1
|
David Troncoso F, Alberto Sánchez D, Luján Ferreira M. Production of Plant Proteases and New Biotechnological Applications: An Updated Review. ChemistryOpen 2022; 11:e202200017. [PMID: 35286022 PMCID: PMC8919702 DOI: 10.1002/open.202200017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
An updated review of emerging plant proteases with potential biotechnological application is presented. Plant proteases show comparable or even greater performance than animal or microbial proteases for by-product valorization through hydrolysis for, for example, cheese whey, bird feathers, collagen, keratinous materials, gelatin, fish protein, and soy protein. Active biopeptides can be obtained as high added value products, which have shown numerous beneficial effects on human health. Plant proteases can also be used for wastewater treatment. The production of new plant proteases is encouraged for the following advantages: low cost of isolation using simple procedures, remarkable stability over a wide range of operating conditions (temperature, pH, salinity, and organic solvents), substantial affinity to a broad variety of substrates, and possibility of immobilization. Vegetable proteases have enormous application potential for the valorization of industrial waste and its conversion into products with high added value through low-cost processes.
Collapse
Affiliation(s)
- Franco David Troncoso
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - Daniel Alberto Sánchez
- Departamento de Ingeniería QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| | - María Luján Ferreira
- Departamento de QuímicaUniversidad Nacional del Sur (UNS)Bahía Blanca8000Argentina
- Planta Piloto de Ingeniería QuímicaPLAPIQUI (UNS-CONICET)Bahía Blanca8000Argentina
| |
Collapse
|
2
|
Norero NS, Rey Burusco MF, D’Ippólito S, Décima Oneto CA, Massa GA, Castellote MA, Feingold SE, Guevara MG. Genome-Wide Analyses of Aspartic Proteases on Potato Genome ( Solanum tuberosum): Generating New Tools to Improve the Resistance of Plants to Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040544. [PMID: 35214878 PMCID: PMC8875628 DOI: 10.3390/plants11040544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/04/2021] [Accepted: 01/06/2022] [Indexed: 05/11/2023]
Abstract
Aspartic proteases are proteolytic enzymes widely distributed in living organisms and viruses. Although they have been extensively studied in many plant species, they are poorly described in potatoes. The present study aimed to identify and characterize S. tuberosum aspartic proteases. Gene structure, chromosome and protein domain organization, phylogeny, and subcellular predicted localization were analyzed and integrated with RNAseq data from different tissues, organs, and conditions focused on abiotic stress. Sixty-two aspartic protease genes were retrieved from the potato genome, distributed in 12 chromosomes. A high number of intronless genes and segmental and tandem duplications were detected. Phylogenetic analysis revealed eight StAP groups, named from StAPI to StAPVIII, that were differentiated into typical (StAPI), nucellin-like (StAPIIIa), and atypical aspartic proteases (StAPII, StAPIIIb to StAPVIII). RNAseq data analyses showed that gene expression was consistent with the presence of cis-acting regulatory elements on StAP promoter regions related to water deficit. The study presents the first identification and characterization of 62 aspartic protease genes and proteins on the potato genome and provides the baseline material for functional gene determinations and potato breeding programs, including gene editing mediated by CRISPR.
Collapse
Affiliation(s)
- Natalia Sigrid Norero
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Florencia Rey Burusco
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Sebastián D’Ippólito
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
| | - Cecilia Andrea Décima Oneto
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Gabriela Alejandra Massa
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
- Faculty of Agricultural Sciences, University National of Mar del Plata, Balcarce B7620, Argentina
| | - Martín Alfredo Castellote
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - Sergio Enrique Feingold
- Laboratory of Agrobiotechnology IPADS (INTA—CONICET), Balcarce B7620, Argentina; (N.S.N.); (M.F.R.B.); (C.A.D.O.); (G.A.M.); (M.A.C.); (S.E.F.)
| | - María Gabriela Guevara
- Institute of Biological Research, University of Mar del Plata (IIB-UNMdP), Mar del Plata B7600, Argentina;
- National Scientific and Technical Research Council, Argentina (CONICET), Buenos Aires C1499, Argentina
- Correspondence: or
| |
Collapse
|
3
|
Castanheira P, Almeida C, Dias-Pedroso D, Simões I. Expression in Escherichia coli, Refolding, and Purification of Plant Aspartic Proteases. Methods Mol Biol 2022; 2447:21-33. [PMID: 35583770 DOI: 10.1007/978-1-0716-2079-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aspartic proteases (APs) are widely distributed in plants. The large majority of genes encoding putative APs exhibit distinct features when compared with the so-called typical APs, and have been grouped as atypical and nucellin-like APs. Remarkably, a diverse pattern of enzymatic properties, subcellular localizations, and biological functions are emerging for these proteases, illustrating the functional complexity among plant pepsin-like proteases. However, many key questions regarding the structure-function relationships of plant APs remain unanswered. Therefore, the expression of these enzymes in heterologous systems is a valuable strategy to unfold the unique features/biochemical properties among members of this family of proteases. Here, we describe our protocol for the production and purification of recombinant plant APs, using a procedure where the protein is refolded from inclusion bodies by dialysis. This method allows the production of untagged versions of the target protease, which has revealed to be critical to disclose differences in processing/activation requirements between plant APs. The protocol includes protein expression, washing and solubilization of inclusion bodies, refolding by dialysis, and a protein purification method. Specific considerations on critical aspects of the refolding process and further suggestions for evaluation of the final recombinant product are also provided.
