1
|
Vien T, Ta M, Kimura L, Onay T, DeCaen P. Primary cilia TRP channel regulates hippocampal excitability. Proc Natl Acad Sci U S A 2023; 120:e2219686120. [PMID: 37216541 PMCID: PMC10235993 DOI: 10.1073/pnas.2219686120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Polycystins (PKD2, PKD2L1, and PKD2L2) are members of the transient receptor potential family, which form ciliary ion channels. Most notably, PKD2 dysregulation in the kidney nephron cilia is associated with polycystic kidney disease, but the function of PKD2L1 in neurons is undefined. In this report, we develop animal models to track the expression and subcellular localization of PKD2L1 in the brain. We discover that PKD2L1 localizes and functions as a Ca2+ channel in the primary cilia of hippocampal neurons that apically radiate from the soma. Loss of PKD2L1 expression ablates primary ciliary maturation and attenuates neuronal high-frequency excitability, which precipitates seizure susceptibility and autism spectrum disorder-like behavior in mice. The disproportionate impairment of interneuron excitability suggests that circuit disinhibition underlies the neurophenotypic features of these mice. Our results identify PKD2L1 channels as regulators of hippocampal excitability and the neuronal primary cilia as organelle mediators of brain electrical signaling.
Collapse
Affiliation(s)
- Thuy N. Vien
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - My C. Ta
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Louise F. Kimura
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Tuncer Onay
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL60911
| | - Paul G. DeCaen
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| |
Collapse
|
2
|
Zhang J, Chen J, Xu J, Xue C, Mao Z. Plant-derived compounds for treating autosomal dominant polycystic kidney disease. FRONTIERS IN NEPHROLOGY 2023; 3:1071441. [PMID: 37675342 PMCID: PMC10479581 DOI: 10.3389/fneph.2023.1071441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/12/2023] [Indexed: 09/08/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common monogenic hereditary kidney disease, is the fourth leading cause of end-stage kidney disease worldwide. In recent years, significant progress has been made in delaying ADPKD progression with different kinds of chemical drugs, such as tolvaptan, rapamycin, and somatostatin. Meanwhile, numerous plant-derived compounds have been investigated for their beneficial effects on slowing ADPKD progression. Among them, saikosaponin-d, Ganoderma triterpenes, curcumin, ginkgolide B, steviol, resveratrol, Sparganum stoloniferum Buch.-Ham, Cordyceps sinensis, triptolide, quercitrin, naringin, cardamonin, gambogic acid, and olive leaf extract have been found to retard renal cyst development by inhibiting cell proliferation or promoting cell apoptosis in renal cyst-lining epithelial cells. Metformin, a synthesized compound derived from French lilac or goat's rue (Galega officinalis), has been proven to retard the progression of ADPKD. This review focuses on the roles and mechanisms of plant-derived compounds in treating ADPKD, which may constitute promising new therapeutics in the future.
Collapse
Affiliation(s)
- Jieting Zhang
- School of Medicine, Shanghai University, Shanghai, China
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jiaxin Chen
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jing Xu
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Cheng Xue
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhiguo Mao
- Division of Nephrology, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
3
|
Maser RL, Calvet JP, Parnell SC. The GPCR properties of polycystin-1- A new paradigm. Front Mol Biosci 2022; 9:1035507. [PMID: 36406261 PMCID: PMC9672506 DOI: 10.3389/fmolb.2022.1035507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1) is an 11-transmembrane (TM) domain-containing protein encoded by the PKD1 gene, the most frequently mutated gene leading to autosomal dominant polycystic kidney disease (ADPKD). This large (> 462 kDal) protein has a complex posttranslational maturation process, with over five proteolytic cleavages having been described, and is found at multiple cellular locations. The initial description of the binding and activation of heterotrimeric Gαi/o by the juxtamembrane region of the PC1 cytosolic C-terminal tail (C-tail) more than 20 years ago opened the door to investigations, and controversies, into PC1's potential function as a novel G protein-coupled receptor (GPCR). Subsequent biochemical and cellular-based assays supported an ability of the PC1 C-tail to bind numerous members of the Gα protein family and to either inhibit or activate G protein-dependent pathways involved in the regulation of ion channel activity, transcription factor activation, and apoptosis. More recent work has demonstrated an essential role for PC1-mediated G protein regulation in preventing kidney cyst development; however, the mechanisms by which PC1 regulates G protein activity continue to be discovered. Similarities between PC1 and the adhesion class of 7-TM GPCRs, most notably a conserved GPCR proteolysis site (GPS) before the first TM domain, which undergoes autocatalyzed proteolytic cleavage, suggest potential mechanisms for PC1-mediated regulation of G protein signaling. This article reviews the evidence supporting GPCR-like functions of PC1 and their relevance to cystic disease, discusses the involvement of GPS cleavage and potential ligands in regulating PC1 GPCR function, and explores potential connections between PC1 GPCR-like activity and regulation of the channel properties of the polycystin receptor-channel complex.
Collapse
Affiliation(s)
- Robin L. Maser
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - James P. Calvet
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephen C. Parnell
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, United States
- Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
4
|
Distribution and Assembly of TRP Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1349:111-138. [PMID: 35138613 DOI: 10.1007/978-981-16-4254-8_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the last several decades, a large family of ion channels have been identified and studied intensively as cellular sensors for diverse physical and/or chemical stimuli. Named transient receptor potential (TRP) channels, they play critical roles in various aspects of cellular physiology. A large number of human hereditary diseases are found to be linked to TRP channel mutations, and their dysregulations lead to acute or chronical health problems. As TRP channels are named and categorized mostly based on sequence homology rather than functional similarities, they exhibit substantial functional diversity. Rapid advances in TRP channel study have been made in recent years and reported in a vast body of literature; a summary of the latest advancements becomes necessary. This chapter offers an overview of current understandings of TRP channel distribution and subunit assembly.
Collapse
|
5
|
Murakami M, Murakami AM, Nemoto T, Ohba T, Yonekura M, Toyama Y, Tomita H, Matsuzaki Y, Sawamura D, Hirota K, Itagaki S, Asada Y, Miyoshi I. Enhanced β-adrenergic response in mice with dominant-negative expression of the PKD2L1 channel. PLoS One 2022; 17:e0261668. [PMID: 35051185 PMCID: PMC8775249 DOI: 10.1371/journal.pone.0261668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022] Open
Abstract
Polycystic kidney disease (PKD) is the most common genetic cause of kidney failure in humans. Among the various PKD-related molecules, PKD2L1 forms cation channels, but its physiological importance is obscure. In the present study, we established a transgenic mouse line by overexpressing the dominant-negative form of the mouse PKD2L1 gene (i.e., lacking the pore-forming domain). The resulting PKD2L1del-Tg mice exhibited supraventricular premature contraction, as well as enhanced sensitivity to β-adrenergic stimulation and unstable R-R intervals in electrocardiography. During spontaneous atrial contraction, PKD2L1del-Tg atria showed enhanced sensitivity to isoproterenol, norepinephrine, and epinephrine. Action potential recording revealed a shortened action potential duration in PKD2L1del-Tg atria in response to isoproterenol. These findings indicated increased adrenergic sensitivity in PKD2L1del-Tg mice, suggesting that PKD2L1 is involved in sympathetic regulation.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Agnieszka M. Murakami
- Department of Pharmacology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Takayuki Nemoto
- Department of Pharmacology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Takayoshi Ohba
- Department of Cell Physiology, Akita University School of Medicine, Akita, Akita, Japan
| | - Manabu Yonekura
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yuichi Toyama
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Hirofumi Tomita
- Department of Cardiology and Nephrology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Yasushi Matsuzaki
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Daisuke Sawamura
- Department of Dermatology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Shirou Itagaki
- Collaboration Center for Community and Industry, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Yujiro Asada
- Division of Pathophysiology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Miyazaki, Japan
| | - Ichiro Miyoshi
- Department of Laboratory Animal Medicine, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
6
|
Djenoune L, Wyart C. Light on a sensory interface linking the cerebrospinal fluid to motor circuits in vertebrates. J Neurogenet 2017; 31:113-127. [PMID: 28789587 DOI: 10.1080/01677063.2017.1359833] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cerebrospinal fluid (CSF) is circulating around the entire central nervous system (CNS). The main function of the CSF has been thought to insure the global homeostasis of the CNS. Recent evidence indicates that the CSF also dynamically conveys signals modulating the development and the activity of the nervous system. The later observation implies that cues from the CSF could act on neurons in the brain and the spinal cord via bordering receptor cells. Candidate neurons to enable such modulation are the cerebrospinal fluid-contacting neurons (CSF-cNs) that are located precisely at the interface between the CSF and neuronal circuits. The atypical apical extension of CSF-cNs bears a cluster of microvilli bathing in the CSF indicating putative sensory or secretory roles in relation with the CSF. In the brainstem and spinal cord, CSF-cNs have been described in over two hundred species by Kolmer and Agduhr, suggesting an important function within the spinal cord. However, the lack of specific markers and the difficulty to access CSF-cNs hampered their physiological investigation. The transient receptor potential channel PKD2L1 is a specific marker of spinal CSF-cNs in vertebrate species. The transparency of zebrafish at early stages eases the functional characterization of pkd2l1+ CSF-cNs. Recent studies demonstrate that spinal CSF-cNs detect spinal curvature via the channel PKD2L1 and modulate locomotion and posture by projecting onto spinal interneurons and motor neurons in vivo. In vitro recordings demonstrated that spinal CSF-cNs are sensing pH variations mainly through ASIC channels, in combination with PKD2L1. Altogether, neurons contacting the CSF appear as a novel sensory modality enabling the detection of mechanical and chemical stimuli from the CSF and modulating the excitability of spinal circuits underlying locomotion and posture.
