1
|
Tao X, Wei H, Mao S, Wang J, Xue C, Yu W, Shi Y, Liu Y, Sun B. SEC24C suppresses the propagation and chemoresistance of hepatocellular carcinoma by promoting unfolded protein response-related apoptosis. Biosci Trends 2024; 18:343-355. [PMID: 39085101 DOI: 10.5582/bst.2024.01149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Cells routinely utilize the unfolded protein response (UPR) to alleviate endoplasmic reticulum (ER)-stress or trigger about apoptotic death under extreme ER-stress conditions. Tumor cells are subjected to persistent ER-stress due to their crowded microenvironment, but can maintain hyperactive proliferation under most stressful conditions. Therefore, understanding strategies employed by cancer cells to escape from UPR-related apoptosis has important medical implications. SEC24 homolog C (SEC24C) was found decreased in later colorectal cancer (CRC) stages, but its exact role in response to ER-stress and activation of UPR in hepatocellular carcinoma (HCC) remains to be elucidated. Here, we have identified the downregulation of SEC24C in human HCC sample and its suppressive role in regulating HCC proliferation and chemoresistance. Mechanistically, SEC24C was found to interact with eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3 or PERK) and activate the downstream UPR-related apoptosis. During this process, SEC24C was observed to be anchored in nucleus under normal condition but responded immediately to ER-stress and could subsequently translocate to the ER. Furthermore, overexpression of SEC24C significantly augmented the efficacy of bortezomib in HCC treatment. In conclusion, our findings revealed a novel role of SEC24C in regulating HCC proliferation and chemoresistance by modulating UPR activation.
Collapse
Affiliation(s)
- Xuewen Tao
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Haowei Wei
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shuai Mao
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Lianyungang oriental hospital, Lianyungang, Jiangsu, China
| | - Jincheng Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Graduate School of Medical Science and Engineering, Hokkaido University, Sapporo, Japan
| | - Cailin Xue
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Weiwei Yu
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yuze Shi
- The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yang Liu
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Beicheng Sun
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
2
|
Taha MS, Ahmadian MR. Nucleophosmin: A Nucleolar Phosphoprotein Orchestrating Cellular Stress Responses. Cells 2024; 13:1266. [PMID: 39120297 PMCID: PMC11312075 DOI: 10.3390/cells13151266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nucleophosmin (NPM1) is a key nucleolar protein released from the nucleolus in response to stress stimuli. NPM1 functions as a stress regulator with nucleic acid and protein chaperone activities, rapidly shuttling between the nucleus and cytoplasm. NPM1 is ubiquitously expressed in tissues and can be found in the nucleolus, nucleoplasm, cytoplasm, and extracellular environment. It plays a central role in various biological processes such as ribosome biogenesis, cell cycle regulation, cell proliferation, DNA damage repair, and apoptosis. In addition, it is highly expressed in cancer cells and solid tumors, and its mutation is a major cause of acute myeloid leukemia (AML). This review focuses on NPM1's structural features, functional diversity, subcellular distribution, and role in stress modulation.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
3
|
BCAS3 accelerates glioblastoma tumorigenesis by restraining the P53/GADD45α signaling pathway. Exp Cell Res 2022; 417:113231. [PMID: 35659972 DOI: 10.1016/j.yexcr.2022.113231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 11/20/2022]
Abstract
As in many other cancers, highly malignant proliferation and disordered cell division play irreplaceable roles in the exceedingly easy recurrence and complex progression of glioblastoma multiforme (GBM); however, mechanistic studies of the numerous regulators involved in this process are still insufficiently thorough. The role of BCAS3 has been studied in other cancers, but its role in GBM is unclear. Here, our goal was to investigate the expression pattern of BCAS3 in GBM and its potential mechanism of action. Using TCGA database and human GBM samples, we found that BCAS3 expression was up-regulated in GBM, and its high expression predicted poor prognosis. To further investigate the relationship between BCAS3 and GBM characteristics, we up-regulated and down-regulated BCAS3 expression in GBM to detect its effect on cell proliferation and cell cycle. At the same time, we established U87 cells stably overexpressing BCAS3 and generated an intracranial xenograft model to investigate the Potential role of BCAS3 in vivo. Finally, based on in vitro cell experiments and in vivo GBM xenograft models, we observed that BCAS3 significantly regulates GBM cell proliferation and cell cycle and that this regulation is associated with p53/GADD45α Signaling pathway. Taken together, our findings suggest that BCAS3 is inextricably linked to the progression of GBM and that targeting BCAS3 may have therapeutic effects in GBM patients.
Collapse
|
4
|
The Role of Nucleophosmin 1 ( NPM1) Mutation in the Diagnosis and Management of Myeloid Neoplasms. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010109. [PMID: 35054502 PMCID: PMC8780493 DOI: 10.3390/life12010109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Nucleophosmin (NPM1) is a multifunctional protein with both proliferative and growth-suppressive roles in the cell. In humans, NPM1 is involved in tumorigenesis via chromosomal translocations, deletions, or mutation. Acute myeloid leukemia (AML) with mutated NPM1, a distinct diagnostic entity by the current WHO Classification of myeloid neoplasm, represents the most common diagnostic subtype in AML and is associated with a favorable prognosis. The persistence of NPM1 mutation in AML at relapse makes this mutation an ideal target for minimal measurable disease (MRD) detection. The clinical implication of this is far-reaching because NPM1-mutated AML is currently classified as being of standard risk, with the best treatment strategy (transplantation versus chemotherapy) yet undefined. Myeloid neoplasms with NPM1 mutations and <20% blasts are characterized by an aggressive clinical course and a rapid progression to AML. The pathological classification of these cases remains controversial. Future studies will determine whether NPM1 gene mutation may be sufficient for diagnosing NPM1-mutated AML independent of the blast count. This review aims to summarize the role of NPM1 in normal cells and in human cancer and discusses its current role in clinical management of AML and related myeloid neoplasms.
Collapse
|
5
|
Lakshmi Ch NP, Sivagnanam A, Raja S, Mahalingam S. Molecular basis for RASSF10/NPM/RNF2 feedback cascade-mediated regulation of gastric cancer cell proliferation. J Biol Chem 2021; 297:100935. [PMID: 34224728 PMCID: PMC8339327 DOI: 10.1016/j.jbc.2021.100935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/12/2021] [Accepted: 06/29/2021] [Indexed: 12/05/2022] Open
Abstract
Ras-association domain family (RASSF) proteins are encoded by numerous tumor suppressor genes that frequently become silenced in human cancers. RASSF10 is downregulated by promoter hypermethylation in cancers and has been shown to inhibit cell proliferation; however, the molecular mechanism(s) remains poorly understood. Here, we demonstrate for the first time that RASSF10 inhibits Cdk1/cyclin-B kinase complex formation to maintain stable levels of cyclin-B for inducing mitotic arrest during cell cycle. Using LC-MS/MS, live cell imaging, and biochemical approaches, we identify Nucleophosmin (NPM) as a novel functional target of RASSF10 and revealed that RASSF10 expression promoted the nuclear accumulation of GADD45a and knockdown of either NPM or GADD45a, resulting in impairment of RASSF10-mediated G2/M phase arrest. Furthermore, we demonstrate that RASSF10 is a substrate for the E3 ligase ring finger protein 2 (RNF2) and show that an NPM-dependent downregulation of RNF2 expression is critical to maintain stable RASSF10 levels in cells for efficient mitotic arrest. Interestingly, the Kaplan-Meier plot analysis shows a positive correlation of RASSF10 and NPM expression with greater gastric cancer patient survival and the reverse with expression of RNF2, suggesting that they may have a role in cancer progression. Finally, our findings provide insights into the mode of action of the RASSF10/NPM/RNF2 signaling cascade on controlling cell proliferation and may represent a novel therapeutic avenue for the prevention of gastric cancer metastasis.
