1
|
Shyrokova EY, Prassolov VS, Spirin PV. The Role of the MCTS1 and DENR Proteins in Regulating the Mechanisms Associated with Malignant Cell Transformation. Acta Naturae 2021; 13:98-105. [PMID: 34377560 PMCID: PMC8327141 DOI: 10.32607/actanaturae.11181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
The mutations associated with malignant cell transformation are believed to disrupt the expression of a significant number of normal, non-mutant genes. The proteins encoded by these genes are involved in the regulation of many signaling pathways that are responsible for differentiation and proliferation, as well as sensitivity to apoptotic signals, growth factors, and cytokines. Abnormalities in the balance of signaling pathways can lead to the transformation of a normal cell, which results in tumor formation. Detection of the target genes and the proteins they encode and that are involved in the malignant transformation is one of the major evolutions in anti-cancer biomedicine. Currently, there is an accumulation of data that shed light on the role of the MCTS1 and DENR proteins in oncogenesis.
Collapse
Affiliation(s)
- E. Y. Shyrokova
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, 141701 Russia
| | - V. S. Prassolov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| | - P. V. Spirin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, 119991 Russia
| |
Collapse
|
2
|
Funakoshi-Tago M, Tago K, Li C, Hokimoto S, Tamura H. Coffee decoction enhances tamoxifen proapoptotic activity on MCF-7 cells. Sci Rep 2020; 10:19588. [PMID: 33177647 PMCID: PMC7659352 DOI: 10.1038/s41598-020-76445-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The consumption of coffee has been suggested to effectively enhance the therapeutic effects of tamoxifen against breast cancer; however, the underlying molecular mechanisms remain unclear. We herein attempted to clarify how coffee decoction exerts anti-cancer effects in cooperation with tamoxifen using the estrogen receptor α (ERα)-positive breast cancer cell line, MCF-7. The results obtained showed that coffee decoction down-regulated the expression of ERα, which was attributed to caffeine inhibiting its transcription. Coffee decoction cooperated with tamoxifen to induce cell-cycle arrest and apoptotic cell death, which may have been mediated by decreases in cyclin D1 expression and the activation of p53 tumor suppressor. The inclusion of caffeine in coffee decoction was essential, but not sufficient, to induce cell-cycle arrest and apoptotic cell death, suggesting the requirement of unknown compound(s) in coffee decoction to decrease cyclin D1 expression and activate apoptotic signaling cascades including p53. The activation of p53 through the cooperative effects of these unidentified component(s), caffeine, and tamoxifen appeared to be due to the suppression of the ERK and Akt pathways. Although the mechanisms by which the suppression of these pathways induces p53-mediated apoptotic cell death remain unclear, the combination of decaffeinated coffee, caffeine, and tamoxifen also caused cell-cycle arrest and apoptotic cell death, suggesting that unknown compound(s) present in decaffeinated coffee cooperate with caffeine and tamoxifen.
Collapse
Affiliation(s)
- Megumi Funakoshi-Tago
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan.
| | - Kenji Tago
- Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, 329-0498, Japan.
| | - Chin Li
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Shingo Hokimoto
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hiroomi Tamura
- Division of Hygienic Chemistry, Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| |
Collapse
|
3
|
Daniele S, Giacomelli C, Pietrobono D, Barresi E, Piccarducci R, La Pietra V, Taliani S, Da Settimo F, Marinelli L, Novellino E, Martini C, Trincavelli ML. Long lasting inhibition of Mdm2-p53 interaction potentiates mesenchymal stem cell differentiation into osteoblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:737-749. [PMID: 30703414 DOI: 10.1016/j.bbamcr.2019.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/03/2018] [Accepted: 01/24/2019] [Indexed: 12/13/2022]
Abstract
The osteoblast generation from Mesenchymal stem cells (MSCs) is tightly coordinated by transcriptional networks and signalling pathways that control gene expression and protein stability of osteogenic "master transcription factors". Among these pathways, a great attention has been focused on p53 and its physiological negative regulator, the E3 ligase Murine double minute 2 (Mdm2). Nevertheless, the signalling that regulates Mdm2-p53 axis in osteoblasts remain to be elucidated, also considering that Mdm2 possesses numerous p53-independent activities and interacts with additional proteins. Herein, the effects of Mdm2 modulation on MSC differentiation were examined by the use of short- and long-lasting inhibitors of the Mdm2-p53 complex. The long-lasting Mdm2-p53 dissociation was demonstrated to enhance the MSC differentiation into osteoblasts. The increase of Mdm2 levels promoted its association to G protein-coupled receptors kinase (GRK) 2, one of the most relevant kinases involved in the desensitization of G protein-coupled receptors (GPCRs). In turn, the long-lasting Mdm2-p53 dissociation decreased GRK2 levels and favoured the functionality of A2B Adenosine Receptors (A2BARs), a GPCR dictating MSC fate. EB148 facilitated cAMP accumulation, and mediated a sustained activation of extracellular signal-regulated kinases (ERKs) and cAMP response element-binding protein (CREB). Such pro-osteogenic effects were not detectable by using the reversible Mdm2-p53 complex inhibitor, suggesting the time course of Mdm2-p53 dissociation may impact on intracellular proteins involved in cell differentiation fate. These results suggest that the long-lasting Mdm2 binding plays a key role in the mobilization of intracellular proteins that regulate the final biological outcome of MSCs.
Collapse
Affiliation(s)
- Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | | | | | | | - Valeria La Pietra
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Luciana Marinelli
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|
4
|
Wu CE, Koay TS, Esfandiari A, Ho YH, Lovat P, Lunec J. ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma. Cancers (Basel) 2018; 11:cancers11010003. [PMID: 30577494 PMCID: PMC6356368 DOI: 10.3390/cancers11010003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/17/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
MAPK and p14ARF–MDM2–p53 pathways are critical in cutaneous melanomas. Here, synergistic combination of the MEK inhibitor, trametinib, with MDM2 inhibitors, nutlin-3/RG7388/HDM201, and the mechanistic basis of responses, for BRAFV600E and p53WT melanoma cells, are reported. The combination treatments induced higher levels of p53 target gene transcripts and protein products, resulting in increased cell cycle arrest and apoptosis compared with MDM2 inhibitors alone, suggesting trametinib synergized with MDM2 inhibitors via upregulation of p53-dependent pathways. In addition, DUSP6 phosphatase involvement was indicated by downregulation of its mRNA and protein following pERK reduction by trametinib. Furthermore, suppression of DUSP6 by siRNA, or inhibition with the small molecule inhibitor, BCI, at a dose without cytotoxicity, potentiated the effect of MDM2 inhibitors through increased ATM-dependent p53 phosphorylation, as demonstrated by complete reversal with the ATM inhibitor, KU55933. Trametinib synergizes with MDM2 inhibitors through a novel DUSP6 mechanism in BRAFV600E and p53WT melanoma cells, in which DUSP6 regulation of p53 phosphorylation is mediated by ATM. This provides a new therapeutic rationale for combination treatments involving activation of the ATM/p53 pathway and MAPK pathway inhibition.
Collapse
Affiliation(s)
- Chiao-En Wu
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Chang Gung University College of Medicine, Taoyuan 333, Taiwan.
| | - Tsin Shue Koay
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Arman Esfandiari
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, Paul O'Gorman Building, University College London, London WC1E 6BT, UK.
| | - Yi-Hsuan Ho
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - Penny Lovat
- Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| | - John Lunec
- Northern Institute for Cancer Research, School of Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
5
|
Grainyhead-like 2 (GRHL2) knockout abolishes oral cancer development through reciprocal regulation of the MAP kinase and TGF-β signaling pathways. Oncogenesis 2018; 7:38. [PMID: 29735981 PMCID: PMC5938237 DOI: 10.1038/s41389-018-0047-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/25/2018] [Accepted: 04/05/2018] [Indexed: 01/01/2023] Open
Abstract
Grainyhead-Like 2 (GRHL2) is an epithelial-specific transcription factor that regulates epithelial morphogenesis and differentiation. Prior studies suggested inverse regulation between GRHL2 and TGF-β in epithelial plasticity and potential carcinogenesis. Here, we report the role of GRHL2 in oral carcinogenesis in vivo using a novel Grhl2 knockout (KO) mouse model and the underlying mechanism involving its functional interaction with TGF-β signaling. We developed epithelial-specific Grhl2 conditional KO mice by crossing Grhl2 floxed mice with those expressing CreER driven by the K14 promoter. After induction of Grhl2 KO, we confirmed the loss of GRHL2 and its target proteins, while Grhl2 KO strongly induced TGF-β signaling molecules. When exposed to 4-nitroquinoline 1-oxide (4-NQO), a strong chemical carcinogen, Grhl2 wild-type (WT) mice developed rampant oral tongue tumors, while Grhl2 KO mice completely abolished tumor development. In cultured oral squamous cell carcinoma (OSCC) cell lines, TGF-β signaling was notably induced by GRHL2 knockdown while being suppressed by GRHL2 overexpression. GRHL2 knockdown or KO in vitro and in vivo, respectively, led to loss of active p-Erk1/2 and p-JNK MAP kinase levels; moreover, ectopic overexpression of GRHL2 strongly induced the MAP kinase activation. Furthermore, the suppressive effect of GRHL2 on TGF-β signaling was diminished in cells exposed to Erk and JNK inhibitors. These data indicate that GRHL2 activates the Erk and JNK MAP kinases, which in turn suppresses the TGF -β signaling. This novel signaling represents an alternative pathway by which GRHL2 regulates carcinogenesis, and is distinct from the direct transcriptional regulation by GRHL2 binding at its target gene promoters, e.g., E-cadherin, hTERT, p63, and miR-200 family genes. Taken together, the current study provides the first genetic evidence to support the role of GRHL2 in carcinogenesis and the underlying novel mechanism that involves the functional interaction between GRHL2 and TGF-β signaling through the MAPK pathways.
