1
|
Fang R, He L, Wang Y, Wang L, Qian H, Yang S. The Investigation of the Subtle Structural Discrepancies between Oryza Sativa Recombinant and Plasma-Derived Human Serum Albumins to Design a Novel Nanoparticle as a Taxane Delivery System. Protein J 2024; 43:544-558. [PMID: 38581543 DOI: 10.1007/s10930-024-10194-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2024] [Indexed: 04/08/2024]
Abstract
To solve the large size faultiness of Oryza sativa recombinant human serum albumin nanoparticle (OsrHSA NP), the structural discrepancies between OsrHSA and plasma-derived human serum albumin (pdHSA) were analyzed deeply in this research. It demonstrated that there were some subtle structural discrepancies located in subdomain IA and IIA between OsrHSA and pdHSA, which included peptide backbone, disulphide bridge and some amino acids. Firstly, the structural discrepancies were investigated through literature comparison, it inferred that the structural discrepancies resulted from the fatty acid (FA) binding to OsrHSA at site 2 of subdomain IA and IIA. To form a cavity for accommodation of FA molecule in OsrHSA, the peptide backbone structure of subdomain IA and IIA would change, accompanied by the conformational transition of disulphide bridges and side chain structure change of some amino acids in subdomain IA and IIA. These alterations induced the exposure of tryptophan (Trp) and tyrosine (Tyr) residues in subdomain IA and IIA and the decrease of net negative charges of molecular surface. The former would promote more OsrHSA molecules aggregate, and the latter would weaken the electrostatic repulsion. As a result, the size of OsrHSA NP was more extensive than that of pdHSA NP (175.84 ± 15.63 nm vs. 31.67 ± 1.31 nm) when the concentration of Dimethyl Sulphoxide (DMSO) was 30% (v/v). In this study, the experimental scheme of OsrHSA NP preparation was improved. There were two changes in the enhanced preparation scheme: pH 8.2 PBS buffer and 63% DMSO. It indicated that the improved OsrHSA NP carrier was comparable to the pdHSA NP carrier. The size and drug loading of paclitaxel-loaded improved OsrHSA NP were 53.57 ± 3.63 nm and 7.25 ± 0.46% (w/w), and those of docetaxel-loaded improved OsrHSA NP were 44.75 ± 2.26 nm and 8.43 ± 0.74% (w/w). Moreover, both NPs exhibited good stability for 168 h at 7.4 pH values. It is established that the improved OsrHSA NP is comparable to the pdHSA NP as a taxane delivery system.
Collapse
Affiliation(s)
- Ru Fang
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Liang He
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Yanbin Wang
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Liling Wang
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Hua Qian
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China
| | - Shaozong Yang
- Institute of Forest Food, Zhejiang Academy of Forestry, Hangzhou, 310023, China.
| |
Collapse
|
2
|
Petrovskaya LE, Lukashev EP, Mamedov MD, Kryukova EA, Balashov SP, Dolgikh DA, Rubin AB, Kirpichnikov MP, Siletsky SA. Oriented Insertion of ESR-Containing Hybrid Proteins in Proteoliposomes. Int J Mol Sci 2023; 24:ijms24087369. [PMID: 37108532 PMCID: PMC10138546 DOI: 10.3390/ijms24087369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Microbial rhodopsins comprise a diverse family of retinal-containing membrane proteins that convert absorbed light energy to transmembrane ion transport or sensory signals. Incorporation of these proteins in proteoliposomes allows their properties to be studied in a native-like environment; however, unidirectional protein orientation in the artificial membranes is rarely observed. We aimed to obtain proteoliposomes with unidirectional orientation using a proton-pumping retinal protein from Exiguobacterium sibiricum, ESR, as a model. Three ESR hybrids with soluble protein domains (mCherry or thioredoxin at the C-terminus and Caf1M chaperone at the N-terminus) were obtained and characterized. The photocycle of the hybrid proteins incorporated in proteoliposomes demonstrated a higher pKa of the M state accumulation compared to that of the wild-type ESR. Large negative electrogenic phases and an increase in the relative amplitude of kinetic components in the microsecond time range in the kinetics of membrane potential generation of ESR-Cherry and ESR-Trx indicate a decrease in the efficiency of transmembrane proton transport. On the contrary, Caf-ESR demonstrates a native-like kinetics of membrane potential generation and the corresponding electrogenic stages. Our experiments show that the hybrid with Caf1M promotes the unidirectional orientation of ESR in proteoliposomes.
Collapse
Affiliation(s)
- Lada E Petrovskaya
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Evgeniy P Lukashev
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mahir D Mamedov
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Elena A Kryukova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergei P Balashov
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Dmitry A Dolgikh
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Andrei B Rubin
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Mikhail P Kirpichnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, 119234 Moscow, Russia
| | - Sergey A Siletsky
- Belozersky Institute of Physical-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Neumann A, Müller CE, Namasivayam V. P2Y
1
‐like nucleotide receptors—Structures, molecular modeling, mutagenesis, and oligomerization. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander Neumann
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Christa E. Müller
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
| |
Collapse
|
4
|
Wiseman DN, Otchere A, Patel JH, Uddin R, Pollock NL, Routledge SJ, Rothnie AJ, Slack C, Poyner DR, Bill RM, Goddard AD. Expression and purification of recombinant G protein-coupled receptors: A review. Protein Expr Purif 2020; 167:105524. [PMID: 31678667 PMCID: PMC6983937 DOI: 10.1016/j.pep.2019.105524] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/15/2023]
Abstract
Given their extensive role in cell signalling, GPCRs are significant drug targets; despite this, many of these receptors have limited or no available prophylaxis. Novel drug design and discovery significantly rely on structure determination, of which GPCRs are typically elusive. Progress has been made thus far to produce sufficient quantity and quality of protein for downstream analysis. As such, this review highlights the systems available for recombinant GPCR expression, with consideration of their advantages and disadvantages, as well as examples of receptors successfully expressed in these systems. Additionally, an overview is given on the use of detergents and the styrene maleic acid (SMA) co-polymer for membrane solubilisation, as well as purification techniques.
Collapse
Affiliation(s)
- Daniel N Wiseman
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Abigail Otchere
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Jaimin H Patel
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Romez Uddin
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | | | - Sarah J Routledge
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alice J Rothnie
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Cathy Slack
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - David R Poyner
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Roslyn M Bill
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| | - Alan D Goddard
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, B4 7ET, UK.
| |
Collapse
|
5
|
Oakes V, Domene C. Influence of Cholesterol and Its Stereoisomers on Members of the Serotonin Receptor Family. J Mol Biol 2019; 431:1633-1649. [PMID: 30857969 DOI: 10.1016/j.jmb.2019.02.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023]
Abstract
Despite the ubiquity of cholesterol within the cell membrane, the mechanism by which it influences embedded proteins remains elusive. Numerous G-protein coupled receptors exhibit dramatic responses to membrane cholesterol with regard to the ligand-binding affinity and functional properties, including the 5-HT receptor family. Here, we use over 25 μs of unbiased atomistic molecular dynamics simulations to identify cholesterol interaction sites in the 5-HT1B and 5-HT2B receptors and evaluate their impact on receptor structure. Susceptibility to membrane cholesterol is shown to be subtype dependent and determined by the quality of interactions between the extracellular loops. Charged residues are essential for maintaining the arrangement of the extracellular surface in 5-HT2B; in the absence of such interactions, the extracellular surface of the 5-HT1B is malleable, populating a number of distinct conformations. Elevated cholesterol density near transmembrane helix 4 is considered to be conducive to the conformation of extracellular loop 2. Occupation of this site is also shown to be stereospecific, illustrated by differential behavior of nat-cholesterol isomers, ent- and epi-cholesterol. In simulations containing the endogenous agonist, serotonin, cholesterol binding at transmembrane helix 4 biases bound serotonin molecules toward an unexpected binding mode in the extended binding pocket. The results highlight the capability of membrane cholesterol to influence the mobility of the extracellular surface in the 5-HT1 receptor family and manipulate the architecture of the extracellular ligand-binding pocket.