Collapse
Affiliation(s)
- Lydia Djenoune
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| | - Claire Wyart
- a Institut du Cerveau et de la Moelle épinière (ICM) , Paris , France
| |
Collapse
|
7
|
England SJ, Campbell PC, Banerjee S, Swanson AJ, Lewis KE. Identification and Expression Analysis of the Complete Family of Zebrafish pkd Genes. Front Cell Dev Biol 2017; 5:5. [PMID: 28271061 PMCID: PMC5318412 DOI: 10.3389/fcell.2017.00005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/19/2017] [Indexed: 01/01/2023] Open
Abstract
Polycystic kidney disease (PKD) proteins are trans-membrane proteins that have crucial roles in many aspects of vertebrate development and physiology, including the development of many organs as well as left–right patterning and taste. They can be divided into structurally-distinct PKD1-like and PKD2-like proteins and usually one PKD1-like protein forms a heteromeric polycystin complex with a PKD2-like protein. For example, PKD1 forms a complex with PKD2 and mutations in either of these proteins cause Autosomal Dominant Polycystic Kidney Disease (ADPKD), which is the most frequent potentially-lethal single-gene disorder in humans. Here, we identify the complete family of pkd genes in zebrafish and other teleosts. We describe the genomic locations and sequences of all seven genes: pkd1, pkd1b, pkd1l1, pkd1l2a, pkd1l2b, pkd2, and pkd2l1. pkd1l2a/pkd1l2b are likely to be ohnologs of pkd1l2, preserved from the whole genome duplication that occurred at the base of the teleosts. However, in contrast to mammals and cartilaginous and holostei fish, teleosts lack pkd2l2, and pkdrej genes, suggesting that these have been lost in the teleost lineage. In addition, teleost, and holostei fish have only a partial pkd1l3 sequence, suggesting that this gene may be in the process of being lost in the ray-finned fish lineage. We also provide the first comprehensive description of the expression of zebrafish pkd genes during development. In most structures we detect expression of one pkd1-like gene and one pkd2-like gene, consistent with these genes encoding a heteromeric protein complex. For example, we found that pkd2 and pkd1l1 are expressed in Kupffer's vesicle and pkd1 and pkd2 are expressed in the developing pronephros. In the spinal cord, we show that pkd1l2a and pkd2l1 are co-expressed in KA cells. We also identify potential co-expression of pkd1b and pkd2 in the floor-plate. Interestingly, and in contrast to mouse, we observe expression of all seven pkd genes in regions that may correspond to taste receptors. Taken together, these results provide a crucial catalog of pkd genes in an important model system for elucidating cell and developmental processes and modeling human diseases and the most comprehensive analysis of embryonic pkd gene expression in any vertebrate.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University Syracuse, NY, USA
| | | | | | | |
Collapse
|
8
|
Evidence that polycystins are involved in Hydra cnidocyte discharge. INVERTEBRATE NEUROSCIENCE 2017; 17:1. [PMID: 28078622 DOI: 10.1007/s10158-016-0194-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/19/2016] [Indexed: 12/25/2022]
Abstract
Like other cnidarians, the freshwater organism Hydra is characterized by the possession of cnidocytes (stinging cells). Most cnidocytes are located on hydra tentacles, where they are organized along with sensory cells and ganglion cells into battery complexes. The function of the battery complexes is to integrate multiple types of stimuli for the regulation of cnidocyte discharge. The molecular mechanisms controlling the discharge of cnidocytes are not yet fully understood, but it is known that discharge depends on extracellular Ca2+ and that mechanically induced cnidocyte discharge can be enhanced by the presence of prey extracts and other chemicals. Experiments in this paper show that a PKD2 (polycystin 2) transient receptor potential (TRP) channel is expressed in hydra tentacles and bases. PKD2 (TRPP) channels belong to the TRP channel superfamily and are non-selective Ca2+ channels involved in the transduction of both mechanical and chemical stimuli in other organisms. Non-specific PKD2 channel inhibitors Neo (neomycin) and Gd3+ (gadolinium) inhibit both prey capture and cnidocyte discharge in hydra. The PKD2 activator Trip (triptolide) enhances cnidocyte discharge in both starved and satiated hydra and reduces the inhibition of cnidocyte discharge caused by Neo. PKD1 and 2 proteins are known to act together to transduce mechanical and chemical stimuli; in situ hybridization experiments show that a PKD1 gene is expressed in hydra tentacles and bases, suggesting that polycystins play a direct or indirect role in cnidocyte discharge.
Collapse
|
9
|
Zheng W, Yang J, Beauchamp E, Cai R, Hussein S, Hofmann L, Li Q, Flockerzi V, Berthiaume LG, Tang J, Chen XZ. Regulation of TRPP3 Channel Function by N-terminal Domain Palmitoylation and Phosphorylation. J Biol Chem 2016; 291:25678-25691. [PMID: 27754867 DOI: 10.1074/jbc.m116.756544] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/16/2016] [Indexed: 01/08/2023] Open
Abstract
Transient receptor potential polycystin-3 (TRPP3) is a cation channel activated by calcium and proton and is involved in hedgehog signaling, intestinal development, and sour tasting. How TRPP3 channel function is regulated remains poorly understood. By N-terminal truncation mutations, electrophysiology, and Xenopus oocyte expression, we first identified fragment Asp-21-Ser-42 to be functionally important. We then found that deletion mutant Δ1-36 (TRPP3 missing fragment Met-1-Arg-36) has a similar function as wild-type TRPP3, whereas Δ1-38 is functionally dead, suggesting the importance of Val-37 or Cys-38. Further studies found that Cys-38, but not Val-37, is functionally critical. Cys-38 is a predicted site of palmitoylation, and indeed TRPP3 channel activity was inhibited by palmitoylation inhibitor 2-bromopalmitate and rescued by palmitoylation substrate palmitic acid. The TRPP3 N terminus (TRPP3NT, Met-1-Leu-95) localized along the plasma membrane of HEK293 cells but stayed in the cytoplasm with 2-bromopalmitate treatment or C38A mutation, indicating that TRPP3NT anchors to the surface membrane through palmitoylation at Cys-38. By acyl-biotin exchange assays, we showed that TRPP3, but not mutant C38A, is indeed palmitoylated. When putative phosphorylation sites near Cys-38 were mutated to Asp or Glu to mimic phosphorylation, only T39D and T39E reduced TRPP3 function. Furthermore, TRPP3NT displayed double bands in which the upper band was abolished by λ phosphatase treatment or T39A mutation. However, palmitoylation at Cys-38 and phosphorylation at Thr-39 independently regulated TRPP3 channel function, in contrast to previous reports about correlated palmitoylation with a proximate phosphorylation. Palmitoylation at Cys-38 represents a novel mechanism of functional regulation for TRPP3.
Collapse
Affiliation(s)
- Wang Zheng
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - JungWoo Yang
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Erwan Beauchamp
- Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Ruiqi Cai
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Shaimaa Hussein
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Laura Hofmann
- the Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany, and
| | - Qiang Li
- From the Membrane Protein Disease Research Group, Departments of Physiology and
| | - Veit Flockerzi
- the Experimentelle und Klinische Pharmakologie und Toxikologie, Universität des Saarlandes, 66421 Homburg, Germany, and
| | - Luc G Berthiaume
- Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Jingfeng Tang
- the Institute of Biomedical and Pharmaceutical Sciences and Provincial Cooperative Innovation Center, College of Bioengineering, Hubei University of Technology, 430068 Wuhan, China
| | - Xing-Zhen Chen
- From the Membrane Protein Disease Research Group, Departments of Physiology and .,the Institute of Biomedical and Pharmaceutical Sciences and Provincial Cooperative Innovation Center, College of Bioengineering, Hubei University of Technology, 430068 Wuhan, China
| |
Collapse
|
10
|
Wu X, Indzhykulian AA, Niksch PD, Webber RM, Garcia-Gonzalez M, Watnick T, Zhou J, Vollrath MA, Corey DP. Hair-Cell Mechanotransduction Persists in TRP Channel Knockout Mice. PLoS One 2016; 11:e0155577. [PMID: 27196058 PMCID: PMC4873267 DOI: 10.1371/journal.pone.0155577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022] Open
Abstract
Members of the TRP superfamily of ion channels mediate mechanosensation in some organisms, and have been suggested as candidates for the mechanotransduction channel in vertebrate hair cells. Some TRP channels can be ruled out based on lack of an inner ear phenotype in knockout animals or pore properties not similar to the hair-cell channel. Such studies have excluded Trpv4, Trpa1, Trpml3, Trpm1, Trpm3, Trpc1, Trpc3, Trpc5, and Trpc6. However, others remain reasonable candidates. We used data from an RNA-seq analysis of gene expression in hair cells as well as data on TRP channel conductance to narrow the candidate group. We then characterized mice lacking functional Trpm2, Pkd2, Pkd2l1, Pkd2l2 and Pkd1l3, using scanning electron microscopy, auditory brainstem response, permeant dye accumulation, and single-cell electrophysiology. In all of these TRP-deficient mice, and in double and triple knockouts, mechanotransduction persisted. Together with published studies, these results argue against the participation of any of the 33 mouse TRP channels in hair cell transduction.