Collapse
|
6
|
Polak A, Kiliszek P, Sewastianik T, Szydłowski M, Jabłońska E, Białopiotrowicz E, Górniak P, Markowicz S, Nowak E, Grygorowicz MA, Prochorec-Sobieszek M, Nowis D, Gołąb J, Giebel S, Lech-Marańda E, Warzocha K, Juszczyński P. MEK Inhibition Sensitizes Precursor B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells to Dexamethasone through Modulation of mTOR Activity and Stimulation of Autophagy. PLoS One 2016; 11:e0155893. [PMID: 27196001 PMCID: PMC4872998 DOI: 10.1371/journal.pone.0155893] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 05/05/2016] [Indexed: 01/16/2023] Open
Abstract
Resistance to glucocorticosteroids (GCs) is a major adverse prognostic factor in B-ALL, but the molecular mechanisms leading to GC resistance are not completely understood. Herein, we sought to elucidate the molecular background of GC resistance in B-ALL and characterize the therapeutic potential of targeted intervention in these mechanisms. Using exploratory bioinformatic approaches, we found that resistant cells exhibited significantly higher expression of MEK/ERK (MAPK) pathway components. We found that GC-resistant ALL cell lines had markedly higher baseline activity of MEK and small-molecule MEK1/2 inhibitor selumetinib increased GCs-induced cell death. MEK inhibitor similarly increased in vitro dexamethasone activity in primary ALL blasts from 19 of 22 tested patients. To further confirm these observations, we overexpressed a constitutively active MEK mutant in GC-sensitive cells and found that forced MEK activity induced resistance to dexamethasone. Since recent studies highlight the role GC-induced autophagy upstream of apoptotic cell death, we assessed LC3 processing, MDC staining and GFP-LC3 relocalization in cells incubated with either DEX, SEL or combination of drugs. Unlike either drug alone, only their combination markedly increased these markers of autophagy. These changes were associated with decreased mTOR activity and blocked 4E-BP1 phosphorylation. In cells with silenced beclin-1 (BCN1), required for autophagosome formation, the synergy of DEX and SEL was markedly reduced. Taken together, we show that MEK inhibitor selumetinib enhances dexamethasone toxicity in GC-resistant B-ALL cells. The underlying mechanism of this interaction involves inhibition of mTOR signaling pathway and modulation of autophagy markers, likely reflecting induction of this process and required for cell death. Thus, our data demonstrate that modulation of MEK/ERK pathway is an attractive therapeutic strategy overcoming GC resistance in B-ALL patients.
Collapse
Affiliation(s)
- Anna Polak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Kiliszek
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Tomasz Sewastianik
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Maciej Szydłowski
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Ewa Jabłońska
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Emilia Białopiotrowicz
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Patryk Górniak
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Sergiusz Markowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Eliza Nowak
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | - Monika A. Grygorowicz
- Dept. of Immunology, Maria Sklodowska-Curie Memorial Cancer Center–Institute of Oncology, Warsaw, Poland
| | | | - Dominika Nowis
- Genomic Medicine, Dept. of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jakub Gołąb
- Dept. of Immunology, Center of Biostructure Research, Medical University of Warsaw, Warsaw, Poland
| | - Sebastian Giebel
- Dept. of Bone Marrow Transplantation and Hematology-Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice, Poland
| | - Ewa Lech-Marańda
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- Dept. of Hematology and Transfusion Medicine, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Krzysztof Warzocha
- Dept. of Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Przemysław Juszczyński
- Dept. of Experimental Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
- * E-mail:
| |
Collapse
|
7
|
NORE1A Regulates MDM2 Via β-TrCP. Cancers (Basel) 2016; 8:cancers8040039. [PMID: 27023610 PMCID: PMC4846848 DOI: 10.3390/cancers8040039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 12/11/2022] Open
Abstract
Mouse Double Minute 2 Homolog (MDM2) is a key negative regulator of the master tumor suppressor p53. MDM2 regulates p53 on multiple levels, including acting as an ubiquitin ligase for the protein, thereby promoting its degradation by the proteasome. MDM2 is oncogenic and is frequently found to be over-expressed in human tumors, suggesting its dysregulation plays an important role in human cancers. We have recently found that the Ras effector and RASSF (Ras Association Domain Family) family member RASSF5/NORE1A enhances the levels of nuclear p53. We have also found that NORE1A (Novel Ras Effector 1A) binds the substrate recognition component of the SCF-ubiquitin ligase complex β-TrCP. Here, we now show that NORE1A regulates MDM2 protein levels by targeting it for ubiquitination by SCF-β-TrCP. We also show the suppression of NORE1A protein levels enhances MDM2 protein expression. Finally, we show that MDM2 can suppress the potent senescence phenotype induced by NORE1A over-expression. Thus, we identify a mechanism by which Ras/NORE1A can modulate p53 protein levels. As MDM2 has several important targets in addition to p53, this finding has broad implications for cancer biology in tumor cells that have lost expression of NORE1A due to promoter methylation.
Collapse
|
8
|
Proud CG. Mnks, eIF4E phosphorylation and cancer. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:766-73. [PMID: 25450520 DOI: 10.1016/j.bbagrm.2014.10.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/06/2014] [Accepted: 10/18/2014] [Indexed: 01/18/2023]
Abstract
The MAP kinase signal-integrating kinases or MAP kinase-interacting protein kinases (Mnks) are activated by signaling through the oncogenic MAP kinase (ERK) pathway. The best-known Mnk substrate is eukaryotic initiation factor eIF4E, the protein which binds the 5'-cap structure of eukaryotic mRNAs and helps to recruit ribosomes to them. eIF4E is a well-established proto-oncogene, whose expression or activation is associated with transformation and tumorigenesis. Mnks phosphorylate eIF4E at a single site. Increasing evidence implicates the Mnks and/or phosphorylation of eIF4E in cell transformation, tumorigenesis or tumor progression, in a growing range of settings. Mnks and/or the phosphorylation of eIF4E have been suggested to regulate the expression of proteins involved in cell cycle progression, cell survival and cell motility. Further work is needed to extend our understanding of the impact of the Mnks on gene expression, explore the biochemical mechanisms involved and evaluate the utility of targeting the Mnks in cancer therapy. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Christopher G Proud
- South Australian Health & Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia.
| |
Collapse
|
9
|
Senescence induction in renal carcinoma cells by Nutlin-3: a potential therapeutic strategy based on MDM2 antagonism. Cancer Lett 2014; 353:211-9. [DOI: 10.1016/j.canlet.2014.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
|
10
|
Tanaka T, Iino M. Knockdown of Sec8 promotes cell-cycle arrest at G1/S phase by inducing p21 via control of FOXO proteins. FEBS J 2014; 281:1068-84. [PMID: 24299491 DOI: 10.1111/febs.12669] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/06/2013] [Accepted: 11/29/2013] [Indexed: 11/30/2022]
Abstract
p21(Cip1) protein inhibits the activity of cyclins at the G(1) checkpoint and influences transition of cells from the G(1) to the S phase of the cell cycle. Moreover, expression of members of the FOXO family (active form of forkhead transcription factors of the O class) in dividing cells promotes cell-cycle arrest at the G(1)/S boundary via regulation of p21(Cip1). Recently, the exocyst complex, including Sec8, has been implicated in various roles independent of its role in secretion, such as cell migration, invadopodia formation, cytokinesis, glucose uptake and neural development. Given the essential roles of the exocyst complex in cellular and developmental processes, disruption of its function may be involved in various diseases such as cancer, diabetes and neuronal disorders. However, the relationship between Sec8 and the cell cycle remains to be elucidated. In this study, knockdown of Sec8 inhibited cell growth and promoted cell-cycle arrest at the G(1)/S phase by control of p21 expression and retinoblastoma protein phosphorylation. Furthermore, Sec8 regulated FOXO family proteins via ubiquitin-proteasome degradation by regulating the expression of the murine double minute 2 (Mdm2) protein but not S-phase kinase-associated protein 2 (Skp2).