Collapse
Affiliation(s)
| | | | - Daniela Dias-Pedroso
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School/Faculdade de Ciência Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Folgado A, Abranches R. Tobacco BY2 cells expressing recombinant cardosin B as an alternative for production of active milk clotting enzymes. Sci Rep 2021; 11:14501. [PMID: 34262119 PMCID: PMC8280186 DOI: 10.1038/s41598-021-93882-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Cynara cardunculus L. or cardoon is a plant that is used as a source of milk clotting enzymes during traditional cheese manufacturing. This clotting activity is due to aspartic proteases (APs) found in the cardoon flower, named cyprosins and cardosins. APs from cardoon flowers display a great degree of heterogeneity, resulting in variable milk clotting activities and directly influencing the final product. Producing these APs using alternative platforms such as bacteria or yeast has proven challenging, which is hampering their implementation on an industrial scale. We have developed tobacco BY2 cell lines as an alternative plant-based platform for the production of cardosin B. These cultures successfully produced active cardosin B and a purification pipeline was developed to obtain isolated cardosin B. The enzyme displayed proteolytic activity towards milk caseins and milk clotting activity under standard cheese manufacturing conditions. We also identified an unprocessed form of cardosin B and further investigated its activation process. The use of protease-specific inhibitors suggested a possible role for a cysteine protease in cardosin B processing. Mass spectrometry analysis identified three cysteine proteases containing a granulin-domain as candidates for cardosin B processing. These findings suggest an interaction between these two groups of proteases and contribute to an understanding of the mechanisms behind the regulation and processing of plant APs. This work also paves the way for the use of tobacco BY2 cells as an alternative production system for active cardosins and represents an important advancement towards the industrial production of cardoon APs.
Collapse
Affiliation(s)
- André Folgado
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| |
Collapse
|
5
|
Figueiredo PR, Santos SFG, Almeida BC, Simões I, Carvalho ATP. Introduction of a Glycine Linker Connecting the Heavy and Light Chains in Synthetic Cardosin B-Derived Rennet Changes the Specificity of Subpocket S3'. J Phys Chem B 2021; 125:4368-4374. [PMID: 33905253 DOI: 10.1021/acs.jpcb.1c01826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of plant-based synthetic rennets is of high commercial interest, due to the current great consumer demand for animal product alternatives. A previously developed recombinant form of the aspartic protease cardosin B with a three-glycine linker showed great potential due to its good performance in milk coagulation. This enzyme was found to be more specific and less proteolytically active than the native form for milk clotting, but the underlying structural causes for these activity changes were not completely clear. Here, we have performed molecular dynamics simulations with the recombinant enzyme with and without the linker. Our results showed that the introduction of the linker changes the subpocket S3', which is located more than 4 nm away. These results showcase how small modifications in proteins can have significant effects in distant regions in the protein structure that affect their biotechnological applications.
Collapse
Affiliation(s)
- Pedro R Figueiredo
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sónia F G Santos
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Beatriz C Almeida
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Isaura Simões
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Alexandra T P Carvalho
- CNC-Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
6
|
Figueiredo L, Santos RB, Figueiredo A. Defense and Offense Strategies: The Role of Aspartic Proteases in Plant-Pathogen Interactions. BIOLOGY 2021; 10:75. [PMID: 33494266 PMCID: PMC7909840 DOI: 10.3390/biology10020075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Plant aspartic proteases (APs; E.C.3.4.23) are a group of proteolytic enzymes widely distributed among different species characterized by the conserved sequence Asp-Gly-Thr at the active site. With a broad spectrum of biological roles, plant APs are suggested to undergo functional specialization and to be crucial in developmental processes, such as in both biotic and abiotic stress responses. Over the last decade, an increasing number of publications highlighted the APs' involvement in plant defense responses against a diversity of stresses. In contrast, few studies regarding pathogen-secreted APs and AP inhibitors have been published so far. In this review, we provide a comprehensive picture of aspartic proteases from plant and pathogenic origins, focusing on their relevance and participation in defense and offense strategies in plant-pathogen interactions.
Collapse
|
7
|
Cheung LKY, Dupuis JH, Dee DR, Bryksa BC, Yada RY. Roles of Plant-Specific Inserts in Plant Defense. TRENDS IN PLANT SCIENCE 2020; 25:682-694. [PMID: 32526173 DOI: 10.1016/j.tplants.2020.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/11/2023]
Abstract
Ubiquitously expressed in plants, the plant-specific insert (PSI) of typical plant aspartic proteases (tpAPs) has been associated with plant development, stress response, and defense processes against invading pathogens. Despite sharing high sequence identity, structural studies revealed possible different mechanisms of action among species. The PSI induces signaling pathways of defense hormones in vivo and demonstrates broad-spectrum activity against phytopathogens in vitro. Recent characterization of the PSI-tpAP relationship uncovered novel, nonconventional intracellular protein transport pathways and improved tpAP production yields for industrial applications. In spite of research to date, relatively little is known about the structure-function relationships of PSIs. A comprehensive understanding of their biological roles may benefit plant protection strategies against virulent phytopathogens.
Collapse
Affiliation(s)
- Lennie K Y Cheung
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - John H Dupuis
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Derek R Dee
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Brian C Bryksa
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Rickey Y Yada
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. @ubc.ca
| |
Collapse
|
8
|
Folgado A, Abranches R. Plant Aspartic Proteases for Industrial Applications: Thistle Get Better. PLANTS (BASEL, SWITZERLAND) 2020; 9:E147. [PMID: 31979230 PMCID: PMC7076372 DOI: 10.3390/plants9020147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 12/26/2019] [Accepted: 01/18/2020] [Indexed: 01/09/2023]
Abstract
Plant proteases have a number of applications in industrial processes including cheese manufacturing. The flower of the cardoon plant (Cynara cardunculus L.) is traditionally used as a milk-clotting agent in protected designation of origin cheeses made from goat and sheep milk. Plant-derived rennets are of particular importance to consumers who wish to eat cheeses that are produced without harming any animals. In this review, we have highlighted the importance of plant proteases, particularly aspartic proteases, in industrial processes, as well as exploring more fundamental aspects of their synthesis. We have also reviewed and discussed the production of these enzymes using sustainable and cost-effective alternative platforms.
