1
|
Li J, Wei J, Fu P, Gu J. Identification of novel proteins for coronary artery disease by integrating GWAS data and human plasma proteomes. Heliyon 2024; 10:e38036. [PMID: 39386869 PMCID: PMC11462259 DOI: 10.1016/j.heliyon.2024.e38036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
Background Most coronary artery disease (CAD) risk loci identified by genome-wide association studies (GWAS) are located in non-coding regions, hampering the interpretation of how they confer CAD risk. It is essential to integrate GWAS with molecular traits data to further explore the genetic basis of CAD. Methods We used the probabilistic Mendelian randomization (PMR) method to identify potential proteins involved in CAD by integrating CAD GWAS data (∼76,014 cases and ∼264,785 controls) and human plasma proteomes (N = 35,559). Then, Bayesian co-localization analysis, confirmatory PMR analysis using independent plasma proteome data (N = 7752), and gene expression data (N1 = 213, N2 = 670) were performed to validate candidate proteins. We further investigated the associations between candidate proteins and CAD-related traits and explored the rationality and biological functions of candidate proteins through disease enrichment, cell type-specific, GO, and KEGG enrichment analysis. Results This study inferred that the abundance of 30 proteins in the plasma was causally associated with CAD (P < 0.05/4408, Bonferroni correction), such as PLG, IL15RA, and CSNK2A1. PLG, PSCK9, COLEC11, ZNF180, ERP29, TCP1, FN1, CDH5, IL15RA, MGAT4B, TNFRSF6B, DNM2, and TGF1R were replicated in the confirmatory PMR (P < 0.05). PCSK9 (PP.H4 = 0.99), APOB (PP.H4 = 0.89), FN1 (PP.H4 = 0.87), and APOC1 (PP.H4 = 0.78) coding proteins shared one common variant with CAD. MTAP, TCP1, APOC2, ERP29, MORF4L1, C19orf80, PCSK9, APOC1, EPOR, DNM2, TNFRSF6B, CDKN2B, and LDLR were supported by PMR at the transcriptome level in whole blood and/or coronary arteries (P < 0.05). Enrichment analysis identified multiple pathways involved in cholesterol metabolism, regulation of lipoprotein levels and telomerase, such as cholesterol metabolism (hsa04979, P = 2.25E-7), plasma lipoprotein particle clearance (GO:0034381, P = 5.47E-5), and regulation of telomerase activity (GO:0051972, P = 2.34E-3). Conclusions Our integration analysis has identified 30 candidate proteins for CAD, which may provide important leads to design future functional studies and potential drug targets for CAD.
Collapse
Affiliation(s)
- Jiqing Li
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Jiate Wei
- Office of Hospital Management Research, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Ping Fu
- Jinan Center for Disease Control and Prevention, Jinan, 250012, Shandong, China
| | - Jianhua Gu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| |
Collapse
|
2
|
Deng H, Rao X, Zhang S, Chen L, Zong Y, Zhou R, Meng R, Dong X, Wu G, Li Q. Protein kinase CK2: An emerging regulator of cellular metabolism. Biofactors 2024; 50:624-633. [PMID: 38158592 DOI: 10.1002/biof.2032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The protein kinase casein kinase 2 (CK2) exerts its influence on the metabolism of three major cellular substances by phosphorylating essential protein molecules involved in various cellular metabolic pathways. These substances include hormones, especially insulin, rate-limiting enzymes, transcription factors of key genes, and cytokines. This regulatory role of CK2 is closely tied to important cellular processes such as cell proliferation and apoptosis. Additionally, tumor cells undergo metabolic reprogramming characterized by aerobic glycolysis, accelerated lipid β-oxidation, and abnormally active glutamine metabolism. In this context, CK2, which is overexpressed in various tumors, also plays a pivotal role. Hence, this review aims to summarize the regulatory mechanisms of CK2 in diverse metabolic pathways and tumor development, providing novel insights for the diagnosis, treatment, and prognosis of metabolism-related diseases and cancers.