Collapse
Affiliation(s)
- Toshiaki Tanaka
- Department of Anatomy and Cell Biology, Faculty of Medicine, School of Medicine, Yamagata University, Japan; Department of Dentistry, Oral and Maxillofacial Surgery, Plastic and Reconstructive Surgery, Faculty of Medicine, School of Medicine, Yamagata University, Japan
| | | |
Collapse
|
11
|
Shih HJ, Chen HH, Chen YA, Wu MH, Liou GG, Chang WW, Chen L, Wang LH, Hsu HL. Targeting MCT-1 oncogene inhibits Shc pathway and xenograft tumorigenicity. Oncotarget 2013; 3:1401-15. [PMID: 23211466 PMCID: PMC3717801 DOI: 10.18632/oncotarget.688] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Overexpression of Shc adaptor proteins is associated with mitogenesis, carcinogenesis and metastasis. Multiple copies in T-cell malignancy 1 (MCT-1) oncoprotein promotes cell proliferation, survival and tumorigenic effects. Our current data show that MCT-1 is a novel regulator of Shc-Ras-MEK-ERK signaling and MCT-1 is significantly co-activated with Shc gene in human carcinomas. The knockdown of MCT-1 enhances apoptotic cell death accompanied with the activation of caspases and cleavage of caspase substrates under environmental stress. The cancer cell proliferation, chemo-resistance and tumorigenic capacity are proved to be effectively suppressed by targeting MCT-1. Accordingly, an important linkage between MCT-1 oncogenicity and Shc pathway in tumor development has now been established. Promoting MCT-1 expression by gene hyperactivation may be recognized as a tumor marker and MCT-1 may serve as a molecular target of cancer therapy.
Collapse
Affiliation(s)
- Hung-Ju Shih
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang Z, Beyer S, Jhiang SM. MEK inhibition leads to lysosome-mediated Na+/I- symporter protein degradation in human breast cancer cells. Endocr Relat Cancer 2013; 20:241-50. [PMID: 23404856 PMCID: PMC3837521 DOI: 10.1530/erc-12-0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Na(+)/I(-) symporter (NIS (SLC5A5)) is a transmembrane glycoprotein that mediates active iodide uptake into thyroid follicular cells. NIS-mediated iodide uptake in thyroid cells is the basis for targeted radionuclide imaging and treatment of differentiated thyroid carcinomas and their metastases. Furthermore, NIS is expressed in many human breast tumors but not in normal non-lactating breast tissue, suggesting that NIS-mediated radionuclide uptake may also allow the imaging and targeted therapy of breast cancer. However, functional cell surface NIS expression is often low in breast cancer, making it important to uncover signaling pathways that modulate NIS expression at multiple levels, from gene transcription to posttranslational processing and cell surface trafficking. In this study, we investigated NIS regulation in breast cancer by MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK) signaling, an important cell signaling pathway involved in oncogenic transformation. We found that MEK inhibition decreased NIS protein levels in all-trans retinoic acid/hydrocortisone-treated MCF-7 cells as well as human breast cancer cells expressing exogenous NIS. The decrease in NIS protein levels by MEK inhibition was not accompanied by a decrease in NIS mRNA or a decrease in NIS mRNA export from the nucleus to the cytoplasm. NIS protein degradation upon MEK inhibition was prevented by lysosome inhibitors but not by proteasome inhibitors. Interestingly, NIS protein level was correlated with MEK/ERK activation in human breast tumors from a tissue microarray. Taken together, MEK activation appears to play an important role in maintaining NIS protein stability in human breast cancers.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
13
|
Esteras N, Alquézar C, Bermejo-Pareja F, Bialopiotrowicz E, Wojda U, Martín-Requero A. Downregulation of extracellular signal-regulated kinase 1/2 activity by calmodulin KII modulates p21Cip1 levels and survival of immortalized lymphocytes from Alzheimer's disease patients. Neurobiol Aging 2012; 34:1090-100. [PMID: 23153928 DOI: 10.1016/j.neurobiolaging.2012.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 10/11/2012] [Accepted: 10/19/2012] [Indexed: 11/26/2022]
Abstract
Previously, we reported a Ca(2+)/calmodulin (CaM)-dependent impairment of apoptosis induced by serum deprivation in Alzheimer's disease (AD) lymphoblasts. These cell lines showed downregulation of extracellular signal-regulated kinase (ERK)1/2 activity and elevated content of p21 compared with control cells. The aim of this study was to delineate the molecular mechanism underlying the distinct regulation of p21 content in AD cells. Quantitative reverse transcription polymerase chain reaction analysis demonstrated increased p21 messenger RNA (mRNA) levels in AD cells. The ERK1/2 inhibitor, PD98059, prevented death of control cells and enhanced p21 mRNA and protein levels. The CaM antagonist, calmidazolium, and the CaMKII inhibitor, KN-62, normalized the survival pattern of AD lymphoblasts by augmenting ERK1/2 activation and reducing p21 mRNA and protein levels. Upregulation of p21 transcription in AD cells appears to be the consequence of increased activity of forkhead box O3a (FOXO3a) as the result of diminished ERK1/2-mediated phosphorylation of this transcription factor, which in turn facilitates its nuclear accumulation. Murine double minute 2 (MDM2) protein levels were decreased in AD cells relative to control lymphoblasts, suggesting an impairment of FOXO3a degradation.
Collapse
Affiliation(s)
- Noemí Esteras
- Department of Cellular and Molecular Medicine, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Sato A, Sunayama J, Matsuda KI, Seino S, Suzuki K, Watanabe E, Tachibana K, Tomiyama A, Kayama T, Kitanaka C. MEK-ERK signaling dictates DNA-repair gene MGMT expression and temozolomide resistance of stem-like glioblastoma cells via the MDM2-p53 axis. Stem Cells 2012; 29:1942-51. [PMID: 21957016 DOI: 10.1002/stem.753] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Overcoming the resistance of glioblastoma cells against temozolomide, the first-line chemotherapeutic agent of choice for newly diagnosed glioblastoma, is a major therapeutic challenge in the management of this deadly brain tumor. The gene encoding O(6) -methylguanine DNA methyltransferase (MGMT), which removes the methyl group attached by temozolomide, is often silenced by promoter methylation in glioblastoma but is nevertheless expressed in a significant fraction of cases and is therefore regarded as one of the most clinically relevant mechanisms of resistance against temozolomide. However, to date, signaling pathways regulating MGMT in MGMT-expressing glioblastoma cells have been poorly delineated. Here in this study, we provide lines of evidence that the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK)-murine double minute 2 (MDM2)-p53 pathway plays a critical role in the regulation of MGMT expression, using stem-like glioblastoma cells directly derived from patient tumor samples and maintained in the absence of serum, which not only possess stem-like properties but are also known to phenocopy the characteristics of the original tumors from which they are derived. We show that, in stem-like glioblastoma cells, MEK inhibition reduced MDM2 expression and that inhibition of either MEK or MDM2 resulted in p53 activation accompanied by p53-dependent downregulation of MGMT expression. MEK inhibition rendered otherwise resistant stem-like glioblastoma cells sensitive to temozolomide, and combination of MEK inhibitor and temozolomide treatments effectively deprived stem-like glioblastoma cells of their tumorigenic potential. Our findings suggest that targeting of the MEK-ERK-MDM2-p53 pathway in combination with temozolomide could be a novel and promising therapeutic strategy in the treatment of glioblastoma.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Molecular Cancer Science, Yamagata University School of Medicine, Yamagata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Ubiquitination and the Ubiquitin-Proteasome System as regulators of transcription and transcription factors in epithelial mesenchymal transition of cancer. Tumour Biol 2012; 33:897-910. [PMID: 22399444 DOI: 10.1007/s13277-012-0355-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/09/2012] [Indexed: 02/06/2023] Open
Abstract
Epithelial to Mesenchymal Transition (EMT) in cancer is a process that allows cancer cells to detach from neighboring cells, become mobile and metastasize and shares many signaling pathways with development. Several molecular mechanisms which regulate oncogenic properties in neoplastic cells such as proliferation, resistance to apoptosis and angiogenesis through transcription factors or other mediators are also regulators of EMT. These pathways and downstream transcription factors are, in their turn, regulated by ubiquitination and the Ubiquitin-Proteasome System (UPS). Ubiquitination, the covalent link of the small 76-amino acid protein ubiquitin to target proteins, serves as a signal for protein degradation by the proteasome or for other outcomes such as endocytosis, degradation by the lysosome or directing these proteins to specific cellular compartments. This review discusses aspects of the regulation of EMT by ubiquitination and the UPS and underlines its complexity focusing on transcription and transcription factors regulating EMT and are being regulated by ubiquitination.
