1
|
Effects of protease-activated receptors (PARs) on intracellular calcium dynamics of acinar cells in rat lacrimal glands. Histochem Cell Biol 2013; 140:463-76. [PMID: 23463389 DOI: 10.1007/s00418-013-1082-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 10/27/2022]
Abstract
Protease-activated receptors (PARs) represent a novel class of seven transmembrane domain G-protein coupled receptors, which are activated by proteolytic cleavage. PARs are present in a variety of cells and have been prominently implicated in the regulation of a number of vital functions. Here, lacrimal gland acinar cell responses to PAR activation were examined, with special reference to intracellular Ca(2+) concentration ([Ca(2+)]i) dynamics. In the present study, detection of acinar cell mRNA specific to known PAR subtypes was determined by reverse transcriptase polymerase chain reaction. Only PAR2 mRNA was detected in acinar cells of lacrimal glands. Both trypsin and a PAR2-activating peptide (PAR2-AP), SLIGRL-NH2, induced an increase in [Ca(2+)]i in acinar cells. The removal of extracellular Ca(2+) and the use of Ca(2+) channel blockers did not inhibit PAR2-AP-induced [Ca(2+)]i increases. Furthermore, U73122 and xestospongin C failed to inhibit PAR2-induced increases in [Ca(2+)]i. The origin of the calcium influx observed after activated PAR2-induced Ca(2+) release from intracellular Ca(2+) stores was also evaluated. The NO donor, GEA 3162, mimicked the effects of PAR2 in activating non-capacitative calcium entry (NCCE). However, both calyculin A (100 nM) and a low concentration of Gd(3+) (5 μM) did not completely block the PAR2-AP-induced increase in [Ca(2+)]i. These findings indicated that PAR2 activation resulted primarily in Ca(2+) mobilization from intracellular Ca(2+) stores and that PAR2-mediated [Ca(2+)]i changes were mainly independent of IP3. RT-PCR indicated that TRPC 1, 3 and 6, which play a role in CCE and NCCE, are expressed in acinar cells. We suggest that PAR2-AP differentially regulates both NCCE and CCE, predominantly NCCE. Finally, our results suggested that PAR2 may function as a key receptor in calcium-related cell homeostasis under pathophysiological conditions such as tissue injury or inflammation.
Collapse
|
2
|
Taylor CW, Tovey SC. IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2010; 2:a004010. [PMID: 20980441 DOI: 10.1101/cshperspect.a004010] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP(3)R) and their relatives, ryanodine receptors, are the channels that most often mediate Ca(2+) release from intracellular stores. Their regulation by Ca(2+) allows them also to propagate cytosolic Ca(2+) signals regeneratively. This brief review addresses the structural basis of IP(3)R activation by IP(3) and Ca(2+). IP(3) initiates IP(3)R activation by promoting Ca(2+) binding to a stimulatory Ca(2+)-binding site, the identity of which is unresolved. We suggest that interactions of critical phosphate groups in IP(3) with opposite sides of the clam-like IP(3)-binding core cause it to close and propagate a conformational change toward the pore via the adjacent N-terminal suppressor domain. The pore, assembled from the last pair of transmembrane domains and the intervening pore loop from each of the four IP(3)R subunits, forms a structure in which a luminal selectivity filter and a gate at the cytosolic end of the pore control cation fluxes through the IP(3)R.
Collapse
Affiliation(s)
- Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, United Kingdom.
| | | |
Collapse
|
3
|
von Hayn K, Werthmann RC, Nikolaev VO, Hommers LG, Lohse MJ, Bünemann M. Gq-mediated Ca2+ signals inhibit adenylyl cyclases 5/6 in vascular smooth muscle cells. Am J Physiol Cell Physiol 2009; 298:C324-32. [PMID: 19889965 DOI: 10.1152/ajpcell.00197.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cAMP and Ca(2+) are antagonistic intracellular messengers for the regulation of vascular smooth muscle tone; rising levels of Ca(2+) lead to vasoconstriction, whereas an increase of cAMP induces vasodilatation. Here we investigated whether Ca(2+) interferes with cAMP signaling by regulation of phophodiesterases (PDEs) or adenylyl cyclases (ACs). We studied regulation of cAMP concentrations by Ca(2+) signals evoked by endogenous purinergic receptors in vascular smooth muscle cells (VSMCs). The fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps allowed the measurement of cAMP levels in single-living VSMCs with subsecond temporal resolution. Moreover, in vitro calibration of Epac1-camps enabled us to estimate the absolute cytosolic cAMP concentrations. Stimulation of purinergic receptors decreased cAMP levels in the presence of the beta-adrenergic agonist isoproterenol. Simultaneous imaging of cAMP with Epac1-camps and of Ca(2+) with Fura 2 revealed a rise of intracellular Ca(2+) in response to purinergic stimulation followed by a decline of cAMP. Chelation of intracellular Ca(2+) and overexpression of Ca(2+)-independent AC4 antagonized this decline of cAMP, whereas pharmacological inhibition of Ca(2+)-activated PDE1 had no effect. AC assays with VSMC membranes revealed a significant attenuation of isoproterenol-stimulated cAMP production by the presence of 2 muM Ca(2+). Furthermore, small interfering RNA (siRNA) knockdown of AC5 and AC6 (the two ACs known to be inhibited by Ca(2+)), significantly reduced the decrease of cAMP upon purinergic stimulation of isoproterenol-prestimulated VSMCs. Taken together, these results implicate a Ca(2+)-mediated inhibition of AC5 and 6 as an important mechanism of purinergic receptor-induced decline of cAMP and show a direct cross talk of these signaling pathways in VSMCs.