Collapse
Affiliation(s)
- Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sijia Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Leichong Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Meng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaorong Dong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Korbecki J, Bosiacki M, Pilarczyk M, Gąssowska-Dobrowolska M, Jarmużek P, Szućko-Kociuba I, Kulik-Sajewicz J, Chlubek D, Baranowska-Bosiacka I. Phospholipid Acyltransferases: Characterization and Involvement of the Enzymes in Metabolic and Cancer Diseases. Cancers (Basel) 2024; 16:2115. [PMID: 38893234 PMCID: PMC11171337 DOI: 10.3390/cancers16112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
This review delves into the enzymatic processes governing the initial stages of glycerophospholipid (phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine) and triacylglycerol synthesis. The key enzymes under scrutiny include GPAT and AGPAT. Additionally, as most AGPATs exhibit LPLAT activity, enzymes participating in the Lands cycle with similar functions are also covered. The review begins by discussing the properties of these enzymes, emphasizing their specificity in enzymatic reactions, notably the incorporation of polyunsaturated fatty acids (PUFAs) such as arachidonic acid and docosahexaenoic acid (DHA) into phospholipids. The paper sheds light on the intricate involvement of these enzymes in various diseases, including obesity, insulin resistance, and cancer. To underscore the relevance of these enzymes in cancer processes, a bioinformatics analysis was conducted. The expression levels of the described enzymes were correlated with the overall survival of patients across 33 different types of cancer using the GEPIA portal. This review further explores the potential therapeutic implications of inhibiting these enzymes in the treatment of metabolic diseases and cancer. By elucidating the intricate enzymatic pathways involved in lipid synthesis and their impact on various pathological conditions, this paper contributes to a comprehensive understanding of these processes and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland;
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Maciej Pilarczyk
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | - Magdalena Gąssowska-Dobrowolska
- Department of Cellular Signalling, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland;
| | - Paweł Jarmużek
- Department of Nervous System Diseases, Neurosurgery Center University Hospital in Zielona Góra, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Góra, Poland; (M.P.); (P.J.)
| | | | - Justyna Kulik-Sajewicz
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (M.B.); (D.C.)
| |
Collapse
|
4
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
5
|
Yao Y, Wang Y, Yang F, Wang C, Mao M, Gai Q, He J, Qin Y, Yao X, Lan X, Zhu J, Lu H, Zeng H, Yao X, Bian X, Wang Y. Targeting AKT and CK2 represents a novel therapeutic strategy for SMO constitutive activation-driven medulloblastoma. CNS Neurosci Ther 2022; 28:1033-1044. [PMID: 35419951 PMCID: PMC9160449 DOI: 10.1111/cns.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS Sonic hedgehog subtype medulloblastoma is featured with overactivation of hedgehog pathway and can be targeted by SMO-specific inhibitors. However, the resistance is frequently developed leading to treatment failure of SMO inhibitors. W535L mutation of SMO (SMOW535L ) is thought to be an oncogenic driver for Sonic hedgehog subtype MB and confer resistance to SMO inhibitors. The regulation network of SMOW535L remains to be explored in comparison with wild-type SMO (SMOWT ). METHODS In this study, we profiled transcriptomes, methylomes, and interactomes of MB cells expression SMOWT or SMOW535L in the treatment of DMSO or SMO inhibitor, respectively. RESULTS Analysis of transcriptomic data indicated that SMO inhibitor disrupted processes of endocytosis and cilium organization in MB cells with SMOWT , which are necessary for SMO activation. In MB cells with SMOW535L , however, SMO inhibitor did not affect the two processes-related genes, implying resistance of SMOW535L toward SMO inhibitor. Moreover, we noticed that SMO inhibitor significantly inhibited metabolism-related pathways. Our metabolic analysis indicated that nicotinate and nicotinamide metabolism, glycerolipid metabolism, beta-alanine metabolism, and synthesis and degradation of ketone bodies might be involved in SMOW535L function maintenance. Interactomic analysis revealed casein kinase II (CK2) as an important SMO-associated protein. Finally, we linked CK2 and AKT together and found combination of inhibitors targeting CK2 and AKT showed synergetic effects to inhibit the growth of MB cells with SMO constitutive activation mutation. CONCLUSIONS Taken together, our work described SMO-related transcriptomes, metabolomes, and interactomes under different SMO status and treatment conditions, identifying CK2 and AKT as therapeutic targets for SHH-subtype MB cells with SMO inhibitor resistance.