Collapse
|
16
|
|
17
|
Ohgami T, Kato K, Kobayashi H, Sonoda K, Inoue T, Yamaguchi SI, Yoneda T, Wake N. Low-dose mithramycin exerts its anticancer effect via the p53 signaling pathway and synergizes with nutlin-3 in gynecologic cancers. Cancer Sci 2010; 101:1387-95. [PMID: 20331637 PMCID: PMC11158481 DOI: 10.1111/j.1349-7006.2010.01543.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
MDM2 is a direct negative regulator of p53. The p53-independent mdm2-P1 and p53-dependent mdm2-P2 promoters have been recently shown to harbor Sp1 binding sites. Mithramycin, an inhibitor of Sp1 DNA binding, has been used clinically to treat hypercalcemia and some types of neoplastic disorders. In this study, we investigated the mechanisms behind the anticancer effect of mithramycin. In gynecologic cancer cells expressing wild-type p53, mithramycin stabilized p53 and increased the expression of the p53 downstream target genes PUMA and p21, arrested the cell cycle, and induced apoptosis. This activation of the p53 signaling pathway was a specific effect of MTH at concentrations <50 nm. Mithramycin temporally decreased transcription of both the mdm2-P1 and -P2 promoters. This was followed by a subsequent increase of mdm2-P2 promoter activity by activated p53. Up-regulated MDM2 was in its active form, and consequently attenuated p53 activity. Although mithramycin activated p53 and suppressed the growth of human gynecologic cancer cell xenografts in mice, this was accompanied with a secondary up-regulation of MDM2. Combined treatment with mithramycin and nutlin-3, a drug that inhibits MDM2-p53 interaction, overcame a secondary up-regulation of MDM2 and synergistically inhibited cancer cell growth by inducing apoptosis through activation of the p53 signaling pathway. These observations provide a better understanding of the mechanisms of mithramycin activity, and suggest a potential role for combining mithramycin and nutlin-3 as a chemotherapeutic treatment for gynecologic cancers.
Collapse
Affiliation(s)
- Tatsuhiro Ohgami
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang W, Konopleva M, Burks JK, Dywer KC, Schober WD, Yang JY, McQueen TJ, Hung MC, Andreeff M. Blockade of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase and murine double minute synergistically induces Apoptosis in acute myeloid leukemia via BH3-only proteins Puma and Bim. Cancer Res 2010; 70:2424-34. [PMID: 20215498 DOI: 10.1158/0008-5472.can-09-0878] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Molecular aberrations of the Ras/Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) kinase (MEK)/ERK and/or Murine double minute (MDM2)/p53 signaling pathways have been reported in 80% and 50% of primary acute myeloid leukemia (AML) samples and confer poor outcome. In this study, antileukemic effects of combined MEK inhibition by AZD6244 and nongenotoxic p53 activation by MDM2 antagonist Nutlin-3a were investigated. Simultaneous blockade of MEK and MDM2 signaling by AZD6244 and Nutlin-3a triggered synergistic proapoptotic responses in AML cell lines [combination index (CI) = 0.06 +/- 0.03 and 0.43 +/- 0.03 in OCI/AML3 and MOLM13 cells, respectively] and in primary AML cells (CI = 0.52 +/- 0.01). Mechanistically, the combination upregulated levels of BH3-only proteins Puma and Bim, in part via transcriptional upregulation of the FOXO3a transcription factor. Suppression of Puma and Bim by short interfering RNA rescued OCI/AML3 cells from AZD/Nutlin-induced apoptosis. These results strongly indicate the therapeutic potential of combined MEK/MDM2 blockade in AML and implicate Puma and Bim as major regulators of AML cell survival.
Collapse
Affiliation(s)
- Weiguo Zhang
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030-4009, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Whyte J, Bergin O, Bianchi A, McNally S, Martin F. Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development. Breast Cancer Res 2010; 11:209. [PMID: 19818165 PMCID: PMC2790844 DOI: 10.1186/bcr2361] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.
Collapse
Affiliation(s)
- Jacqueline Whyte
- Physiology and Medical Physics, Royal College of Surgeons in Ireland, St Stephens Green, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
20
|
Abstract
The nuclear-cytoplasmic distribution of ERK2 is regulated in response to various stimuli and changes in cell context. Furthermore, the nuclear flux of ERK2 occurs by several energy- and carrier-dependent and -independent mechanisms. ERK2 has been shown to translocate into and out of the nucleus by facilitated diffusion through the nuclear pore, interacting directly with proteins within the nuclear pore complex, as well as by karyopherin-mediated transport. Nuclear export has been suggested to be CRM1- and MEK1/2-dependent. Here, we describe a general nuclear import assay of wild-type ERK2 that can be employed to identify different mechanisms governing nuclear entry of the protein kinase, adapted to evaluate ERK2 mutants that impair nuclear entry to dissect energy- and carrier-dependent and -independent mechanisms, and extended to characterize export mechanisms.
Collapse
Affiliation(s)
- Arif Jivan
- Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
21
|
Naik S, Russell SJ. Engineering oncolytic viruses to exploit tumor specific defects in innate immune signaling pathways. Expert Opin Biol Ther 2009; 9:1163-76. [PMID: 19637971 DOI: 10.1517/14712590903170653] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The use of oncolytic viruses for treatment of cancer marks a significant alteration in the battle between host and virus. Viruses are confronted by cellular innate immune responses and contain an armamentarium of immunomodulatory proteins that suppress innate immunity. Tumorigenesis can result in impairment of innate immune responses. Viruses engineered to be vulnerable to normal responses may mediate tumor-specific killing with minimal off-target toxicity. OBJECTIVE To examine the mechanisms by which mammalian cells respond to viral infections in normal versus cancer cells and how viruses overcome these responses and to illustrate how this knowledge is used to develop physiologically targeted oncolytic viruses. METHODS Literature describing studies investigating innate responses to virus infections, cancer-specific molecular defects, immunosuppressive viral products and design of oncolytic viruses is extensively reviewed, and pertinent concepts are distilled and developed. RESULTS/CONCLUSION Innate responses to viral infections are complex involving i) viral detection; ii) induction of interferon and other cytokines; and iii) establishment of an antiviral state. Oncolytic viruses are engineered to be susceptible to antiviral responses in normal cells. Cancers can be partially vulnerable to these viruses because they have defective antiviral responses but the antitumor potency of physiologically targeted viruses may be significantly diminished.
Collapse
Affiliation(s)
- Shruthi Naik
- Mayo Clinic, Department of molecular medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
22
|
Rayburn ER, Ezell SJ, Zhang R. Recent advances in validating MDM2 as a cancer target. Anticancer Agents Med Chem 2009; 9:882-903. [PMID: 19538162 PMCID: PMC6728151 DOI: 10.2174/187152009789124628] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Accepted: 05/14/2008] [Indexed: 12/26/2022]
Abstract
The MDM2 oncogene is overexpressed in various human cancers. Its expression correlates with the phenotypes of high-grade, late-stage, and more resistant tumors. The auto-regulatory loop between MDM2 and the tumor suppressor p53 has long been considered the epitome of a rational target for cancer therapy. As such, many novel agents have been generated to interfere with the interaction of the two proteins, which results in the activation of p53. Among these agents are several small molecule inhibitors synthesized based upon the crystal structures of the MDM2-p53 complex. With use of high-throughput screening, several specific and effective agents for inhibition of the protein-protein interaction were discovered. Recent investigations, however, have demonstrated that many proteins regulate the MDM2-p53 interaction, and that MDM2 may have p53-independent oncogenic functions. In order for novel MDM2 inhibitors to be translated to the clinic, it is necessary to obtain a better understanding of the regulation of MDM2 and of the MDM2-p53 interaction. In particular, the implications of various interactions between certain regulator(s) and MDM2/p53 under different circumstances need to be elucidated to determine which pathway(s) represent the best targets for therapy. Targeting both MDM2 itself and regulators of MDM2 and the MDM2-p53 interaction, or use of MDM2 inhibitors in combination with conventional treatments, may improve prospects for tumor eradication.
