin-like growth factor 2 mRNA binding protein 1 (Crd-bp/Imp1) and Deleted in azoospermia-like (Dazl), which are expressed in primitive stem cells, umbilical cord blood-hematopoietic stem cells and amniotic fluid stem cells, respectively. Further, it has been reported that these 2 genes are critical for embryonic development. In this study, therefore, we report, for the first time, the expression of Crd-bp/Imp1 and Dazl in BM-MSCs. Dazl, Oct3/4, and Sox2 were detected in relatively low levels in contrast to Crd-bp/Imp1, its major target c-Myc, as well as Nanog, which were expressed redundantly, irrespective of sex, donor age, or in vitro passaging. These findings could further support the extrinsic theory of aging of the MSC population and the potential implication of embryonic genes in adult stem cell physiology.
Collapse
Affiliation(s)
- Olga Katsara
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, Athens, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yi YC, Wang SC, Chao CC, Su CL, Lee YL, Chen LY. Evaluation of serum autoantibody levels in the diagnosis of ovarian endometrioma. J Clin Lab Anal 2011; 24:357-62. [PMID: 20872572 DOI: 10.1002/jcla.20415] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE We analyzed autoantibodies against tumor-associated antigens (TAAs) in the serum of patients with endometrioma and healthy controls to determine whether autoantibodies can be accurate biomarkers for the diagnosis of ovarian endometrioma. METHODS Serum samples were obtained from 56 patients with endometriosis and 66 healthy women who served as normal controls. The titers of antibodies against a panel of eight TAAs were analyzed using enzyme-linked immunosorbent assay. RESULTS We found that the serum IGFII mRNA-binding protein 1 (IMP1) autoantibody and cyclin B1 autoantibody could discriminate between healthy controls and endometriosis patients (AUC-ROC 0.777; 95% confidence interval [CI] 0.694-0.860, P<0.0005, and AUC-ROC 0.614; 95%confidence interval [CI] 0.513-0.714, P=0.031, respectively). Using 0.073 and 0.007 as the cutoff values for IMP1 and Cyclin B1 autoantibody, respectively, the sensitivity and specificity of IMP1 were 85.7 and 63.6%, respectively. When cylcin B1 was combined with IMP1, the specificity increased to 72.7% and the sensitivity slightly decreased to 83.9%. CONCLUSIONS Our data suggest that IMP1 alone or combined with cyclin B1 seems to fulfill the requirements of sensitivity and specificity to become a useful clinical biomarker of endometrioma. However, further studies will be required to establish the predictive value and to support the clinical use of IMP1/cyclin B1 in the diagnosis and/or screening of endometriosis.
Collapse
Affiliation(s)
- Yu-Chiao Yi
- Department of Obstetrics and Gynecology, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
44
|
Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE, Mu L, Risch H, Yu H. Let-7a regulation of insulin-like growth factors in breast cancer. Breast Cancer Res Treat 2010; 126:687-94. [PMID: 20848182 DOI: 10.1007/s10549-010-1168-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 09/04/2010] [Indexed: 12/01/2022]
Abstract
Expression of certain microRNA genes is regulated by DNA methylation, which in turn affects the activities of their downstream molecules. Our previous study showed that methylated let-7a-3 was associated with low IGF-II expression and favorable prognosis of ovarian cancer. The roles of let-7a-3 methylation in breast cancer and in regulation of IGF expression in the tumor are still unknown. Let-7a-3 methylation, IGF mRNAs, and peptides were analyzed in 348 breast cancer samples using quantitative methylation-specific PCR, qRT-PCR, and ELISA, respectively. The associations of let-7a-3 methylation with IGFs, disease features, and patient survivals were analyzed. In vitro experiments were performed using HeLa cells transfected with let-7a precursors to assess the effect of let-7a on IGF expression. Let-7a-3 methylation was detected frequently in breast cancer. An inverse correlation between let-7a-3 methylation and IGF expression was observed in breast cancer, which was similar to that seen in ovarian cancer. Our in vitro experiment showed that let-7a could increase IGF expression in cancer cells which had low endogenous let-7a. Let-7a-3 methylation was also found to be associated with high grade tumors and ER- or PR-negative cancer. However, let-7a-3 methylation was not associated with disease-free survival or overall survival of breast cancer patients. The study provides further evidence in support of the notion that epigenetic regulation of let-7a-3 may affect the actions of IGFs in cancer. Let-7a may up-regulate the expression of IGFs in cancer cells, which is different from its inhibitory effects on other oncogenes.