Collapse
Affiliation(s)
- Yue‐Liang Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Fuzhou Medical College of Nanchang UniversityFuzhouChina
| | - Yan‐Xia Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Fei‐Cheng Yang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chuan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Min Mao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qu‐Jing Gai
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang He
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Qin
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiao‐Xue Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xi Lan
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui‐Min Lu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Zeng
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiao‐Hong Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiu‐Wu Bian
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
6
|
Yu H, Zhao Y, Iqbal A, Xia L, Bai Z, Sun H, Fang X, Yang R, Zhao Z. Effects of polymorphism of the GPAM gene on milk quality traits and its relation to triglyceride metabolism in bovine mammary epithelial cells of dairy cattle. Arch Anim Breed 2021; 64:35-44. [PMID: 34084902 PMCID: PMC8161264 DOI: 10.5194/aab-64-35-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/10/2020] [Indexed: 11/11/2022] Open
Abstract
Mitochondrial glycerol-3-phosphate acyltransferase
(GPAM) catalyses the initial and rate-regulated first-stage pathway of glycerol
lipid synthesis and helps to allocate acyl-CoA (acyl-coenzyme A) to triglyceride (TG)
synthesis and away from degradation pathways in animal lipometabolism-related pathways. In this study, RNA interference (RNAi) and GPAM gene overexpression were used to
examine the correlation between the expression of GPAM and adipogenesis in bovine
mammary epithelial cells (bMECs). Additionally, three novel polymorphisms
were identified within the bovine key functional domain of GPAM with Sanger
sequencing. The relationship between variants of the GPAM gene and milk quality
traits of Chinese Holstein cows was then analysed using statistical methods.
The results showed that knockdown of the GPAM gene significantly reduced the synthesis of
triglycerides in the bMECs (p < 0.05), whereas the overexpression
of the GPAM gene significantly increased the synthesis of TG (p < 0.05). In Chinese Holstein
dairy cattle, the
polymorphic locus of the GPAM gene E20-3386G > A was significantly
correlated with fat, protein and somatic cell count
(p < 0.05); I18-652A > G was significantly correlated with fat, total fat
content, protein, dry matter and somatic cell count (p < 0.05); and I18-726A > G was significantly correlated with protein,
milk yield, dry matter and somatic cell count (p < 0.05). Specifically, individuals with the AA genotype of the
I18-652A > G and E20-3386G > A polymorphic loci had a
higher milk fat percentage (p < 0.05). In summary, GPAM plays a pivotal role in the
intracellular regulation of triglyceride, and its mutations could work as
a competent molecular marker for selective breeding in dairy cattle.
Collapse
Affiliation(s)
- Haibin Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Ambreen Iqbal
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| | - Lixin Xia
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Zitong Bai
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Hao Sun
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Xibi Fang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Runjun Yang
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Changchun, Jilin 130062, PR China.,College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, PR China
| |
Collapse
|
7
|
Coleman RA. It takes a village: channeling fatty acid metabolism and triacylglycerol formation via protein interactomes. J Lipid Res 2019; 60:490-497. [PMID: 30683668 PMCID: PMC6399496 DOI: 10.1194/jlr.s091843] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/14/2019] [Indexed: 12/21/2022] Open
Abstract
Diet, hormones, gene transcription, and posttranslational modifications control the hepatic metabolism of FAs; metabolic dysregulation causes chronic diseases, including cardiovascular disease, and warrants exploration into the mechanisms directing FA and triacylglycerol (TAG) synthesis and degradation. Long-chain FA metabolism begins by formation of an acyl-CoA by a member of the acyl-CoA synthetase (ACSL) family. Subsequently, TAG synthesis begins with acyl-CoA esterification to glycerol-3-phosphate by a member of the glycerol-3-phosphate acyltransferase (GPAT) family. Our studies of the isoforms ACSL1 and GPAT1 strongly suggest that these proteins are members of larger protein assemblies (interactomes). ACSL1 targeted to the ER interacts with peroxisomal, lipid droplet, and tethering proteins, uncovering a dynamic role for ACSL1 in organelle and lipid droplet interactions. On the outer mitochondrial membrane (OMM), PPARα upregulates ACSL1, which interacts with proteins believed to tether lipid droplets to the OMM. In contrast, GPAT1 is upregulated nutritionally by carbohydrate and insulin in a coordinated sequence of enzyme reactions, from saturated FA formation via de novo lipogenesis to FA esterification by GPAT1 and entry into the TAG biosynthesis pathway. We propose that involved enzymes form a dynamic protein interactome that facilitates esterification and that other lipid-metabolizing pathways will exist in similar physiologically regulated interactomes.