Collapse
Affiliation(s)
- Elizabeth R. Rayburn
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Scharri J. Ezell
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| | - Ruiwen Zhang
- Department of Pharmacology and Toxicology, Division of Clinical Pharmacology, University of Alabama at Birmingham, USA
| |
Collapse
|
23
|
Kao CL, Hsu HS, Chen HW, Cheng TH. Rapamycin increases the p53/MDM2 protein ratio and p53-dependent apoptosis by translational inhibition of mdm2 in cancer cells. Cancer Lett 2009; 286:250-9. [PMID: 19560264 DOI: 10.1016/j.canlet.2009.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 05/21/2009] [Accepted: 05/29/2009] [Indexed: 12/31/2022]
Abstract
Rapamycin, a potential anti-cancer agent, modulates activity of various factors functioning in translation, including eIF4E, an initiation factor selectively regulating expression of a subset of cellular transcripts. We show here that rapamycin suppresses levels of the p53-regulator MDM2 by translational inhibition without affecting mdm2 mRNA expression or protein stability. Rapamycin inhibits translation of mdm2 mRNA from the constitutive P1 promoter, which contains two upstream ORFs (uORFs) in the 5'UTR. Suppression is accompanied by increased hypo-phosphorylation of 4EBP-1, an inhibitory eIF4E binding protein. Ectopic expression of eIF4E abrogates rapamycin-mediated MDM2 inhibition, suggesting that eIF4E is crucial in modulating MDM2 expression in rapamycin-treated cells. Rapamycin administration also results in elevated PUMA expression and PARP cleavage, which is reproduced by siRNA knockdown of eIF4E or MDM2, suggesting that MDM2 suppression by rapamycin stimulates p53-mediated apoptosis. Together, our results define translational regulation of MDM2 expression by eIF4E and provide a molecular mechanism underlying rapamycin-induced p53-dependent apoptosis.
Collapse
Affiliation(s)
- Chia-Li Kao
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
24
|
Lu TL, Huang GJ, Lu TJ, Wu JB, Wu CH, Yang TC, Iizuka A, Chen YF. Hispolon from Phellinus linteus has antiproliferative effects via MDM2-recruited ERK1/2 activity in breast and bladder cancer cells. Food Chem Toxicol 2009; 47:2013-21. [PMID: 19477214 DOI: 10.1016/j.fct.2009.05.023] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Revised: 04/24/2009] [Accepted: 05/14/2009] [Indexed: 01/15/2023]
Abstract
The MDM2 proto-oncogene is overexpressed in many human tumors. Although MDM2 inhibits tumor-suppressor function of p53, there exists a p53-independent role for MDM2 in tumorigenesis. Therefore, downregulation of MDM2 has been considered an attractive therapeutic strategy. Hispolon extracted from Phellinus species was found to induce epidermoid and gastric cancer cell apoptosis. However, the mechanisms are not fully understood. Herein, we report our findings that hispolon inhibited breast and bladder cancer cell growth, regardless of p53 status. Furthermore, p21(WAF1), a cyclin-dependent kinase inhibitor, was elevated in hispolon-treated cells. MDM2, a negative regulator of p21(WAF1), was ubiquitinated and degraded after hispolon treatment. We also found that activated ERK1/2 (extracellular signal-regulated kinase1/2) was recruited to MDM2 and involved in mediating MDM2 ubiquitination. Based on this finding, we investigated whether the sensitivity of cells to hispolon was related to ERK1/2 activity. The results indicated that cells with higher ERK1/2 activity were more sensitive to hispolon. In addition, hispolon-induced caspase-7 cleavage was inhibited by the ERK1/2 inhibitor, U0126. In conclusion, hispolon ubiquitinates and downregulates MDM2 via MDM2-recruited activated ERK1/2. Therefore, hispolon may be a potential anti-tumor agent in breast and bladder cancers.
Collapse
Affiliation(s)
- Te-Ling Lu
- School of Pharmacy, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hdm2 is regulated by K-Ras and mediates p53-independent functions in pancreatic cancer cells. Oncogene 2008; 28:709-20. [DOI: 10.1038/onc.2008.423] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Taubert H, Bartel F, Greither T, Bache M, Kappler M, Köhler T, Böhnke A, Lautenschläger C, Schmidt H, Holzhausen HJ, Hauptmann S, Würl P. Association of HDM2 transcript levels with age of onset and prognosis in soft tissue sarcomas. Mol Cancer Res 2008; 6:1575-81. [PMID: 18922973 DOI: 10.1158/1541-7786.mcr-07-2150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The p53 stress response is crucial for the prevention of tumor formation. The oncogene HDM2 is one of the key negative regulators of p53 and is a central node in the p53 pathway. P53 and HDM2 form an oscillating feedback loop. HDM2 expression is regulated by different promoters. To evaluate its clinical relevance, we determined the levels of HDM2 transcripts originating from the constitutive P1 and p53-sensitive P2 promoter in 133 soft tissue sarcomas and correlated the results with the age of diagnosis and the patients' outcome. We show that only high levels of the HDM2-P1 transcript but not the P2 transcript are associated with an 11-year earlier age of onset (50.5 years) compared with low P1 levels (61.5 years; P < 0.0001, t test). In addition, low P1 and P2 mRNA expression levels were independent predictors of poor outcome for patients with soft tissue sarcomas (low P1: relative risk, 3.7; P < 0.0001; low P2: relative risk, 2.5; P = 0.001). A change in the expression levels of the HDM2 transcripts originating from the two HDM2 promoters could disrupt the oscillating P53-HDM2 feedback loop in a way that elevated levels of HDM2-P1 transcript are associated with an earlier age of tumor onset and that reduced levels of HDM2-P1 or HDM2-P2 transcripts are correlated with poor prognosis of patients with soft tissue sarcomas.
Collapse
Affiliation(s)
- Helge Taubert
- Institute of Pathology, Faculty of Medicine, University Halle-Wittenberg, Magdeburger Strasse 14, D-06097 Halle/Saale, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The MDM2 gene is amplified and/or overexpressed in about 10% of glioblastomas and constitutes one of a number of ways the p53 pathway is disrupted in these tumours. MDM2 encodes a nuclear phosphoprotein that regulates several cell proteins by binding and/or ubiquitinating them, with p53 being a well-established partner. MDM2 has two promoters, P1 and P2 that give rise to transcripts with distinct 5′ untranslated regions. Transcription from P2 is believed to be controlled by p53 and a single-nucleotide polymorphism (SNP309, T>G) in P2 is reported to be associated with increased risk for, and early development of, malignancies. The use of P1 and P2 has not been investigated in gliomas. We used RT–PCR to study P1- and P2-MDM2 transcript expression in astrocytic tumours, xenografts and cell lines with known MDM2, TP53 and p14ARF gene status. Both promoters were used in all genetic backgrounds including the use of the P2 promoter in TP53 null cells, indicating a p53-independent induction of transcription. Transcripts from the P1 promoter formed a greater proportion of the total MDM2 transcripts in tumours with MDM2 amplification, despite these tumours having two wild-type TP53 alleles. Examination of SNP309 in glioblastoma patients showed a borderline association with survival but no apparent correlation with age at diagnosis nor with TP53 and p14ARF status of their tumours. Our findings also indicate that elevated MDM2 mRNA levels in tumours with MDM2 amplification are preferentially driven by the P1 promoter and that the P2 promoter is not only regulated by p53 but also by other transcription factor(s).
Collapse
|
28
|
Monick MM, Powers LS, Barrett CW, Hinde S, Ashare A, Groskreutz DJ, Nyunoya T, Coleman M, Spitz DR, Hunninghake GW. Constitutive ERK MAPK activity regulates macrophage ATP production and mitochondrial integrity. THE JOURNAL OF IMMUNOLOGY 2008; 180:7485-96. [PMID: 18490749 DOI: 10.4049/jimmunol.180.11.7485] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A unique feature of human alveolar macrophages is their prolonged survival in the face of a stressful environment. We have shown previously that the ERK MAPK is constitutively active in these cells and is important in prolonging cell survival. This study examines the role of the ERK pathway in maintaining mitochondrial energy production. The data demonstrate that ATP levels in alveolar macrophages depend on intact mitochondria and optimal functioning of the electron transport chain. Significant levels of MEK and ERK localize to the mitochondria and inhibition of ERK activity induces an early and profound depletion in cellular ATP coincident with a loss of mitochondrial transmembrane potential. The effect of ERK suppression on ATP levels was specific, since it did not occur with PI3K/Akt, p38, or JNK suppression. ERK inhibition led to cytosolic release of mitochondrial proteins and caspase activation. Both ERK inhibition and mitochondrial blockers induced loss of plasma membrane permeability and cell death. The cell death induced by ERK inhibition had hallmarks of both apoptotic (caspase activation) and necrotic (ATP loss) cell death. By blocking ERK inhibition-induced reactive oxygen species, caspase activation was prevented, although necrotic pathways continued to induce cell death. This suggests that mitochondrial dysfunction caused by ERK inhibition generates both apoptotic and necrotic cell death-inducing pathways. As a composite, these data demonstrate a novel mitochondrial role for ERK in maintaining mitochondrial membrane potential and ATP production in human alveolar macrophages.