Collapse
Affiliation(s)
- Victoria Oakes
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK; Department of Chemistry, University of Oxford, Oxford, OX1 3TA, Oxford, UK.
| |
Collapse
|
6
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
7
|
Casiraghi M, Damian M, Lescop E, Banères JL, Catoire LJ. Illuminating the Energy Landscape of GPCRs: The Key Contribution of Solution-State NMR Associated with Escherichia coli as an Expression Host. Biochemistry 2018; 57:2297-2307. [PMID: 29607648 DOI: 10.1021/acs.biochem.8b00035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conformational dynamics of GPCRs are central to their function but are difficult to explore at the atomic scale. Solution-state NMR has provided the major contribution in that area of study during the past decade, despite nonoptimized labeling schemes due to the use of insect cells and, to a lesser extent, yeast as the main expression hosts. Indeed, the most efficient isotope-labeling scheme ever to address energy landscape issues for large proteins or protein complexes relies on the use of 13CH3 probes immersed in a perdeuterated dipolar environment, which is essentially out of reach of eukaryotic expression systems. In contrast, although its contribution has been underestimated because of technical issues, Escherichia coli is by far the best-adapted host for such labeling. As it is now tightly controlled, we show in this review that bacterial expression can provide an NMR spectral resolution never achieved in the GPCR field.
Collapse
Affiliation(s)
- Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires , UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550) , 13 rue Pierre et Marie Curie , 75005 Paris , France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université Montpellier, ENSCM , 15 av. Charles Flahault , 34093 Montpellier , France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay , 1 av. de la Terrasse , 91198 Gif-sur-Yvette , France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR5247 CNRS, Université Montpellier, ENSCM , 15 av. Charles Flahault , 34093 Montpellier , France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires , UMR 7099, CNRS/Université Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique (FRC 550) , 13 rue Pierre et Marie Curie , 75005 Paris , France
| |
Collapse
|
8
|
Expression, Purification and Characterization of the Human Cannabinoid 1 Receptor. Sci Rep 2018; 8:2935. [PMID: 29440756 PMCID: PMC5811539 DOI: 10.1038/s41598-018-19749-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
The human cannabinoid 1 receptor (hCB1) is involved in numerous physiological processes and therefore provides a wide scope of potential therapeutic opportunities to treat maladies such as obesity, cardio-metabolic disorders, substance abuse, neuropathic pain, and multiple sclerosis. Structure-based drug design using the current knowledge of the hCB1 receptor binding site is limited and requires purified active protein. Heterologous expression and purification of functional hCB1 has been the bottleneck for ligand binding structural studies using biophysical methods such as mass spectrometry, x-ray crystallography and NMR. We constructed several plasmids for in-cell or in vitro Escherichia coli (E. coli) based expression of truncated and stabilized hCB1 receptor (hΔCB1 and hΔCB1T4L) variants and evaluated their competency to bind the CP-55,940 ligand. MALDI-TOF MS analysis of in vitro expressed and purified hΔCB1T4Lhis6 variants, following trypsin digestion, generated ~80% of the receptor sequence coverage. Our data demonstrate the feasibility of a cell-free expression system as a promising part of the strategy for the elucidation of ligand binding sites of the hCB1 receptor using a "Ligand Assisted Protein Structure" (LAPS) approach.
Collapse
|
9
|
Iglesias A, Cimadevila M, la Fuente RAD, Martí-Solano M, Cadavid MI, Castro M, Selent J, Loza MI, Brea J. Serotonin 2A receptor disulfide bridge integrity is crucial for ligand binding to different signalling states but not for its homodimerization. Eur J Pharmacol 2017; 815:138-146. [PMID: 28899696 DOI: 10.1016/j.ejphar.2017.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/28/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
The serotonin 2A (5-HT2A) receptor is a G-protein coupled receptor (GPCR) with a conserved disulfide bridge formed by Cys148 (transmembrane helix 3, TM3) and Cys227 (extracellular loop 2, ECL-2). We hypothesized that disulfide bridges may determine serotonin 5-HT2A receptor functions such as receptor activation, functional selectivity and ligand recognition. We used the reducing agent dithiothreitol (DTT) to determine how the reduction of disulfide bridges affects radioligand binding, second messenger mobilization and receptor dimerization. A DTT-induced decrease in the number of binding sites (1190 ± 63.55 fmol/mg protein for control cells compared with 921.2 ± 60.84 fmol/mg protein for DTT-treated cells) as well as in the efficacy of both signalling pathways characterized was observed, although the affinity and potency were unchanged. Bioluminiscence resonance energy transfer (BRET) assays revealed the DTT treatment did not modify the homodimeric nature of serotonin 5-HT2A receptors. In molecular dynamic simulations, the ECL-2 of the receptor with a broken cysteine bond adopts a wider variety of conformations, some of which protrude deeper into the receptor orthosteric binding pocket leading to collapse of the pocket. A shrunken binding pocket would be incapable of accommodating lysergic acid diethylamide (LSD). Our findings suggest that the decrease of efficacy may be due to disruption of disulfide bridge between TM3 and ECL-2. This reveals the integrity of the ECL-2 epitope, which should be explored in the development of novel ligands acting as allosteric modulators of serotonin 5-HT2A receptors.
Collapse
Affiliation(s)
- Alba Iglesias
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - Marta Cimadevila
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - Rocío Ailim de la Fuente
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain; Molecular Pharmacology of G Protein-coupled Receptors Laboratory, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - María Martí-Solano
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Barcelona, Spain
| | - María Isabel Cadavid
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - Marián Castro
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain; Molecular Pharmacology of G Protein-coupled Receptors Laboratory, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain
| | - Jana Selent
- GPCR Drug Discovery Group, Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) - Department of Experimental and Health Sciences of Pompeu Fabra University (UPF), Barcelona, Spain
| | - María Isabel Loza
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain.
| | - José Brea
- BioFarma Research Group, Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Avenida de Barcelona 22, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Nguyen ATN, Baltos JA, Thomas T, Nguyen TD, Muñoz LL, Gregory KJ, White PJ, Sexton PM, Christopoulos A, May LT. Extracellular Loop 2 of the Adenosine A1 Receptor Has a Key Role in Orthosteric Ligand Affinity and Agonist Efficacy. Mol Pharmacol 2016; 90:703-714. [PMID: 27683014 DOI: 10.1124/mol.116.105007] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
The adenosine A1 G protein-coupled receptor (A1AR) is an important therapeutic target implicated in a wide range of cardiovascular and neuronal disorders. Although it is well established that the A1AR orthosteric site is located within the receptor's transmembrane (TM) bundle, prior studies have implicated extracellular loop 2 (ECL2) as having a significant role in contributing to orthosteric ligand affinity and signaling for various G protein-coupled receptors (GPCRs). We thus performed extensive alanine scanning mutagenesis of A1AR-ECL2 to explore the role of this domain on A1AR orthosteric ligand pharmacology. Using quantitative analytical approaches and molecular modeling, we identified ECL2 residues that interact either directly or indirectly with orthosteric agonists and antagonists. Discrete mutations proximal to a conserved ECL2-TM3 disulfide bond selectively affected orthosteric ligand affinity, whereas a cluster of five residues near the TM4-ECL2 juncture influenced orthosteric agonist efficacy. A combination of ligand docking, molecular dynamics simulations, and mutagenesis results suggested that the orthosteric agonist 5'-N-ethylcarboxamidoadenosine binds transiently to an extracellular vestibule formed by ECL2 and the top of TM5 and TM7, prior to entry into the canonical TM bundle orthosteric site. Collectively, this study highlights a key role for ECL2 in A1AR orthosteric ligand binding and receptor activation.
Collapse
Affiliation(s)
- Anh T N Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Jo-Anne Baltos
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Trayder Thomas
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Toan D Nguyen
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Laura López Muñoz
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Karen J Gregory
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences (A.T.N.N., J.-A.B., T.T., L.L.M, K.J.G, P.J.W, P.M.S, A.C., L.T.M), Monash e-Research Centre (T.D.N), and Department of Pharmacology (A.T.N.N, J.-A.B., K.J.G., P.M.S., A.C., L.T.M), Monash University, Parkville, Victoria, Australia
| |
Collapse
|
11
|
Kleist AB, Getschman AE, Ziarek JJ, Nevins AM, Gauthier PA, Chevigné A, Szpakowska M, Volkman BF. New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. Biochem Pharmacol 2016; 114:53-68. [PMID: 27106080 DOI: 10.1016/j.bcp.2016.04.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/13/2016] [Indexed: 10/21/2022]
Abstract
Chemokine receptor (CKR) signaling forms the basis of essential immune cellular functions, and dysregulated CKR signaling underpins numerous disease processes of the immune system and beyond. CKRs, which belong to the seven transmembrane domain receptor (7TMR) superfamily, initiate signaling upon binding of endogenous, secreted chemokine ligands. Chemokine-CKR interactions are traditionally described by a two-step/two-site mechanism, in which the CKR N-terminus recognizes the chemokine globular core (i.e. site 1 interaction), followed by activation when the unstructured chemokine N-terminus is inserted into the receptor TM bundle (i.e. site 2 interaction). Several recent studies challenge the structural independence of sites 1 and 2 by demonstrating physical and allosteric links between these supposedly separate sites. Others contest the functional independence of these sites, identifying nuanced roles for site 1 and other interactions in CKR activation. These developments emerge within a rapidly changing landscape in which CKR signaling is influenced by receptor PTMs, chemokine and CKR dimerization, and endogenous non-chemokine ligands. Simultaneous advances in the structural and functional characterization of 7TMR biased signaling have altered how we understand promiscuous chemokine-CKR interactions. In this review, we explore new paradigms in CKR signal transduction by considering studies that depict a more intricate architecture governing the consequences of chemokine-CKR interactions.