Collapse
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
8
|
Yu H, Zhao Z, Yu X, Li J, Lu C, Yang R. Bovine lipid metabolism related gene GPAM: Molecular characterization, function identification, and association analysis with fat deposition traits. Gene 2017; 609:9-18. [DOI: 10.1016/j.gene.2017.01.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 11/28/2022]
|
9
|
Alves-Bezerra M, Ramos IB, De Paula IF, Maya-Monteiro CM, Klett EL, Coleman RA, Gondim KC. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:324-336. [DOI: 10.1016/j.bbalip.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
10
|
Gonzalez-Baro MR, Coleman RA. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:49-55. [PMID: 27377347 DOI: 10.1016/j.bbalip.2016.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 06/23/2016] [Accepted: 06/28/2016] [Indexed: 12/14/2022]
Abstract
Our understanding of the synthesis and remodeling of mitochondrial phospholipids remains incomplete. Two isoforms of glycerol-3-phosphate acyltransferase (GPAT1 and 2) and two isoforms of acylglycerol-3-phosphate acyltransferase (AGPAT4 and 5) are located on the outer mitochondrial membrane, suggesting that both lysophosphatidic acid and phosphatidic acid are synthesized in situ for de novo glycerolipid biosynthesis. However, it is believed that the phosphatidic acid substrate for cardiolipin and phosphatidylethanolamine biosynthesis is produced at the endoplasmic reticulum whereas the phosphatidic acid synthesized in the mitochondria must be transferred to the endoplasmic reticulum before it undergoes additional steps to form the mature phospholipids that are trafficked back to the mitochondria. It is unclear whether mitochondrial phospholipids are remodeled by mitochondrial acyltransferases or whether lysophospholipids must return to the endoplasmic reticulum or to the mitochondrial associated membrane for reesterification. In this review we will focus on the few glycerolipid acyltransferases that are known to be mitochondrial. This article is part of a Special Issue entitled: Lipids of Mitochondria edited by Guenther Daum.
Collapse
Affiliation(s)
- Maria R Gonzalez-Baro
- Instituto de Investigaciones Bioquımicas de La Plata, CONICET, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Possible allostery and oligomerization of recombinant plastidial sn-glycerol-3-phosphate acyltransferase. Arch Biochem Biophys 2014; 554:55-64. [PMID: 24841490 DOI: 10.1016/j.abb.2014.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/26/2014] [Accepted: 05/05/2014] [Indexed: 11/21/2022]
Abstract
Plastidial acyl-acyl carrier protein:sn-glycerol-3-phosphate acyltransferase (GPAT; EC 2.3.1.15) catalyzes the acyl-acyl carrier protein-dependent sn-1 acylation of sn-glycerol 3-phosphate (G3P) to produce lysophosphatic acid. Functional recombinant Erysimum asperum GPAT (EaGPAT), devoid of transit peptide, was produced in yeast. Analysis of the dependence of EaGPAT activity on increasing G3P concentration resulted in a hyperbolic response. EaGPAT exhibited a preference for 18-carbon unsaturated acyl-CoAs. Assays with concentrations of oleoyl-CoA up to 90μM revealed an exponential response to increasing concentrations of acyl donor, and the introduction of increasing concentrations of unlabeled linoleoyl-CoA into the standard reaction mixture resulted in increased incorporation of radiolabeled oleoyl moieties into lysophosphatidic acid. Collectively, the kinetic results suggest that acyl-CoA may act as both substrate and allosteric effector. EaGPAT was also shown to oligomerize to form higher molecular mass multimers, with the monomer and trimer being the predominant forms of the enzyme. Since most allosteric enzyme exhibit quaternary structure, the self-associating properties of EaGPAT are consistent with those of an allosteric enzyme. These results could have important regulatory implications when plastidial GPAT is introduced into a cytoplasmic environment where acyl-CoA is the acyl donor supporting cytoplasmic glycerolipid assembly.