Collapse
Affiliation(s)
| | - Rita Abranches
- Plant Cell Biology Laboratory, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal;
| |
Collapse
|
9
|
Cao S, Guo M, Wang C, Xu W, Shi T, Tong G, Zhen C, Cheng H, Yang C, Elsheery NI, Cheng Y. Genome-wide characterization of aspartic protease (AP) gene family in Populus trichocarpa and identification of the potential PtAPs involved in wood formation. BMC PLANT BIOLOGY 2019; 19:276. [PMID: 31234799 PMCID: PMC6591973 DOI: 10.1186/s12870-019-1865-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/03/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Aspartic protease (AP) is one of four large proteolytic enzyme families that are involved in plant growth and development. Little is known about the AP gene family in tree species, although it has been characterized in Arabidopsis, rice and grape. The AP genes that are involved in tree wood formation remain to be determined. RESULTS A total of 67 AP genes were identified in Populus trichocarpa (PtAP) and classified into three categories (A, B and C). Chromosome mapping analysis revealed that two-thirds of the PtAP genes were located in genome duplication blocks, indicating the expansion of the AP family by segmental duplications in Populus. The microarray data from the Populus eFP browser demonstrated that PtAP genes had diversified tissue expression patterns. Semi-qRT-PCR analysis further determined that more than 10 PtAPs were highly or preferentially expressed in the developing xylem. When the involvement of the PtAPs in wood formation became the focus, many SCW-related cis-elements were found in the promoters of these PtAPs. Based on PtAPpromoter::GUS techniques, the activities of PtAP66 promoters were observed only in fiber cells, not in the vessels of stems as the xylem and leaf veins developed in the transgenic Populus tree, and strong GUS signals were detected in interfascicular fiber cells, roots, anthers and sepals of PtAP17promoter::GUS transgenic plants. Intensive GUS activities in various secondary tissues implied that PtAP66 and PtAP17 could function in wood formation. In addition, most of the PtAP proteins were predicted to contain N- and (or) O-glycosylation sites, and the integration of PNGase F digestion and western blotting revealed that the PtAP17 and PtAP66 proteins were N-glycosylated in Populus. CONCLUSIONS Comprehensive characterization of the PtAP genes suggests their functional diversity during Populus growth and development. Our findings provide an overall understanding of the AP gene family in trees and establish a better foundation to further describe the roles of PtAPs in wood formation.
Collapse
Affiliation(s)
- Shenquan Cao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Mengjie Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Tianyuan Shi
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| | | | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang China
| |
Collapse
|
10
|
Soares A, Niedermaier S, Faro R, Loos A, Manadas B, Faro C, Huesgen PF, Cheung AY, Simões I. An atypical aspartic protease modulates lateral root development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2157-2171. [PMID: 30778561 DOI: 10.1093/jxb/erz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 02/05/2019] [Indexed: 05/25/2023]
Abstract
Few atypical aspartic proteases (APs) present in plants have been functionally studied to date despite having been implicated in developmental processes and stress responses. Here we characterize a novel atypical AP that we name Atypical Aspartic Protease in Roots 1 (ASPR1), denoting its expression in Arabidopsis roots. Recombinant ASPR1 produced by transient expression in Nicotiana benthamiana was active and displayed atypical properties, combining optimum acidic pH, partial sensitivity to pepstatin, pronounced sensitivity to redox agents, and unique specificity preferences resembling those of fungal APs. ASPR1 overexpression suppressed primary root growth and lateral root development, implying a previously unknown biological role for an AP. Quantitative comparison of wild-type and aspr1 root proteomes revealed deregulation of proteins associated with both reactive oxygen species and auxin homeostasis in the mutant. Together, our findings on ASPR1 reinforce the diverse pattern of enzymatic properties and biological roles of atypical APs and raise exciting questions on how these distinctive features impact functional specialization among these proteases.
Collapse
Affiliation(s)
- André Soares
- PhD Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Rosário Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Andreas Loos
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Carlos Faro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, Germany
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | - Isaura Simões
- Institute for Interdisciplinary Research, University of Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| |
Collapse
|
11
|
Colombo ML, Fernández A, Cimino CV, Liggieri C, Bruno M, Faro C, Veríssimo PC, Vairo-Cavalli S. Miniature cheeses made with blends of chymosin and a vegetable rennet from flowers of Silybum marianum: Enzymatic characterization of the flower-coagulant peptidase. Food Chem 2018; 266:223-231. [PMID: 30381179 DOI: 10.1016/j.foodchem.2018.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/28/2018] [Accepted: 06/03/2018] [Indexed: 11/29/2022]
Abstract
Binary blends of S. marianum-flower extract and chymosin, as coagulant preparations, enabled the manufacture of miniature cheeses with distinctive characteristics compared to those of chymosin-renneted cheeses. The physicochemical parameters, sensory attributes of the cheeses, and in-vitro water-soluble antioxidant activity were analyzed and compared to those properties obtained from control chymosin-renneted cheeses. The preponderant proteolytic constituent in the flower extract was isolated in a two-step-purification protocol. The thus purified aspartic peptidase was maximally active at acidic pHs and exhibited a preference for peptide bonds between hydrophobic residues. Enzymologic characterization revealed differences in the kinetic parameters and specificity compared to other enzymes employed, such as rennet. S. marianum-flower extract, as a source of peptidase with distinctive characteristics, is a suitable substitute for chymosin in miniature-cheese production. The addition of vegetable rennet contributed to the development of an intense aroma and conferred antioxidant activity to the cheeses and wheys.