Collapse
Affiliation(s)
- Naga Padma Lakshmi Ch
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| | - Ananthi Sivagnanam
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| | - Sebastian Raja
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Cell Biology, National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, India.
| |
Collapse
|
6
|
Nucleophosmin 1 Mutations in Acute Myeloid Leukemia. Genes (Basel) 2020; 11:genes11060649. [PMID: 32545659 PMCID: PMC7348733 DOI: 10.3390/genes11060649] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleophosmin (NPM1) is a ubiquitously expressed nucleolar protein involved in ribosome biogenesis, the maintenance of genomic integrity and the regulation of the ARF-p53 tumor-suppressor pathway among multiple other functions. Mutations in the corresponding gene cause a cytoplasmic dislocation of the NPM1 protein. These mutations are unique to acute myeloid leukemia (AML), a disease characterized by clonal expansion, impaired differentiation and the proliferation of myeloid cells in the bone marrow. Despite our improved understanding of NPM1 mutations and their consequences, the underlying leukemia pathogenesis is still unclear. Recent studies that focused on dysregulated gene expression in AML with mutated NPM1 have shed more light into these mechanisms. In this article, we review the current evidence on normal functions of NPM1 and aberrant functioning in AML, and highlight investigational strategies targeting these mutations.
Collapse
|
7
|
Gao L, Ge C, Wang S, Xu X, Feng Y, Li X, Wang C, Wang Y, Dai F, Xie S. The Role of p53-Mediated Signaling in the Therapeutic Response of Colorectal Cancer to 9F, a Spermine-Modified Naphthalene Diimide Derivative. Cancers (Basel) 2020; 12:cancers12030528. [PMID: 32106543 PMCID: PMC7139676 DOI: 10.3390/cancers12030528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent cancers due to its frequency and high rate of mortality. Polyamine-vectorized anticancer drugs possess multiple biological properties. Of these drugs, 9F has been shown to inhibit tumor growth and the metastasis of hepatocellular carcinoma. This current study aims to investigate the effects of 9F on CRC and determine its molecular mechanisms of action. Our findings demonstrate that 9F inhibits CRC cell growth by inducing apoptosis and cell cycle arrest, and suppresses migration, invasion and angiogenesis in vitro, resulting in the inhibition of tumor growth and metastasis in vivo. Based on RNA-seq data, further bioinformatic analyses suggest that 9F exerts its anticancer activities through p53 signaling, which is responsible for the altered expression of key regulators of the cell cycle, apoptosis, the epithelial-to-mesenchymal transition (EMT), and angiogenesis. In addition, 9F is more effective than amonafide against CRC. These results show that 9F can be considered as a potential strategy for CRC treatment.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaochao Ge
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Senzhen Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xiaojuan Xu
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
| | - Yongli Feng
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Xinna Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China;
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; (L.G.); (C.G.); (S.W.); (Y.F.); (X.L.); (C.W.)
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| | - Songqiang Xie
- Pharmaceutical College, Henan University, Kaifeng 475004, Henan, China;
- Correspondence: (F.D.); (S.X.); Tel.: +86-159-3857-3755 (F.D.); +86-139-3863-7212 (S.X.)
| |
Collapse
|
8
|
Zheng Z, Wu M, Zhang J, Fu W, Xu N, Lao Y, Lin L, Xu H. The Natural Compound Neobractatin Induces Cell Cycle Arrest by Regulating E2F1 and Gadd45α. Front Oncol 2019; 9:654. [PMID: 31380287 PMCID: PMC6653061 DOI: 10.3389/fonc.2019.00654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/03/2019] [Indexed: 11/18/2022] Open
Abstract
The complexity and multi-target feature of natural compounds have made it difficult to elucidate their mechanism of action (MoA), which hindered the development of lead anticancer compounds to some extent. In this study, we applied RNA-Seq and GSEA transcriptome analysis to rapidly and efficiently evaluate the anticancer mechanisms of neobractatin (NBT), a caged prenylxanthone isolated from the Chinese herb Garcinia bracteata. We found that NBT exerted anti-proliferative effect on various cancer cells and caused both G1/S and G2/M arrest in synchronized cancer cells through its effects on the expression of E2F1 and GADD45α. The in vivo animal study further suggested that NBT could reduce tumor burden in HeLa xenograft model with no apparent toxicity. By demonstrating the biological effect of NBT, we provided evidences for further investigations of this novel natural compound with anticancer potential.
Collapse
Affiliation(s)
- Zhaoqing Zheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Man Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Juan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Naihan Xu
- Key Lab in Health Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, Shenzhen, China
| | - Yuanzhi Lao
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| | - Lan Lin
- Perelman School of Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, China
| |
Collapse
|
9
|
Brunetti L, Gundry MC, Goodell MA. New insights into the biology of acute myeloid leukemia with mutated NPM1. Int J Hematol 2019; 110:150-160. [DOI: 10.1007/s12185-018-02578-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 12/25/2018] [Indexed: 12/20/2022]
|
10
|
Wang HH, Chang TY, Lin WC, Wei KC, Shin JW. GADD45A plays a protective role against temozolomide treatment in glioblastoma cells. Sci Rep 2017; 7:8814. [PMID: 28821714 PMCID: PMC5562912 DOI: 10.1038/s41598-017-06851-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/19/2017] [Indexed: 02/08/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive cancers. Despite recent advances in multimodal therapies, high-grade glioma remains fatal. Temozolomide (TMZ) is an alkylating agent used worldwide for the clinical treatment of GBM; however, the innate and acquired resistance of GBM limits its application. Here, we found that TMZ inhibited the proliferation and induced the G2/M arrest of GBM cells. Therefore, we performed microarrays to identify the cell cycle- and apoptosis-related genes affected by TMZ. Notably, GADD45A was found to be up-regulated by TMZ in both cell cycle and apoptosis arrays. Furthermore, GADD45A knockdown (GADD45Akd) enhanced the cell growth arrest and cell death induced by TMZ, even in natural (T98) and adapted (TR-U373) TMZ-resistant cells. Interestingly, GADD45Akd decreased the expression of O6-methylguanine-DNA methyltransferase (MGMT) in TMZ-resistant cells (T98 and TR-U373). In MGMT-deficient/TMZ-sensitive cells (U87 and U373), GADD45Akd decreased TMZ-induced TP53 expression. Thus, in this study, we investigated the genes influenced by TMZ that were important in GBM therapy, and revealed that GADD45A plays a protective role against TMZ treatment which may through TP53-dependent and MGMT-dependent pathway in TMZ-sensitive and TMZ-resistant GBM, respectively. This protective role of GADD45A against TMZ treatment may provide a new therapeutic strategy for GBM treatment.