Collapse
MESH Headings
- Animals
- Calcium Channels/genetics
- Cochlea/physiology
- Ear, Inner/physiology
- Evoked Potentials, Auditory, Brain Stem/genetics
- Gene Expression Profiling
- Gene Expression Regulation
- Hair Cells, Auditory/physiology
- Hearing
- Mechanotransduction, Cellular
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron, Scanning
- Patch-Clamp Techniques
- Receptors, Cell Surface/genetics
- TRPM Cation Channels/genetics
- TRPP Cation Channels/genetics
- Transient Receptor Potential Channels/genetics
Collapse
Affiliation(s)
- Xudong Wu
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Artur A. Indzhykulian
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Paul D. Niksch
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Roxanna M. Webber
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Miguel Garcia-Gonzalez
- Department of Medicine, Division of Nephrology, University of Maryland, Baltimore, Maryland, United States of America
| | - Terry Watnick
- Department of Medicine, Division of Nephrology, University of Maryland, Baltimore, Maryland, United States of America
| | - Jing Zhou
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melissa A. Vollrath
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- Department of Physiology, McGill University Montréal, Québec, Canada
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School and Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
11
|
Hussein S, Zheng W, Dyte C, Wang Q, Yang J, Zhang F, Tang J, Cao Y, Chen XZ. Acid-induced off-response of PKD2L1 channel in Xenopus oocytes and its regulation by Ca(2.). Sci Rep 2015; 5:15752. [PMID: 26502994 PMCID: PMC4621500 DOI: 10.1038/srep15752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
Polycystic kidney disease (PKD) protein 2 Like 1 (PKD2L1), also called transient receptor potential polycystin-3 (TRPP3), regulates Ca(2+)-dependent hedgehog signalling in primary cilia, intestinal development and sour tasting but with an unclear mechanism. PKD2L1 is a Ca(2+)-permeable cation channel that is activated by extracellular Ca(2+) (on-response) in Xenopus oocytes. PKD2L1 co-expressed with PKD protein 1 Like 3 (PKD1L3) exhibits extracellular acid-induced activation (off-response, i.e., activation following acid removal) but whether PKD1L3 participates in acid sensing remains unclear. Here we used the two-microelectrode voltage-clamp, site directed mutagenesis, Western blotting, reverse transcriptase-polymerase chain reaction (RT-PCR) and immunofluorescence, and showed that PKD2L1 expressed in oocytes exhibits sustained off-response currents in the absence of PKD1L3. PKD1L3 co-expression augmented the PKD2L1 plasma membrane localization but did not alter the observed properties of the off-response. PKD2L1 off-response was inhibited by an increase in intracellular Ca(2+). We also identified two intra-membrane residues aspartic acid 349 (D349) and glutamic acid 356 (E356) in the third transmembrane domain that are critical for PKD2L1 channel function. Our study suggests that PKD2L1 may itself sense acids and defines off-response properties in the absence of PKD1L3.
Collapse
Affiliation(s)
- Shaimaa Hussein
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Wang Zheng
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Chris Dyte
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Qian Wang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - JungWoo Yang
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Fan Zhang
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingfeng Tang
- Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Membrane Protein Disease and Cancer Research Center, Hubei University of Technology, Wuhan, China
| |
Collapse
|
12
|
Hu M, Liu Y, Wu J, Liu X. Influx-Operated Ca(2+) Entry via PKD2-L1 and PKD1-L3 Channels Facilitates Sensory Responses to Polymodal Transient Stimuli. Cell Rep 2015; 13:798-811. [PMID: 26489466 DOI: 10.1016/j.celrep.2015.09.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/18/2015] [Accepted: 09/13/2015] [Indexed: 12/21/2022] Open
Abstract
The polycystic TRP subfamily member PKD2-L1, in complex with PKD1-L3, is involved in physiological responses to diverse stimuli. A major challenge to understanding whether and how PKD2-L1/PKD1-L3 acts as a bona fide molecular transducer is that recombinant channels usually respond with small or undetectable currents. Here, we discover a type of Ca(2+) influx-operated Ca(2+) entry (ICE) that generates pronounced Ca(2+) spikes. Triggered by rapid onset/offset of Ca(2+), voltage, or acid stimuli, Ca(2+)-dependent activation amplifies a small Ca(2+) influx via the channel. Ca(2+) concurrently drives a self-limiting negative feedback (Ca(2+)-dependent inactivation) that is regulated by the Ca(2+)-binding EF hands of PKD2-L1. Our results suggest a biphasic ICE with opposite Ca(2+) feedback regulation that facilitates sensory responses to multimodal transient stimuli. We suggest that such a mechanism may also occur for other sensory modalities and other Ca(2+) channels.
Collapse
Affiliation(s)
- Mingfeng Hu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yuxia Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jinzhi Wu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaodong Liu
- X-Lab for Transmembrane Signaling Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; School of Life Sciences, Tsinghua University, Beijing 100084, China; IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
13
|
Orts-Del'Immagine A, Seddik R, Tell F, Airault C, Er-Raoui G, Najimi M, Trouslard J, Wanaverbecq N. A single polycystic kidney disease 2-like 1 channel opening acts as a spike generator in cerebrospinal fluid-contacting neurons of adult mouse brainstem. Neuropharmacology 2015. [PMID: 26220314 DOI: 10.1016/j.neuropharm.2015.07.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerebrospinal fluid contacting neurons (CSF-cNs) are found around the central canal of all vertebrates. They present a typical morphology, with a single dendrite that projects into the cavity and ends in the CSF with a protuberance. These anatomical features have led to the suggestion that CSF-cNs might have sensory functions, either by sensing CSF movement or composition, but the physiological mechanisms for any such role are unknown. This hypothesis was recently supported by the demonstration that in several vertebrate species medullo-spinal CSF-cNs selectively express Polycystic Kidney Disease 2-Like 1 proteins (PKD2L1). PKD2L1 are members of the 'transient receptor potential (TRP)' superfamily, form non-selective cationic channels of high conductance, are regulated by various stimuli including protons and are therefore suggested to act as sensory receptors. Using patch-clamp whole-cell recordings of CSF-cNs in brainstem slices obtained from wild type and mutant PKD2L1 mice, we demonstrate that spontaneously active unitary currents in CSF-cNs are due to PKD2L1 channels that are capable, with a single opening, of triggering action potentials. Thus PKD2L1 might contribute to the setting of CSF-cN spiking activity. We also reveal that CSF-cNs have the capacity of discriminating between alkalinization and acidification following activation of specific conductances (PKD2L1 vs. ASIC) generating specific responses. Altogether, this study reinforces the idea that CSF-cNs represent sensory neurons intrinsic to the central nervous system and suggests a role for PKD2L1 channels as spike generators.
Collapse
Affiliation(s)
| | - Riad Seddik
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Fabien Tell
- Aix Marseille Université, CNRS, CRN2M UMR 7286, 13344, Marseille, France
| | - Coraline Airault
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France
| | - Ghizlane Er-Raoui
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France; Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Mohamed Najimi
- Université Sultan Moulay Slimane, 23000, Béni Mellal, Morocco
| | - Jérôme Trouslard
- Aix Marseille Université, PPSN EA 4674, 13397, Marseille, France.
| | | |
Collapse
|
14
|
A novel PKD2L1 C-terminal domain critical for trimerization and channel function. Sci Rep 2015; 5:9460. [PMID: 25820328 PMCID: PMC4377555 DOI: 10.1038/srep09460] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/06/2015] [Indexed: 11/08/2022] Open
Abstract
As a transient receptor potential (TRP) superfamily member, polycystic kidney disease 2-like-1 (PKD2L1) is also called TRPP3 and has similar membrane topology as voltage-gated cation channels. PKD2L1 is involved in hedgehog signaling, intestinal development, and sour tasting. PKD2L1 and PKD1L3 form heterotetramers with 3:1 stoichiometry. C-terminal coiled-coil-2 (CC2) domain (G699-W743) of PKD2L1 was reported to be important for its trimerization but independent studies showed that CC2 does not affect PKD2L1 channel function. It thus remains unclear how PKD2L1 proteins oligomerize into a functional channel. By SDS-PAGE, blue native PAGE and mutagenesis we here identified a novel C-terminal domain called C1 (K575-T622) involved in stronger homotrimerization than the non-overlapping CC2, and found that the PKD2L1 N-terminus is critical for dimerization. By electrophysiology and Xenopus oocyte expression, we found that C1, but not CC2, is critical for PKD2L1 channel function. Our co-immunoprecipitation and dynamic light scattering experiments further supported involvement of C1 in trimerization. Further, C1 acted as a blocking peptide that inhibits PKD2L1 trimerization as well as PKD2L1 and PKD2L1/PKD1L3 channel function. Thus, our study identified C1 as the first PKD2L1 domain essential for both PKD2L1 trimerization and channel function, and suggest that PKD2L1 and PKD2L1/PKD1L3 channels share the PKD2L1 trimerization process.