Collapse
Affiliation(s)
- M Laura Colombo
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Agustina Fernández
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Cecilia V Cimino
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina
| | - Constanza Liggieri
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CICPBA, Argentina
| | - Mariela Bruno
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina
| | - Carlos Faro
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Biocant, Biotechnology Innovation Centre, Núcleo 04, Lote 3, 3060-197 Cantanhede, Portugal
| | - Paula C Veríssimo
- Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, Coimbra 3000-456 Portugal.
| | - Sandra Vairo-Cavalli
- CIPROVE-Centro Asociado CICPBA, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP, Calle 47 y 115 S/N, B1900AJL La Plata, Argentina; CONICET, Argentina; Centre for Neuroscience and Cell Biology (CNC), University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
12
|
Cardoon-based rennets for cheese production. Appl Microbiol Biotechnol 2018; 102:4675-4686. [PMID: 29696340 DOI: 10.1007/s00253-018-9032-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 10/17/2022]
Abstract
The use of crude aqueous extracts of Cynara cardunculus flowers as coagulants in the production of high-quality sheep and goat cheeses-as are the cases of several Portuguese and Spanish cheese varieties with Protected Designation of Origin status-has been maintained since ancient times. The unique rheological attributes and sensory properties characteristic of these cheeses have always suggested that this plant coagulant (and, therefore, its isolated milk-clotting proteases) could be used as alternative rennet in the dairy industry, particularly suited for the production of sheep and goat cheeses. However, the lack of standardization of C. cardunculus crude flower extracts, whose quality and performance depends on numerous factors, has always hampered the application of this plant rennet in industrial production scales. To overcome these limitations, and to aim at developing more effective solutions with potential for scalability of production and commercial application, several strategies have been undertaken in more recent years to establish new cardoon-based rennets. This review provides an overview on these developments and on the currently available solutions, which range from producing standardized formulations of native cardoon enzymes, to the optimization of the heterologous production of cardosins and cyprosins to generate synthetic versions of these milk-clotting enzymes. Challenges and emerging opportunities are also discussed.
Collapse
|
13
|
Feijoo-Siota L, Rama JLR, Sánchez-Pérez A, Villa TG. Expression, activation and processing of a novel plant milk-clotting aspartic protease in Pichia pastoris. J Biotechnol 2018; 268:28-39. [PMID: 29339117 DOI: 10.1016/j.jbiotec.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/11/2018] [Indexed: 01/15/2023]
Abstract
Galium verum, also known as Lady's Bedstraw or Cheese Rennet, is an herbaceous perennial plant traditionally used in cheese-making. We used RACE PCR to isolate novel enzymes from Galium verum with the ability to clot milk. This approach generated two cDNA sequences (named preprogaline A and B) encoding proteins displaying the typical plant aspartic protease primary structure. Preprogaline B was expressed in the yeast Pichia pastoris, after deleting and replacing its original signal peptide with the yeast α-factor signal peptide from Saccharomyces cerevisiae. The secreted recombinant protein was obtained by growing P. pastoris in YPD medium and had the ability to clot milk. The mature form of progaline B is a heterodimeric glycosylated enzyme, with a molecular weight of approximately 48 kDa, that contains a heavy (30.7 kDa) and a light (13.5 kDa) polypeptide chains linked by disulfide bonds. Western blot analysis revealed that progaline B is activated by the acidification of the yeast culture medium and that enzymatic activation requires two steps. First the precursor protein is cleaved into two polypeptide chains by partial removal of the plant-specific insert (PSI) present in plant aspartic proteases; this is later followed by propeptide removal. By altering the pH of the P. pastoris culture medium, we were able to obtain either active or inactive forms of the enzyme. Recombinant progaline B displayed a κ-casein hydrolysis pattern analogous to those produced by the animal and microbial coagulants currently used in the dairy industry, but it exhibited a different digestion profile on α- and β-caseins. The plant protease progaline B displays milk-clotting activities suitable for the production of novel dairy products.
Collapse
Affiliation(s)
- Lucía Feijoo-Siota
- Department of Microbiology, Biotechnology Unit, University of Santiago de Compostela 15706, Spain
| | - José Luis R Rama
- Department of Microbiology, Biotechnology Unit, University of Santiago de Compostela 15706, Spain
| | - Angeles Sánchez-Pérez
- School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Tomás G Villa
- Department of Microbiology, Biotechnology Unit, University of Santiago de Compostela 15706, Spain.
| |
Collapse
|
14
|
Almeida CM, Manso JA, Figueiredo AC, Antunes L, Cruz R, Manadas B, Bur D, Pereira PJB, Faro C, Simões I. Functional and structural characterization of synthetic cardosin B-derived rennet. Appl Microbiol Biotechnol 2017; 101:6951-6968. [DOI: 10.1007/s00253-017-8445-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 11/29/2022]
|
15
|
Enzymatic properties, evidence for in vivo expression, and intracellular localization of shewasin D, the pepsin homolog from Shewanella denitrificans. Sci Rep 2016; 6:23869. [PMID: 27029611 PMCID: PMC4814920 DOI: 10.1038/srep23869] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/15/2016] [Indexed: 11/08/2022] Open
Abstract
The widespread presence of pepsin-like enzymes in eukaryotes together with their relevance in the control of multiple biological processes is reflected in the large number of studies published so far for this family of enzymes. By contrast, pepsin homologs from bacteria have only recently started to be characterized. The work with recombinant shewasin A from Shewanella amazonensis provided the first documentation of this activity in prokaryotes. Here we extend our studies to shewasin D, the pepsin homolog from Shewanella denitrificans, to gain further insight into this group of bacterial peptidases that likely represent ancestral versions of modern eukaryotic pepsin-like enzymes. We demonstrate that the enzymatic properties of recombinant shewasin D are strongly reminiscent of eukaryotic pepsin homologues. We determined the specificity preferences of both shewasin D and shewasin A using proteome-derived peptide libraries and observed remarkable similarities between both shewasins and eukaryotic pepsins, in particular with BACE-1, thereby confirming their phylogenetic proximity. Moreover, we provide first evidence of expression of active shewasin D in S. denitrificans cells, confirming its activity at acidic pH and inhibition by pepstatin. Finally, our results revealed an unprecedented localization for a family A1 member by demonstrating that native shewasin D accumulates preferentially in the cytoplasm.