Collapse
Affiliation(s)
- Hsiao-Han Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tsuey-Yu Chang
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Chen Lin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuo-Chen Wei
- Departments of Neurosurgery, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Jyh-Wei Shin
- Department of Parasitology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
11
|
Heath EM, Chan SM, Minden MD, Murphy T, Shlush LI, Schimmer AD. Biological and clinical consequences of NPM1 mutations in AML. Leukemia 2017; 31:798-807. [PMID: 28111462 DOI: 10.1038/leu.2017.30] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by accumulation of myeloid cells in the bone marrow because of impaired differentiation and proliferation, resulting in hematopoietic insufficiency. NPM1 is one of the most commonly mutated genes in AML, present in 20-30% of cases. Mutations in NPM1 represent a distinct entity in the World Health Organization (WHO) classification and commonly indicate a better risk prognosis. In this review, we discuss the many functions of NPM1, the consequence of mutations in NPM1 and possible mechanisms through which mutations lead to leukemogenesis. We also discuss clinical consequences of mutations, associated gene expression patterns and the role of NPM1 mutations in informing prognosis and therapeutic decisions and predicting relapse in AML.
Collapse
Affiliation(s)
- E M Heath
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - S M Chan
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - M D Minden
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - T Murphy
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| | - L I Shlush
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - A D Schimmer
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Ontario, Canada
| |
Collapse
|
12
|
Ye Q, Pang S, Zhang W, Guo X, Wang J, Zhang Y, Liu Y, Wu X, Jiang F. Therapeutic Targeting of RNA Polymerase I With the Small-Molecule CX-5461 for Prevention of Arterial Injury-Induced Neointimal Hyperplasia. Arterioscler Thromb Vasc Biol 2017; 37:476-484. [PMID: 28062495 DOI: 10.1161/atvbaha.116.308401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE RNA polymerase I (Pol I)-dependent rRNA synthesis is a determinant factor in ribosome biogenesis and thus cell proliferation. The importance of dysregulated Pol I activity in cardiovascular disease, however, has not been recognized. Here, we tested the hypothesis that specific inhibition of Pol I might prevent arterial injury-induced neointimal hyperplasia. APPROACH AND RESULTS CX-5461 is a novel selective Pol I inhibitor. Using this tool, we demonstrated that local inhibition of Pol I blocked balloon injury-induced neointima formation in rat carotid arteries in vivo. Neointimal development was associated with augmented rDNA transcriptional activity as evidenced by the increased phosphorylation of upstream binding factor-1. The beneficial effect of CX-5461 was mainly mediated by inducing G2/M cell cycle arrest of proliferating smooth muscle cells without obvious apoptosis. CX-5461 did not induce p53 stabilization but increased p53 phosphorylation and acetylation and activated the ataxia telangiectasia mutated/ataxia telangiectasia and Rad3-related (ATR) pathway. Inhibition of ATR, but not of ataxia telangiectasia mutated, abolished the cytostatic effect of CX-5461 and p53 phosphorylation. In addition, inhibition of p53 or knockdown of the p53 target GADD45 mimicked the effect of ATR inhibition. In vivo experiments showed that the levels of phospho-p53 and acetyl-p53, and activity of the ataxia telangiectasia mutated/ATR pathway were all augmented in CX-5461-treated vessels. CONCLUSIONS Pol I can be therapeutically targeted to inhibit the growth of neointima, supporting that Pol I is a novel biological target for preventing arterial restenosis. Mechanistically, Pol I inhibition elicited G2/M cell cycle arrest in smooth muscle cells via activation of the ATR-p53 axis.
Collapse
Affiliation(s)
- Qing Ye
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Shu Pang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Wenjing Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiaotong Guo
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Jianli Wang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yongtao Zhang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Yang Liu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Xiao Wu
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.)
| | - Fan Jiang
- From the School of Basic Medicine, Shandong University, Jinan, Shandong Province, China (Q.Y., S.P., W.Z., X.G., J.W., Y.L., F.J.); Key Laboratory of Cardiovascular Remodeling and Function Research & The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China (X.W.); and Department of Cardiology, Qing Dao Central Hospital, Qing Dao, Shandong Province, China (Y.Z.).
| |
Collapse
|
13
|
Ji J, Zhu P, Sun C, Sun J, An L, Zhang Y, Sun X. Pathway of 3-MCPD-induced apoptosis in human embryonic kidney cells. J Toxicol Sci 2017; 42:43-52. [DOI: 10.2131/jts.42.43] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| | - Pei Zhu
- State Key Laboratory of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., China
| | - Chao Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| | - Lu An
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science of Jiangnan University, School of Food Science Synergetic Innovation Center of Food Safety and Nutrition, China
| |
Collapse
|
14
|
Phosphorylation of nucleophosmin at threonine 234/237 is associated with HCC metastasis. Oncotarget 2016; 6:43483-95. [PMID: 26536659 PMCID: PMC4791245 DOI: 10.18632/oncotarget.5820] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/19/2015] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is frequently complicated by the occurrence of intrahepatic and extrahepatic metastases, leading to poor prognosis. To improve the prognosis for HCC patients, there is an urgent need to understand the molecular mechanisms of metastasis in HCC. Since protein Serine/Threonine phosphorylation emerges to be an important posttranslational modification critical in signaling process associated with cell proliferation, survival and metastasis, we employed a pair of primary tumor-derived and corresponding lung-metastatic counterparts (PLC/PRF/5-PT and PLC/PRF/5-LM) and aimed to identify these changes using CelluSpot™ Serine/Threonine kinase peptide array. Upon analysis, we found phosphorylated level of nucleophosmin (NPM) at Threonine 234/237 (p-NPM-Thr234/237) had remarkably high level in metastatic HCC cells (PLC-LM) than the corresponding primary HCC cell line (PLC-PT). Similar observation was observed in another match primary and their metastatic counterparts (MHCC-97L and MHCC-97H). By immunohistochemical staining, p-NPM-Thr234/237 was consistently found to be preferentially expressed in metastatic HCCs when compared with primary HCC in 28 HCC cases (p < 0.0001). By overexpressing Flag-tagged NPM and its phosphorylation site mutant (Thr234/237A) into low p-NPM-Thr234/237 expressing cells (Hep3B and Huh7) using a lentiviral based approach, we demonstrated that p-NPM-Thr234/237 is critical in invasion and migration of HCC cells, and this effect was mediated by cyclin-dependent kinase 1 (CDK1). Wild-type NPM was found to physically interact with a metastatic gene, ROCK2, and defective in Thr234/237 phosphorylation decreased its binding affinity, resulting in decrease in ROCK2 mediated signaling pathway. Identification of CDK1/p-NPM/ROCK2 signaling pathway provides a novel target for molecular therapy against HCC metastasis.