Collapse
Affiliation(s)
- Lingeng Lu
- Department of Epidemiology and Public Health, Yale Cancer Center, Yale University School of Medicine, 60 College Street, New Haven, CT 06520-8034, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Schaeffer DF, Owen DR, Lim HJ, Buczkowski AK, Chung SW, Scudamore CH, Huntsman DG, Ng SSW, Owen DA. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) overexpression in pancreatic ductal adenocarcinoma correlates with poor survival. BMC Cancer 2010; 10:59. [PMID: 20178612 PMCID: PMC2837867 DOI: 10.1186/1471-2407-10-59] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 02/23/2010] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma is a lethal disease with a 5-year survival rate of 4% and typically presents in an advanced stage. In this setting, prognostic markers identifying the more agrressive tumors could aid in managment decisions. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3, also known as IMP3 or KOC) is an oncofetal RNA-binding protein that regulates targets such as insulin-like growth factor-2 (IGF-2) and ACTB (beta-actin). Methods We evaluated the expression of IGF2BP3 by immunohistochemistry using a tissue microarray of 127 pancreatic ductal adenocarcinomas with tumor grade 1, 2 and 3 according to WHO criteria, and the prognostic value of IGF2BP3 expression. Results IGF2BP3 was found to be selectively overexpressed in pancreatic ductal adenocarcinoma tissues but not in benign pancreatic tissues. Nine (38%) patient samples of tumor grade 1 (n = 24) and 27 (44%) of tumor grade 2 (n = 61) showed expression of IGF2BP3. The highest rate of expression was seen in poorly differentiated specimen (grade 3, n = 42) with 26 (62%) positive samples. Overall survival was found to be significantly shorter in patients with IGF2BP3 expressing tumors (P = 0.024; RR 2.3, 95% CI 1.2-4.8). Conclusions Our data suggest that IGF2BP3 overexpression identifies a subset of pancreatic ductal adenocarcinomas with an extremely poor outcome and supports the rationale for developing therapies to target the IGF pathway in this cancer.
Collapse
Affiliation(s)
- David F Schaeffer
- Department of Pathology, The University of British Columbia, Vancouver BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol 2010; 220:126-39. [PMID: 19882673 DOI: 10.1002/path.2638] [Citation(s) in RCA: 759] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For 50 years the term 'gene' has been synonymous with regions of the genome encoding mRNAs that are translated into protein. However, recent genome-wide studies have shown that the human genome is pervasively transcribed and produces many thousands of regulatory non-protein-coding RNAs (ncRNAs), including microRNAs, small interfering RNAs, PIWI-interacting RNAs and various classes of long ncRNAs. It is now clear that these RNAs fulfil critical roles as transcriptional and post-transcriptional regulators and as guides of chromatin-modifying complexes. Here we review the biology of ncRNAs, focusing on the fundamental mechanisms by which ncRNAs facilitate normal development and physiology and, when dysfunctional, underpin disease. We also discuss evidence that intergenic regions associated with complex diseases express ncRNAs, as well as the potential use of ncRNAs as diagnostic markers and therapeutic targets. Taken together, these observations emphasize the need to move beyond the confines of protein-coding genes and highlight the fact that continued investigation of ncRNA biogenesis and function will be necessary for a comprehensive understanding of human disease.