Collapse
|
15
|
Myeong J, Kwak M, Hong C, Jeon JH, So I. Identification of a membrane-targeting domain of the transient receptor potential canonical (TRPC)4 channel unrelated to its formation of a tetrameric structure. J Biol Chem 2014; 289:34990-5002. [PMID: 25349210 DOI: 10.1074/jbc.m114.584649] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Canonical transient receptor potential (TRPC) channels are Ca(2+)-permeable nonselective cation channels that are activated by a wide variety of stimuli, including G protein-coupled receptors (GPCRs). The TRPC4 channel is expressed in a punctate distribution in the membrane. To identify the regulating region of the channel trafficking to the membrane, we generated deletion mutants of the TRPC4 channel. We determined that when either region that was downstream of the 20 amino acids of the N terminus or the 700-730 amino acids was deleted, the mutants were retained in the endoplasmic reticulum. By coexpression of the wild-type TRPC4 with deletion mutants, we found that the 23-29 amino acids of the N terminus regulate a membrane trafficking. Additionally, by the fluorescence resonance energy transfer (FRET) method, we found that the regions downstream of the 99 amino acid region of the N terminus and upstream of the 730 amino acid region in the C terminus produce assembly of the TRPC4 tetramers. We inferred the candidate proteins that regulate or interact with the 23-29 domain of TRPC4.
Collapse
Affiliation(s)
- Jongyun Myeong
- From the Department of Physiology, Seoul National University College of Medicine
| | - Misun Kwak
- From the Department of Physiology, Seoul National University College of Medicine
| | - Chansik Hong
- From the Department of Physiology, Seoul National University College of Medicine
| | - Ju-Hong Jeon
- From the Department of Physiology, Seoul National University College of Medicine
| | - Insuk So
- From the Department of Physiology, Seoul National University College of Medicine
| |
Collapse
|
16
|
Abstract
It has been exciting times since the identification of polycystic kidney disease 1 (PKD1) and PKD2 as the genes mutated in autosomal dominant polycystic kidney disease (ADPKD). Biological roles of the encoded proteins polycystin-1 and TRPP2 have been deduced from phenotypes in ADPKD patients, but recent insights from vertebrate and invertebrate model organisms have significantly expanded our understanding of the physiological functions of these proteins. The identification of additional TRPP (TRPP3 and TRPP5) and polycystin-1-like proteins (PKD1L1, PKD1L2, PKD1L3, and PKDREJ) has added yet another layer of complexity to these fascinating cellular signalling units. TRPP proteins assemble with polycystin-1 family members to form receptor-channel complexes. These protein modules have important biological roles ranging from tubular morphogenesis to determination of left-right asymmetry. The founding members of the polycystin family, TRPP2 and polycystin-1, are a prime example of how studying human disease genes can provide insights into fundamental biological mechanisms using a so-called "reverse translational" approach (from bedside to bench). Here, we discuss the current literature on TRPP ion channels and polycystin-1 family proteins including expression, structure, physical interactions, physiology, and lessons from animal model systems and human disease.
Collapse
Affiliation(s)
- Mariam Semmo
- Renal Division, Department of Medicine, University Medical Centre Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany,
| | | | | |
Collapse
|
17
|
Abstract
Mechanosensitive channels allow cells to respond to changes in membrane stretch that occur due to external stimuli like pressure or flow or that occur because of osmotically induced cell swelling or shrinkage. Ion fluxes through the channels change the membrane potential and ion concentrations and link the stretch to cellular signalling. Changes in cellular activity evoked by mechanical stimuli can be used to elicit local tissue responses or can be transmitted further to generate more widespread responses. Channels can respond directly to membrane stress, can be conferred mechanosensitive by interaction with structural proteins, or can be activated by mechanosensitive signalling pathways. Because mechanosensitive channels are often nonselective cation channels, and invertebrate TRP isoforms are involved in mechanosensation, many of the mammalian TRP isoforms have been investigated with regard to their mechanosensitivity. There is evidence that members of the TRPC, TRPV, TRPM, TRPA and TRPP subfamilies could be in some way mechanosensitive, and each of the activation mechanisms described above is used by a TRP channel. TRP channels may be involved in mechanosensitive processes ranging from flow and pressure sensing in the vasculature and other organs to mechanosensation in sensory neurones and sensory organs. There is also evidence for a role of mechano- or osmosensitive TRP isoforms in osmosensing and the regulation of cell volume. Often, a number of different TRP isoforms have been implicated in a single type of mechanosensitive response. In many cases, the involvement of the isoforms needs to be confirmed, and their exact role in the signalling process determined.
Collapse
Affiliation(s)
- Tim D Plant
- Pharmakologisches Institut, BPC-Marburg, FB-Medizin, Philipps-Universität Marburg, Karl-von-Frisch-Straße 1, 35032, Marburg, Germany,
| |
Collapse
|
18
|
Orts-Del'immagine A, Wanaverbecq N, Tardivel C, Tillement V, Dallaporta M, Trouslard J. Properties of subependymal cerebrospinal fluid contacting neurones in the dorsal vagal complex of the mouse brainstem. J Physiol 2012; 590:3719-41. [PMID: 22570378 DOI: 10.1113/jphysiol.2012.227959] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cerebrospinal fluid (CSF) contacting neurones have been observed in various brain regions such as the hypothalamus, the dorsal nucleus of the raphe and around the central canal (cc) of the spinal cord but their functional role remains unclear. At the level of the spinal cord, subependymal cerebrospinal fluid contacting neurones (S-CSF-cNs) present a peculiar morphology with a soma close to the ependymal layer, a process projecting towards the cc and ending with a bud and a cilium. These neurones were recently shown to express polycystin kidney disease 2-like 1 (PKD2L1 or TRPP3) channels that are members of the polycystin subtype of the transient receptor potential (TRP) channel superfamily and that have been proposed as either chemo- or mechanoreceptors in several tissues. Using immunohistological techniques and whole-cell electrophysiological recordings in brain slices obtained from PKD2L1:EGFP transgenic adult mice, we looked for and determined the functional properties of S-CSF-cNs in the dorsal vagal complex (DVC), a hindbrain structure controlling autonomic functions such as blood pressure, energy balance and food intake. Here, we demonstrate that S-CSF-cNs received GABAergic and/or glycinergic synaptic entries and were also characterised by the presence of non-selective cationic channels of large conductance that could be detected even under whole-cell configuration. The channel activity was not affected by Psalmopoeus cambridgei toxin 1, a blocker of acid sensing ion channels (ASICs), but was blocked by amiloride and by a strong extracellular acidification. In contrast, extracellular alkalinisation and hypo-osmotic shocks increased channel activity. Based on these properties, we suggest that the single-channel activity recorded in medullar S-CSF-cNs is carried by PKD2L1 channels. Our study therefore reinforces the idea that PKD2L1 is a marker of S-CSF-cNs and points toward a role for S-CSF-cNs in the detection of circulating signals and of modifications in the extracellular environment.
Collapse
Affiliation(s)
- Adeline Orts-Del'immagine
- Laboratoire de Physiologie et Physiopathologie du Système Nerveux Somato-moteur et Neurovégétatif (PPSN) EA 4674 Aix-Marseille Université (AMU), Faculté des Sciences et Techniques St. Jérôme, BP 352, Avenue Escadrille Normandie Niemen, F-13397 Marseille cedex 20, France
| | | | | | | | | | | |
Collapse
|
19
|
Ishii S, Kurokawa A, Kishi M, Yamagami K, Okada S, Ishimaru Y, Misaka T. The response of PKD1L3/PKD2L1 to acid stimuli is inhibited by capsaicin and its pungent analogs. FEBS J 2012; 279:1857-70. [PMID: 22420714 PMCID: PMC3492849 DOI: 10.1111/j.1742-4658.2012.08566.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Polycystic kidney disease (PKD) 2L1 protein is a member of the transient receptor potential (TRP) ion channel family. In circumvallate and foliate papillae, PKD2L1 is coexpressed with PKD1L3. PKD2L1 and PKD1L3 interact through their transmembrane domain and the resulting heteromer PKD1L3/PKD2L1 owns a unique channel property called 'off-responses' to acid stimulation, although PKD2L1 does not own this property by itself. To define the pharmacological properties of the PKD1L3/PKD2L1 channel, we developed a new method to effectively evaluate channel activity using human embryonic kidney 293T cells in which the channel was heterologously expressed. This method was applied to screen substances that potentially regulate it. We found that capsaicin and its analogs, which are TRPV1 agonists, inhibited the response to acid stimuli and that the capsaicin inhibition was reversible with an IC(50) of 32.5 μm. Capsaicin and its analogs are thus useful tools for physiological analysis of PKD1L3/PKD2L1 function.
Collapse
Affiliation(s)
- Sho Ishii
- Central Research Institute, Mizkan Group Co., Handa, Aichi, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Yang J, Wang Q, Zheng W, Tuli J, Li Q, Wu Y, Hussein S, Dai XQ, Shafiei S, Li XG, Shen PY, Tu JC, Chen XZ. Receptor for activated C kinase 1 (RACK1) inhibits function of transient receptor potential (TRP)-type channel Pkd2L1 through physical interaction. J Biol Chem 2011; 287:6551-61. [PMID: 22174419 DOI: 10.1074/jbc.m111.305854] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pkd2L1 (also called TRPP3) is a non-selective cation channel permeable to Ca(2+), Na(+), and K(+) and is activated by Ca(2+). It is also part of an acid-triggered off-response cation channel complex. We previously reported roles of the Pkd2L1 C-terminal fragments in its channel function, but the role of the N terminus remains unclear. Using a yeast two-hybrid screening, we found that the Pkd2L1 N terminus interacts with the receptor for activated C kinase 1 (RACK1), a scaffolding/anchoring protein implicated in various cellular functions. This interaction requires the last two Trp-Asp (WD) motifs of RACK1 and fragment Ala(19)-Pro(45) of Pkd2L1. The interaction was confirmed by GST pulldown, blot overlay, and co-immunoprecipitation assays. By (45)Ca tracer uptake and two-microelectrode voltage clamp electrophysiology, we found that in Xenopus oocytes with RACK1 overexpression Pkd2L1 channel activity is abolished or substantially reduced. Combining with oocyte surface biotinylation experiments, we demonstrated that RACK1 inhibits the function of Pkd2L1 channel on the plasma membrane in addition to reducing its total and plasma membrane expression. Overexpressing Pkd2L1 N- or C-terminal fragments as potential blocking peptides for the Pkd2L1-RACK1 interaction, we found that Pkd2L1 N-terminal fragment Met(1)-Pro(45), but not Ile(40)-Ile(97) or C-terminal fragments, abolishes the inhibition of Pkd2L1 channel by overexpressed and oocyte-native RACK1 likely through disrupting the Pkd2L1-RACK1 association. Taken together, our study demonstrated that RACK1 inhibits Pkd2L1 channel function through binding to domain Met(1)-Pro(45) of Pkd2L1. Thus, Pkd2L1 is a novel target channel whose function is regulated by the versatile scaffolding protein RACK1.