Collapse
|
15
|
Ponti D, Bastianelli D, Rosa P, Pacini L, Ibrahim M, Rendina EA, Ragona G, Calogero A. The expression of B23 and EGR1 proteins is functionally linked in tumor cells under stress conditions. BMC Cell Biol 2015; 16:27. [PMID: 26577150 PMCID: PMC4650859 DOI: 10.1186/s12860-015-0073-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 11/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The nucleolus is a multi-domain enriched with proteins involved in ribosome biogenesis, cell cycle and apoptosis control, viral replication and differentiation of stem cells. Several authors have suggested a role for the nucleolus also in malignant transformation. We have recently demonstrated that under specific circumstances the transcriptional factor EGR1 is shuttled to the nucleolus where it functions as a negative regulator of RNA polymerase I. Since this activity is hampered in ARF -/- cells, and ARF transcription is regulated by EGR1 while the turnover of ARF protein is under the control of B23, we speculated that some sort of cooperation between EGR1 and B23 might also exist. RESULTS In this work we identified a canonical EGR1 binding site on the B23 promoter through experiments of transactivation and in vitro DNA binding assay. We then found that the levels of B23 expression are directly correlated with those of EGR1, and that this correlation applies to several cellular types and to different stress conditions. Furthermore, we showed that EGR1 stability and accumulation within the nucleolus is in turn regulated by B23 through proteasome involvement, similarly to ARF turnover. CONCLUSION Our results highlight EGR1 as a regulator of B23 expression actively playing within the newly discovered nucleolar B23-ARF-EGR1 network.
Collapse
Affiliation(s)
- Donatella Ponti
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Daniela Bastianelli
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Paolo Rosa
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Luca Pacini
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Mohsen Ibrahim
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Erino Angelo Rendina
- Division of Thoracic Surgery, Department of Medical-Surgical Science and Translational Medicine, University Sapienza, S. Andrea Hospital, via di Grottarossa 1035, 00189, Rome, Italy.
| | - Giuseppe Ragona
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| | - Antonella Calogero
- Department of Medico-Surgical Sciences and Biotechnologies, University of Rome Sapienza, Corso della Repubblica 79, 04100, Latina, Italy.
| |
Collapse
|
16
|
Pfister JA, D'Mello SR. Insights into the regulation of neuronal viability by nucleophosmin/B23. Exp Biol Med (Maywood) 2015; 240:774-86. [PMID: 25908633 DOI: 10.1177/1535370215579168] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The vastness of the neuronal network that constitutes the human brain proves challenging when trying to understand its complexity. Furthermore, due to the senescent state they enter into upon maturation, neurons lack the ability to regenerate in the face of insult, injury or death. Consequently, their excessive death can be detrimental to the proper functioning of the brain. Therefore, elucidating the mechanisms regulating neuronal survival is, while challenging, of great importance as the incidence of neurological disease is becoming more prevalent in today's society. Nucleophosmin/B23 (NPM) is an abundant and ubiquitously expressed protein that regulates vital cellular processes such as ribosome biogenesis, cell proliferation and genomic stability. As a result, it is necessary for proper embryonic development, but has also been implicated in many cancers. While highly studied in the context of proliferative cells, there is a lack of understanding NPM's role in post-mitotic neurons. By exploring its role in healthy neurons as well as its function in the regulation of cell death and neurodegeneration, there can be a better understanding of how these diseases initiate and progress. Owing to what is thus far known about its function in the cell, NPM could be an attractive therapeutic target in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jason A Pfister
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX 75080, USA Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| | - Santosh R D'Mello
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA
| |
Collapse
|
17
|
Frejo MT, del Pino J, Lobo M, García J, Capo MA, Díaz MJ. Liver and kidney damage induced by 4-aminopyridine in a repeated dose (28 days) oral toxicity study in rats: Gene expression profile of hybrid cell death. Toxicol Lett 2014; 225:252-63. [DOI: 10.1016/j.toxlet.2013.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
|
18
|
Guo W, Zhu T, Dong Z, Cui L, Zhang M, Kuang G. Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma. Clin Exp Metastasis 2013; 30:977-92. [DOI: 10.1007/s10585-013-9597-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
|
19
|
Cao J, Song Y, Bi N, Shen J, Liu W, Fan J, Sun G, Tong T, He J, Shi Y, Zhang X, Lu N, He Y, Zhang H, Ma K, Luo X, Lv L, Deng H, Cheng J, Zhu J, Wang L, Zhan Q. DNA methylation-mediated repression of miR-886-3p predicts poor outcome of human small cell lung cancer. Cancer Res 2013; 73:3326-35. [PMID: 23592755 DOI: 10.1158/0008-5472.can-12-3055] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Small cell lung cancer (SCLC) is one of the most aggressive types of cancer, yet the pathologic mechanisms underlying its devastating clinical outcome remain elusive. In this report, we surveyed 924 miRNA (miR) for their expressions in the formalin-fixed paraffin-embedded specimens from 42 patients with SCLC, and found that the downregulated miR-886-3p is closely correlated with the shorter survival of SCLC. This correlation was validated with another 40 cases. It was further discovered that loss of miR-886-3p expression was mediated by DNA hypermethylation of its promoter in both cultured SCLC cells and tumor samples. Moreover, miR-886-3p potently repressed cell proliferation, migration, and invasion of NCI-H446 cell in cell culture via suppression of the expression of its target genes: PLK1 and TGF-β1 at posttranscription levels. Forced upregulation of miR-886-3p greatly inhibited in vivo tumor growth, bone/muscle invasion, and lung metastasis of NCI-H446 cells. This newly identified miR-886-3p-PLK1/TGF-β1 nexus that modulates SCLC aggression suggests that both loss of miR-886-3p expression and hypermethylation of the miR-886 promoter are the promising indicators for poor outcome of as well as new therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Jianzhong Cao
- The State Key Laboratory of Molecular Oncology, Cancer Hospital and Cancer Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100021, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abnormal levels of Gadd45alpha in developing neocortex impair neurite outgrowth. PLoS One 2012; 7:e44207. [PMID: 22970179 PMCID: PMC3435417 DOI: 10.1371/journal.pone.0044207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/30/2012] [Indexed: 12/13/2022] Open
Abstract
To better understand the short and long-term effects of stress on the developing cerebral cortex, it is necessary to understand how early stress response genes protect or permanently alter cells. One family of highly conserved, stress response genes is the growth arrest and DNA damage-45 (Gadd45) genes. The expression of these genes is induced by a host of genotoxic, drug, and environmental stressors. Here we examined the impact of altering the expression of Gadd45alpha (Gadd45a), a member of the Gadd45 protein family that is expressed throughout the developing cortices of mice and humans. To manipulate levels of Gadd45a protein in developing mouse cortex, we electroporated cDNA plasmids encoding either Gadd45a or Gadd45a shRNA to either overexpress or knockdown Gadd45a levels in the developing cortices of mice, respectively. The effects of these manipulations were assessed by examining the fates and morphologies of the labeled neurons. Gadd45a overexpression both in vitro and in vivo significantly impaired the morphology of neurons, decreasing neurite complexity, inducing soma hypertrophy and increasing cell death. Knockdown of Gadd45a partially inhibited neuronal migration and reduced neurite complexity, an effect that was reversed in the presence of an shRNA-resistant Gadd45a. Finally, we found that shRNA against MEKK4, a direct target of Gadd45a, also stunted neurite outgrowth. Our findings suggest that the expression of Gadd45a in normal, developing brain is tightly regulated and that treatments or environmental stimuli that alter its expression could produce significant changes in neuronal circuitry development.