Collapse
Affiliation(s)
- Andrew B Kleist
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Anthony E Getschman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Joshua J Ziarek
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA.
| | - Amanda M Nevins
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Pierre-Arnaud Gauthier
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Andy Chevigné
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Martyna Szpakowska
- Department of Infection and Immunity, Luxembourg Institute of Health, L-4354 Esch-sur-Alzette, Luxembourg.
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
12
|
Di Bartolo N, Compton ELR, Warne T, Edwards PC, Tate CG, Schertler GFX, Booth PJ. Complete Reversible Refolding of a G-Protein Coupled Receptor on a Solid Support. PLoS One 2016; 11:e0151582. [PMID: 26982879 PMCID: PMC4794186 DOI: 10.1371/journal.pone.0151582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 03/01/2016] [Indexed: 12/22/2022] Open
Abstract
The factors defining the correct folding and stability of integral membrane proteins are poorly understood. Folding of only a few select membrane proteins has been scrutinised, leaving considerable deficiencies in knowledge for large protein families, such as G protein coupled receptors (GPCRs). Complete reversible folding, which is problematic for any membrane protein, has eluded this dominant receptor family. Moreover, attempts to recover receptors from denatured states are inefficient, yielding at best 40–70% functional protein. We present a method for the reversible unfolding of an archetypal family member, the β1-adrenergic receptor, and attain 100% recovery of the folded, functional state, in terms of ligand binding, compared to receptor which has not been subject to any unfolding and retains its original, folded structure. We exploit refolding on a solid support, which could avoid unwanted interactions and aggregation that occur in bulk solution. We determine the changes in structure and function upon unfolding and refolding. Additionally, we employ a method that is relatively new to membrane protein folding; pulse proteolysis. Complete refolding of β1-adrenergic receptor occurs in n-decyl-β-D-maltoside (DM) micelles from a urea-denatured state, as shown by regain of its original helical structure, ligand binding and protein fluorescence. The successful refolding strategy on a solid support offers a defined method for the controlled refolding and recovery of functional GPCRs and other membrane proteins that suffer from instability and irreversible denaturation once isolated from their native membranes.
Collapse
Affiliation(s)
- Natalie Di Bartolo
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
- * E-mail:
| | - Emma L. R. Compton
- Organisational and Staff Development Unit, University of Strathclyde, Glasgow, United Kingdom
| | - Tony Warne
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patricia C. Edwards
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | | | - Paula J. Booth
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Keenan CR, Lew MJ, Stewart AG. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity. Biochem Pharmacol 2016; 112:6-12. [PMID: 26898958 DOI: 10.1016/j.bcp.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects.
Collapse
Affiliation(s)
- Christine R Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Lew
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
14
|
Jaenecke F, Friedrich-Epler B, Parthier C, Stubbs MT. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase. Biochemistry 2015; 54:6454-61. [PMID: 26435421 DOI: 10.1021/acs.biochem.5b00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies.
Collapse
Affiliation(s)
- Frank Jaenecke
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Beatrice Friedrich-Epler
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Martin-Luther Universität Halle-Wittenberg , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany.,ZIK HALOmem , Kurt-Mothes Strasse 3, D-06120 Halle/Saale, Germany
| |
Collapse
|
15
|
Woo AYH, Song Y, Zhu W, Xiao RP. Advances in receptor conformation research: the quest for functionally selective conformations focusing on the β2-adrenoceptor. Br J Pharmacol 2015; 172:5477-88. [PMID: 25537131 DOI: 10.1111/bph.13049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 12/14/2014] [Indexed: 01/14/2023] Open
Abstract
Seven-transmembrane receptors, also called GPCRs, represent the largest class of drug targets. Upon ligand binding, a GPCR undergoes conformational rearrangement and thereby changes its interaction with effector proteins including the cognate G-proteins and the multifunctional adaptor proteins, β-arrestins. These proteins, by initiating distinct signal transduction mechanisms, mediate one or several functional responses. Recently, the concept of ligand-directed GPCR signalling, also called functional selectivity or biased agonism, has been proposed to explain the phenomenon that chemically diverse ligands exhibit different efficacies towards the different signalling pathways of a single GPCR, and thereby act as functionally selective or 'biased' ligands. Current concepts support the notion that ligand-specific GPCR conformations are the basis of ligand-directed signalling. Multiple studies using fluorescence spectroscopy, X-ray crystallography, mass spectroscopy, nuclear magnetic resonance spectroscopy, single-molecule force spectroscopy and other techniques have provided the evidence to support this notion. It is anticipated that these techniques will ultimately help elucidate the structural basis of ligand-directed GPCR signalling at a precision meaningful for structure-based drug design and how a specific ligand molecular structure induces a unique receptor conformation leading to biased signalling. In this review, we will summarize recent advances in experimental techniques applied in the study of functionally selective GPCR conformations and breakthrough data obtained in these studies particularly those of the β2-adrenoceptor.
Collapse
Affiliation(s)
- Anthony Yiu-Ho Woo
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Song
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China
| | - Weizhong Zhu
- Department of Pharmacology, Nantong University School of Pharmacy, Nantong, China
| | - Rui-Ping Xiao
- Institute of Molecular Medicine, Centre for Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
16
|
Gadhe CG, Balupuri A, Cho SJ. In silico characterization of binding mode of CCR8 inhibitor: homology modeling, docking and membrane based MD simulation study. J Biomol Struct Dyn 2015; 33:2491-510. [PMID: 25617117 DOI: 10.1080/07391102.2014.1002006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.
Collapse
Affiliation(s)
- Changdev G Gadhe
- a Department of Life Sciences, College of BioNano Technology , Gachon University , 1342 Seongnamdaero, Sujeong-gu, Seongnam-si , Gyeonggi-do 461-701 , Republic of Korea
| | - Anand Balupuri
- b Department of Bio-New Drug Development, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| | - Seung Joo Cho
- b Department of Bio-New Drug Development, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea.,c Department of Cellular Molecular Medicine, College of Medicine , Chosun University , Gwangju 501-759 , Republic of Korea
| |
Collapse
|
17
|
Kaiya H, Konno N, Kangawa K, Uchiyama M, Miyazato M. Identification, tissue distribution and functional characterization of the ghrelin receptor in West African lungfish, Protopterus annectens. Gen Comp Endocrinol 2014; 209:106-17. [PMID: 25093625 DOI: 10.1016/j.ygcen.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Minoru Uchiyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
18
|
Folding membrane proteins in vitro: A table and some comments. Arch Biochem Biophys 2014; 564:314-26. [DOI: 10.1016/j.abb.2014.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 12/23/2022]
|
19
|
Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans. Anal Biochem 2014; 472:30-6. [PMID: 25461480 DOI: 10.1016/j.ab.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/28/2022]
Abstract
High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.
Collapse
|
20
|
Folding and stability of integral membrane proteins in amphipols. Arch Biochem Biophys 2014; 564:327-43. [PMID: 25449655 DOI: 10.1016/j.abb.2014.10.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/22/2014] [Indexed: 11/23/2022]
Abstract
Amphipols (APols) are a family of amphipathic polymers designed to keep transmembrane proteins (TMPs) soluble in aqueous solutions in the absence of detergent. APols have proven remarkably efficient at (i) stabilizing TMPs, as compared to detergent solutions, and (ii) folding them from a denatured state to a native, functional one. The underlying physical-chemical mechanisms are discussed.