Collapse
Affiliation(s)
- Ryan J Taft
- Institute for Molecular Bioscience, University of Queensland, Brisbane QLD 4072, Australia
| | | | | | | | | |
Collapse
|
47
|
Jenjaroenpun P, Kuznetsov VA. TTS mapping: integrative WEB tool for analysis of triplex formation target DNA sequences, G-quadruplets and non-protein coding regulatory DNA elements in the human genome. BMC Genomics 2009; 10 Suppl 3:S9. [PMID: 19958507 PMCID: PMC2788396 DOI: 10.1186/1471-2164-10-s3-s9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background DNA triplexes can naturally occur, co-localize and interact with many other regulatory DNA elements (e.g. G-quadruplex (G4) DNA motifs), specific DNA-binding proteins (e.g. transcription factors (TFs)), and micro-RNA (miRNA) precursors. Specific genome localizations of triplex target DNA sites (TTSs) may cause abnormalities in a double-helix DNA structure and can be directly involved in some human diseases. However, genome localization of specific TTSs, their interconnection with regulatory DNA elements and physiological roles in a cell are poor defined. Therefore, it is important to identify comprehensive and reliable catalogue of specific potential TTSs (pTTSs) and their co-localization patterns with other regulatory DNA elements in the human genome. Results "TTS mapping" database is a web-based search engine developed here, which is aimed to find and annotate pTTSs within a region of interest of the human genome. The engine provides descriptive statistics of pTTSs in a given region and its sequence context. Different annotation tracks of TTS-overlapping gene region(s), G4 motifs, CpG Island, miRNA precursors, miRNA targets, transcription factor binding sites (TFBSs), Single Nucleotide Polymorphisms (SNPs), small nucleolar RNAs (snoRNA), and repeat elements are also mapped based onto a sequence location provided by UCSC genome browser, G4 database http://www.quadruplex.org and several other datasets. The results pages provide links to UCSC genome browser annotation tracks and relative DBs. BLASTN program was included to check the uniqueness of a given pTTS in the human genome. Recombination- and mutation-prone genes (e.g. EVI-1, MYC) were found to be significantly enriched by TTSs and multiple co-occurring with our regulatory DNA elements. TTS mapping reveals that a high-complementary and evolutionarily conserved polypurine and polypyrimidine DNA sequence pair linked by a non-conserved short DNA sequence can form miR-483 transcribed from intron 2 of IGF2 gene and bound double-strand nucleic acid TTSs forming natural triplex structures. Conclusion TTS mapping provides comprehensive visual and analytical tools to help users to find pTTSs, G-quadruplets and other regulatory DNA elements in various genome regions. TTS Mapping not only provides sequence visualization and statistical information, but also integrates knowledge about co-localization TTS with various DNA elements and facilitates that data analysis. In particular, TTS Mapping reveals complex structural-functional regulatory module of gene IGF2 including TF MZF1 binding site and ncRNA precursor mir-483 formed by the high-complementary and evolutionarily conserved polypurine- and polypyrimidine-rich DNA pair. Such ncRNAs capable of forming helical triplex structures with a polypurine strand of a nucleic acid duplexes (DNA or RNA) via Hoogsteen or reverse Hoogsteen hydrogen bonds. Our web tool could be used to discover biologically meaningful genome modules and to optimize experimental design of anti-gene treatment.
Collapse
Affiliation(s)
- Piroon Jenjaroenpun
- Department of Genome and Gene Expression Data Analysis, Bioinformatics Institute, 30 Biopolis str #07-01, Singapore.