Collapse
|
21
|
Liu X, Liu D, Qian D, Dai J, An Y, Jiang S, Stanley B, Yang J, Wang B, Liu X, Liu DX. Nucleophosmin (NPM1/B23) interacts with activating transcription factor 5 (ATF5) protein and promotes proteasome- and caspase-dependent ATF5 degradation in hepatocellular carcinoma cells. J Biol Chem 2012; 287:19599-609. [PMID: 22528486 DOI: 10.1074/jbc.m112.363622] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nucleophosmin (NPM1/B23) and the activating transcription factor 5 (ATF5) are both known to subject to cell type-dependent regulation. NPM1 is expressed weakly in hepatocytes and highly expressed in hepatocellular carcinomas (HCC) with a clear correlation between enhanced NPM1 expression and increased tumor grading and poor prognosis, whereas in contrast, ATF5 is expressed abundantly in hepatocytes and down-regulated in HCC. Re-expression of ATF5 in HCC inhibits cell proliferation. We report here that using an unbiased approach, tandem affinity purification (TAP) followed with mass spectrometry (MS), we identified NPM1 as a novel ATF5-interacting protein. Unlike many other NPM1-interacting proteins that interact with the N-terminal oligomerization domain of NPM1, ATF5 binds via its basic leucine zipper to the C-terminal region of NPM1 where its nucleolar localization signal is located. NPM1 association with ATF5, whose staining patterns partially overlap in the nucleoli, promotes ATF5 protein degradation through proteasome-dependent and caspase-dependent pathways. NPM1-c, a mutant NPM1 that is defective in nucleolar localization, failed to stimulate ATF5 polyubiquitination and was unable to down-regulate ATF5. NPM1 interaction with ATF5 displaces HSP70, a known ATF5-interacting protein, from ATF5 protein complexes and antagonizes its role in stabilization of ATF5 protein. NPM1-promoted ATF5 down-regulation diminished ATF5-mediated repression of cAMP-responsive element-dependent gene transcription and abrogates ATF5-induced G(2)/M cell cycle blockade and inhibition of cell proliferation in HCC cells. Our study establishes a mechanistic link between elevated NPM1 expression and depressed ATF5 in HCC and suggests that regulation of ATF5 by NPM1 plays an important role in the proliferation and survival of HCC.
Collapse
Affiliation(s)
- Xijun Liu
- Penn State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lin HP, Jiang SS, Chuu CP. Caffeic acid phenethyl ester causes p21 induction, Akt signaling reduction, and growth inhibition in PC-3 human prostate cancer cells. PLoS One 2012; 7:e31286. [PMID: 22347457 PMCID: PMC3274546 DOI: 10.1371/journal.pone.0031286] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 01/05/2012] [Indexed: 12/21/2022] Open
Abstract
Caffeic acid phenethyl ester (CAPE) treatment suppressed proliferation, colony formation, and cell cycle progression in PC-3 human prostate cancer cells. CAPE decreased protein expression of cyclin D1, cyclin E, SKP2, c-Myc, Akt1, Akt2, Akt3, total Akt, mTOR, Bcl-2, Rb, as well as phosphorylation of Rb, ERK1/2, Akt, mTOR, GSK3α, GSK3β, PDK1; but increased protein expression of KLF6 and p21(Cip1). Microarray analysis indicated that pathways involved in cellular movement, cell death, proliferation, and cell cycle were affected by CAPE. Co-treatment of CAPE with chemotherapeutic drugs vinblastine, paclitaxol, and estramustine indicated synergistic suppression effect. CAPE administration may serve as a potential adjuvant therapy for prostate cancer.
Collapse
Affiliation(s)
- Hui-Ping Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Chih-Pin Chuu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Translational Center for Glandular Malignancies, National Health Research Institutes, Miaoli, Taiwan
- Graduate Program for Aging, China Medical University, Taichung, Taiwan
| |
Collapse
|
23
|
Wang QQ, Zhang ZY, Xiao JY, Yi C, Li LZ, Huang Y, Yun JP. Knockdown of nucleophosmin induces S-phase arrest in HepG2 cells. CHINESE JOURNAL OF CANCER 2011; 30:853-60. [PMID: 22098949 PMCID: PMC4013333 DOI: 10.5732/cjc.011.10362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nucleophosmin/B23 (NPM) is a universally expressed nucleolar phosphoprotein that participates in proliferation, apoptosis, ribosome assembly, and centrosome duplication; however, the role of NPM in cell cycle regulation is not well characterized. We investigated the mechanism by which NPM is involved in cell cycle regulation. NPM was knocked down using siRNA in HepG2 hepatoblastoma cells. NPM translocation following actinomycin D (ActD) treatment was investigated using immunofluorescent staining. Expression of NPM and other factors involved in cell cycle regulation was examined by Western blotting. Cell cycle distribution was measured using flow cytometry to detect 5-ethynyl-2'-deoxyuridine (EdU) incorporation. Cell proliferation was quantified by the MTT assay. Knockdown of NPM increased the percentage of HepG2 cells in S phase and led to decreased expression of P53 and P21Cip1/WAF1. S-phase arrest in HepG2 cells was significantly enhanced by ActD treatment. Furthermore, knockdown of NPM abrogated ActD-induced G2/M phase cell cycle arrest. Taken together, these data demonstrate that inhibition of NPM has a significant effect on the cell cycle.
Collapse
Affiliation(s)
- Qing-Qing Wang
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Fu S, Liu X, Zhao X, Zhang W, Peng W, Wu C, Li Y, Li X, Bartlam M, Zeng ZH, Zhan Q, Rao Z. Crystal structure of human Gadd45γ [corrected] reveals an active dimer. Protein Cell 2011; 2:814-26. [PMID: 22058036 PMCID: PMC4875293 DOI: 10.1007/s13238-011-1090-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/19/2011] [Indexed: 01/07/2023] Open
Abstract
The human Gadd45 protein family plays critical roles in DNA repair, negative growth control, genomic stability, cell cycle checkpoints and apoptosis. Here we report the crystal structure of human Gadd45γ [corrected], revealing a unique dimer formed via a bundle of four parallel helices, involving the most conserved residues among the Gadd45 isoforms. Mutational analysis of human Gadd45γ [corrected] identified a conserved, highly acidic patch in the central region of the dimer for interaction with the proliferating cell nuclear antigen (PCNA), p21 and cdc2, suggesting that the parallel dimer is the active form for the interaction. Cellular assays indicate that: (1) dimerization of Gadd45γ [corrected] is necessary for apoptosis as well as growth inhibition, and that cell growth inhibition is caused by both cell cycle arrest and apoptosis; (2) a conserved and highly acidic patch on the dimer surface, including the important residues Glu87 and Asp89, is a putative interface for binding proteins related to the cell cycle, DNA repair and apoptosis. These results reveal the mechanism of self-association by Gadd45 proteins and the importance of this self-association for their biological function.