Collapse
Affiliation(s)
- Martha M Monick
- Department of Medicine, University of Iowa Carver College of Medicine and Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Borden KLB. Pondering the puzzle of PML (promyelocytic leukemia) nuclear bodies: can we fit the pieces together using an RNA regulon? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:2145-54. [PMID: 18616965 DOI: 10.1016/j.bbamcr.2008.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 06/03/2008] [Accepted: 06/10/2008] [Indexed: 12/26/2022]
Abstract
The promyelocytic leukemia protein PML and its associated nuclear bodies are hot topics of investigation. This interest arises for multiple reasons including the tight link between the integrity of PML nuclear bodies and several disease states and the impact of the PML protein and PML nuclear bodies on proliferation, apoptosis and viral infection. Unfortunately, an understanding of the molecular underpinnings of PML nuclear body function remains elusive. Here, a general overview of the PML field is provided and is extended to discuss whether some of the basic tenets of "PML-ology" are still valid. For instance, recent findings suggest that some components of PML nuclear bodies form bodies in the absence of the PML protein. Also, a new model for PML nuclear body function is proposed which provides a unifying framework for its effects on diverse biochemical pathways such as Akt signaling and the p53-Mdm2 axis. In this model, the PML protein acts as an inhibitor of gene expression post-transcriptionally via inhibiting a network node in the eIF4E RNA regulon. An example is given for how the PML RNA regulon model provided the basis for the development of a new anti-cancer strategy being tested in the clinic.
Collapse
Affiliation(s)
- Katherine L B Borden
- Institute for Research in Immunology and Cancer and Department of Pathology and Cell Biology, Université de Montréal, Montréal, Québec, Canada H4M 1J6.
| |
Collapse
|
30
|
|
31
|
Abstract
The oncogene HDM2 has been implicated in the regulation of the transcription factor, hypoxia inducible factor (HIF). We show in von Hippel-Lindau (VHL)-defective renal carcinoma cells that express constitutively high levels of HIF-1 alpha and HIF-2 alpha that down-regulation of HDM2 by siRNA leads to decreased levels of both HIF-1 alpha and HIF-2 alpha protein levels. However, we show a differential regulation of HDM2 on the HIF angiogenic targets, vascular endothelial growth factor (VEGF), plasminogen activator inhibitor-1 (PAI-1), and endothelin-1 (ET-1): siRNA to HDM2 leads to increased expression of VEGF and PAI-1 proteins but decreased levels of ET-1. We show that HDM2-mediated regulation of these proteins is independent of VHL and p53 but dependent on a novel action of HDM2. Ablation of HDM2 leads to phosphorylation of extracellular-regulated kinase (ERK)1/2 in renal carcinoma cells. We show that regulation of these angiogenic factors is dependent on ERK1/2 phosphorylation, which can be reversed by addition of the MAP/ERK1/2 kinase inhibitors PD98059 and PD184352. This study identifies a novel role for the HDM2 oncoprotein in the regulation of angiogenic factors in renal cell carcinoma.
Collapse
Affiliation(s)
- Veronica A Carroll
- Cell Growth Regulation and Angiogenesis Laboratory, Cancer Research UK Centre for Cancer Therapeutics, Surrey, United Kingdom
| | | |
Collapse
|
32
|
ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10:138-48. [PMID: 18204439 DOI: 10.1038/ncb1676] [Citation(s) in RCA: 552] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/21/2007] [Indexed: 12/18/2022]
Abstract
The RAS-ERK pathway is known to play a pivotal role in differentiation, proliferation and tumour progression. Here, we show that Erk downregulates Forkhead box O 3a (FOXO3a) by directly interacting with and phosphorylating FOXO3a at Ser 294, Ser 344 and Ser 425, which consequently promotes cell proliferation and tumorigenesis. The ERK-phosphorylated FOXO3a degrades via an MDM2-mediated ubiquitin-proteasome pathway. However, the non-phosphorylated FOXO3a mutant is resistant to the interaction and degradation by murine double minute 2 (MDM2), thereby resulting in a strong inhibition of cell proliferation and tumorigenicity. Taken together, our study elucidates a novel pathway in cell growth and tumorigenesis through negative regulation of FOXO3a by RAS-ERK and MDM2.
Collapse
|
33
|
Underwood TJ, Amin J, Lillycrop KA, Blaydes JP. Dissection of the functional interaction between p53 and the embryonic proto-oncoprotein PAX3. FEBS Lett 2007; 581:5831-5. [PMID: 18053811 DOI: 10.1016/j.febslet.2007.11.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/20/2007] [Accepted: 11/20/2007] [Indexed: 11/16/2022]
Abstract
Studies from murine embryogenesis and cancer cells derived from human melanomas have identified a critical role for the transcription factor PAX3 in the suppression of p53 protein accumulation and p53-dependent apoptosis. Here we show, using a well-defined over-expression system, that PAX3 suppresses p53-dependent transcription from promoters of p53-responsive genes, notably BAX and HDM2-P2, and reduces p53 protein abundance by promoting its degradation. We define the functional domains of PAX3 required for this activity, and furthermore present evidence that PAX3-dependent inhibition of p53 is independent of binding of the N-terminal domain of p53 to HDM2, the primary negative regulator of cellular p53 activity.
Collapse
|
34
|
Phillips A, Blaydes JP. MNK1 and EIF4E are downstream effectors of MEKs in the regulation of the nuclear export of HDM2 mRNA. Oncogene 2007; 27:1645-9. [PMID: 17828301 DOI: 10.1038/sj.onc.1210785] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Regulation of the synthesis, function and degradation of HDM2 (Mdm2 in mouse) plays a key role in controlling the abundance and activity of the transcription factor p53, with consequent implications for the proliferation and survival of normal and cancer cells. We have previously identified the regulation of export of HDM2 mRNA from the nucleus as a novel point of control of HDM2 synthesis. This process is dependent on the activity of the growth factor-regulated MAP-kinase kinases (MEKs). Here, we provide evidence that the eIF4E kinase MNK1 is a key downstream effector of MEKs in this regulatory pathway. We show that HDM2 mRNA export in breast cancer cells is promoted by overexpressed eIF4E in a MEK- and MNK1-dependent manner, and inhibition of MNK1 suppresses endogenous HDM2 mRNA export pathways. This MNK1- and eIF4E-dependent HDM2 regulation occurs through sequences in the 3' untranslated region of HDM2 mRNA, and consequently HDM2 mRNA transcripts from both the constitutive P1 and inducible P2 promoters are regulated by this pathway. eIF4E is a known oncogene that is overexpressed in human tumours, including the majority of breast cancers. This pathway, therefore, may play an important role in the dysregulation of HDM2 oncoprotein expression that occurs in many human tumours.
Collapse
Affiliation(s)
- A Phillips
- Cancer Sciences Division, University of Southampton, Southampton General Hospital, Southampton, UK
| | | |
Collapse
|
35
|
Li L, Li Z, Zhou S, Xiao L, Guo L, Tao Y, Tang M, Shi Y, Li W, Yi W, Cao Y. Ubiquitination of MDM2 modulated by Epstein-Barr virus encoded latent membrane protein 1. Virus Res 2007; 130:275-80. [PMID: 17576019 DOI: 10.1016/j.virusres.2007.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/12/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Epstein-Barr virus encoded latent membrane protein 1 (LMP1), an oncogenic protein, plays an important role in the carcinogenesis of nasopharyngeal carcinoma. The MDM2 gene is a cellular pro-oncogene that is abnormally up-regulated in human tumors. MDM2 is overexpressed in nasopharyngeal carcinoma, which is associated with the presence of EBV and cervical lymph node metastasis. Because MDM2 is capable of self-ubiquitination, and the ubiquitin proteasome pathway-dependent degradation is an important mechanism for regulating MDM2 levels in cells. Here we show that LMP1 augment MDM2 protein expression in dose-dependent level, and also lead to a drastic accumulation of ubiquitinated MDM2 species, this effect is associated with the stability of MDM2 modulated by LMP1. This is the first time to explain LMP1-regulated MDM2 through a post-ubiquitination mechanism.