Collapse
|
12
|
Al Quobaili F, Montenarh M. CK2 and the regulation of the carbohydrate metabolism. Metabolism 2012; 61:1512-7. [PMID: 22917893 DOI: 10.1016/j.metabol.2012.07.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/10/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
Protein kinase CK2 was originally identified by analyzing carbohydrate metabolism. Now it is clear that life without CK2 is impossible. Moreover, CK2 activity was found elevated in rapidly proliferating cells when compared to slowly proliferating or resting cells. Proliferating cells have an elevated need for energy which is generated from an elevated carbohydrate metabolism. From early observations and the emerging role of CK2 in cellular regulation, it is not surprising that CK2 plays a role in hormonal regulation of carbohydrate metabolism as well as modulating activities of enzymes directly involved in carbohydrate storage and metabolism. The aim of the present review is to summarize the knowledge about the role of CK2 in the regulation of the carbohydrate metabolism.
Collapse
Affiliation(s)
- Faizeh Al Quobaili
- Department of Biochemistry and Microbiology, Damascus University, 6735 Damascus, Syria
| | | |
Collapse
|
13
|
Coleman RA, Mashek DG. Mammalian triacylglycerol metabolism: synthesis, lipolysis, and signaling. Chem Rev 2011; 111:6359-86. [PMID: 21627334 PMCID: PMC3181269 DOI: 10.1021/cr100404w] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosalind A Coleman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA.
| | | |
Collapse
|
14
|
Regulation of Mitochondrial Protein Import by Cytosolic Kinases. Cell 2011; 144:227-39. [DOI: 10.1016/j.cell.2010.12.015] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 09/04/2010] [Accepted: 12/07/2010] [Indexed: 12/27/2022]
|
15
|
Kerner J, Lee K, Hoppel CL. Post-translational modifications of mitochondrial outer membrane proteins. Free Radic Res 2010; 45:16-28. [DOI: 10.3109/10715762.2010.515218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
16
|
Guha P, Aneja KK, Shilpi RY, Haldar D. Transcriptional regulation of mitochondrial glycerophosphate acyltransferase is mediated by distal promoter via ChREBP and SREBP-1. Arch Biochem Biophys 2009; 490:85-95. [PMID: 19682972 PMCID: PMC2761506 DOI: 10.1016/j.abb.2009.07.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/24/2009] [Accepted: 07/25/2009] [Indexed: 10/20/2022]
Abstract
We have recently identified two promoters, distal and proximal for rat mitochondrial glycerophosphate acyltransferase (mtGPAT). Here we are reporting further characterization of the promoters. Insulin and epidermal growth factor (EGF) stimulated while leptin and glucagon inhibited the luciferase activity of the distal promoter and the amounts of the distal transcript. Conversely, luciferase activity of the proximal promoter and proximal transcript remained unchanged due to these treatments. Only the distal promoter has binding sites for carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1 (SREBP-1). Electromobility shift assays and chromatin immunoprecipitation assays demonstrated that ChREBP and SREBP-1 bind to the mtGPAT distal promoter. Insulin and EGF increased while glucagon and leptin decreased the binding of SREBP-1 and ChREBP to the distal promoter. Thus, the distal promoter is the regulatory promoter while the proximal promoter acts constitutively for rat mtGPAT gene under the influence of hormones and growth factor.
Collapse
Affiliation(s)
- Prajna Guha
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | | | | | | |
Collapse
|
17
|
Wendel AA, Lewin TM, Coleman RA. Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1791:501-6. [PMID: 19038363 PMCID: PMC2737689 DOI: 10.1016/j.bbalip.2008.10.010] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 10/08/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
Abstract
Four homologous isoforms of glycerol-3-phosphate acyltransferase (GPAT), each the product of a separate gene, catalyze the synthesis of lysophosphatidic acid from glycerol-3-phosphate and long-chain acyl-CoA. This step initiates the synthesis of all the glycerolipids and evidence from gain-of-function and loss-of-function studies in mice and in cell culture strongly suggests that each isoform contributes to the synthesis of triacylglycerol. Much work remains to fully delineate the regulation of each GPAT isoform and its individual role in triacylglycerol synthesis.