Collapse
Affiliation(s)
- Wenzheng Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071 China ,Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Sheng Fu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuefeng Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Xuelian Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Wenchi Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Peng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Congying Wu
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Yuanyuan Li
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Mark Bartlam
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Zong-Hao Zeng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021 China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China ,Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071 China ,Laboratory of Structural Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
25
|
Asuthkar S, Nalla AK, Gondi CS, Dinh DH, Gujrati M, Mohanam S, Rao JS. Gadd45a sensitizes medulloblastoma cells to irradiation and suppresses MMP-9-mediated EMT. Neuro Oncol 2011; 13:1059-73. [PMID: 21813510 DOI: 10.1093/neuonc/nor109] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Medulloblastomas are the most common malignant tumors of the central nervous system during childhood. Radiation-induced medulloblastoma tumor recurrences are aggressive and metastatic in nature. In the present study, we demonstrate that Gadd45a expression can sensitize medulloblastoma cells to radiotherapy. We have elucidated the role of Gadd45a in ionizing radiation (IR)-induced G2-M arrest and invasion and metastatic potential of the medulloblastoma cancer cell lines DAOY and D283. We demonstrate that Gadd45a is induced by IR and results in p53 phosphorylation. The role of IR-induced Gadd45a in G2-M arrest is demonstrated by fluorescence-activated cell sorting analysis in the cells treated with siRNA Gadd45a and Ov-exp Gadd45a. We show that Ov-exp Gadd45a aggravates G2-M blockage and also increases binding of Gadd45a to Cdc2 by immunocytochemistry analysis. Furthermore, we show the anti-tumorigenic role of Gadd45a to be mediated by the negative regulation of IR-induced cancer cell invasion and migration-associated proteins, such as matrix metallopeptidase (MMP)-9 and β-catenin. When compared with IR treatment alone, Ov-exp Gadd45a plus IR treatment resulted in decreased nuclear localization and increased membrane localization of β-catenin, and this was further confirmed by membrane distribution. We also show that Ov-exp Gadd45a resulted in downregulation of MMP-9 and suppression of epithelial-mesenchymal transition (EMT). Alternatively, inhibition of MMP-9 (pM) resulted in upregulation of Gadd45a and suppression of EMT. The anti-tumor effect of pM was correlated with increased expression of Gadd45a protein in nude mice intracranial tumors. Taken together, our studies demonstrate that upregulation of Gadd45a or suppression of MMP-9 (pM) with IR retards medulloblastoma tumor metastatic potential.
Collapse
Affiliation(s)
- Swapna Asuthkar
- Department of Cancer Biology & Pharmacology, University of Illinois College of Medicine at Peoria, Peoria, Illinois 61605, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
De Santi M, Galluzzi L, Lucarini S, Paoletti MF, Fraternale A, Duranti A, De Marco C, Fanelli M, Zaffaroni N, Brandi G, Magnani M. The indole-3-carbinol cyclic tetrameric derivative CTet inhibits cell proliferation via overexpression of p21/CDKN1A in both estrogen receptor-positive and triple-negative breast cancer cell lines. Breast Cancer Res 2011; 13:R33. [PMID: 21435243 PMCID: PMC3219196 DOI: 10.1186/bcr2855] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 02/04/2011] [Accepted: 03/24/2011] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Indole-3-carbinol (I3C), an autolysis product of glucosinolates present in cruciferous vegetables, and its dimeric derivative (3,3'-DIM) have been indicated as promising agents in preventing the development and progression of breast cancer. We have recently shown that I3C cyclic tetrameric derivative CTet formulated in γ-cyclodextrin (γ-CD) efficiently inhibited cellular proliferation in breast cancer cell lines. This study aims to analyze the mechanisms involved in the in vitro inhibition of cell proliferation and to evaluate the in vivo antitumor activity of CTet in a xenograft study. METHODS Estrogen receptor-positive MCF-7 and triple-negative MDA-MB-231 breast cancer cell lines were exposed to CTet to evaluate cell cycle perturbation (propidium iodide staining and cytofluorimetric acquisition), induction of autophagic morphological features (co-localization of LC3b autophagosome marker and LAMP2a lysosome marker by immunofluorescence) and changes in protein expression (immunoblot and microarray-based gene expression analyses). To test the in vivo efficacy of CTet, female athymic nude mice inoculated with MCF-7 cells were i.p. treated with 5 mg/kg/day of CTet for five days/week for two weeks and the tumor mass was externally monitored. RESULTS CTet induced accumulation in G2/M phase without evidence of apoptotic response induction in both cell lines tested. In triple-negative MDA-MB-231 the autophagic lysosomal activity was significantly up-regulated after exposure to 4 μM of CTet for 8 hours, while the highest CTet concentration was necessary to observe autophagic features in MCF-7 cells. The inhibition of Akt activity and p53-independent p21/CDKN1A and GADD45A overexpression were identified as the main molecular events responsible for CTet activity in MCF-7 and p53-mutant MDA-MB-231 cells. In vivo, CTet administration was able to significantly inhibit the growth of MCF-7 xenotransplanted into nude mice, without adverse effect on body weight or on haematological parameters. CONCLUSIONS Our data support CTet formulated with γ-CD as a promising and injectable anticancer agent for both hormone-responsive and triple-negative breast tumors.
Collapse
Affiliation(s)
- Mauro De Santi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Simone Lucarini
- Department of Health and Drug Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Maria Filomena Paoletti
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Andrea Duranti
- Department of Health and Drug Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Cinzia De Marco
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milano, Italy
| | - Mirco Fanelli
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Via G. Venezian 1, 20133 Milano, Italy
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino 'Carlo Bo', Via Saffi 2, 61029 Urbino, Italy
| |
Collapse
|
27
|
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30:2595-609. [PMID: 21278791 DOI: 10.1038/onc.2010.646] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nucleophosmin (NPM, also known as B23, numatrin or NO38) is a ubiquitously expressed phosphoprotein belonging to the nucleoplasmin family of chaperones. NPM is mainly localized in the nucleolus where it exerts many of its functions, but a proportion of the protein continuously shuttles between the nucleus and the cytoplasm. A growing number of cellular proteins have been described as physical interactors of NPM, and consequently, NPM is thought to have a relevant role in diverse cellular functions, including ribosome biogenesis, centrosome duplication, DNA repair and response to stress. NPM has been implicated in the pathogenesis of several human malignancies and intriguingly, it has been described both as an activating oncogene and a tumor suppressor, depending on cell type and protein levels. In fact, increased NPM expression is associated with different types of solid tumors whereas an impairment of NPM function is characteristic of a subgroup of hematolologic malignancies. A large body of experimental evidence links the deregulation of specific NPM functions to cellular transformation, yet the molecular mechanisms through which NPM contributes to tumorigenesis remain elusive. In this review, we have summarized current knowledge concerning NPM functions, and attempted to interpret its multifaceted and sometimes apparently contradictory activities in the context of both normal cellular homeostasis and neoplastic transformation.
Collapse
Affiliation(s)
- E Colombo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.
| | | | | |
Collapse
|
28
|
Narayan V, Halada P, Hernychová L, Chong YP, Žáková J, Hupp TR, Vojtesek B, Ball KL. A multiprotein binding interface in an intrinsically disordered region of the tumor suppressor protein interferon regulatory factor-1. J Biol Chem 2011; 286:14291-303. [PMID: 21245151 DOI: 10.1074/jbc.m110.204602] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The interferon-regulated transcription factor and tumor suppressor protein IRF-1 is predicted to be largely disordered outside of the DNA-binding domain. One of the advantages of intrinsically disordered protein domains is thought to be their ability to take part in multiple, specific but low affinity protein interactions; however, relatively few IRF-1-interacting proteins have been described. The recent identification of a functional binding interface for the E3-ubiquitin ligase CHIP within the major disordered domain of IRF-1 led us to ask whether this region might be employed more widely by regulators of IRF-1 function. Here we describe the use of peptide aptamer-based affinity chromatography coupled with mass spectrometry to define a multiprotein binding interface on IRF-1 (Mf2 domain; amino acids 106-140) and to identify Mf2-binding proteins from A375 cells. Based on their function as known transcriptional regulators, a selection of the Mf2 domain-binding proteins (NPM1, TRIM28, and YB-1) have been validated using in vitro and cell-based assays. Interestingly, although NPM1, TRIM28, and YB-1 all bind to the Mf2 domain, they have differing amino acid specificities, demonstrating the degree of combinatorial diversity and specificity available through linear interaction motifs.