Collapse
Affiliation(s)
- Lili Li
- Cancer Research Institute, Xiangya School of Medicine, Central South University, 110 Xiangya Road, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kobayashi S, Mao K, Zheng H, Wang X, Patterson C, O'Connell TD, Liang Q. Diminished GATA4 protein levels contribute to hyperglycemia-induced cardiomyocyte injury. J Biol Chem 2007; 282:21945-52. [PMID: 17525155 DOI: 10.1074/jbc.m703048200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hyperglycemia is an independent risk factor for diabetic heart failure. However, the mechanisms that mediate hyperglycemia-induced cardiac damage remain poorly understood. The transcription factor GATA4 is essential for cardiac homeostasis, and its protein levels are dramatically reduced in the heart in response to diverse pathologic stresses. In this study, we investigated if hyperglycemia affects GATA4 expression in cardiomyocytes and if enhancing GATA4 signaling could attenuate hyperglycemia-induced cardiomyocyte injury. In cultured rat cardiomyocytes, high glucose (HG, 25 or 40 mm) markedly reduced GATA4 protein levels as compared with normal glucose (NG, 5.5 mm). Equal amount of mannitol did not affect GATA4 protein expression (NG, 100 +/- 12%; mannitol, 97 +/- 8%, versus HG, 43 +/- 16%, p < 0.05). The GATA4 mRNA content, either steady-state or polysome-associated, remained unchanged. HG-induced GATA4 reduction was reversed by MG262, a specific proteasome inhibitor. HG did not activate the ubiquitin proteasome system (UPS) in cardiomyocytes as indicated by a UPS reporter, nor did it increase the peptidase activities or protein expression of the proteasomal subunits. However, the mRNA levels of ubiquitin-protein isopeptide ligase (E3) carboxyl terminus of Hsp70-interacting protein (CHIP) were markedly increased in HG-treated cardiomyocytes. CHIP overexpression promoted GATA4 protein degradation, whereas small interfering RNA-mediated CHIP knockdown prevented HG-induced GATA4 depletion. Moreover, overexpression of GATA4 blocked HG-induced cardiomyocyte death. Also, GATA4 protein levels were diminished in the hearts of streptozotocin and db/db diabetic mice (44 +/- 7% and 67 +/- 13% of control, p < 0.05), which correlated with increased CHIP mRNA abundance. In summary, increased GATA4 protein degradation may be an important mechanism that contributes to hyperglycemic cardiotoxicity.
Collapse
Affiliation(s)
- Satoru Kobayashi
- Cardiovascular Research Institute, Sanford Research, University of South Dakota Sanford School of Medicine, Sioux Falls, SD 57105, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Kojima K, Konopleva M, Samudio IJ, Ruvolo V, Andreeff M. Mitogen-activated protein kinase kinase inhibition enhances nuclear proapoptotic function of p53 in acute myelogenous leukemia cells. Cancer Res 2007; 67:3210-9. [PMID: 17409429 DOI: 10.1158/0008-5472.can-06-2712] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Activation of the Raf/MEK/ERK pathway and inactivation of wild-type p53 by Mdm2 overexpression are frequent molecular events in acute myelogenous leukemia (AML). We investigated the interaction of Raf/MEK/ERK and p53 pathways after their simultaneous blockades using a selective small-molecule antagonist of Mdm2, Nutlin-3a, and a pharmacologic MEK-specific inhibitor, PD98059. We found that PD98059, which itself has minimal apoptogenic activity, acts synergistically with Nutlin-3a to induce apoptosis in wild-type p53 AML cell lines OCI-AML-3 and MOLM-13. Interestingly, PD98059 enhanced nuclear proapototic function of p53 in these cells. In accordance with the activation of transcription-dependent apoptosis, PD98059 treatment promoted the translocation of p53 from the cytoplasm to the nucleus in OCI-AML-3 cells, in which p53 primarily initiates transcription-independent apoptosis when cells are treated with Nutlin-3a alone. The critical role of p53 localization in cells with increased p53 levels was supported by enhanced apoptosis induction in cells cotreated with Nutlin-3a and the nuclear export inhibitor leptomycin B. PD98059 prevented p53-mediated induction of p21 at the transcriptional level. The repressed expression of antiapototic p21 also seemed to contribute to synergism between PD98059 and Nutlin-3a because (a) the synergistic apoptogenic effect was preserved in G(1) cells, (b) p53-mediated induction of p21 was preferentially seen in G(1) cells, (c) PD98059 strongly antagonized p21 induction by Nutlin-3a, and (d) cells with high p21 levels were resistant to apoptosis. This is the first report showing that the Raf/MEK/ERK pathway regulates the subcellular localization of p53 and the relative contribution of transcription-dependent and transcription-independent pathways in p53-mediated apoptosis.
Collapse
Affiliation(s)
- Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Stem Cell Transplantation and Cellular Therapy, M. D. Anderson Cancer Center, The University of Texas, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
38
|
Moumen A, Patané S, Porras A, Dono R, Maina F. Met acts on Mdm2 via mTOR to signal cell survival during development. Development 2007; 134:1443-51. [PMID: 17329361 DOI: 10.1242/dev.02820] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Coordination of cell death and survival is crucial during embryogenesis and adulthood, and alteration of this balance can result in degeneration or cancer. Growth factor receptors such as Met can activate phosphatidyl-inositol-3' kinase (PI3K), a major intracellular mediator of growth and survival. PI3K can then antagonize p53-triggered cell death, but the underlying mechanisms are not fully understood. We used genetic and pharmacological approaches to uncover Met-triggered signaling pathways that regulate hepatocyte survival during embryogenesis. Here, we show that PI3K acts via mTOR (Frap1) to regulate p53 activity both in vitro and in vivo. mTOR inhibits p53 by promoting the translation of Mdm2, a negative regulator of p53. We also demonstrate that the PI3K effector Akt is required for Met-triggered Mdm2 upregulation, in addition to being necessary for the nuclear translocation of Mdm2. Inhibition of either mTOR or Mdm2 is sufficient to block cell survival induced by Hgf-Met in vitro. Moreover, in vivo inhibition of mTOR downregulates Mdm2 protein levels and induces p53-dependent apoptosis. Our studies identify a novel mechanism for Met-triggered cell survival during embryogenesis, involving translational regulation of Mdm2 by mTOR. Moreover, they reinforce mTOR as a potential drug target in cancer.
Collapse
Affiliation(s)
- Anice Moumen
- Developmental Biology Institute of Marseille-Luminy (IBDML CNRS-INSERM-Université de la Méditerrannée, Campus de Luminy-Case 907, 13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
39
|
Stevenson LF, Sparks A, Allende-Vega N, Xirodimas DP, Lane DP, Saville MK. The deubiquitinating enzyme USP2a regulates the p53 pathway by targeting Mdm2. EMBO J 2007; 26:976-86. [PMID: 17290220 PMCID: PMC1852834 DOI: 10.1038/sj.emboj.7601567] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 01/02/2007] [Indexed: 01/15/2023] Open
Abstract
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.
Collapse
Affiliation(s)
- Lauren F Stevenson
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Alison Sparks
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Nerea Allende-Vega
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Dimitris P Xirodimas
- Division of Gene Regulation and Expression, The Centre for Inter-Disciplinary Research, University of Dundee, Dundee, UK
| | - David P Lane
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Mark K Saville
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- CR-UK Cell Transformation Research Group, Department of Surgery and Molecular Oncology, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK. Tel.: +44 1382 496402; Fax: +44 1382 496361; E-mail:
| |
Collapse
|
40
|
Malmlöf M, Roudier E, Högberg J, Stenius U. MEK-ERK-mediated phosphorylation of Mdm2 at Ser-166 in hepatocytes. Mdm2 is activated in response to inhibited Akt signaling. J Biol Chem 2006; 282:2288-96. [PMID: 17107963 DOI: 10.1074/jbc.m604953200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mdm2 inactivates the tumor suppressor p53 and Akt has been shown to be a major activator of Mdm2 in many cell types. We have investigated the regulation of Mdm2 in hepatocytes. We found that growth factor-induced Ser-166 phosphorylation of Mdm2 was inhibited by the MEK inhibitors U0126 and PD98059 in HepG2 cells and in a rat liver cell line, TRL 1215. Also, bile acids and oxidative stress induced phosphorylation of Mdm2 at Ser-166 by an apparently MEK-ERK-dependent mechanism. In contrast, Ser-166 phosphorylation of Mdm2 in lung cells was mediated by Akt. Further studies revealed that phosphatidylinositol 3-kinase inhibitors LY294002 and wortmannin induced phosphorylated ERK Tyr-204 and pMdm2 Ser-166 phosphorylations in hepatocytes in culture and in rat hepatocytes in vivo. In HepG2 cells, this effect was inhibited by U0126 and PD98059. LY294002 also reduced the level of pRaf Ser-259. Furthermore, we have shown that myr-Akt-induced overexpression of pAkt suppressed the levels of pMdm2 Ser-166 in hepatocytes. These data indicate a reversed relationship between Akt and Mdm2 in hepatocytes and suggest that Akt is a negative regulator of Raf-MEK-ERK-Mdm2 in this cell type. Ser-166 phosphorylation of Mdm2 has been shown to increase its ubiquitin ligase activity and increase p53 degradation, and our data indicated an attenuated p53 response to DNA damage in hepatocytes exhibiting high levels of pMdm2 Ser-166. Taken together, our data indicate that Mdm2 phosphorylation is regulated via MEK-ERK in hepatocytes. This Mdm2 signaling might be important for the regeneration of hepatocytes after centrilobular cell death.