Collapse
Affiliation(s)
- Angela A Wendel
- Department of Nutrition, CB# 7461, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
18
|
Distler AM, Kerner J, Hoppel CL. Proteomics of mitochondrial inner and outer membranes. Proteomics 2009; 8:4066-82. [PMID: 18763707 DOI: 10.1002/pmic.200800102] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
For the proteomic study of mitochondrial membranes, documented high quality mitochondrial preparations are a necessity to ensure proper localization. Despite the state-of-the-art technologies currently in use, there is no single technique that can be used for all studies of mitochondrial membrane proteins. Herein, we use examples to highlight solubilization techniques, different chromatographic methods, and developments in gel electrophoresis for proteomic analysis of mitochondrial membrane proteins. Blue-native gel electrophoresis has been successful not only for dissection of the inner membrane oxidative phosphorylation system, but also for the components of the outer membrane such as those involved in protein import. Identification of PTMs such as phosphorylation, acetylation, and nitration of mitochondrial membrane proteins has been greatly improved by the use of affinity techniques. However, understanding of the biological effect of these modifications is an area for further exploration. The rapid development of proteomic methods for both identification and quantitation, especially for modifications, will greatly impact the understanding of the mitochondrial membrane proteome.
Collapse
Affiliation(s)
- Anne M Distler
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
19
|
Gimeno RE, Cao J. Thematic review series: glycerolipids. Mammalian glycerol-3-phosphate acyltransferases: new genes for an old activity. J Lipid Res 2008; 49:2079-88. [PMID: 18658143 DOI: 10.1194/jlr.r800013-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glycerol-3-phosphate acyltransferases (GPATs; EC2.3.1.15) catalyze the first step in the de novo synthesis of neutral lipids (triglycerides) and glycerophospholipids. The existence of multiple enzyme isoforms with GPAT activity was predicted many years ago when GPAT activities with distinct kinetic profiles and sensitivity to inhibitors were characterized in two subcellular compartments, mitochondria and microsomes. We now know that mammals have at least four GPAT isoforms with distinct tissue distribution and function. GPAT1 is the major mitochondrial GPAT isoform and is characterized by its resistance to sulfhydryl-modifying reagents, such as N-ethylmaleimide (NEM). GPAT2 is a minor NEM-sensitive mitochondrial isoform. The activity referred to as microsomal GPAT is encoded by two closely related genes, GPAT3 and GPAT4. GPAT isoforms are important regulators of cellular triglyceride and phospholipid content, and may channel fatty acids toward particular metabolic fates. Overexpression and knock-out studies suggest that GPAT isoforms can play important roles in the development of hepatic steatosis, insulin resistance, and obesity; GPAT isoforms are also important for lactation. This review summarizes the current state of knowledge on mammalian GPAT isoforms.
Collapse
Affiliation(s)
- Ruth E Gimeno
- Cardiovascular and Metabolic Diseases, Wyeth Research, Cambridge, MA 02140, USA.
| | | |
Collapse
|
20
|
Acute effects of insulin on the activity of mitochondrial GPAT1 in primary adipocytes. Biochem Biophys Res Commun 2008; 367:201-7. [DOI: 10.1016/j.bbrc.2007.12.127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 12/19/2007] [Indexed: 11/19/2022]
|
21
|
Aneja KK, Guha P, Shilpi RY, Chakraborty S, Schramm LM, Haldar D. The presence of distal and proximal promoters for rat mitochondrial glycerol-3-phosphate acyltransferase. Arch Biochem Biophys 2008; 470:35-43. [PMID: 18021946 PMCID: PMC2262852 DOI: 10.1016/j.abb.2007.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 10/30/2007] [Indexed: 11/22/2022]
Abstract
Sequence analysis using the Promoser program predicted two promoter-like regions for rat mtGPAT: a distal promoter approximately 30kb upstream and a proximal promoter near the first translational codon. Rat liver cells transfected with pGL3-basic vector containing the distal and proximal promoter resulted in 10.8- and 4.8-fold increase in the luciferase activity, respectively. Results of electromobility shift assay and chromatin immunoprecipitation suggested binding of transcription factors to the distal and proximal promoter regions. 5' RACE PCR showed two transcripts with different transcriptional start sites. When transfected rat liver cells were starved and refed, there was about 2.7-fold increase in the luciferase activity with cells transfected with the distal promoter while the proximal promoter showed no change. Thus, the two promoters could be functionally distinguished. Taken together, the results suggest that there are two promoters for rat mtGPAT gene and that the transcriptional regulation is mediated through the distal promoter.