Collapse
|
16
|
Almeida CM, Gomes D, Faro C, Simões I. Engineering a cardosin B-derived rennet for sheep and goat cheese manufacture. Appl Microbiol Biotechnol 2014; 99:269-81. [DOI: 10.1007/s00253-014-5902-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 01/26/2023]
|
17
|
Vairo Cavalli S, Lufrano D, Colombo ML, Priolo N. Properties and applications of phytepsins from thistle flowers. PHYTOCHEMISTRY 2013; 92:16-32. [PMID: 23701679 DOI: 10.1016/j.phytochem.2013.04.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 02/28/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Aqueous extracts of thistle flowers from the genus Cynara-Cardueae tribe Cass. (Cynareae Less.), Asteraceae Dumortier-are traditionally used in the Mediterranean region for production of artisanal cheeses. This is because of the presence of aspartic proteases (APs) with the ability to coagulate milk. Plant APs, collectively known as phytepsins (EC 3.4.23.40), are bilobed endopeptidases present in an ample variety of plant species with activity mainly at acidic pHs, and have two aspartic residues located on each side of a catalytic cleft that are responsible for catalysis. The cleavage of the scissile peptide-bond occurs primarily between residues with large hydrophobic side-chains. Even when aspartylendopeptidase activity in plants is normally present at relatively low levels overall, the flowers of several species of the Cardueae tribe possess APs with extremely high specific activities in certain tissues. For this reason, in the last two decades, APs present in thistle flowers have been the subject of intensive study. Present here is a compilation of work that summarizes the known chemical and biological properties of these proteases, as well as their biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Sandra Vairo Cavalli
- Laboratorio de Investigación de Proteínas Vegetales, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Argentina.
| | | | | | | |
Collapse
|
18
|
Lufrano D, Faro R, Castanheira P, Parisi G, Veríssimo P, Vairo-Cavalli S, Simões I, Faro C. Molecular cloning and characterization of procirsin, an active aspartic protease precursor from Cirsium vulgare (Asteraceae). PHYTOCHEMISTRY 2012; 81:7-18. [PMID: 22727116 DOI: 10.1016/j.phytochem.2012.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 05/23/2012] [Accepted: 05/27/2012] [Indexed: 06/01/2023]
Abstract
Typical aspartic proteinases from plants of the Astereaceae family like cardosins and cyprosins are well-known milk-clotting enzymes. Their effectiveness in cheesemaking has encouraged several studies on other Astereaceae plant species for identification of new vegetable rennets. Here we report on the cloning, expression and characterization of a novel aspartic proteinase precursor from the flowers of Cirsium vulgare (Savi) Ten. The isolated cDNA encoded a protein product with 509 amino acids, termed cirsin, with the characteristic primary structure organization of plant typical aspartic proteinases. The pro form of cirsin was expressed in Escherichia coli and shown to be active without autocatalytically cleaving its pro domain. This contrasts with the acid-triggered autoactivation by pro-segment removal described for several recombinant plant typical aspartic proteinases. Recombinant procirsin displayed all typical proteolytic features of aspartic proteinases as optimum acidic pH, inhibition by pepstatin, cleavage between hydrophobic amino acids and strict dependence on two catalytic Asp residues for activity. Procirsin also displayed a high specificity towards κ-casein and milk-clotting activity, suggesting it might be an effective vegetable rennet. The findings herein described provide additional evidences for the existence of different structural arrangements among plant typical aspartic proteinases.
Collapse
Affiliation(s)
- Daniela Lufrano
- Laboratorio de Investigación de Proteínas Vegetales (LIPROVE), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Almeida CM, Pereira C, da Costa DS, Pereira S, Pissarra J, Simões I, Faro C. Chlapsin, a chloroplastidial aspartic proteinase from the green algae Chlamydomonas reinhardtii. PLANTA 2012; 236:283-296. [PMID: 22349731 DOI: 10.1007/s00425-012-1605-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 01/26/2012] [Indexed: 05/31/2023]
Abstract
Aspartic proteinases have been extensively characterized in land plants but up to now no evidences for their presence in green algae group have yet been reported in literature. Here we report on the identification of the first (and only) typical aspartic proteinase from Chlamydomonas reinhardtii. This enzyme, named chlapsin, was shown to maintain the primary structure organization of typical plant aspartic proteinases but comprising distinct features, such as similar catalytic motifs DTG/DTG resembling those from animal and microbial counterparts, and an unprecedentedly longer plant specific insert domain with an extra segment of 80 amino acids, rich in alanine residues. Our results also demonstrated that chlapsin accumulates in Chlamydomonas chloroplast bringing this new enzyme to a level of uniqueness among typical plant aspartic proteinases. Chlapsin was successfully expressed in Escherichia coli and it displayed the characteristic enzymatic properties of typical aspartic proteinases, like optimum activity at acidic pH and complete inhibition by pepstatin A. Another difference to plant aspartic proteinases emerged as chlapsin was produced in an active form without its putative prosegment domain. Moreover, recombinant chlapsin showed a restricted enzymatic specificity and a proteolytic activity influenced by the presence of redox agents and nucleotides, further differentiating it from typical plant aspartic proteinases and anticipating a more specialized/regulated function for this Chlamydomonas enzyme. Taken together, our results revealed a pattern of complexity for typical plant aspartic proteinases in what concerns sequence features, localization and biochemical properties, raising new questions on the evolution and function of this vast group of plant enzymes.