Collapse
|
21
|
Xie L, Ge X, Tan H, Xie L, Zhang Y, Hart T, Yang X, Bourne PE. Towards structural systems pharmacology to study complex diseases and personalized medicine. PLoS Comput Biol 2014; 10:e1003554. [PMID: 24830652 PMCID: PMC4022462 DOI: 10.1371/journal.pcbi.1003554] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome-Wide Association Studies (GWAS), whole genome sequencing, and high-throughput omics techniques have generated vast amounts of genotypic and molecular phenotypic data. However, these data have not yet been fully explored to improve the effectiveness and efficiency of drug discovery, which continues along a one-drug-one-target-one-disease paradigm. As a partial consequence, both the cost to launch a new drug and the attrition rate are increasing. Systems pharmacology and pharmacogenomics are emerging to exploit the available data and potentially reverse this trend, but, as we argue here, more is needed. To understand the impact of genetic, epigenetic, and environmental factors on drug action, we must study the structural energetics and dynamics of molecular interactions in the context of the whole human genome and interactome. Such an approach requires an integrative modeling framework for drug action that leverages advances in data-driven statistical modeling and mechanism-based multiscale modeling and transforms heterogeneous data from GWAS, high-throughput sequencing, structural genomics, functional genomics, and chemical genomics into unified knowledge. This is not a small task, but, as reviewed here, progress is being made towards the final goal of personalized medicines for the treatment of complex diseases.
Collapse
Affiliation(s)
- Lei Xie
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
- Ph.D. Program in Computer Science, Biology, and Biochemistry, The Graduate Center, The City University of New York, New York, New York, United States of America
- * E-mail:
| | - Xiaoxia Ge
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| | - Hepan Tan
- Department of Computer Science, Hunter College, The City University of New York, New York, New York, United States of America
| | - Li Xie
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Yinliang Zhang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thomas Hart
- Department of Biological Sciences, Hunter College, The City University of New York, New York, New York, United States of America
| | - Xiaowei Yang
- School of Public Health, Hunter College, The City University of New York, New York, New York, United States of America
| | - Philip E. Bourne
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
22
|
Shore DM, Baillie GL, Hurst DH, Navas F, Seltzman HH, Marcu JP, Abood ME, Ross RA, Reggio PH. Allosteric modulation of a cannabinoid G protein-coupled receptor: binding site elucidation and relationship to G protein signaling. J Biol Chem 2013; 289:5828-45. [PMID: 24366865 DOI: 10.1074/jbc.m113.478495] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cannabinoid 1 (CB1) allosteric modulator, 5-chloro-3-ethyl-1H-indole-2-carboxylic acid [2-(4-piperidin-1-yl-phenyl)-ethyl]-amide) (ORG27569), has the paradoxical effect of increasing the equilibrium binding of [(3)H](-)-3-[2-hydroxyl-4-(1,1-dimethylheptyl)phenyl]-4-[3-hydroxylpropyl]cyclohexan-1-ol (CP55,940, an orthosteric agonist) while at the same time decreasing its efficacy (in G protein-mediated signaling). ORG27569 also decreases basal signaling, acting as an inverse agonist for the G protein-mediated signaling pathway. In ligand displacement assays, ORG27569 can displace the CB1 antagonist/inverse agonist, N-(piperidiny-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide(SR141716A). The goal of this work was to identify the binding site of ORG27569 at CB1. To this end, we used computation, synthesis, mutation, and functional studies to identify the ORG27569-binding site in the CB1 TMH3-6-7 region. This site is consistent with the results of K3.28(192)A, F3.36(200)A, W5.43(279)A, W6.48(356)A, and F3.25(189)A mutation studies, which revealed the ORG27569-binding site overlaps with our previously determined binding site of SR141716A but extends extracellularly. Additionally, we identified a key electrostatic interaction between the ORG27569 piperidine ring nitrogen and K3.28(192) that is important for ORG27569 to act as an inverse agonist. At this allosteric site, ORG27569 promotes an intermediate conformation of the CB1 receptor, explaining ORG27569's ability to increase equilibrium binding of CP55,940. This site also explains ORG27569's ability to antagonize the efficacy of CP55,940 in three complementary ways. 1) ORG27569 sterically blocks movements of the second extracellular loop that have been linked to receptor activation. 2) ORG27569 sterically blocks a key electrostatic interaction between the third extracellular loop residue Lys-373 and D2.63(176). 3) ORG27569 packs against TMH6, sterically hindering movements of this helix that have been shown to be important for receptor activation.
Collapse
Affiliation(s)
- Derek M Shore
- From the Center for Drug Discovery, University of North Carolina at Greensboro, Greensboro, North Carolina 27402
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kotsikorou E, Sharir H, Shore DM, Hurst DP, Lynch DL, Madrigal KE, Heynen-Genel S, Milan LB, Chung TDY, Seltzman HH, Bai Y, Caron MG, Barak LS, Croatt MP, Abood ME, Reggio PH. Identification of the GPR55 antagonist binding site using a novel set of high-potency GPR55 selective ligands. Biochemistry 2013; 52:9456-69. [PMID: 24274581 DOI: 10.1021/bi4008885] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPR55 is a class A G protein-coupled receptor (GPCR) that has been implicated in inflammatory pain, neuropathic pain, metabolic disorder, bone development, and cancer. Initially deorphanized as a cannabinoid receptor, GPR55 has been shown to be activated by non-cannabinoid ligands such as l-α-lysophosphatidylinositol (LPI). While there is a growing body of evidence of physiological and pathophysiological roles for GPR55, the paucity of specific antagonists has limited its study. In collaboration with the Molecular Libraries Probe Production Centers Network initiative, we identified a series of GPR55 antagonists using a β-arrestin, high-throughput, high-content screen of ~300000 compounds. This screen yielded novel, GPR55 antagonist chemotypes with IC50 values in the range of 0.16-2.72 μM [Heynen-Genel, S., et al. (2010) Screening for Selective Ligands for GPR55: Antagonists (ML191, ML192, ML193) (Bookshelf ID NBK66153; PMID entry 22091481)]. Importantly, many of the GPR55 antagonists were completely selective, with no agonism or antagonism against GPR35, CB1, or CB2 up to 20 μM. Using a model of the GPR55 inactive state, we studied the binding of an antagonist series that emerged from this screen. These studies suggest that GPR55 antagonists possess a head region that occupies a horizontal binding pocket extending into the extracellular loop region, a central ligand portion that fits vertically in the receptor binding pocket and terminates with a pendant aromatic or heterocyclic ring that juts out. Both the region that extends extracellularly and the pendant ring are features associated with antagonism. Taken together, our results provide a set of design rules for the development of second-generation GPR55 selective antagonists.
Collapse
Affiliation(s)
- Evangelia Kotsikorou
- Department of Chemistry, University of Texas-Pan American , Edinburg, Texas 78539, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
How ligands and signalling proteins affect G-protein-coupled receptors' conformational landscape. Biochem Soc Trans 2013; 41:144-7. [PMID: 23356274 DOI: 10.1042/bst20120267] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The dynamic character of GPCRs (G-protein-coupled receptors) is essential to their function. However, the details of how ligands and signalling proteins stabilize a receptor conformation to trigger the activation of a given signalling pathway remain largely unexplored. Multiple data, including recent results obtained with the purified ghrelin receptor, suggest a model where ligand efficacy and functional selectivity are directly related to different receptor conformations. Importantly, distinct effector proteins (G-proteins and arrestins) as well as ligands are likely to affect the conformational landscape of GPCRs in different manners, as we show with the isolated ghrelin receptor. Such modulation of the GPCR conformational landscape by pharmacologically distinct ligands and effector proteins has major implications for the design of new drugs that activate specific signalling pathways.
Collapse
|
25
|
Seibt BF, Schiedel AC, Thimm D, Hinz S, Sherbiny FF, Müller CE. The second extracellular loop of GPCRs determines subtype-selectivity and controls efficacy as evidenced by loop exchange study at A2 adenosine receptors. Biochem Pharmacol 2013; 85:1317-29. [PMID: 23500543 DOI: 10.1016/j.bcp.2013.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/19/2023]
Abstract
The second extracellular loop (EL2) of G protein-coupled receptors (GPCRs), which represent important drug targets, may be involved in ligand recognition and receptor activation. We studied the closely related adenosine receptor (AR) subtypes A2A and A2B by exchanging the complete EL2 of the human A2BAR for the EL2 of the A2AAR. Furthermore, single amino acid residues (Asp148(45.27), Ser149(45.28), Thr151(45.30), Glu164(45.43), Ser165(45.44), and Val169(45.48)) in the EL2 of the A2BAR were exchanged for alanine. The single mutations did not lead to any major effects, except for the T151A mutant, at which NECA showed considerably increased efficacy. The loop exchange entailed significant effects: The A2A-selective agonist CGS21680, while being completely inactive at A2BARs, showed high affinity for the mutant A2B(EL2-A2A)AR, and was able to fully activate the receptor. Most strikingly, all agonists investigated (adenosine, NECA, BAY60-6583, CGS21680) showed strongly increased efficacies at the mutant A2B(EL2-A2A) as compared to the wt AR. Thus, the EL2 of the A2BAR appears to have multiple functions: besides its involvement in ligand binding and subtype selectivity it modulates agonist-bound receptor conformations thereby controlling signalling efficacy. This role of the EL2 is likely to extend to other members of the GPCR family, and the EL2 of GPCRs appears to be an attractive target structure for drugs.