Collapse
Affiliation(s)
- Kathrin von Hayn
- University of Marburg, Institute of Pharmacology and Toxicology, Karl-von-Frisch-Strasse 1, 35033 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
4
|
Mondillo C, Pagotto RM, Piotrkowski B, Reche CG, Patrignani ZJ, Cymeryng CB, Pignataro OP. Involvement of nitric oxide synthase in the mechanism of histamine-induced inhibition of Leydig cell steroidogenesis via histamine receptor subtypes in Sprague-Dawley rats. Biol Reprod 2008; 80:144-52. [PMID: 18768916 DOI: 10.1095/biolreprod.108.069484] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
This study was conducted to shed light on the so far unexplored intracellular mechanisms underlying negative modulation of Leydig cell steroidogenesis by histamine (HA). Using the MA-10 cell line and highly purified rat Leydig cells as experimental models, we examined the effect of the amine on biochemical steps known to be modulated by HA or involved in LH/hCG action. In agreement with previous findings, HA at 10 microM showed a potent inhibitory effect on hCG-stimulated steroid synthesis, regardless of the gonadotropin concentration used. Moreover, HA decreased not only LH/hCG-induced cAMP production but also steroid synthesis stimulated by the permeable cAMP analog dibutyryl cAMP (db-cAMP). Considering the post-cAMP sites of HA action, it is shown herein that HA markedly inhibited db-cAMP-stimulated steroidogenic acute regulatory (STAR) protein expression, as well as steps catalyzed by P450-dependent enzymes, mainly the conversion of cholesterol to pregnenolone by cholesterol side-chain cleavage enzyme (CYP11A). The antisteroidogenic action of HA was blocked by addition of the phospholipase C (PLC) inhibitor U73122, and HA significantly augmented inositol triphosphate (IP3) production, suggesting a major role for the PLC/IP3 pathway in HA-induced inhibition of Leydig cell function. Finally, HA increased nitric oxide synthase (NOS) activity, and the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME) markedly attenuated the effect of the amine on steroid synthesis. On the basis of our findings, HA antagonizes the gonadotropin action in Leydig cells at steps before and after cAMP formation. NOS activation is the main intracellular mechanism by which HA exerts its antisteroidogenic effects.
Collapse
Affiliation(s)
- Carolina Mondillo
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CP 1428, Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
5
|
Willoughby D, Cooper DMF. Organization and Ca2+Regulation of Adenylyl Cyclases in cAMP Microdomains. Physiol Rev 2007; 87:965-1010. [PMID: 17615394 DOI: 10.1152/physrev.00049.2006] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The adenylyl cyclases are variously regulated by G protein subunits, a number of serine/threonine and tyrosine protein kinases, and Ca2+. In some physiological situations, this regulation can be readily incorporated into a hormonal cascade, controlling processes such as cardiac contractility or neurotransmitter release. However, the significance of some modes of regulation is obscure and is likely only to be apparent in explicit cellular contexts (or stages of the cell cycle). The regulation of many of the ACs by the ubiquitous second messenger Ca2+provides an overarching mechanism for integrating the activities of these two major signaling systems. Elaborate devices have been evolved to ensure that this interaction occurs, to guarantee the fidelity of the interaction, and to insulate the microenvironment in which it occurs. Subcellular targeting, as well as a variety of scaffolding devices, is used to promote interaction of the ACs with specific signaling proteins and regulatory factors to generate privileged domains for cAMP signaling. A direct consequence of this organization is that cAMP will exhibit distinct kinetics in discrete cellular domains. A variety of means are now available to study cAMP in these domains and to dissect their components in real time in live cells. These topics are explored within the present review.