Collapse
Affiliation(s)
- Carla Malaquias Almeida
- Biocant, Biotechnology Innovation Center, Molecular Biotechnology Unit, Parque Tecnológico de Cantanhede, Núcleo 4 Lote 3, 3060-197, Cantanhede, Portugal
| | | | | | | | | | | | | |
Collapse
|
20
|
Contour-Ansel D, Torres-Franklin ML, Zuily-Fodil Y, de Carvalho MHC. An aspartic acid protease from common bean is expressed 'on call' during water stress and early recovery. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:1606-12. [PMID: 20705361 DOI: 10.1016/j.jplph.2010.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/27/2010] [Accepted: 06/02/2010] [Indexed: 05/25/2023]
Abstract
A cDNA encoding a putative aspartic acid protease precursor (PvAP1) was cloned from the leaves of common bean (Phaseolus vulgaris). Sequence analysis showed that PvAP1 presents all the characteristic features of phytepsins, the typical plant APs. PvAP1 gene expression was tightly regulated by water stress, being significantly up-regulated under mild water stress (Ψ(w)=-1.0 MPa) for the drought-susceptible cultivar (Carioca) and moderate water stress (Ψ(w)=-1.5 MPa) for the more drought-tolerant cultivar (IPA). Protein gel blotting analysis under water stress revealed the presence of two main bands of calculated MW of 46 and 38 kDa, suggesting proteolytic processing of the enzyme precursor form under drought in both cultivars. Taken together, our results suggest that water stress regulates PvAP1 activity both at the transcriptional and post-transcriptional levels, and that the response occurs earlier and is stronger in the drought-susceptible cultivar.
Collapse
Affiliation(s)
- Dominique Contour-Ansel
- IBIOS-EPM, UMR CNRS 7618 BIOEMCO, Université Paris Est-Paris 12, 61 Avenue du Général de Gaulle, F-94010 Créteil Cedex, France
| | | | | | | |
Collapse
|
21
|
Native and Biotechnologically Engineered Plant Proteases with Industrial Applications. FOOD BIOPROCESS TECH 2010. [DOI: 10.1007/s11947-010-0431-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Mazorra-Manzano MA, Tanaka T, Dee DR, Yada RY. Structure-function characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. PHYTOCHEMISTRY 2010; 71:515-23. [PMID: 20079503 DOI: 10.1016/j.phytochem.2009.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/24/2009] [Accepted: 12/15/2009] [Indexed: 05/09/2023]
Abstract
Aspartic proteinases (APs) are involved in several physiological processes in plants, including protein processing, senescence, and stress response and share many structural and functional features with mammalian and microbial APs. The heterodimeric aspartic proteinase A1 from Arabidopsis thaliana (AtAP A1) was the first acid protease identified in this model plant, however, little information exists regarding its structure function characteristics. Circular dichroism analysis indicated that recombinant AtAP A1 contained an higher alpha-helical content than most APs which was attributed to the presence of a sequence known as the plant specific insert in the mature enzyme. rAtAP A1 was stable over a broad pH range (pH 3-8) with the highest stability at pH 5-6, where 70-80% of the activity was retained after 1 month at 37 degrees C. Using calorimetry, a melting point of 79.6 degrees C was observed at pH 5.3. Cleavage profiles of insulin beta-chain indicated that the enzyme exhibited a higher specificity as compared to other plant APs, with a high preference for the Leu(15)-Tyr(16) peptide bond. Molecular modeling of AtAP A1 indicated that exposed histidine residues and their interaction with nearby charged groups may explain the pH stability of rAtAP A1.
Collapse
|
23
|
Castanheira P, Moreira S, Gama M, Faro C. Escherichia coli expression, refolding and characterization of human laforin. Protein Expr Purif 2010; 71:195-9. [PMID: 20152902 DOI: 10.1016/j.pep.2010.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 02/08/2010] [Accepted: 02/08/2010] [Indexed: 11/26/2022]
Abstract
Laforin is a unique human dual-specificity phosphatase as it contains an amino terminal carbohydrate binding module (CBM). Laforin gene mutations lead to Lafora disease, a progressive myoclonus epilepsy with an early fatal issue. Previous attempts to produce recombinant laforin faced various difficulties, namely the appearance of protein inclusion bodies, the contamination with bacterial proteins and a high tendency of the protein to aggregate, despite the use of fusion tags to improve solubility and ease the purification process. In this work, we have expressed human laforin in Escherichia coli in the form of inclusion bodies devoid of any fusion tags. After a rapid dilution refolding step, the protein was purified by two chromatographic steps, yielding 5-7mg of purified protein per liter of bacterial culture. The purified protein was shown to have the kinetic characteristics of a dual-specificity phosphatase, and a functional carbohydrate binding module. With this protocol, we were able for the first time, to produce and purify laforin without fusion tags in the amounts traditionally needed for the crystallographic structural studies paving the way to the understanding of the molecular mechanisms of laforin activity and to the development of novel therapies for Lafora disease.