Collapse
Affiliation(s)
- Benjamin F Seibt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, 53121 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Kenakin T. New concepts in pharmacological efficacy at 7TM receptors: IUPHAR review 2. Br J Pharmacol 2013; 168:554-75. [PMID: 22994528 PMCID: PMC3579279 DOI: 10.1111/j.1476-5381.2012.02223.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 01/14/2023] Open
Abstract
The present-day concept of drug efficacy has changed completely from its original description as the property of agonists that causes tissue activation. The ability to visualize the multiple behaviours of seven transmembrane receptors has shown that drugs can have many efficacies and also that the transduction of drug stimulus to various cellular stimulus-response cascades can be biased towards some but not all pathways. This latter effect leads to agonist 'functional selectivity', which can be favourable for the improvement of agonist therapeutics. However, in addition, biased agonist potency becomes cell type dependent with the loss of the monotonic behaviour of stimulus-response mechanisms, leading to potential problems in agonist quantification. This has an extremely important effect on the discovery process for new agonists since it now cannot be assumed that a given screening or lead optimization assay will correctly predict therapeutic behaviour. This review discusses these ideas and how new approaches to quantifying agonist effect may be used to circumvent the cell type dependence of agonism. This article, written by a corresponding member of the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR), reviews our current understanding of the interaction of ligands with seven transmembrane receptors. Further information on these pharmacological concepts is being incorporated into the IUPHAR/BPS database GuideToPharmacology.org.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Vinothkumar KR, Edwards PC, Standfuss J. Practical aspects in expression and purification of membrane proteins for structural analysis. Methods Mol Biol 2013; 955:17-30. [PMID: 23132053 DOI: 10.1007/978-1-62703-176-9_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A surge of membrane protein structures in the last few years can be attributed to advances in technologies starting at the level of genomes, to highly efficient expression systems, stabilizing conformational flexibility, automation of crystallization and data collection for screening large numbers of crystals and the microfocus beam lines at synchrotrons. The substantial medical importance of many membrane proteins provides a strong incentive to understand them at the molecular level. It is becoming obvious that the major bottleneck in many of the membrane projects is obtaining sufficient amount of stable functional proteins in a detergent micelle for structural studies. Naturally, large effort has been spent on optimizing and advancing multiple expression systems and purification strategies that have started to yield sufficient protein and structures. We describe in this chapter protocols to refold membrane proteins from inclusion bodies, purification from inner membranes of Escherichia coli and from mammalian cell lines.
Collapse
|
28
|
Wiktor M, Morin S, Sass HJ, Kebbel F, Grzesiek S. Biophysical and structural investigation of bacterially expressed and engineered CCR5, a G protein-coupled receptor. JOURNAL OF BIOMOLECULAR NMR 2013; 55:79-95. [PMID: 23229639 DOI: 10.1007/s10858-012-9688-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/22/2012] [Indexed: 06/01/2023]
Abstract
The chemokine receptor CCR5 belongs to the class of G protein-coupled receptors. Besides its role in leukocyte trafficking, it is also the major HIV-1 coreceptor and hence a target for HIV-1 entry inhibitors. Here, we report Escherichia coli expression and a broad range of biophysical studies on E. coli-produced CCR5. After systematic screening and optimization, we obtained 10 mg of purified, detergent-solubilized, folded CCR5 from 1L culture in a triply isotope-labeled ((2)H/(15)N/(13)C) minimal medium. Thus the material is suitable for NMR spectroscopic studies. The expected α-helical secondary structure content is confirmed by circular dichroism spectroscopy. The solubilized CCR5 is monodisperse and homogeneous as judged by transmission electron microscopy. Interactions of CCR5 with its ligands, RANTES and MIP-1β were assessed by surface plasmon resonance yielding K(D) values in the nanomolar range. Using size exclusion chromatography, stable monomeric CCR5 could be isolated. We show that cysteine residues affect both the yield and oligomer distribution of CCR5. HSQC spectra suggest that the transmembrane domains of CCR5 are in equilibrium between several conformations. In addition we present a model of CCR5 based on the crystal structure of CXCR4 as a starting point for protein engineering.
Collapse
Affiliation(s)
- Maciej Wiktor
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
29
|
Roche D, Gil D, Giraldo J. Multiple active receptor conformation, agonist efficacy and maximum effect of the system: the conformation-based operational model of agonism. Drug Discov Today 2012; 18:365-71. [PMID: 23247260 DOI: 10.1016/j.drudis.2012.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 11/21/2012] [Accepted: 12/05/2012] [Indexed: 12/20/2022]
Abstract
The operational model of agonism assumes that the maximum effect a particular receptor system can achieve (the Em parameter) is fixed. Em estimates are above but close to the asymptotic maximum effects of endogenous agonists. The concept of Em is contradicted by superagonists and those positive allosteric modulators that significantly increase the maximum effect of endogenous agonists. An extension of the operational model is proposed that assumes that the Em parameter does not necessarily have a single value for a receptor system but has multiple values associated to multiple active receptor conformations. The model provides a mechanistic link between active receptor conformation and agonist efficacy, which can be useful for the analysis of agonist response under different receptor scenarios.
Collapse
Affiliation(s)
- David Roche
- Laboratory of Systems Pharmacology and Bioinformatics, Institut de Neurociències and Unitat de Bioestadística, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | | | | |
Collapse
|
30
|
Banères JL, Mouillac B. [Handling G-protein-coupled receptors: expression, purification and in vitro stabilization]. Med Sci (Paris) 2012; 28:837-44. [PMID: 23067414 DOI: 10.1051/medsci/20122810011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Among the different classes of integral membrane proteins, G protein-coupled receptors (GPCR) constitute the largest family. They are involved in most essential physiological functions and particularly play a key role in cell-to-cell communication and sensory signal transduction. They represent targets for approximately 30% of currently marketed drugs. In order to better understand their functioning, define their tridimensional structure and develop novel selective and efficient therapeutic compounds, it is crucial to purify these proteins for a full characterization. However, this biochemical step is not trivial since GPCR are present in membranes at very low levels and they require detergents to be extracted from their natural lipid environment and be handled as functional proteins. No universal strategy for GPCR production, purification and stabilization is currently available; each single GPCR possesses a unique set of physicochemical characteristics, preference for some detergents upon solubilization and specific conditions for purification. During the last decade, major breakthroughs regarding overexpression, purification and above all GPCR stabilization, thanks to amphipols and nanodiscs, opened very exciting perspectives for structural and dynamic investigations of these membrane proteins. The aim of this chapter is to provide an overview of the different aspects of GPCR handling.
Collapse
Affiliation(s)
- Jean-Louis Banères
- Institut des biomolécules Max Mousseron, faculté de pharmacie, Montpellier, France
| | | |
Collapse
|
31
|
Kenakin T. The potential for selective pharmacological therapies through biased receptor signaling. BMC Pharmacol Toxicol 2012; 13:3. [PMID: 22947056 PMCID: PMC3506267 DOI: 10.1186/2050-6511-13-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/13/2012] [Indexed: 11/10/2022] Open
Abstract
The discovery that not all agonists uniformly activate cellular signaling pathways (biased signaling) has greatly changed the drug discovery process for agonists and the strategy for treatment of disease with agonists. Technological advances have enabled complex receptor behaviors to be viewed independently and through these assays, the bias for an agonist can be quantified. It is predicted that therapeutic phenotypes will be linked, through translational studies, to quantified scales of bias to guide medicinal chemists in the drug discovery process.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, 120 Mason Farm Road, Room 4042 Genetic Medicine Building, CB# 7365, Chapel Hill, NC 27599-7365, USA.
| |
Collapse
|
32
|
Britton ZT, Hanle EI, Robinson AS. An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization. Protein Expr Purif 2012; 84:224-35. [PMID: 22722102 PMCID: PMC3572917 DOI: 10.1016/j.pep.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022]
Abstract
Biophysical and structural characterization of G protein-coupled receptors (GPCRs) has been limited due to difficulties in expression, purification, and vitro stability of the full-length receptors. "Divide and conquer" approaches aimed at the NMR characterization of peptides corresponding to specific regions of the receptor have yielded insights into the structure and dynamics of GPCR activation and signaling. Though significant progress has been made in the generation of peptides that are composed of GPCR transmembrane domains, current methods utilize fusion protein strategies that require chemical cleavage and peptide separation via chromatographic means. We have developed an expression and purification system based on fusion to ketosteroid isomerase, thrombin cleavage, and tandem affinity chromatography that enables the solubilization, cleavage, and characterization in a single detergent system relevant for biophysical and structural characterization. We have applied this expression and purification system to the production and characterization of peptides of the adenosine receptor family of GPCRs in Escherichia coli. Herein, we demonstrate using a model peptide that includes extracellular loop 3, transmembrane domain 7, and a portion of the carboxy-terminus of the adenosine A(2)a receptor that the peptide is sufficiently pure for biophysical characterization, where it adopts α-helical structure. Furthermore, we demonstrate the utility of this system by optimizing the construct for thrombin processing and apply the system to peptides with more complex structures.