Collapse
Affiliation(s)
- Kawalpreet K Aneja
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Intestinal monoacylglycerol (MG) metabolism is well known to involve its anabolic reesterification to triacylglycerol (TG). We recently provided evidence for enterocyte MG hydrolysis and demonstrated expression of the monoacylglycerol lipase (MGL) gene in human intestinal Caco-2 cells and rodent small intestinal mucosa. Despite the large quantities of MG derived from dietary TG, the regulation of MG metabolism in the intestine has not been previously explored. In the present studies, we examined the mRNA expression, protein expression, and activities of the two known MG-metabolizing enzymes, MGL and MGAT2, in C57BL/6 mouse small intestine, as well as liver and adipose tissues, during development and under nutritional modifications. Results demonstrate that MG metabolism undergoes tissue-specific changes during development. Marked induction of small intestinal MGAT2 protein expression and activity were found during suckling. Moreover, while substantial levels of MGL protein and activity were detected in adult intestine, its regulation during ontogeny was complex, suggesting post-transcriptional regulation of expression. In addition, during the suckling period MG hydrolytic activity is likely to derive from carboxyl ester lipase rather than MGL. In contrast to intestinal MGL, liver MGL mRNA, protein and activity all increased 5-10-fold during development, suggesting that transcriptional regulation is the primary mechanism for hepatic MGL expression. Three weeks of high fat feeding (40% kcal) significantly induced MGL expression and activity in small intestine relative to low fat feeding (10% kcal), but little change was observed upon starvation, suggesting a role for MGL in dietary lipid assimilation following a high fat intake.
Collapse
Affiliation(s)
- Su-Hyoun Chon
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Yin Xiu Zhou
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Joseph L Dixon
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901
| | - Judith Storch
- Department of Nutritional Sciences and the Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey 08901.
| |
Collapse
|
23
|
Gonzalez-Baró MR, Lewin TM, Coleman RA. Regulation of Triglyceride Metabolism. II. Function of mitochondrial GPAT1 in the regulation of triacylglycerol biosynthesis and insulin action. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1195-9. [PMID: 17158253 PMCID: PMC2819211 DOI: 10.1152/ajpgi.00553.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
GPAT1, one of four known glycerol-3-phosphate acyltransferase isoforms, is located on the mitochondrial outer membrane, allowing reciprocal regulation with carnitine palmitoyltransferase-1. GPAT1 is upregulated transcriptionally by insulin and SREBP-1c and downregulated acutely by AMP-activated protein kinase, consistent with a role in triacylglycerol synthesis. Knockout and overexpression studies suggest that GPAT1 is critical for the development of hepatic steatosis and that steatosis initiated by overexpression of GPAT1 causes hepatic, and perhaps also peripheral, insulin resistance. Future questions include the function of GPAT1 in relation to the other GPAT isoforms and whether the lipid intermediates synthesized by GPAT and downstream enzymes in the pathway of glycerolipid biosynthesis participate in intracellular signaling pathways.
Collapse
Affiliation(s)
- Maria R Gonzalez-Baró
- Instituto de Investigaciones Bioquímicas de La Plata (CONICET-UNLP), La Plata, Argentina
| | | | | |
Collapse
|
24
|
Kump DS, Laye MJ, Booth FW. Increased mitochondrial glycerol-3-phosphate acyltransferase protein and enzyme activity in rat epididymal fat upon cessation of wheel running. Am J Physiol Endocrinol Metab 2006; 290:E480-9. [PMID: 16234267 DOI: 10.1152/ajpendo.00321.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Triacylglycerol synthesis in rat epididymal fat overshoots sedentary levels at 10, 29, and 53 h of physical inactivity after 21 days of wheel running. The purposes of the present study were to determine 1) whether this effect is also observed after an acute bout of physical activity and 2) what enzymatic changes might contribute to this effect. We show that more than one bout of physical activity, such as that which occurs with 21 days of wheel running, is necessary for palmitic acid incorporation into triacylglyceride (triglyceride synthesis) to overshoot sedentary values, which suggests that pretranslational mechanisms may be responsible for this overshoot effect. Ten hours after 21 days of wheel running, activity of the mitochondrial glycerol-3-phosphate acyltransferase-1 (mtGPAT1) isoform, a key regulator of triacylglycerol synthesis, overshot sedentary values by 48% and remained higher than sedentary values at 29 and 53 h of reduced physical activity. The overshoot in mtGPAT1 activity was accompanied by an increase in mtGPAT protein level. Cyclic AMP response element-binding protein-binding protein level was higher in sedentary 29 h after 21 days of wheel running. AMP kinase-alpha Thr(172) phosphorylation was increased immediately after treadmill running, but decreased to sedentary values by 5 h after activity. Casein kinase-2alpha protein level and activity were unchanged. We conclude that an increase in mtGPAT protein might contribute to the overshoot in triacylglycerol synthesis.