Collapse
Affiliation(s)
- Vikram Narayan
- CRUK Interferon and Cell Signalling Group, Cell Signalling Unit, Edinburgh Cancer Research UK Centre, University of Edinburgh, Edinburgh EH4 2XR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
29
|
The Multifunctional Nucleolar Protein Nucleophosmin/NPM/B23 and the Nucleoplasmin Family of Proteins. THE NUCLEOLUS 2011. [PMCID: PMC7121557 DOI: 10.1007/978-1-4614-0514-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The nucleophosmin (NPM)/nucleoplasmin family of nuclear chaperones has three members: NPM1, NPM2, and NPM3. Nuclear chaperones serve to ensure proper assembly of nucleosomes and proper formation of higher order structures of chromatin. In fact, this family of proteins has such diverse functions in cellular processes such as chromatin remodeling, ribosome biogenesis, genome stability, centrosome replication, cell cycle, transcriptional regulation, apoptosis, and tumor suppression. Of the members of this family, NPM1 is the most studied and is the main focus of this review. NPM2 and NPM3 are less well characterized, and are also discussed wherever appropriate. The structure–function relationship of NPM proteins has largely been worked out. Other than the many processes in which NPM1 takes part, the major interest comes from its involvement in human cancers, particularly acute myeloid leukemia (AML). Its significance stems from the fact that AML with mutated NPM1 accounts for ∼30% of all AML cases and usually has good prognosis. Its clinical importance also comes from its involvement in virus replication, particularly in the era of outbreaks of infectious diseases.
Collapse
|
30
|
NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2010; 2011:195209. [PMID: 21152184 PMCID: PMC2989734 DOI: 10.1155/2011/195209] [Citation(s) in RCA: 226] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 08/29/2010] [Indexed: 12/21/2022] Open
Abstract
At a first glance, ribosome biogenesis and chromatin remodeling are quite different processes, but they share a common problem involving interactions between charged nucleic acids and small basic proteins that may result in unwanted intracellular aggregations. The multifunctional nuclear acidic chaperone NPM1 (B23/nucleophosmin) is active in several stages of ribosome biogenesis, chromatin remodeling, and mitosis as well as in DNA repair, replication and transcription. In addition, NPM1 plays an important role in the Myc-ARF-p53 pathway as well as in SUMO regulation. However, the relative importance of NPM1 in these processes remains unclear. Provided herein is an update on the expanding list of the diverse activities and interacting partners of NPM1. Mechanisms of NPM1 nuclear export functions of NPM1 in the nucleolus and at the mitotic spindle are discussed in relation to tumor development. It is argued that the suggested function of NPM1 as a histone chaperone could explain several, but not all, of the effects observed in cells following changes in NPM1 expression. A future challenge is to understand how NPM1 is activated, recruited, and controlled to carry out its functions.
Collapse
|
31
|
Luo J, Qi C, Xu W, Kamel-Reid S, Brandwein J, Chang H. Cytoplasmic expression of nucleophosmin accurately predicts mutation in the nucleophosmin gene in patients with acute myeloid leukemia and normal karyotype. Am J Clin Pathol 2010; 133:34-40. [PMID: 20023256 DOI: 10.1309/ajcpci1ffe2drxiv] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Mutations in the nucleophosmin (NPM1) exon 12 resulting in delocalization of NPM1 into the cytoplasm occur in 50% to 60% of acute myeloid leukemia cases with a normal karyotype (AML-NK). As recent studies suggest such patients have a favorable prognosis and there are discordant reports of the immunohistochemical detection of cytoplasmic NPM1 (NPMc+) for predicting NPM1 gene mutations, we correlated the immunohistochemical detection of NPMc+, NPM1 gene mutations, and prognosis in 57 cases of AML-NK. All 31 NPMc+ cases (54% of total) had NPM1 mutations, but none of the 26 nucleus-restricted (NPMc-) cases (46% of total) had NPM1 mutations (P < .0001). NPM1 mutations were correlated with FLT3-internal tandem duplication (ITD) (P = .0062), absence of CD34 (P = .0001), and absence of CD7 (P = .041). There was a favorable survival outcome in AML-NK cases that were NPM1 mutated and FLT3-ITD nonmutated. Our data confirm that cytoplasmic NPM1 immunoreactivity predicts NPM1 mutations and warrants inclusion in the routine diagnostic and prognostic workup of AML.
Collapse
|
32
|
Rau R, Brown P. Nucleophosmin (NPM1) mutations in adult and childhood acute myeloid leukaemia: towards definition of a new leukaemia entity. Hematol Oncol 2009; 27:171-81. [PMID: 19569254 DOI: 10.1002/hon.904] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nucleophosmin (NPM) is a ubiquitously expressed chaperone protein that shuttles rapidly between the nucleus and cytoplasm, but predominantly resides in the nucleolus. It plays key roles in ribosome biogenesis, centrosome duplication, genomic stability, cell cycle progression and apoptosis. Somatic mutations in exon 12 of the NPM gene (NPM1) are the most frequent genetic abnormality in adult acute myeloid leukaemia (AML), found in approximately 35% of all cases and up to 60% of patients with normal karyotype (NK) AML. In children, NPM1 mutations are far less frequent, occurring in 8-10% of all AML cases, and in approximately 25% of those with a NK. NPM1 mutations lead to aberrant localization of the NPM protein into the cytoplasm, thus the designation, NPMc+ AML. NPMc+ AML is seen predominantly in patients with a NK and is essentially mutually exclusive of recurrent chromosomal translocations. Patients with NPM1 mutations are twice as likely as those who lack an NPM1 mutation to also have a FMS-like tyrosine kinase (FLT3) internal tandem duplication (ITD) mutation. NPMc+ AML is also characterized by a unique gene expression signature and microRNA signature. NPMc+ AML has important prognostic significance, as NPMc+ AML, in the absence of a coexisting FLT3-ITD mutation, is associated with a favourable outcome. NPM1 mutations have also shown great stability during disease evolution, and therefore represent a possible marker for minimal residual disease detection. Given its distinctive biologic and clinical features and its clear clinical relevance, NPMc+ AML is included as a provisional entity in the 2008 WHO classifications. There is still much to be learned about this genetic alteration, including its exact role in leukaemogenesis, how it interacts with other mutations and why it confers a more favourable prognosis. Further, it represents a potential therapeutic target warranting research aimed at identifying novel small molecules with activity in NPMc+ AML.
Collapse
Affiliation(s)
- Rachel Rau
- Departments of Oncology and Pediatrics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
33
|
Meani N, Alcalay M. Role of nucleophosmin in acute myeloid leukemia. Expert Rev Anticancer Ther 2009; 9:1283-94. [PMID: 19761432 DOI: 10.1586/era.09.84] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nucleophosmin (NPM) is a nucleolar phosphoprotein implicated in the regulation of multiple cellular functions, which possesses both oncogenic and tumor-suppressor properties. Mutations of the NPM1 gene leading to the expression of a cytoplasmic mutant protein, NPMc+, are the most frequent genetic abnormalities found in acute myeloid leukemias. Acute myeloid leukemias with mutated NPM1 have distinct characteristics, including a significant association with a normal karyotype, involvement of different hematopoietic lineages, a specific gene-expression profile and clinically, a better response to induction therapy and a favorable prognosis. NPMc+ maintains the capacity of wild-type NPM to interact with a variety of cellular proteins, and impairs their activity by delocalizing them to the cytoplasm. In this review we summarize recent discoveries concerning NPM function, and discuss their possible impact on the pathogenesis of acute myeloid leukemias with mutated NPM1.