Collapse
Affiliation(s)
- Zachary T. Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Elizabeth I. Hanle
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
- Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Laboratory, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
33
|
Mokrosiński J, Frimurer TM, Sivertsen B, Schwartz TW, Holst B. Modulation of constitutive activity and signaling bias of the ghrelin receptor by conformational constraint in the second extracellular loop. J Biol Chem 2012; 287:33488-502. [PMID: 22846991 DOI: 10.1074/jbc.m112.383240] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Based on a rare, natural Glu for Ala-204(C+6) variant located six residues after the conserved Cys residue in extracellular loop 2b (ECL2b) associated with selective elimination of the high constitutive signaling of the ghrelin receptor, this loop was subjected to a detailed structure functional analysis. Introduction of Glu in different positions demonstrated that although the constitutive signaling was partly reduced when introduced in position 205(C+7) it was only totally eliminated in position 204(C+6). No charge-charge interaction partner could be identified for the Glu(C+6) variant despite mutational analysis of a number of potential partners in the extracellular loops and outer parts of the transmembrane segments. Systematic probing of position 204(C+6) with amino acid residues of different physicochemical properties indicated that a positively charged Lys surprisingly provided phenotypes similar to those of the negatively charged Glu residue. Computational chemistry analysis indicated that the propensity for the C-terminal segment of extracellular loop 2b to form an extended α-helix was increased from 15% in the wild type to 89 and 82% by introduction in position 204(C+6) of a Glu or a Lys residue, respectively. Moreover, the constitutive activity of the receptor was inhibited by Zn(2+) binding in an engineered metal ion site, stabilizing an α-helical conformation of this loop segment. It is concluded that the high constitutive activity of the ghrelin receptor is dependent upon flexibility in the C-terminal segment of extracellular loop 2 and that mutations or ligand binding that constrains this segment and thereby conceivably the movements of transmembrane domain V relative to transmembrane domain III inhibits the high constitutive signaling.
Collapse
Affiliation(s)
- Jacek Mokrosiński
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
34
|
Wheatley M, Wootten D, Conner MT, Simms J, Kendrick R, Logan RT, Poyner DR, Barwell J. Lifting the lid on GPCRs: the role of extracellular loops. Br J Pharmacol 2012; 165:1688-1703. [PMID: 21864311 DOI: 10.1111/j.1476-5381.2011.01629.x] [Citation(s) in RCA: 237] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
GPCRs exhibit a common architecture of seven transmembrane helices (TMs) linked by intracellular loops and extracellular loops (ECLs). Given their peripheral location to the site of G-protein interaction, it might be assumed that ECL segments merely link the important TMs within the helical bundle of the receptor. However, compelling evidence has emerged in recent years revealing a critical role for ECLs in many fundamental aspects of GPCR function, which supported by recent GPCR crystal structures has provided mechanistic insights. This review will present current understanding of the key roles of ECLs in ligand binding, activation and regulation of both family A and family B GPCRs.
Collapse
Affiliation(s)
- M Wheatley
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D Wootten
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - M T Conner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Simms
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R Kendrick
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - R T Logan
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - D R Poyner
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| | - J Barwell
- School of Biosciences, University of Birmingham, Birmingham, UKDrug Discovery Biology Laboratory, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, AustraliaDepartment of Pharmacology, Monash University, Parkville, Victoria, AustraliaSchool of Life and Health Sciences, Aston University, Aston Triangle, Birmingham, UK
| |
Collapse
|
35
|
Daga PR, Zaveri NT. Homology modeling and molecular dynamics simulations of the active state of the nociceptin receptor reveal new insights into agonist binding and activation. Proteins 2012; 80:1948-61. [PMID: 22489047 DOI: 10.1002/prot.24077] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/01/2012] [Accepted: 03/12/2012] [Indexed: 11/11/2022]
Abstract
The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation.
Collapse
Affiliation(s)
- Pankaj R Daga
- Astraea Therapeutics, LLC, 320 Logue Avenue, Mountain View, California 94043, USA
| | | |
Collapse
|
36
|
Ligands and signaling proteins govern the conformational landscape explored by a G protein-coupled receptor. Proc Natl Acad Sci U S A 2012; 109:8304-9. [PMID: 22573814 DOI: 10.1073/pnas.1119881109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic character of G protein-coupled receptors is essential to their function. However, the details of how ligands stabilize a particular conformation to selectively activate a signaling pathway and how signaling proteins affect this conformational repertoire remain unclear. Using a prototypical peptide-activated class A G protein-coupled receptor (GPCR), the ghrelin receptor, reconstituted as a monomer into lipid discs and labeled with a fluorescent conformational reporter, we demonstrate that ligand efficacy and functional selectivity are directly related to different receptor conformations. Of importance, our data bring direct evidence that distinct effector proteins affect the conformational landscape of the ghrelin receptor in different ways. Whereas G proteins affect the balance between active and inactive receptor substates in favor of the active state, agonist-induced arrestin recruitment is accompanied by a marked change in the structural features of the receptor that adopt a conformation different from that observed in the absence of arrestin. In contrast to G proteins and arrestins, μ-AP2 has no significant effect on the organization of the transmembrane core of the receptor. Such a modulation of a GPCR conformational landscape by pharmacologically distinct ligands and effectors provides insights into the structural bases that decisively affect ligand efficacy and subsequent biological responses. This is also likely to have major implications for the design of drugs activating specific GPCR-associated signaling pathways.
Collapse
|
37
|
Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 2012; 12:205-16. [PMID: 23411724 DOI: 10.1038/nrd3954] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Agonists of seven-transmembrane receptors, also known as G protein-coupled receptors (GPCRs), do not uniformly activate all cellular signalling pathways linked to a given seven-transmembrane receptor (a phenomenon termed ligand or agonist bias); this discovery has changed how high-throughput screens are designed and how lead compounds are optimized for therapeutic activity. The ability to experimentally detect ligand bias has necessitated the development of methods for quantifying agonist bias in a way that can be used to guide structure-activity studies and the selection of drug candidates. Here, we provide a viewpoint on which methods are appropriate for quantifying bias, based on knowledge of how cellular and intracellular signalling proteins control the conformation of seven-transmembrane receptors. We also discuss possible predictions of how biased molecules may perform in vivo, and what potential therapeutic advantages they may provide.
Collapse
|
38
|
Salom D, Wang B, Dong Z, Sun W, Padayatti P, Jordan S, Salon JA, Palczewski K. Post-translational modifications of the serotonin type 4 receptor heterologously expressed in mouse rod cells. Biochemistry 2011; 51:214-24. [PMID: 22145929 DOI: 10.1021/bi201707v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
G-protein-coupled serotonin receptor type 4 (5-HT(4)R) is a pharmacological target implicated in a variety of gastrointestinal and nervous system disorders. As for many other integral membrane proteins, structural and functional studies of this receptor could be facilitated by its heterologous overexpression in eukaryotic systems that can perform appropriate post-translational modifications (PTMs) on the protein. We previously reported the development of an expression system that employs rhodopsin's biosynthetic machinery in rod cells of the retina to express heterologous G-protein-coupled receptors (GPCRs) in a pharmacologically functional form. In this study, we analyzed the glycosylation, phosphorylation, and palmitoylation of 5-HT(4)R heterologously expressed in rod cells of transgenic mice. We found that the glycosylation pattern in 5-HT(4)R was more complex than in murine and bovine rhodopsin. Moreover, overexpression of this exogenous GPCR in rod cells also affected the glycosylation pattern of coexisting native rhodopsin. These results highlight not only the occurrence of heterogeneous PTMs on transgenic proteins but also the complications that non-native PTMs can cause in the structural and functional characterization of both endogenous and heterologous protein targets.