Collapse
Affiliation(s)
- Maria Malmlöf
- Institute of Environmental Medicine, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | |
Collapse
|
41
|
Monick MM, Powers LS, Gross TJ, Flaherty DM, Barrett CW, Hunninghake GW. Active ERK contributes to protein translation by preventing JNK-dependent inhibition of protein phosphatase 1. THE JOURNAL OF IMMUNOLOGY 2006; 177:1636-45. [PMID: 16849472 DOI: 10.4049/jimmunol.177.3.1636] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human alveolar macrophages, central to immune responses in the lung, are unique in that they have an extended life span in contrast to precursor monocytes. We have shown previously that the ERK MAPK (ERK) pathway is constitutively active in human alveolar macrophages and contributes to the prolonged survival of these cells. We hypothesized that ERK maintains survival, in part, by positively regulating protein translation. In support of this hypothesis, we have found novel links among ERK, JNK, protein phosphatase 1 (PP1), and the eukaryotic initiation factor (eIF) 2alpha. eIF2alpha is active when hypophosphorylated and is essential for initiation of protein translation (delivery of initiator tRNA charged with methionine to the ribosome). Using [(35)S]methionine labeling, we found that ERK inhibition significantly decreased protein translation rates in alveolar macrophages. Decreased protein translation resulted from phosphorylation (and inactivation) of eIF2alpha. We found that ERK inhibition increased JNK activity. JNK in turn inactivated (via phosphorylation) PP1, the phosphatase responsible for maintaining the hypophosphorylated state of eIF2alpha. As a composite, our data demonstrate that in human alveolar macrophages, constitutive ERK activity positively regulates protein translation via the following novel pathway: active ERK inhibits JNK, leading to activation of PP1alpha, eIF2alpha dephosphorylation, and translation initiation. This new role for ERK in alveolar macrophage homeostasis may help to explain the survival characteristic of these cells within their unique high oxygen and stress microenvironment.
Collapse
Affiliation(s)
- Martha M Monick
- University of Iowa Carver College of Medicine, Veterans Administration Medical Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Nakamura Y, Suzuki S, Suzuki T, Ono K, Miura I, Satoh F, Moriya T, Saito H, Yamada S, Ito S, Sasano H. MDM2: a novel mineralocorticoid-responsive gene involved in aldosterone-induced human vascular structural remodeling. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:362-71. [PMID: 16877339 PMCID: PMC1698800 DOI: 10.2353/ajpath.2006.051351] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aldosterone has been demonstrated to play an important role in the pathogenesis of various cardiovascular diseases. Vascular structural remodeling, including vascular smooth muscle cell (VSMC) proliferation, has been also reported in small resistance arteries of patients with primary aldosteronism. Therefore, in this study, we examined whether genes involved in the regulation of the cell cycle were induced by aldosterone alone in cultured human VSMCs and in human small resistance arteries. Results of these studies eventually demonstrated that MDM2, one of the genes involved in anti-apoptosis and cell growth, was markedly increased in mineralocorticoid receptor (MR)-positive VSMCs by aldosterone in all microarray, reverse transcriptase-polymerase chain reaction, immunoblotting, and immunofluorescence analyses. In addition, an analysis using small interfering RNA demonstrated that this gene product was involved in cell proliferation of VSMCs induced by aldosterone. Eplerenone, a specific MR antagonist, inhibited this gene induction by aldosterone in VSMCs. MDM2 protein was also more abundant in VSMCs of small resistance arteries in patients with primary aldosteronism compared with a control population. MDM2 is therefore considered one of the mineralocorticoid-responsive genes that regulates cell proliferation of VSMCs induced by MR-mediated aldosterone stimulation, possibly playing an important role in aldosterone-induced vascular structural remodeling.
Collapse
Affiliation(s)
- Yasuhiro Nakamura
- Department of Pathology, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jackson MW, Patt LE, LaRusch GA, Donner DB, Stark GR, Mayo LD. Hdm2 nuclear export, regulated by insulin-like growth factor-I/MAPK/p90Rsk signaling, mediates the transformation of human cells. J Biol Chem 2006; 281:16814-20. [PMID: 16621805 DOI: 10.1074/jbc.m511617200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Insulin-like growth factor (IGF)-I receptor activation leads to enhanced proliferation and cell survival via the MAP kinase and phosphatidylinositol 3-kinase-signaling pathways. Upon stimulation by IGF-I, the Hdm2 oncoprotein is phosphorylated by AKT, leading to its rapid nuclear translocation and subsequent inhibition of p53. We now show that IGF-I stimulation regulates the nuclear export of Hdm2 and p53 via the MAP kinase pathway. Inhibition of p38 MAPK or MEK via pharmacological means or expression of dominant negative proteins inhibited the cytoplasmic accumulation of Hdm2 and increased Hdm2 and p53 protein levels, whereas constitutively active p90Rsk promoted the nuclear export of Hdm2. Expression of constitutively active p90Rsk with E1A, oncogenic H-Ras, and hTERT resulted in the anchorage-independent growth of normal human fibroblasts. Our findings link p90Rsk-mediated modulation of Hdm2 nuclear to cytoplasmic shuttling with the diminished ability of p53 to regulate cell cycle checkpoints that ultimately leads to transformation.
Collapse
Affiliation(s)
- Mark W Jackson
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
44
|
Phillips A, Darley M, Blaydes JP. GC-selective DNA-binding antibiotic, mithramycin A, reveals multiple points of control in the regulation of Hdm2 protein synthesis. Oncogene 2006; 25:4183-93. [PMID: 16501602 DOI: 10.1038/sj.onc.1209451] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The primary role of the Hdm2/Mdm2 oncoprotein is to regulate the levels and activity of the transcription factor p53. Hdm2 synthesis is itself tightly controlled and, as demonstrated by a recently described SNP (SNP309) in the hdm2-P2 promoter, minor variations in Hdm2 expression have phenotypic consequences on radiation sensitivity and cancer predisposition. To further define mechanisms regulating Hdm2 expression, we have investigated the effects of the GC-selective DNA-binding drug, Mithramycin A (MA) on hdm2 mRNA transcription, trafficking, and translation. Firstly we show that the constitutive hdm2-P1 promoter is inhibited by MA. We define, for the first time, the minimal sequence elements that are required for P1-promoter activity and identify those which confer MA sensitivity. Secondly, MA induces p53-dependent transcription from the hdm2-P2 promoter. Thirdly, and critically, MA also inhibits Hdm2 synthesis at the post-transcriptional level, with negative effects on hdm2 mRNA nuclear export and translation. This study highlights the complex interplay between the pathways that regulate Hdm2 protein synthesis in cancer cells, and furthermore emphasizes the export of hdm2 mRNA from the nucleus to the cytoplasm as a key point of control in this process.
Collapse
Affiliation(s)
- A Phillips
- Cancer Sciences Division, School of Medicine, University of Southampton, MP 824, Southampton General Hospital, Southampton, UK
| | | | | |
Collapse
|
45
|
Phillips A, Jones CJ, Blaydes JP. The mechanisms of regulation of Hdm2 protein level by serum growth factors. FEBS Lett 2005; 580:300-4. [PMID: 16376339 DOI: 10.1016/j.febslet.2005.12.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 12/08/2005] [Accepted: 12/08/2005] [Indexed: 01/10/2023]
Abstract
Cell cycle progression in response to serum growth factors is dependent on the expression of functional Hdm2 (Mdm2), which inhibits p53-dependent transcription of anti-proliferative genes. In a well characterised non-transformed human fibroblast model, growth factors induce the expression of Hdm2 with rapid kinetics. Here we dissect the mechanistic basis for this critical response. In contrast to previous studies in which components of the growth factor signalling pathways were overexpressed, hdm2 mRNA expression is not induced with immediate-early kinetics in these cells. Rather, the elevated Hdm2 protein levels which follow growth factor stimulation are primarily a consequence of phosphatidylinositol-3 kinase-dependent stabilisation of the Hdm2 protein combined with a global increase in protein synthesis.
Collapse
Affiliation(s)
- Anna Phillips
- Cancer Sciences Division, Somers Cancer Research Building, School of Medicine, University of Southampton, MP 824, Southampton General Hospital, Southampton SO16 6YD, UK
| | | | | |
Collapse
|