Collapse
Affiliation(s)
- Pedro Castanheira
- Biocant, Molecular Biotechnology Unit, Parque Tecnológico de Cantanhede, Núcleo 4, Lote 3, Cantanhede, Portugal.
| | | | | | | |
Collapse
|
24
|
Sarmento AC, Lopes H, Oliveira CS, Vitorino R, Samyn B, Sergeant K, Debyser G, Van Beeumen J, Domingues P, Amado F, Pires E, Domingues MRM, Barros MT. Multiplicity of aspartic proteinases from Cynara cardunculus L. PLANTA 2009; 230:429-439. [PMID: 19488781 DOI: 10.1007/s00425-009-0948-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Accepted: 05/04/2009] [Indexed: 05/27/2023]
Abstract
Aspartic proteinases (AP) play major roles in physiologic and pathologic scenarios in a wide range of organisms from vertebrates to plants or viruses. The present work deals with the purification and characterisation of four new APs from the cardoon Cynara cardunculus L., bringing the number of APs that have been isolated, purified and biochemically characterised from this organism to nine. This is, to our knowledge, one of the highest number of APs purified from a single organism, consistent with a specific and important biological function of these protein within C. cardunculus. These enzymes, cardosins E, F, G and H, are dimeric, glycosylated, pepstatin-sensitive APs, active at acidic pH, with a maximum activity around pH 4.3. Their primary structures were partially determined by N- and C-terminal sequence analysis, peptide mass fingerprint analysis on a MALDI-TOF/TOF instrument and by LC-MS/MS analysis on a Q-TRAP instrument. All four enzymes are present on C. cardunculus L. pistils, along with cyprosins and cardosins A and B. Their micro-heterogeneity was detected by 2D-electrophoresis and mass spectrometry. The enzymes resemble cardosin A more than they resemble cardosin B or cyprosin, with cardosin E and cardosin G being more active than cardosin A, towards the synthetic peptide KPAEFF(NO(2))AL. The specificity of these enzymes was investigated and it is shown that cardosin E, although closely related to cardosin A, exhibits different specificity.
Collapse
|
25
|
Mazorra-Manzano MA, Yada RY. Expression and characterization of the recombinant aspartic proteinase A1 from Arabidopsis thaliana. PHYTOCHEMISTRY 2008; 69:2439-2448. [PMID: 18796341 DOI: 10.1016/j.phytochem.2008.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/16/2008] [Accepted: 07/16/2008] [Indexed: 05/26/2023]
Abstract
The present study reports the recombinant expression, purification, and partial characterization of a typical aspartic proteinase from Arabidopsis thaliana (AtAP A1). The cDNA encoding the precursor of AtAP A1 was expressed as a functional protein using the yeast Pichia pastoris. The mature form of the rAtAP A1 was found to be a heterodimeric glycosylated protein with a molecular mass of 47kDa consisting of heavy and light chain components, approx. 32 and 16kDa, respectively, linked by disulfide bonds. Glycosylation occurred via the plant specific insert in the light chain. The catalytic properties of the rAtAP A1 were similar to other plant aspartic proteinases with activity in acid pH range, maximal activity at pH 4.0, K(m) of 44 microM, and k(cat) of 55 s(-1) using a synthetic substrate. The enzyme was inhibited by pepstatin A.
Collapse
|
26
|
Carpentier SC, Panis B, Vertommen A, Swennen R, Sergeant K, Renaut J, Laukens K, Witters E, Samyn B, Devreese B. Proteome analysis of non-model plants: a challenging but powerful approach. MASS SPECTROMETRY REVIEWS 2008; 27:354-77. [PMID: 18381744 DOI: 10.1002/mas.20170] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological research has focused in the past on model organisms and most of the functional genomics studies in the field of plant sciences are still performed on model species or species that are characterized to a great extent. However, numerous non-model plants are essential as food, feed, or energy resource. Some features and processes are unique to these plant species or families and cannot be approached via a model plant. The power of all proteomic and transcriptomic methods, that is, high-throughput identification of candidate gene products, tends to be lost in non-model species due to the lack of genomic information or due to the sequence divergence to a related model organism. Nevertheless, a proteomics approach has a great potential to study non-model species. This work reviews non-model plants from a proteomic angle and provides an outline of the problems encountered when initiating the proteome analysis of a non-model organism. The review tackles problems associated with (i) sample preparation, (ii) the analysis and interpretation of a complex data set, (iii) the protein identification via MS, and (iv) data management and integration. We will illustrate the power of 2DE for non-model plants in combination with multivariate data analysis and MS/MS identification and will evaluate possible alternatives.
Collapse
|
27
|
Duarte P, Pissarra J, Moore I. Processing and trafficking of a single isoform of the aspartic proteinase cardosin A on the vacuolar pathway. PLANTA 2008; 227:1255-68. [PMID: 18273641 DOI: 10.1007/s00425-008-0697-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Accepted: 01/22/2008] [Indexed: 05/25/2023]
Abstract
Cardosin A is the major vacuolar aspartic proteinase (APs) (E.C.3.4.23) in pistils of Cynara cardunculus L. (cardoon). Plant APs carry a unique domain, the plant-specific-insert (PSI), and a pro-segment which are separated from the catalytic domains during maturation but the sequence and location of processing steps for cardosins have not been established. Here transient expression in tobacco and inducible expression in Arabidopsis indicate that processing of cardosin A is conserved in heterologous species. Pulse chase analysis in tobacco protoplasts indicated that cleavage at the carboxy-terminus of the PSI could generate a short-lived 50 kDa intermediate which was converted to a more stable 35 kDa intermediate by removal of the PSI. Processing intermediates detected immunologically in tobacco leaves and Arabidopsis seedlings confirmed that cleavage at the amino-terminus of the PSI either preceded or followed quickly after cleavage at its carboxy-terminus. Thus removal of PSI preceded the loss of the prosegment in contrast to the well-characterised barley AP, phytepsin. PreprocardosinA acquired a complex glycan and its processing was inhibited by brefeldin A and dominant-inhibitory AtSAR1 or AtRAB-D2(a )mutants indicating that it was transported via the Golgi and that processing followed ER export. The 35 kDa intermediate was present in the cell wall and protoplast culture medium as well as the vacuole but the 31 kDa mature subunit, lacking the amino-terminal prosegment, was detected only in the vacuole. Thus maturation appears to occur only after sorting from the trans-Golgi to the vacuole. Processing or transport of cardosin A was apparently slower in tobacco protoplasts than in whole cells.