Collapse
Affiliation(s)
- David Salom
- Polgenix Inc., Cleveland, Ohio 44106, United States
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Damian M, Marie J, Leyris JP, Fehrentz JA, Verdié P, Martinez J, Banères JL, Mary S. High constitutive activity is an intrinsic feature of ghrelin receptor protein: a study with a functional monomeric GHS-R1a receptor reconstituted in lipid discs. J Biol Chem 2011; 287:3630-41. [PMID: 22117076 DOI: 10.1074/jbc.m111.288324] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Despite its central role in signaling and the potential therapeutic applications of inverse agonists, the molecular mechanisms underlying G protein-coupled receptor (GPCR) constitutive activity remain largely to be explored. In this context, ghrelin receptor GHS-R1a is a peculiar receptor in the sense that it displays a strikingly high, physiologically relevant, constitutive activity. To identify the molecular mechanisms responsible for this high constitutive activity, we have reconstituted a purified GHS-R1a monomer in a lipid disc. Using this reconstituted system, we show that the isolated ghrelin receptor per se activates G(q) in the absence of agonist, as assessed through guanosine 5'-O-(thiotriphosphate) binding experiments. The measured constitutive activity is similar in its extent to that observed in heterologous systems and in vivo. This is the first direct evidence for the high constitutive activity of the ghrelin receptor being an intrinsic property of the protein rather than the result of influence of its cellular environment. Moreover, we show that the isolated receptor in lipid discs recruits arrestin-2 in an agonist-dependent manner, whereas it interacts with μ-AP2 in the absence of ligand or in the presence of ghrelin. Of importance, these differences are linked to ligand-specific GHS-R1a conformations, as assessed by intrinsic fluorescence measurements. The distinct ligand requirements for the interaction of purified GHS-R1a with arrestin and AP2 provide a new rationale to the differences in basal and agonist-induced internalization observed in cells.
Collapse
Affiliation(s)
- Marjorie Damian
- Institut des Biomolécules Max Mousseron, CNRS UMR 5247, Université de Montpellier 1, Faculté de Pharmacie, 15 avenue Charles Flahaut, BP 14491, 34093 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Popot JL, Althoff T, Bagnard D, Banères JL, Bazzacco P, Billon-Denis E, Catoire LJ, Champeil P, Charvolin D, Cocco MJ, Crémel G, Dahmane T, de la Maza LM, Ebel C, Gabel F, Giusti F, Gohon Y, Goormaghtigh E, Guittet E, Kleinschmidt JH, Kühlbrandt W, Le Bon C, Martinez KL, Picard M, Pucci B, Sachs JN, Tribet C, van Heijenoort C, Wien F, Zito F, Zoonens M. Amphipols from A to Z. Annu Rev Biophys 2011; 40:379-408. [PMID: 21545287 DOI: 10.1146/annurev-biophys-042910-155219] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents to keep integral membrane proteins (MPs) water soluble. In this review, we discuss their structure and solution behavior; the way they associate with MPs; and the structure, dynamics, and solution properties of the resulting complexes. All MPs tested to date form water-soluble complexes with APols, and their biochemical stability is in general greatly improved compared with MPs in detergent solutions. The functionality and ligand-binding properties of APol-trapped MPs are reviewed, and the mechanisms by which APols stabilize MPs are discussed. Applications of APols include MP folding and cell-free synthesis, structural studies by NMR, electron microscopy and X-ray diffraction, APol-mediated immobilization of MPs onto solid supports, proteomics, delivery of MPs to preexisting membranes, and vaccine formulation.
Collapse
Affiliation(s)
- J-L Popot
- Institut de Biologie Physico-Chimique, CNRS/Université Paris-7 UMR 7099, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Smith NJ, Ward RJ, Stoddart LA, Hudson BD, Kostenis E, Ulven T, Morris JC, Tränkle C, Tikhonova IG, Adams DR, Milligan G. Extracellular loop 2 of the free fatty acid receptor 2 mediates allosterism of a phenylacetamide ago-allosteric modulator. Mol Pharmacol 2011; 80:163-73. [PMID: 21498659 PMCID: PMC3127537 DOI: 10.1124/mol.110.070789] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 04/15/2011] [Indexed: 01/22/2023] Open
Abstract
Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-α-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shim JY, Rudd J, Ding TT. Distinct second extracellular loop structures of the brain cannabinoid CB(1) receptor: implication in ligand binding and receptor function. Proteins 2011; 79:581-97. [PMID: 21120862 DOI: 10.1002/prot.22907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The G-protein-coupled receptor (GPCR) second extracellular loop (E2) is known to play an important role in receptor structure and function. The brain cannabinoid (CB(1)) receptor is unique in that it lacks the interloop E2 disulfide linkage to the transmembrane (TM) helical bundle, a characteristic of many GPCRs. Recent mutation studies of the CB(1) receptor, however, suggest the presence of an alternative intraloop disulfide bond between two E2 Cys residues. Considering the oxidation state of these Cys residues, we determine the molecular structures of the 17-residue E2 in the dithiol form (E2(dithiol)) and in the disulfide form (E2(disulfide)) of the CB(1) receptor in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer, using a combination of simulated annealing and molecular dynamics simulation approaches. We characterize the CB(1) receptor models with these two E2 forms, CB(1)(E2(dithiol)) and CB(1)(E2(disulfide)), by analyzing interaction energy, contact number, core crevice, and cross correlation. The results show that the distinct E2 structures interact differently with the TM helical bundle and uniquely modify the TM helical topology, suggesting that E2 of the CB(1) receptor plays a critical role in stabilizing receptor structure, regulating ligand binding, and ultimately modulating receptor activation. Further studies on the role of E2 of the CB(1) receptor are warranted, particularly comparisons of the ligand-bound form with the present ligand-free form.
Collapse
Affiliation(s)
- Joong-Youn Shim
- JL Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, Durham, North Carolina 27707, USA.
| | | | | |
Collapse
|
43
|
Shim JY. Understanding functional residues of the cannabinoid CB1. Curr Top Med Chem 2011; 10:779-98. [PMID: 20370713 DOI: 10.2174/156802610791164210] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/27/2009] [Indexed: 02/07/2023]
Abstract
The brain cannabinoid (CB(1)) receptor that mediates numerous physiological processes in response to marijuana and other psychoactive compounds is a G protein coupled receptor (GPCR) and shares common structural features with many rhodopsin class GPCRs. For the rational development of therapeutic agents targeting the CB(1) receptor, understanding of the ligand-specific CB(1) receptor interactions responsible for unique G protein signals is crucial. For a more than a decade, a combination of mutagenesis and computational modeling approaches has been successfully employed to study the ligand-specific CB(1) receptor interactions. In this review, after a brief discussion about recent advances in understanding of some structural and functional features of GPCRs commonly applicable to the CB(1) receptor, the CB(1) receptor functional residues reported from mutational studies are divided into three different types, ligand binding (B), receptor stabilization (S) and receptor activation (A) residues, to delineate the nature of the binding pockets of anandamide, CP55940, WIN55212-2 and SR141716A and to describe the molecular events of the ligand-specific CB(1) receptor activation from ligand binding to G protein signaling. Taken these CB(1) receptor functional residues, some of which are unique to the CB(1) receptor, together with the biophysical knowledge accumulated for the GPCR active state, it is possible to propose the early stages of the CB(1) receptor activation process that not only provide some insights into understanding molecular mechanisms of receptor activation but also are applicable for identifying new therapeutic agents by applying the validated structure-based approaches, such as virtual high throughput screening (HTS) and fragment-based approach (FBA).
Collapse
Affiliation(s)
- Joong-Youn Shim
- J.L. Chambers Biomedical/Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA.
| |
Collapse
|
44
|
Banères JL, Popot JL, Mouillac B. New advances in production and functional folding of G-protein-coupled receptors. Trends Biotechnol 2011; 29:314-22. [PMID: 21497924 DOI: 10.1016/j.tibtech.2011.03.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/25/2011] [Accepted: 03/02/2011] [Indexed: 12/17/2022]
Abstract
G-protein-coupled receptors (GPCRs), the largest family of integral membrane proteins, participate in the regulation of many physiological functions and are the targets of approximately 30% of currently marketed drugs. However, knowledge of the structural and molecular bases of GPCR functions remains limited owing to difficulties related to their overexpression, purification and stabilization. The development of new strategies aimed at obtaining large amounts of functional GPCRs is therefore crucial. Here, we review the most recent advances in the production and functional folding of GPCRs from Escherichia coli inclusion bodies. Major breakthroughs open exciting perspectives for structural and dynamic investigations of GPCRs. In particular, combining targeting to bacterial inclusion bodies with amphipol-assisted folding is emerging as a highly powerful strategy.