Collapse
Affiliation(s)
- Debbie Willoughby
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Abstract
IP3Rs (inositol 1,4,5-trisphosphate receptors) are expressed in the membranes of non-mitochondrial organelles in most animal cells, but their presence and role within the plasma membrane are unclear. Whole-cell patch-clamp recording from DT40 cells expressing native or mutated IP3Rs has established that each cell expresses just two or three functional IP3Rs in its plasma membrane. Only approx. 50% of the Ca2+ entry evoked by stimulation of the B-cell receptor is mediated by store-operated Ca2+ entry, the remainder appears to be carried by the IP3Rs expressed in the plasma membrane. Ca2+ entering the cell via just two large-conductance IP3Rs is likely to have very different functional consequences from the comparable amount of Ca2+ that enters through the several thousand low-conductance store-operated channels.
Collapse
Affiliation(s)
- C W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| | | |
Collapse
|
7
|
Liu Y, Taylor CW. Stimulation of arachidonic acid release by vasopressin in A7r5 vascular smooth muscle cells mediated by Ca2+-stimulated phospholipase A2. FEBS Lett 2006; 580:4114-20. [PMID: 16828086 DOI: 10.1016/j.febslet.2006.06.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 06/19/2006] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) regulates many aspects of vascular smooth muscle behaviour, but the mechanisms linking receptors to AA release are unclear. In A7r5 vascular smooth muscle cells pre-labelled with (3)H-AA, vasopressin caused a concentration-dependent stimulation of 3H-AA release that required phospholipase C and an increase in cytosolic [Ca2+]. Ca2+ release from intracellular stores and Ca2+ entry via L-type channels or the capacitative Ca2+ entry pathway were each effective to varying degrees. Selective inhibitors of PLA2 inhibited the 3H-AA release evoked by vasopressin, though not the underlying Ca2+ signals, and established that cPLA2 mediates the release of AA. We conclude that in A7r5 cells vasopressin stimulates AA release via a Ca2+-dependent activation of cPLA2.
Collapse
Affiliation(s)
- Yingjie Liu
- Department of Pharmacology, Tennis Court Road, Cambridge CB2 1PD, UK
| | | |
Collapse
|
8
|
Moneer Z, Pino I, Taylor E, Broad L, Liu Y, Tovey S, Staali L, Taylor C. Different phospholipase-C-coupled receptors differentially regulate capacitative and non-capacitative Ca2+ entry in A7r5 cells. Biochem J 2005; 389:821-9. [PMID: 15918794 PMCID: PMC1180733 DOI: 10.1042/bj20050145] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several receptors, including those for AVP (Arg8-vasopressin) and 5-HT (5-hydroxytryptamine), share an ability to stimulate PLC (phospholipase C) and so production of IP3 (inositol 1,4,5-trisphosphate) and DAG (diacylglycerol) in A7r5 vascular smooth muscle cells. Our previous analysis of the effects of AVP on Ca2+ entry [Moneer, Dyer and Taylor (2003) Biochem. J. 370, 439-448] showed that arachidonic acid released from DAG stimulated NO synthase. NO then stimulated an NCCE (non-capacitative Ca2+ entry) pathway, and, via cGMP and protein kinase G, it inhibited CCE (capacitative Ca2+ entry). This reciprocal regulation ensured that, in the presence of AVP, all Ca2+ entry occurred via NCCE to be followed by a transient activation of CCE only when AVP was removed [Moneer and Taylor (2002) Biochem. J. 362, 13-21]. We confirm that, in the presence of AVP, all Ca2+ entry occurs via NCCE, but 5-HT, despite activating PLC and evoking release of Ca2+ from intracellular stores, stimulates Ca2+ entry only via CCE. We conclude that two PLC-coupled receptors differentially regulate CCE and NCCE. We also address evidence that, in some A7r5 cells lines, AVP fails either to stimulate NCCE or inhibit CCE [Brueggemann, Markun, Barakat, Chen and Byron (2005) Biochem. J. 388, 237-244]. Quantitative PCR analysis suggests that these cells predominantly express TRPC1 (transient receptor potential canonical 1), whereas cells in which AVP reciprocally regulates CCE and NCCE express a greater variety of TRPC subtypes (TRPC1=6>2>3).