Collapse
Affiliation(s)
- David S Kump
- Department of Medical Pharmacology and Physiology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | | | | |
Collapse
|
25
|
Collison LW, Jolly CA. Phosphorylation regulates mitochondrial glycerol-3-phosphate-1 acyltransferase activity in T-lymphocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1761:129-39. [PMID: 16431156 DOI: 10.1016/j.bbalip.2005.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 11/29/2005] [Accepted: 12/01/2005] [Indexed: 11/25/2022]
Abstract
Recently, we have shown that stimulation and recombinant ACBP increase mitochondrial glycerol-3-phosphate acyltransferase (mtGPAT) activity in rat splenic T-lymphocytes and that this effect is blunted in aged T-lymphocytes. In addition to decreased mtGPAT activity, aged T-lymphocytes also have altered membrane lipid composition and decreased proliferation in response to antigen. Therefore, we wanted to determine the mechanism by which mtGPAT activity is regulated in aged T-lymphocytes. We show that aged T-lymphocyte mtGPAT activity is not increased by ex vivo stimulation or in vitro phosphorylation with casein kinase II and protein kinase C theta as is seen in young T-lymphocytes. However, other factors that might impact mtGPAT activity such as reduced mtGPAT protein levels, gene expression or alterations in the soluble acyl-CoA pool were not affected by age or stimulation. The age effect was also not compensated for by increased acyl-CoA binding protein expression in aged T-lymphocytes. Currently, two mitochondrial GPAT (mtGPAT) isoforms (mtGPAT1 and mtGPAT2) have been identified. We found that T-lymphocytes express mtGPAT1, but not mtGPAT2, suggesting that at least mtGPAT1 is sensitive to phosphorylation in vitro. Support for direct phosphorylation of mtGPAT1 in young T-lymphocytes is shown by mtGPAT1 immunoprecipitation where a phosphoprotein band was detected migrating at the same molecular weight (85 kDa) as mtGPAT1. This is significant because we also show that T-lymphocytes from mtGPAT1 KO mice have reduced proliferation ex vivo as is seen in aged T-lymphocytes. These data provide evidence for a novel mechanism by which T-lymphocyte proliferation may be regulated and, for the first time, give a potential mechanistic explanation for the correlation between reduced proliferation and membrane lipid changes seen in aged T-lymphocytes.
Collapse
Affiliation(s)
- Lauren W Collison
- Division of Nutritional Sciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
26
|
Pagliarini DJ, Dixon JE. Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 2006; 31:26-34. [PMID: 16337125 DOI: 10.1016/j.tibs.2005.11.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Revised: 10/07/2005] [Accepted: 11/21/2005] [Indexed: 11/25/2022]
Abstract
In the past 1.5 billion years, mitochondria have evolved from oxygen-scavenging bacterial symbionts into primary control centers for energy production and cellular life-and-death processes in eukaryotes. This maturation of mitochondrial function has necessitated the coevolution of various mechanisms of communication with the rest of the cell. Emerging evidence indicates that reversible phosphorylation, the most prevalent form of cellular posttranslational modification, is an important and largely overlooked means of regulating mitochondrial functions. The steadily increasing number of reported mitochondrial kinases, phosphatases and phosphoproteins suggests that phosphorylation is likely to emerge as a common theme in the regulation of mitochondrial processes.
Collapse
Affiliation(s)
- David J Pagliarini
- Department of Pharmacology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0721, USA
| | | |
Collapse
|