Collapse
Affiliation(s)
- Jean-Louis Banères
- CNRS, UMR-5247, Institut des Biomolécules Max Mousseron, Faculté de Pharmacie, 15 avenue Charles Flahault, F-34000 Montpellier, France
| | | | | |
Collapse
|
45
|
Brochu-Bourque A, Véronneau S, Rola-Pleszczynski M, Stankova J. Differential signaling defects associated with the M201V polymorphism in the cysteinyl leukotriene type 2 receptor. J Pharmacol Exp Ther 2011; 336:431-9. [PMID: 20966037 DOI: 10.1124/jpet.110.172411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The cysteinyl-leukotrienes (cysLTs) LTC(4), LTD(4), and LTE(4), are involved in a variety of inflammatory diseases, including asthma, and act on at least two distinct receptors, CysLT(1) and CysLT(2). Specific antagonists of CysLT(1) are currently used to control bronchoconstriction and inflammation in asthmatic patients. The potential role of CysLT(2) in asthma remains poorly understood. A polymorphism in the CysLT(2) gene, resulting in a single amino acid substitution (M201V), was found to be associated with asthma in three separate population studies. Here, we investigated whether the M201V mutation affected the affinity of CysLT(2) for its natural ligands and its signaling efficiency. Human embryonic kidney 293 cells were stably transfected with either wild-type (wt) or mutant (M201V) CysLT(2). Affinity of the M201V receptor for LTC(4) was reduced by 50%, whereas affinity for LTD(4) was essentially lost. LTC(4)-induced production of inositol phosphates (IPs) in M201V-expressing cells was significantly decreased at suboptimal concentrations of the ligand, but no difference was observed at high concentrations. In contrast, LTD(4)-induced IP production was 10- to 100-fold less in M201V- than in wt-expressing cells. Similar results were also observed with the transactivation of the interleukin-8 promoter induced by LTC(4) or LTD(4). Moreover, in contrast to wt-expressing cells, phosphorylation of nuclear factor κB p65 was absent in LTD(4)-stimulated M201V-expressing cells. Likewise, phosphorylation of c-Jun N-terminal kinase was not induced in LTD(4)-stimulated M201V cells, whereas activation of extracellular response kinase and p38 was maintained, at least at higher LTD(4) concentrations. Our results indicate that the M201V polymorphism drastically affects CysLT(2) responses to LTD(4) and less to LTC(4).
Collapse
Affiliation(s)
- Ariane Brochu-Bourque
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
46
|
Pellissier LP, Barthet G, Gaven F, Cassier E, Trinquet E, Pin JP, Marin P, Dumuis A, Bockaert J, Banères JL, Claeysen S. G protein activation by serotonin type 4 receptor dimers: evidence that turning on two protomers is more efficient. J Biol Chem 2011; 286:9985-97. [PMID: 21247891 DOI: 10.1074/jbc.m110.201939] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The discovery that class C G protein-coupled receptors (GPCRs) function as obligatory dimeric entities has generated major interest in GPCR oligomerization. Oligomerization now appears to be a common feature among all GPCR classes. However, the functional significance of this process remains unclear because, in vitro, some monomeric GPCRs, such as rhodopsin and β(2)-adrenergic receptors, activate G proteins. By using wild type and mutant serotonin type 4 receptors (5-HT(4)Rs) (including a 5-HT(4)-RASSL) expressed in COS-7 cells as models of class A GPCRs, we show that activation of one protomer in a dimer was sufficient to stimulate G proteins. However, coupling efficiency was 2 times higher when both protomers were activated. Expression of combinations of 5-HT(4), in which both protomers were able to bind to agonists but only one could couple to G proteins, suggested that upon agonist occupancy, protomers did not independently couple to G proteins but rather that only one G protein was activated. Coupling of a single heterotrimeric G(s) protein to a receptor dimer was further confirmed in vitro, using the purified recombinant WT RASSL 5-HT(4)R obligatory heterodimer. These results, together with previous findings, demonstrate that, differently from class C GPCR dimers, class A GPCR dimers have pleiotropic activation mechanisms.
Collapse
Affiliation(s)
- Lucie P Pellissier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS UMR5203, F-34094 Montpellier, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Receptors on the surface of cells function as conduits for information flowing between the external environment and the cell interior. Since signal transduction is based on the physical interaction of receptors with both extracellular ligands and intracellular effectors, ligand binding must produce conformational changes in the receptor that can be transmitted to the intracellular domains accessible to G proteins and other effectors. Classical models of G protein-coupled receptor (GPCR) signaling envision receptor conformations as highly constrained, wherein receptors exist in equilibrium between single "off" and "on" states distinguished by their ability to activate effectors, and ligands act by perturbing this equilibrium. In such models, ligands can be classified based upon two simple parameters; affinity and efficacy, and ligand activity is independent of the assay used to detect the response. However, it is clear that GPCRs assume multiple conformations, any number of which may be capable of interacting with a discrete subset of possible effectors. Both orthosteric ligands, molecules that occupy the natural ligand-binding pocket, and allosteric modulators, small molecules or proteins that contact receptors distant from the site of ligand binding, have the ability to alter the conformational equilibrium of a receptor in ways that affect its signaling output both qualitatively and quantitatively. In this context, efficacy becomes pluridimensional and ligand classification becomes assay dependent. A more complete description of ligand-receptor interaction requires the use of multiplexed assays of receptor activation and screening assays may need to be tailored to detect specific efficacy profiles.
Collapse
|
48
|
Abstract
G protein-coupled receptors (GPCRs) comprise a large class of transmembrane proteins that play critical roles in both normal physiology and pathophysiology. These critical roles offer targets for therapeutic intervention, as exemplified by the substantial fraction of current pharmaceutical agents that target members of this family. Tremendous contributions to our understanding of GPCR structure and dynamics have come from both indirect and direct structural characterization techniques. Key features of GPCR conformations derived from both types of characterization techniques are reviewed.
Collapse
Affiliation(s)
- Abby L. Parrill
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-901-678-2638; Fax: +1-901-678-3447
| | - Debra L. Bautista
- Christian Brothers High School, 5900 Walnut Grove Road, Memphis, TN 38120, USA; E-Mail: (D.L.B.)
| |
Collapse
|
49
|
Sakhteman A, Lahtela-Kakkonen M, Poso A. Studying the catechol binding cavity in comparative models of human dopamine D2 receptor. J Mol Graph Model 2010; 29:685-92. [PMID: 21168353 DOI: 10.1016/j.jmgm.2010.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/16/2010] [Accepted: 11/22/2010] [Indexed: 10/18/2022]
Abstract
Obtaining more structural information of human dopamine D(2) receptor may help in the design of better therapeutic agents against diseases such as Parkinson. In this study attempts have been made to develop a functional model for the catechol binding site of the human dopamine D(2) receptor, with two primary models being postulated based on the presence of a disulfide bridge in the second extracellular loop. The models have been subjected to subsequent molecular dynamics simulation and receptor based virtual screening of catechol structures. During steady state of the simulations, representative models with the reduced disulfide bridge were more capable of discriminating between active and inactive catechol structures. It is postulated that similar conformational changes of the second extracellular loop observed in 5-HT4 and β-adrenergic receptors, might also take place in the human D(2) receptor during its interaction with agonist ligands.
Collapse
Affiliation(s)
- Amirhossein Sakhteman
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | | | | |
Collapse
|
50
|
Petrovskaya LE, Shulga AA, Bocharova OV, Ermolyuk YS, Kryukova EA, Chupin VV, Blommers MJJ, Arseniev AS, Kirpichnikov MP. Expression of G-protein coupled receptors in Escherichia coli for structural studies. BIOCHEMISTRY (MOSCOW) 2010; 75:881-91. [PMID: 20673212 DOI: 10.1134/s0006297910070102] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To elaborate a high-performance system for expression of genes of G-protein coupled receptors (GPCR), methods of direct and hybrid expression of 17 GPCR genes in Escherichia coli and selection of strains and bacteria cultivation conditions were investigated. It was established that expression of most of the target GPCR fused with the N-terminal fragment of OmpF or Mistic using media for autoinduction provides high output (up to 50 mg/liter).
Collapse
Affiliation(s)
- L E Petrovskaya
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | | | | | | | |
Collapse
|