Collapse
Affiliation(s)
- Jungwoo Yang
- Department of Physiology, University of Alberta, 7-29 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Crystal structure and characterization of coiled-coil domain of the transient receptor potential channel PKD2L1. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1824:413-21. [PMID: 22193359 DOI: 10.1016/j.bbapap.2011.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 11/23/2011] [Accepted: 12/06/2011] [Indexed: 11/24/2022]
Abstract
The cation-permeable channel PKD2L1 forms a homomeric assembly as well as heteromeric associations with both PKD1 and PKD1L3, with the cytoplasmic regulatory domain (CRD) of PKD2L1 often playing a role in assembly and/or function. Our previous work indicated that the isolated PKD2L1 CRD assembles as a trimer in a manner dependent on the presence of a proposed oligomerization domain. Herein we describe the 2.7Å crystal structure of a segment containing the PKD2L1 oligomerization domain which indicates that trimerization is driven by the β-branched residues at the first and fourth positions of a heptad repeat (commonly referred to as "a" and "d") and by a conserved R-h-x-x-h-E salt bridge motif that is largely unique to parallel trimeric coiled coils. Further analysis of the PKD2L1 CRD indicates that trimeric association is sufficiently strong that no other species are present in solution in an analytical ultracentrifugation experiment at the lowest measurable concentration of 750nM. Conversely, mutation of the "a" and "d" residues leads to formation of an exclusively monomeric species, independent of concentration. Although both monomeric and WT CRDs are stable in solution and bind calcium with 0.9μM affinity, circular dichroism studies reveal that the monomer loses 25% more α-helical content than WT when stripped of this ligand, suggesting that the CRD structure is stabilized by trimerization in the ligand-free state. This stability could play a role in the function of the full-length complex, indicating that trimerization may be important for both homo- and possibly heteromeric assemblies of PKD2L1.
Collapse
|
22
|
Abstract
The founding member of the TRPP family, TRPP2, was identified as one of the disease genes causing autosomal dominant polycystic kidney disease (ADPKD). ADPKD is the most prevalent, potentially lethal, monogenic disorder in humans, with an average incidence of one in 400 to one in 1,000 individuals worldwide. Here we give an overview of TRPP ion channels and Polycystin-1 receptor proteins focusing on more recent studies. We include the Polycystin-1 family since these proteins are functionally linked to TRPP channels.
Collapse
|
23
|
The single pore residue Asp523 in PKD2L1 determines Ca2+ permeation of the PKD1L3/PKD2L1 complex. Biochem Biophys Res Commun 2010; 404:946-51. [PMID: 21185261 DOI: 10.1016/j.bbrc.2010.12.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/18/2010] [Indexed: 11/21/2022]
Abstract
The polycystic kidney disease 1-like 3 (PKD1L3)-polycystic kidney disease 2-like 1 (PKD2L1) complex functions as a Ca(2+)-permeable, non-selective cation channel that is activated by acid and its subsequent removal; this is called an off-response. In this study, we identified a single aspartic residue in PKD2L1 that is responsible for the Ca(2+) permeation of the PKD1L3/PKD2L1 complex. Calcium imaging analysis using point mutants of negatively charged amino acids present in the putative pore regions of PKD1L3 and PKD2L1 revealed that neutralization of the aspartic residue in PKD2L1 (D523N), which is conserved among PKD2 family members, abolished Ca(2+) permeation, despite robust cell surface expression. In contrast, neutralization of the other negatively charged residues of PKD1L3 (D2049N and E2072Q) and PKD2L1 (D525N and D530N) as well as substitution of Asp(523) with a glutamate residue (D523E) had little effect on Ca(2+) permeation properties. These results demonstrate that Asp(523) in PKD2L1 is a key determinant of Ca(2+) permeation into the PKD1L3/PKD2L1 complex and that PKD2L1 contributes to forming the pore of the PKD1L3/PKD2L1 channel.
Collapse
|
24
|
Heteromerization of TRP channel subunits: extending functional diversity. Protein Cell 2010; 1:802-10. [PMID: 21203922 DOI: 10.1007/s13238-010-0108-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 09/01/2010] [Indexed: 01/03/2023] Open
Abstract
Transient receptor potential (TRP) channels are widely found throughout the animal kingdom. By serving as cellular sensors for a wide spectrum of physical and chemical stimuli, they play crucial physiological roles ranging from sensory transduction to cell cycle modulation. TRP channels are tetrameric protein complexes. While most TRP subunits can form functional homomeric channels, heteromerization of TRP channel subunits of either the same subfamily or different subfamilies has been widely observed. Heteromeric TRP channels exhibit many novel properties compared to their homomeric counterparts, indicating that co-assembly of TRP channel subunits has an important contribution to the diversity of TRP channel functions.
Collapse
|
25
|
Identification of the structural motif responsible for trimeric assembly of the C-terminal regulatory domains of polycystin channels PKD2L1 and PKD2. Biochem J 2010; 429:171-83. [PMID: 20408813 DOI: 10.1042/bj20091843] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Polycystin 2-type cation channels PKD2 and PKD2L1 interact with polycystin 1-type proteins PKD1 and PKD1L3 respectively, to form receptor-cation-channel complexes. The PKD2L1-PKD1L3 complex perceives sour taste, whereas disruption of the PKD2-PKD1 complex, responsible for mechanosensation, leads to development of ADPKD (autosomal-dominant polycystic kidney disease). Besides modulating channel activity and related signalling events, the CRDs (C-terminal regulatory domains) of PKD2 and PKD2L1 play a central role in channel oligomerization. The present study investigates the aggregation state of purified full-length PKD2L1-CRD as well as truncations of CRDs from PKD2 channels. Far- and near-UV CD spectroscopy show that the full-length PKD2L1 CRD (PKD2L1-198) and the truncated PKD2 CRD (PKD2-244) are alpha-helical with no beta-sheet, the alpha-helix content agrees with sequence-based predictions, and some of its aromatic residues are in an asymmetric environment created at least by partially structured regions. Additionally, the CRD truncations exhibit an expected biochemical function by binding Ca2+ in a physiologically relevant range with Kd values of 2.8 muM for PKD2-244 and 0.51 muM for PKD2L1-198. Complimentary biophysical and biochemical techniques establish that truncations of the PKD2 and PKD2L1 CRDs are elongated molecules that assemble as trimers, and the trimeric aggregation state is independent of Ca2+ binding. Finally, we show that a common coiled-coil motif is sufficient and necessary to drive oligomerization of the PKD2 and PKD2L1 CRD truncations under study. Despite the moderate sequence identity (39%) between CRDs of PKD2 and PKD2L1, they both form trimers, implying that trimeric organization of CRDs may be true of all polycystin channels.
Collapse
|
26
|
Ishimaru Y, Katano Y, Yamamoto K, Akiba M, Misaka T, Roberts RW, Asakura T, Matsunami H, Abe K. Interaction between PKD1L3 and PKD2L1 through their transmembrane domains is required for localization of PKD2L1 at taste pores in taste cells of circumvallate and foliate papillae. FASEB J 2010; 24:4058-67. [PMID: 20538909 DOI: 10.1096/fj.10-162925] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polycystic kidney disease 1-like 3 (PKD1L3) and polycystic kidney disease 2-like 1 (PKD2L1) proteins have been proposed to form heteromers that function as sour taste receptors in mammals. Here, we show that PKD1L3 and PKD2L1 interact through their transmembrane domains, and not through the coiled-coil domain, by coimmunoprecipitation experiments using a series of deletion mutants. Deletion mutants lacking the critical interaction region were not transported to the cell surface and remained in the cytoplasm, whereas PKD1L3 and PKD2L1 proteins were expressed at the cell surface when both are transfected. Calcium imaging analysis revealed that neither the coiled-coil domain nor the EF-hand domain located in the C-terminal cytoplasmic tail of PKD2L1 was required for response on stimulation with an acidic solution. Finally, PKD2L1 did not localize to the taste pore but was distributed throughout the cytoplasm in taste cells of circumvallate and foliate papillae in PKD1L3(-/-) mice, whereas it localized to the taste pore in wild-type mice. Collectively, these results suggest that the interaction between PKD1L3 and PKD2L1 through their transmembrane domains is essential for proper trafficking of the channels to the cell surface in taste cells of circumvallate and foliate papillae and in cultured cells.