Collapse
Affiliation(s)
- Patrícia Duarte
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre, Porto, Portugal.
| | | | | |
Collapse
|
28
|
Simões I, Faro R, Bur D, Faro C. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J Biol Chem 2007; 282:31358-65. [PMID: 17650510 DOI: 10.1074/jbc.m702477200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis thaliana constitutive disease resistance 1 (CDR1) gene product is an aspartic proteinase that has been implicated in disease resistance signaling (Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A., and Lamb, C. (2004) EMBO J. 23, 980-988). This apoplastic enzyme is a member of the group of "atypical" plant aspartic proteinases. As for other enzymes of this subtype, CDR1 has remained elusive until recently as a result of its unusual properties and localization. Here we report on the heterologous expression and characterization of recombinant CDR1, which displays unique enzymatic properties among plant aspartic proteinases. The highly restricted specificity requirements, insensitivity toward the typical aspartic proteinase inhibitor pepstatin A, an unusually high optimal pH of 6.0-6.5, proteinase activity without irreversible prosegment removal, and dependence of catalytic activity on formation of a homo-dimer are some of the unusual properties observed for recombinant CDR1. These findings unveil a pattern of unprecedented functional complexity for Arabidopsis CDR1 and are consistent with a highly specific and regulated biological function.
Collapse
Affiliation(s)
- Isaura Simões
- Departamento de Biologia Molecular e Biotecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Apt. 3126, Coimbra 3000, Portugal
| | | | | | | |
Collapse
|
29
|
Terauchi K, Asakura T, Ueda H, Tamura T, Tamura K, Matsumoto I, Misaka T, Hara-Nishimura I, Abe K. Plant-specific insertions in the soybean aspartic proteinases, soyAP1 and soyAP2, perform different functions of vacuolar targeting. JOURNAL OF PLANT PHYSIOLOGY 2006; 163:856-62. [PMID: 16777533 DOI: 10.1016/j.jplph.2005.08.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 08/08/2005] [Indexed: 05/10/2023]
Abstract
Most aspartic proteinases (APs) of plant origin are characterized by the presence of plant-specific insertion (PSI) in their primary structure. PSI has been reported to function as signals for both transport of AP molecules from the endoplasmic reticulum (ER) and for their targeting to the vacuole. To determine the functions of the PSIs in soyAP1 and soyAP2 identified in our previous study, we examined their subcellular localization by transient expression of a green fluorescent protein (GFP) fusion protein in the protoplasts of Arabidopsis suspension-cultured cells. Both soyAP1-GFP and soyAP2-GFP were targeted to the vacuole. To confirm the role of the PSI, we prepared PSI-deleted soyAP1 and soyAP2, and investigated their vacuolar targeting by the same method. While the former deletion mutant was always transported to the vacuole, the latter sometimes remained in the ER and was only sometimes transported to the vacuole. These observations indicated that, in the case of soyAP1, the PSI is not involved in vacuolar targeting, also suggesting that the function of the PSI differs depending on its origin.
Collapse
Affiliation(s)
- Kaede Terauchi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Samyn B, Sergeant K, Van Beeumen J. A method for C-terminal sequence analysis in the proteomic era (proteins cleaved with cyanogen bromide). Nat Protoc 2006; 1:318-23. [PMID: 17406252 DOI: 10.1038/nprot.2006.50] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is growing interest in the overall study of post-translational modifications (PTMs) of proteins. Beside phosphorylation and glycosylation, truncations of the nascent polypeptide chain at the N or C termini are by far the most common types of PTMs found in proteins. However, little attention has been paid to the development of approaches that allow a systematic analysis of these proteolytic processing events. Here we present a protocol that allows the identification of the C-terminal sequences of proteins. A peptide mixture is generated by cleavage of the protein with cyanogen bromide and is incubated with carboxypeptidase Y. The enzyme is only able to act on the C-terminal fragment, because this is the only peptide without a homoserine lactone residue at its C terminus. The resulting fragments, forming a peptide ladder, are analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The entire protocol, including the CNBr cleavage, takes 21 h and can be applied to proteins purified either by SDS-PAGE or by 2D PAGE or in solution.
Collapse
Affiliation(s)
- Bart Samyn
- Department of Biochemistry, Physiology and Microbiology, Laboratory of Protein Biochemistry and Protein Engineering, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium.
| | | | | |
Collapse
|
31
|
Simões I, Mueller EC, Otto A, Bur D, Cheung AY, Faro C, Pires E. Molecular analysis of the interaction between cardosin A and phospholipase D(alpha). Identification of RGD/KGE sequences as binding motifs for C2 domains. FEBS J 2005; 272:5786-98. [PMID: 16279943 DOI: 10.1111/j.1742-4658.2005.04967.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the identification of phospholipase Dalpha as a cardosin A-binding protein. The interaction was confirmed by coimmunoprecipitation studies and pull-down assays. To investigate the structural and molecular determinants involved in the interaction, pull-down assays with cardosin A and various glutathione S-transferase-fused phospholipase Dalpha constructs were performed. Results revealed that the C2 domain of phospholipase Dalpha contains the cardosin A-binding activity. Further assays with mutated recombinant forms of cardosin A showed that the RGD motif as well as the unprecedented KGE motif, which is structurally and charge-wise very similar to RGD, are indispensable for the interaction. Taken together our results indicate that the C2 domain of plant phospholipase Dalpha can act as a cardosin A-binding domain and suggest that plant C2 domains may have an additional role as RGD/KGE-recognition domains.
Collapse
Affiliation(s)
- Isaura Simões
- Departamento de Biologia Molecular e Biotecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra and Departamento de Bioquímica, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|