Collapse
Affiliation(s)
- Zahid Moneer
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Irene Pino
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Emily J. A. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Lisa M. Broad
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Yingjie Liu
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Stephen C. Tovey
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Leila Staali
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Colin W. Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
9
|
Landa LR, Harbeck M, Kaihara K, Chepurny O, Kitiphongspattana K, Graf O, Nikolaev VO, Lohse MJ, Holz GG, Roe MW. Interplay of Ca2+ and cAMP signaling in the insulin-secreting MIN6 beta-cell line. J Biol Chem 2005; 280:31294-302. [PMID: 15987680 PMCID: PMC3508785 DOI: 10.1074/jbc.m505657200] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca2+ and cAMP are important second messengers that regulate multiple cellular processes. Although previous studies have suggested direct interactions between Ca2+ and cAMP signaling pathways, the underlying mechanisms remain unresolved. In particular, direct evidence for Ca2+-regulated cAMP production in living cells is incomplete. Genetically encoded fluorescence resonance energy transfer-based biosensors have made possible real-time imaging of spatial and temporal gradients of intracellular cAMP concentration in single living cells. Here, we used confocal microscopy, fluorescence resonance energy transfer, and insulin-secreting MIN6 cells expressing Epac1-camps, a biosynthetic unimolecular cAMP indicator, to better understand the role of intracellular Ca2+ in cAMP production. We report that depolarization with high external K+, tolbutamide, or glucose caused a rapid increase in cAMP that was dependent on extracellular Ca2+ and inhibited by nitrendipine, a Ca2+ channel blocker, or 2',5'-dideoxyadenosine, a P-site antagonist of transmembrane adenylate cyclases. Stimulation of MIN6 cells with glucose in the presence of tetraethylammonium chloride generated concomitant Ca2+ and cAMP oscillations that were abolished in the absence of extracellular Ca2+ and blocked by 2',5'-dideoxyadenosine or 3-isobutyl-1-methylxanthine, an inhibitor of phosphodiesterase. Simultaneous measurements of Ca2+ and cAMP concentrations with Fura-2 and Epac1-camps, respectively, revealed a close temporal and causal interrelationship between the increases in cytoplasmic Ca2+ and cAMP levels following membrane depolarization. These findings indicate highly coordinated interplay between Ca2+ and cAMP signaling in electrically excitable endocrine cells and suggest that Ca2+-dependent cAMP oscillations are derived from an increase in adenylate cyclase activity and periodic activation and inactivation of cAMP-hydrolyzing phosphodiesterase.
Collapse
Affiliation(s)
- Luis R. Landa
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Mark Harbeck
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Kelly Kaihara
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Oleg Chepurny
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | | | - Oliver Graf
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Viacheslav O. Nikolaev
- Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, D-97078 Würzburg, Germany
| | - George G. Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016
| | - Michael W. Roe
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
- To whom correspondence should be addressed: Dept. of Medicine MC-1027, The University of Chicago, 5841 South Maryland Ave., Chicago, IL 60637. Tel.: 773-702-4965; Fax: 773-834-0486;
| |
Collapse
|
10
|
Mondillo C, Patrignani Z, Reche C, Rivera E, Pignataro O. Dual role of histamine in modulation of Leydig cell steroidogenesis via HRH1 and HRH2 receptor subtypes. Biol Reprod 2005; 73:899-907. [PMID: 15917347 DOI: 10.1095/biolreprod.105.041285] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Although several reports indicate effects of histamine (HA) on female reproductive functions, scant literature exists to suggest a physiological role of HA in the male gonad. In the present study, we report a dual concentration-dependent effect of HA on steroidogenesis in MA-10 murine Leydig cells and purified rat Leydig cells. Although 1 nM HA can stimulate steroid production and significantly increase the response to LH/hCG in these cells, 10 microM HA exerts an inhibitory effect. We also provide confirming evidence for the existence of functional HRH1 and HRH2 receptors in both experimental models. The use of HRH1 and HRH2 selective agonists and antagonists led us to suggest that HRH2 activation would be largely responsible for stimulation of steroidogenesis, while HRH1 activation is required for inhibition of steroid synthesis. Our results regarding signal transduction pathways associated with these receptors indicate the coupling of HRH2 to the adenylate cyclase system through direct interaction with a Gs protein. Moreover, we show HRH1 activation mediates increases in inositol phosphate production, possibly due to coupling of this receptor to Gq protein and phospholipase C activation. The data compiled in this report clearly indicate that HA can modulate Leydig cell steroidogenesis in the testis and suggest a possible new physiological site of action for HA. Given that many drugs binding to HRH1, HRH2, or both, are widely prescribed for the treatment of diverse HA-related pathologies, it seems necessary to increase the knowledge regarding histaminergic regulation of testicular functions, to avoid possible unexpected side effects of such substances in the testis.
Collapse
Affiliation(s)
- Carolina Mondillo
- Lab of Molecular Endocrinology and Signal Transduction, Institute of Biology and Experimental Medicine-CONICET, CP 1428, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|