Collapse
Affiliation(s)
- Yoshiro Ishimaru
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Watanabe H, Murakami M, Ohba T, Ono K, Ito H. The Pathological Role of Transient Receptor Potential Channels in Heart Disease. Circ J 2009; 73:419-27. [DOI: 10.1253/circj.cj-08-1153] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hiroyuki Watanabe
- Second Department of Internal Medicine, Akita University School of Medicine
| | - Manabu Murakami
- Department of Physiology, Akita University School of Medicine
| | - Takayoshi Ohba
- Department of Physiology, Akita University School of Medicine
| | - Kyoichi Ono
- Department of Physiology, Akita University School of Medicine
| | - Hiroshi Ito
- Second Department of Internal Medicine, Akita University School of Medicine
| |
Collapse
|
28
|
Shimizu T, Janssens A, Voets T, Nilius B. Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch 2008; 457:795-807. [PMID: 18663466 DOI: 10.1007/s00424-008-0558-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 01/10/2023]
Abstract
Transient receptor potential (TRP) polycystin 3 (TRPP3) is a member of the TRP superfamily of cation channels. Murine TRPP3 has been reported to form an acid-activated cation channel on the plasma membrane when coexpressed with the polycystin 1-like protein 3 (PKD1L3); however, the function and biophysical properties of TRPP3-dependent channels have not yet been characterized in detail. Here we show that overexpression of murine TRPP3 channel in HEK293 cells, without coexpression of PDK1-like proteins, leads to robust channel activity. These channels exhibit a high single-channel conductance of 184 pS at negative potentials, are Ca2+-permeable, and relatively nonselective between cations. Whole-cell experiments showed a characteristic form of voltage-dependent gating of TRPP3 channels, whereby repolarization after depolarization caused large transient inward TRPP3 tail currents. Moreover, we found that TRPP3 activity was increased upon cell swelling and by alkalization. Taken together, our results demonstrate that TRPP3, on its own, can act as a voltage-dependent, pH- and volume-sensitive plasma membrane cation channel.
Collapse
Affiliation(s)
- Takahiro Shimizu
- Department of Molecular Cell Biology, Laboratory of Ion Channel Research, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, Bus 802, B-3000, Leuven, Belgium
| | | | | | | |
Collapse
|
29
|
Ohba T, Watanabe H, Murakami M, Radovanovic M, Iino K, Ishida M, Tosa S, Ono K, Ito H. Amlodipine inhibits cell proliferation via PKD1-related pathway. Biochem Biophys Res Commun 2008; 369:376-81. [PMID: 18298949 DOI: 10.1016/j.bbrc.2008.02.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 02/07/2008] [Indexed: 12/29/2022]
Abstract
Human coronary artery smooth muscle cell (hCASMC) proliferation is involved in the progression of coronary artery disease. Amlodipine, a widely used antihypertensive drug, exerts antiproliferative effects by increasing the expression of p21((Waf1/Cip1)). Polycystic kidney disease 1 (PKD1) is also involved in cell cycle inhibition via p21((Waf1/Cip1)) up-regulation. We clarified the involvement of PKD1-related signaling on hCASMCs. Cultured hCASMCs, which constitutively express PKD1, were stimulated with 5% serum. Amlodipine increased p21((Waf1/Cip1)) expression in a dose- and time-dependent manner, resulting in reduced hCASMC proliferation. The inhibitory effect of amlodipine was mimicked by overexpression of PKD1 and was reversed by a dominant-negative version of PKD1 (R4227X). Immunoblot analysis showed that phosphorylated JAK2 was increased by amlodipine treatment or PKD1 overexpression. A luciferase assay revealed that the overexpression of PKD1 induced STAT1 enhancer activity. These data suggest that PKD1 contributes to the antiproliferative effect of amlodipine on hCASMCs via JAK/STAT signaling and p21((Waf1/Cip1)) up-regulation.
Collapse
Affiliation(s)
- Takayoshi Ohba
- Department of Pharmacology, Akita University School of Medicine, 1-1-1, Hondoh, Akita 010-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Li Q, Dai XQ, Shen PY, Wu Y, Long W, Chen CX, Hussain Z, Wang S, Chen XZ. Direct binding of alpha-actinin enhances TRPP3 channel activity. J Neurochem 2007; 103:2391-400. [PMID: 17944866 DOI: 10.1111/j.1471-4159.2007.04940.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transient receptor potential (TRP) polycystin 2 and 3 (TRPP2 and 3) are homologous members of the TRP superfamily of cation channels but have different physiological functions. TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right asymmetry development. TRPP3 is reported to implicate in sour tasting in bipolar cells of taste buds of the tongue and in the regulation of pH-sensitive action potential in neurons surrounding the central canal of spinal cord. TRPP3 is present in both excitable and non-excitable cells in various tissues, such as retina, brain, heart, testis, and kidney, but its common and cell type-specific functional characteristics remain largely unknown. In this study, we investigated physical and functional interactions between TRPP3 and alpha-actinin, an actin-bundling protein known to regulate several types of ion channels. We employed planer lipid bilayer electrophysiology system to study the function of TRPP3 channel that was affinity-purified from Madin-Darby canine kidney cells. Upon reconstitution in bilayer, TRPP3 exhibited cation channel activities that were substantially augmented by alpha-actinin. The TRPP3-alpha-actinin association was documented by co-immunoprecipitation using native cells and tissues, yeast two-hybrid, and in vitro binding assays. Further, TRPP3 was abundantly present in mouse brain where it associates with alpha-actinin-2. Taken together, alpha-actinin not only attaches TRPP3 to the cytoskeleton but also up-regulates TRPP3 channel function. It remains to be determined whether the TRPP3-alpha-actinin interaction is relevant to acid sensing and other functions in neuronal and non-neuronal cells.
Collapse
Affiliation(s)
- Qiang Li
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dai XQ, Ramji A, Liu Y, Li Q, Karpinski E, Chen XZ. Inhibition of TRPP3 Channel by Amiloride and Analogs. Mol Pharmacol 2007; 72:1576-85. [PMID: 17804601 DOI: 10.1124/mol.107.037150] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
TRPP3, a member of the transient receptor potential (TRP) superfamily of cation channels, is a Ca2+-activated channel permeable to Ca2+, Na+, and K+. TRPP3 has been implicated in sour tasting in bipolar cells of tongue and in regulation of pH-sensitive action potential in spinal cord neurons. TRPP3 is also present in excitable and nonexcitable cells of other tissues, including retina, brain, heart, testis, and kidney, with unknown functions. In this study, we examined the functional modulation of TRPP3 channel by amiloride and its analogs, known to inhibit several ion channels and transporters and respond to all taste stimuli, using Xenopus laevis oocyte expression, electrophysiology, and radiotracer measurements. We found that amiloride and its analogs inhibit TRPP3 channel activities with different affinities. Radiolabeled (45)Ca2+ uptake showed that TRPP3-mediated Ca2+ transport was inhibited by amiloride, phenamil, benzamil, and 5-(N-ethyl-N-isopropyl)amiloride (EIPA). Two-microelectrode voltage clamp experiments revealed that TRPP3-mediated Ca2+-activated currents are substantially inhibited by amiloride analogs, in an order of potency of phenamil > benzamil > EIPA > amiloride, with IC50 values of 0.14, 1.1, 10.5, and 143 microM, respectively. The inhibition potency positively correlated with the size of inhibitors. Using cell-attached patch clamping, we showed that the amiloride analogs decrease the open probability and mean open time but have no effect on single-channel conductance. Study of inhibition by phenamil in the presence of previously reported inhibitor tetrapentylammonium indicates that amiloride and organic cation inhibitors compete for binding the same site on TRPP3. TRPP3 may contribute to previously reported in vivo amiloride-sensitive cation transport.
Collapse
Affiliation(s)
- Xiao-Qing Dai
- Membrane Protein Research Group, Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|
32
|
Ohba T, Watanabe H, Murakami M, Takahashi Y, Iino K, Kuromitsu S, Mori Y, Ono K, Iijima T, Ito H. Upregulation of TRPC1 in the development of cardiac hypertrophy. J Mol Cell Cardiol 2007; 42:498-507. [PMID: 17174323 DOI: 10.1016/j.yjmcc.2006.10.020] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 10/27/2006] [Accepted: 10/30/2006] [Indexed: 11/25/2022]
Abstract
The importance of Ca(2+) entry in the cardiac hypertrophic response is well documented, but the actual Ca(2+) entry channels remain unknown. Transient receptor potential (TRP) proteins are thought to form either homo- or heteromeric Ca(2+) entry channels that are involved in the proliferation and differentiation of various cells. The purpose of this study was to explore the potential involvement of TRP channels in the development of cardiac hypertrophy. The mRNA and protein expression of several TRP channel subunits were evaluated using hearts from abdominal aortic-banded (AAB) rats. Although TRPs C1, C3, C5, and C6 were constitutively expressed, only TRPC1 expression was significantly increased in the hearts of AAB rats compared to sham-operated rats. Using primary cultures of neonatal rat cardiomyocytes, we detected increases in the expression of TRPC1, brain natriuretic peptide (BNP), and atrial natriuretic factor (ANF), as well as increases in store-operated Ca(2+) entry (SOCE) and cell surface area, following endothelin-1 (ET-1) treatment. Silencing of the TRPC1 gene via small interfering RNA (siRNA) attenuated SOCE and prevented ET-1-, angiotensin-II (AT II)-, and phenylephrine (PE)-induced cardiac hypertrophy. In HEK 293T cells, overexpression of TRPC1 augmented SOCE, leading to an increase in nuclear factor of activated T cells (NFAT) promoter activity, while co-transfection with dominant-negative forms of TRPC1 suppressed it. In conclusion, TRPC1 functions in Ca(2+) influx, and its upregulation is involved in the development of cardiac hypertrophy; moreover, it plays an important role in the regulation of the signaling pathways that govern cardiac hypertrophy. These findings establish TRPC1 as a functionally important regulator of cardiac hypertrophy.