| | | |
Collapse
|
48
|
Gu W, Pan F, Singer RH. Blocking beta-catenin binding to the ZBP1 promoter represses ZBP1 expression, leading to increased proliferation and migration of metastatic breast-cancer cells. J Cell Sci 2009; 122:1895-905. [PMID: 19461076 DOI: 10.1242/jcs.045278] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
ZBP1 (zipcode-binding protein 1, also known as IMP-1) is an mRNA regulator, functioning in mRNA localization, stability and translational control. ZBP1 is actively expressed during embryogenesis and tumorigenesis, but its expression is repressed in metastatic breast-cancer cell lines and tumors. In this article, we show that downregulation of ZBP1 expression results from its promoter methylation, an epigenetic process that remodels the chromatin structure and frequently represses gene activity. Demethylation of the ZBP1 promoter in metastatic cells reactivated ZBP1 expression, owing to restoration of the interaction of the ZBP1 promoter with beta-catenin. Loss of ZBP1 function not only increased growth ability of metastatic cells, but also promoted cell migration. We identified a number of mRNAs that were selectively associated with ZBP1 in breast-cancer cells. Many of these are involved in cell motility and in cell-cycle regulation, and displayed altered expression patterns in the absence of ZBP1. These data suggest that repression of ZBP1 deregulates its associated mRNAs, leading to the phenotypic changes of breast cancers.
Collapse
Affiliation(s)
- Wei Gu
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
49
|
Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 2009; 8:843-52. [PMID: 19221491 DOI: 10.4161/cc.8.6.7907] [Citation(s) in RCA: 338] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Micro (mi)RNAs are emerging as important regulators of cellular differentiation, their importance underscored by the fact that they are often dysregulated during carcinogenesis. Two evolutionary conserved families, let-7 and miR-200, regulate key differentiation processes during development. Loss of let-7 in cancer results in reverse embryogenesis and dedifferentiation, and miR-200 has been identified as a powerful regulator of epithelial-to-mesenchymal transition (EMT). Recent findings have connected let-7 with stem cell maintenance and point at a connection between EMT and stem cell formation. A part of tumor progression can be viewed as a continuum of progressive dedifferentiation (EMT) with a cell at the endpoint that has stem cell-like properties. I propose that steps of this process are driven by specific changes in the expression of let-7 and miR-200 family members.
Collapse
Affiliation(s)
- Marcus E Peter
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
50
|
Köbel M, Xu H, Bourne PA, Spaulding BO, Shih IM, Mao TL, Soslow RA, Ewanowich CA, Kalloger SE, Mehl E, Lee CH, Huntsman D, Gilks CB. IGF2BP3 (IMP3) expression is a marker of unfavorable prognosis in ovarian carcinoma of clear cell subtype. Mod Pathol 2009; 22:469-75. [PMID: 19136932 DOI: 10.1038/modpathol.2008.206] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Clear cell carcinoma is an uncommon subtype of ovarian carcinoma, accounting for 10% of cases. Clear cell carcinoma typically presents with stage I or II disease, and in this setting prognostic markers could aid in management decisions, in particular the decision to treat with adjuvant chemotherapy. We tested whether expression of insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3, also known as IMP3) can serve as a new biomarker to predict outcome for patients with clear cell carcinoma and other subtypes of ovarian carcinoma. The expression of IGF2BP3 was evaluated by immunohistochemistry in 475 ovarian carcinomas of different subtypes and correlated with disease-specific survival. IGF2BP3 antibody specificity was validated by correlation of IGF2BP3 protein with mRNA expression level in a series of 35 ovarian carcinomas (r=0.849, P<0.0001). IGF2BP3 protein expression was an independent marker of reduced disease-specific survival (risk ratio 2.9, 95% confidence interval 1.4-5.8) in the clear cell subtype (N=128), but not in high-grade serous (N=198) or endometrioid (N=121) carcinomas. The prognostic significance of IGF2BP3 expression for reduced disease-specific survival (risk ratio 2.6, 95% confidence interval 1.3-5.0) was confirmed in an independent series of cases (N=150) from three different centers in North America. We conclude that IGF2BP3 is the first biomarker of prognostic significance in ovarian clear cell carcinoma that has been validated in an independent case series.
Collapse
Affiliation(s)
- Martin Köbel
- Department of Pathology, Genetic Pathology Evaluation Centre of the Prostate Research Centre, Vancouver General Hospital and British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|