Collapse
Affiliation(s)
- Takayoshi Ohba
- Second Department of Internal Medicine, Akita University School of Medicine, Hondoh, Akita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis 2007; 195:287-96. [PMID: 17289052 DOI: 10.1016/j.atherosclerosis.2006.12.033] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 12/20/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
Angiotensin II (Ang II) induces vascular smooth muscle cell (VSMC) hypertrophy as one of the major events leading to atherosclerosis. Increased Ca(2+) entry is an important stimulus for VSMC hypertrophy, but the association with Ang II remains to be determined. Transient receptor potential canonical 1 (TRPC1) forms store-operated Ca(2+) (SOC) channels that are involved in Ca(2+) homeostasis. Our aim was to ascertain the potential involvement of TRPC1 in Ang II-induced VSMC hypertrophy. For this purpose, we used cultured human coronary artery smooth muscle cells (hCASMCs). Store-operated Ca(2+) entry (SOCE) increased in the Ang II-induced hypertrophied cells, and SOC channel blocker inhibited the Ang II-induced hypertrophic response. Although hCASMCs constitutively expressed TRPC1, C3, C4, C5, and C6, only TRPC1 increased in response to Ang II stimulation. TRPC1 siRNA decreased SOCE and prevented Ang II-induced hypertrophy. We found NF-kappaB binding sites in the 5'-regulatory region of the human TRPC1 gene. An electrophoretic mobility shift assay showed that Ang II increased the TRPC1 promoter's NF-kappaB binding activity. Co-treatment with NF-kappaB decoy oligonucleotides not only reduced TRPC1 expression, but also inhibited the hypertrophic responses. In conclusion, our data suggest that Ang II and subsequent NF-kappaB activation induces hCASMC hypertrophy through an enhancement of TRPC1 expression.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Second Department of Internal Medicine, Akita University School of Medicine, 1-1-1 Hondoh, Akita 010-8543, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Murakami M, Ohba T, Wu TW, Fujisawa S, Suzuki T, Takahashi Y, Takahashi E, Watanabe H, Miyoshi I, Ono K, Sasano H, Ito H, Iijima T. Modified sympathetic regulation in N-type calcium channel null-mouse. Biochem Biophys Res Commun 2007; 354:1016-20. [PMID: 17275790 DOI: 10.1016/j.bbrc.2007.01.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 01/18/2007] [Indexed: 10/23/2022]
Abstract
To elucidate the physiological importance of neuronal (N)-type calcium channels in sympathetic controls, we analyzed N-type channel-deficient (NKO) mice. Immunoprecipitation analysis revealed increased interaction between beta3 (a major accessory subunit of N-type channels) and R-type channel-forming CaV2.3 in NKO mice. R-R intervals in NKO ECG recordings were elongated and fluctuating, suggesting disturbed sympathetic tonus. N-type channel inhibitors elongated the R-R interval in control mice, whereas R-type channel blocking with SNX-482 significantly affected NKO but not control mice, indicating a compensatory role for R-type channels. Echocardiography and Langendorff heart analysis confirmed a major role for R-type channels in NKO mice. Combined, our biochemical and physiological analyses strongly suggest that the remaining sympathetic tonus in NKO mice is dependent on R-type calcium channels.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Ohba T, Watanabe H, Takahashi Y, Suzuki T, Miyoshi I, Nakayama S, Satoh E, Iino K, Sasano H, Mori Y, Kuromitsu S, Imagawa K, Saito Y, Iijima T, Ito H, Murakami M. Regulatory role of neuron-restrictive silencing factor in expression of TRPC1. Biochem Biophys Res Commun 2006; 351:764-70. [PMID: 17084381 DOI: 10.1016/j.bbrc.2006.10.107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 10/23/2006] [Indexed: 10/23/2022]
Abstract
Neuron-restrictive silencer factor (NRSF) binds its consensus element to repress the transcription of various genes. The dominant-negative form (dnNRSF) has a hypertrophic effect on cardiogenesis through an unidentified mechanism. We examined the involvement of transient receptor potential (TRP) channel proteins, using transgenic mice overexpressing dnNRSF (dnNRSF mice). Electrophoretic mobility-shift assays revealed an interaction between NRSF and a neuron-restrictive silencer element-like sequence in intron 4 of TRPC1 genomic DNA. According to RT-PCR and Western analyses, TRPC1 was up-regulated in dnNRSF mouse heart. Transient overexpression of TRPC1 in HEK 293T cells increased the activity of the nuclear factor in activated T cells (NFAT) promoter and stimulated store-operated Ca(2+) channel (SOCC)-mediated Ca(2+) entry. Transfection of TRPC1 into primary cardiomyocytes increased NFAT activity, indicating a major role for TRPC1 in NFAT activation. Our findings strongly suggest that NRSF regulates TRP1 gene expression and causes changes in the levels of calcium entry through SOCCs.
Collapse
Affiliation(s)
- Takayoshi Ohba
- Second Department of Internal Medicine, Akita University School of Medicine, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sutton KA, Jungnickel MK, Ward CJ, Harris PC, Florman HM. Functional characterization of PKDREJ, a male germ cell-restricted polycystin. J Cell Physiol 2006; 209:493-500. [PMID: 16883570 DOI: 10.1002/jcp.20755] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Polycystin-1 regulates a number of cellular processes through the formation of complexes with the polycystin-2 ion channel or with other signal transduction proteins. Polycystin-1 is expressed in many tissues but other members of this gene family are distributed in a more restricted fashion. PKDREJ expression has been detected only in the mammalian testis, where it is restricted to the spermatogenic lineage and retained in mature sperm. However, the functional characteristics of this protein and its role in sperm biology are not well understood. In this study it is shown that PKDREJ can modulate G protein signaling and associates with several members of the polycystin-2 family. These interactions, as well as polycystin-2 association with TRPC channels, are consistent with a role of this protein in the regulation of the acrosome reaction and in other aspects of sperm physiology.
Collapse
Affiliation(s)
- Keith A Sutton
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | | | |
Collapse
|
37
|
Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W, Tränkner D, Ryba NJP, Zuker CS. The cells and logic for mammalian sour taste detection. Nature 2006; 442:934-8. [PMID: 16929298 PMCID: PMC1571047 DOI: 10.1038/nature05084] [Citation(s) in RCA: 517] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2006] [Accepted: 07/19/2006] [Indexed: 01/05/2023]
Abstract
Mammals taste many compounds yet use a sensory palette consisting of only five basic taste modalities: sweet, bitter, sour, salty and umami (the taste of monosodium glutamate). Although this repertoire may seem modest, it provides animals with critical information about the nature and quality of food. Sour taste detection functions as an important sensory input to warn against the ingestion of acidic (for example, spoiled or unripe) food sources. We have used a combination of bioinformatics, genetic and functional studies to identify PKD2L1, a polycystic-kidney-disease-like ion channel, as a candidate mammalian sour taste sensor. In the tongue, PKD2L1 is expressed in a subset of taste receptor cells distinct from those responsible for sweet, bitter and umami taste. To examine the role of PKD2L1-expressing taste cells in vivo, we engineered mice with targeted genetic ablations of selected populations of taste receptor cells. Animals lacking PKD2L1-expressing cells are completely devoid of taste responses to sour stimuli. Notably, responses to all other tastants remained unaffected, proving that the segregation of taste qualities even extends to ionic stimuli. Our results now establish independent cellular substrates for four of the five basic taste modalities, and support a comprehensive labelled-line mode of taste coding at the periphery. Notably, PKD2L1 is also expressed in specific neurons surrounding the central canal of the spinal cord. Here we demonstrate that these PKD2L1-expressing neurons send projections to the central canal, and selectively trigger action potentials in response to decreases in extracellular pH. We propose that these cells correspond to the long-sought components of the cerebrospinal fluid chemosensory system. Taken together, our results suggest a common basis for acid sensing in disparate physiological settings.
Collapse
Affiliation(s)
- Angela L. Huang
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | - Xiaoke Chen
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | - Mark A. Hoon
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jayaram Chandrashekar
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | - Wei Guo
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | - Dimitri Tränkner
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
| | - Nicholas J. P. Ryba
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Charles S. Zuker
- Howard Hughes Medical Institute and Departments of Neurobiology and Neurosciences, University of California at San Diego, La Jolla, California 92093-0649, USA
- *correspondence to
| |
Collapse
|
38
|
Li F, Dai XQ, Li Q, Wu Y, Chen XZ. Inhibition of polycystin-L channel by the Chinese herb Sparganum stoloniferum Buch.-Ham. Can J Physiol Pharmacol 2006; 84:923-7. [PMID: 17111037 DOI: 10.1139/y06-040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Chinese herb Sparganum stoloniferum Buch.-Ham. (SBH) is frequently used to improve blood circulation and to rehabilitate vascular obstruction in traditional Chinese medicine. It was recently reported that SBH reduces the proliferation of renal epithelial cells stimulated by epidermal growth factor (EGF), and inhibits the phosphorylation of the EGF receptor. SBH has also been used as a trial drug to treat polycystic kidney disease (PKD) patients in China. The potential molecular actions of SBH on PKD remain unknown. Autosomal dominant PKD (ADPKD) is associated with mutations in polycystin-1 or polycystin-2 (PC2). PC2 and its homologue, polycystin-L (PCL), are nonselective cation channels permeable to potassium, sodium, and calcium. Here, we examine the effects of SBH on the human PCL channel expressed in Xenopus oocytes, using 2-microelectrode voltage-clamp electrophysiology and radiotracer uptake measurements. In PCL-expressing oocytes, with or without preincubation with SBH, the PCL channel was inhibited by SBH in a dose-dependent and reversible manner; a concentration of 2% SBH completely abolished the channel activation. The IC50 value for SBH was 0.48% ± 0.03%, with a 10-min preincubation period. SBH was also found to inhibit the PCL-mediated 45Ca tracer uptake in oocytes. Our study suggests that SBH contains 1 or more yet-to-be determined components that are inhibitors of PCL channel. The therapeutic potential of SBH for ADPKD and its chemical composition remain to be investigated.
Collapse
Affiliation(s)
- Fang Li
- Membrane Protein Research Group, Department of Physiology, University of Alberta, 729 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
39
|
Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A, Ito Y. Transient receptor potential channels in cardiovascular function and disease. Circ Res 2006; 99:119-31. [PMID: 16857972 DOI: 10.1161/01.res.0000233356.10630.8a] [Citation(s) in RCA: 296] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sustained elevation in the intracellular Ca2+ concentration via Ca2+ influx, which is activated by a variety of mechanisms, plays a central regulatory role for cardiovascular functions. Recent molecular biological research has disclosed an unexpectedly diverse array of Ca(2+-entry channel molecules involved in this Ca2+ influx. These include more than ten transient receptor potential (TRP) superfamily members such as TRPC1, TRPC3-6, TRPV1, TRPV2, TRPV4, TRPM4, TRPM7, and polycystin (TRPP2). Most of them appear to be multimodally activated or modulated and show relevant features to both acute hemodynamic control and long-term remodeling of the cardiovascular system, and many of them have been found to respond not only to receptor stimulation but also to various forms of stimuli. There is good evidence to implicate TRPC1 in neointimal hyperplasia after vascular injury via store-depletion-operated Ca2+ entry. TRPC6 likely contributes to receptor-operated and mechanosensitive Ca2+ mobilizations, being involved in vasoconstrictor and myogenic responses and pulmonary arterial proliferation and its associated disease (idiopathic pulmonary arterial hypertension). Considerable evidence has also been accumulated for unique involvement of TRPV1 in blood flow/pressure regulation via sensory vasoactive neuropeptide release. New lines of evidence suggest that TRPV2 may act as a Ca2+-overloading pathway associated with dystrophic cardiomyopathy, TRPV4 as a mediator of endothelium-dependent hyperpolarization, TRPM7 as a proproliferative vascular Mg2+ entry channel, and TRPP2 as a Ca2+-entry channel requisite for vascular integrity. This review attempts to provide an overview of the current knowledge on TRP proteins and discuss their possible roles in cardiovascular functions and diseases.
Collapse
Affiliation(s)
- Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan.
| | | | | | | | | | | | | |
Collapse
|
40
|
LopezJimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J Neurochem 2006; 98:68-77. [PMID: 16805797 DOI: 10.1111/j.1471-4159.2006.03842.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Taste receptors cells are responsible for detecting a wide variety of chemical stimuli. Several molecules including both G protein coupled receptors and ion channels have been shown to be involved in the detection and transduction of tastants. We report on the expression of two members of the transient receptor potential (TRP) family of ion channels, PKD1L3 and PKD2L1, in taste receptor cells. Both of these channels belong to the larger polycystic kidney disease (PKD or TRPP) subfamily of TRP channels, members of which have been demonstrated to be non-selective cation channels and permeable to both Na(+) and Ca(2+). Pkd1l3 and Pkd2l1 are co-expressed in a select subset of taste receptor cells and therefore may, like other PKD channels, function as a heteromer. We found the taste receptor cells expressing Pkd1l3 and Pkd2l1 to be distinct from those that express components of sweet, bitter and umami signal transduction pathways. These results provide the first evidence for a role of TRPP channels in taste receptor cell function.
Collapse
Affiliation(s)
- Nelson D LopezJimenez
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Rockville, Maryland, USA
| | | | | | | | | | | |
Collapse
|
41
|
Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proc Natl Acad Sci U S A 2006; 103:12569-74. [PMID: 16891422 PMCID: PMC1531643 DOI: 10.1073/pnas.0602702103] [Citation(s) in RCA: 377] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Animals use their gustatory systems to evaluate the nutritious value, toxicity, sodium content, and acidity of food. Although characterization of molecular identities that receive taste chemicals is essential, molecular receptors underlying sour taste sensation remain unclear. Here, we show that two transient receptor potential (TRP) channel members, PKD1L3 and PKD2L1, are coexpressed in a subset of taste receptor cells in specific taste areas. Cells expressing these molecules are distinct from taste cells having receptors for bitter, sweet, or umami tastants. The PKD2L1 proteins are accumulated at the taste pore region, where taste chemicals are detected. PKD1L3 and PKD2L1 proteins can interact with each other, and coexpression of the PKD1L3 and PKD2L1 is necessary for their functional cell surface expression. Finally, PKD1L3 and PKD2L1 are activated by various acids when coexpressed in heterologous cells but not by other classes of tastants. These results suggest that PKD1L3 and PKD2L1 heteromers may function as sour taste receptors.
Collapse
Affiliation(s)
| | - Hitoshi Inada
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; and
| | - Momoka Kubota
- Departments of *Molecular Genetics and Microbiology and
| | - Hanyi Zhuang
- Departments of *Molecular Genetics and Microbiology and
| | - Makoto Tominaga
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan; and
- Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Hiroaki Matsunami
- Departments of *Molecular Genetics and Microbiology and
- Neurobiology, Duke University Medical Center, Research Drive, Durham, NC 27710
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
42
|
Murakami M, Ohba T, Takahashi Y, Watanabe H, Miyoshi I, Nakayama S, Ono K, Ito H, Iijima T. Identification of a cardiac isoform of the murine calcium channel alpha1C (Cav1.2-a) subunit and its preferential binding with the beta2 subunit. J Mol Cell Cardiol 2006; 41:115-25. [PMID: 16787652 DOI: 10.1016/j.yjmcc.2006.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2006] [Revised: 04/11/2006] [Accepted: 05/01/2006] [Indexed: 11/29/2022]
Abstract
We describe a cardiac muscle isoform of the voltage-dependent calcium channel alpha1 subunit, which corresponds to the rabbit ortholog of alpha1C-a (Cav1.2a). We also cloned smooth muscle isoforms alpha1C-b (Cav1.2b) and alpha1C-d (Cav1.2d). Differences among these three isoforms lie within the N-terminal region (exon 1A or 1B), the sixth transmembrane segment of domain I (exon 8A or 8B), and the use of exon 10, which forms the intracellular loop between transmembrane domains I and II. Two-hybrid analysis revealed interactions among the three alpha1 isoforms and beta subunits. In vitro overlay and immunoprecipitation analyses revealed preferential binding between alpha1C-a and beta2, which is also expressed at a high level in the heart.
Collapse
Affiliation(s)
- Manabu Murakami
- Department of Pharmacology, Akita University School of Medicine, Akita 010-8543, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Ishikawa T, Nakayama K. [Ionic mechanism of myogenic response in cerebral arteries]. Nihon Yakurigaku Zasshi 2005; 126:262-6. [PMID: 16327207 DOI: 10.1254/fpj.126.262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
|
44
|
Qian F, Noben-Trauth K. Cellular and molecular function of mucolipins (TRPML) and polycystin 2 (TRPP2). Pflugers Arch 2005; 451:277-85. [PMID: 15971078 DOI: 10.1007/s00424-005-1469-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Accepted: 05/01/2005] [Indexed: 01/13/2023]
Abstract
Mucolipins (transient receptor potential mucolipin, TRPML) and polycystin-2 proteins (transient receptor potential polycystin, TRPP) constitute two small families of cation channels with motif and sequence similarities to the transient receptor potential (TRP) class of non-selective cation channels. Genetic defects in TRPML1 and TRPML3 in humans and in animal models cause the accumulation of large vacuoles, leading to a variety of cellular phenotypes including neurological and neurosensory deficiencies. TRPML1 is a Ca(2+)-, K(+)-, and Na(+)-permeable cation channel sensitive to pH changes, and regulates a critical step in the maturation of late endosomes to lysosomes. Mutations of TRPP2 in humans result in autosomal dominant polycystic kidney disease. Molecular studies have demonstrated that TRPP2 and TRPP3 proteins function as Ca(2+)-regulated, non-selective cation channels. During embryogenesis TRPP2 is active in node monocilia and plays a role in the establishment of left-right asymmetry. Recent results have indicated that TRPP2 interacts with polycystin-1 and that their interaction is important for their function as mechanosensitive channels at the primary cilium of renal epithelial cells. The interaction of polycystin family members appears to be conserved and is critical for fertilization and mating behavior. An emerging concept from the studies of the polycystin family is that they function as cation-influx based devices for sensing extracellular signals on ciliated structures. Here we review the function of TRPML1 and TRPP2 as representative members of these families, focusing on the genetics, physiology, and biochemistry.
Collapse
Affiliation(s)
- Feng Qian
- Division of Nephrology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | | |
Collapse
|