Collapse
Affiliation(s)
- Natalia Meani
- Istituto Europeo di Oncologia, IFOM-IEO Campus, Via Adamello 16, 20139 Milan, Italy.
| | | |
Collapse
|
34
|
Brady SN, Maggi LB, Winkeler CL, Toso EA, Gwinn AS, Pelletier CL, Weber JD. Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is essential in growth and proliferation. Oncogene 2009; 28:3209-20. [PMID: 19561638 DOI: 10.1038/onc.2009.178] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Nucleophosmin (NPM), an oligomeric phosphoprotein and nucleolar target of the ARF tumor suppressor, contributes to several critical cellular processes. Previous studies have shown that the human NPM's phosphorylation by cyclin E-cyclin-dependent kinase 2 (cdk2) on threonine (Thr) 199 regulates its translocation from the centrosome during cell cycle progression. Given our previous finding that ARF directly binds NPM, impeding its transit to the cytoplasm and arresting cells before S-phase entry, we hypothesized that ARF might also inhibit NPM phosphorylation. However, ARF induction did not impair phosphorylation of the cdk2 target residue in murine NPM, Thr198. Furthermore, phosphorylation of Thr198 occurred throughout the cell cycle and was concomitant with increases in overall NPM expression. To investigate the cell's presumed requirement for NPM-Thr198 phosphorylation in promoting the processes of growth and proliferation, we examined the effects of a non-phosphorylatable NPM mutant, T198A, in a clean cell system in which endogenous NPM had been removed by RNA interference. Here, we show that the T198A mutant is fully capable of executing NPM's described roles in nucleocytoplasmic shuttling, ribosome export and cell cycle progression. Moreover, the proliferative defects observed with stable NPM knockdown were restored by mutant NPM-T198A expression. Thus, we demonstrate that the reduction in NPM protein expression blocks cellular growth and proliferation, whereas phosphorylation of NPM-Thr198 is not essential for NPM's capacity to drive cell cycle progression and proliferation.
Collapse
Affiliation(s)
- S N Brady
- Department of Internal Medicine, Division of Molecular Oncology, Siteman Cancer Center, St Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Reiter R, Deutschle T, Wiegel T, Riechelmann H, Bartkowiak D. Absence of inflammatory response from upper airway epithelial cells after X irradiation. Radiat Res 2009; 171:274-82. [PMID: 19267554 DOI: 10.1667/rr1535.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy of head and neck tumors causes adverse reactions in normal tissue, especially mucositis. The dose- and time-dependent response of upper airway cells to X radiation should be analyzed in terms of the pro-inflammatory potential. Immortalized BEAS-2B lung epithelial cells were treated with 2, 5 and 8 Gy. Out of 1232 genes, those that were transcribed differentially after 2, 6 and 24 h were assigned to biological themes according to the Gene Ontology Consortium. Enrichment of differentially regulated gene clusters was determined with GOTree ( http://bioinfo.vanderbilt.edu/gotm ). Eleven cytokines were measured in culture supernatants. The cell cycle response up to 24 h and induction of apoptosis up to 4 days after exposure were determined by flow cytometry. A significant dose- and time-dependent gene activation was observed for the categories response to DNA damage, oxidative stress, cell cycle arrest and cell death/apoptosis but not for immune/inflammatory response. This correlated with functional G(2) arrest and apoptosis. Pro-inflammatory cytokines accumulated in supernatants of control cells but not of X-irradiated cells. The complex gene expression pattern of X-irradiated airway epithelial cells is accompanied by cell cycle arrest and induction of apoptosis. In vivo, this may impair the epithelial barrier. mRNA and protein expression suggest at most an indirect contribution of epithelial cells to early radiogenic mucositis.
Collapse
Affiliation(s)
- R Reiter
- Department of Otorhinolaryngology, Section of Phoniatrics and Pedaudiology, University Hospital Center, 89075 Ulm, Germany.
| | | | | | | | | |
Collapse
|
36
|
Cabello CM, Bair WB, Ley S, Lamore SD, Azimian S, Wondrak GT. The experimental chemotherapeutic N6-furfuryladenosine (kinetin-riboside) induces rapid ATP depletion, genotoxic stress, and CDKN1A(p21) upregulation in human cancer cell lines. Biochem Pharmacol 2008; 77:1125-38. [PMID: 19186174 DOI: 10.1016/j.bcp.2008.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/25/2022]
Abstract
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N(6)-furfuryladenosine (FAdo, kinetin-riboside) displays anti-proliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N(6)-furfuryladenine (FA), displayed potent anti-proliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60-180min of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, and GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase (ADK) suppressed FAdo cytotoxicity and also prevented ATP depletion and p21 upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity.
Collapse
Affiliation(s)
- Christopher M Cabello
- Department of Pharmacology and Toxicology, Arizona Cancer Center, University of Arizona, Tucson, 85724, USA
| | | | | | | | | | | |
Collapse
|
37
|
Wang XM, Li J, Feng XC, Wang Q, Guan DY, Shen ZH. Involvement of the role of Chk1 in lithium-induced G2/M phase cell cycle arrest in hepatocellular carcinoma cells. J Cell Biochem 2008; 104:1181-91. [PMID: 18247328 DOI: 10.1002/jcb.21693] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Lithium, a therapeutic agent for bipolar disorder, can induce G2/M arrest in various cells, but the mechanism is unclear. In this article, we demonstrated that lithium arrested hepatocellular carcinoma cell SMMC-7721 at G2/M checkpoint by inducing the phosphorylation of cdc2 (Tyr-15). This effect was p53 independent and not concerned with the inhibition of glycogen synthase kinase-3 and inositol monophosphatase, two well-documented targets of lithium. Checkpoint kinase 1 (Chk1), a critical enzyme in DNA damage-induced G2/M arrest, was at least partially responsible for the lithium action. The lithium-induced phosphorylation of cdc2 and G2/M arrest was abrogated largely by SB218078, a potent Chk1 inhibitor, as well as by Chk1 siRNA or the over-expression of kinase dead Chk1. Furthermore, lithium-induced cdc25C phosphorylation in 7721 cells and in vitro kinase assay showed that the activity of Chk1 was enhanced after lithium treatment. Interestingly, the increase of Chk1 activity by lithium may be independent of ataxia telangiectasia mutated (ATM)/ATM and Rad3-related (ATR) kinase. This is because no elevated phosphorylation on Chk1 (Ser-317 and Ser-345) was observed after lithium treatment. Moreover, caffeine, a known ATM/ATR kinase inhibitor, relieved the phosphorylation of cdc2 (Tyr-15) by hydroxyurea, but not that by lithium. Our study's results revealed the role of Chk1 in lithium-induced G2/M arrest. Given that Chk1 has been proposed to be a novel tumor suppressor, we suggest that the effect of lithium on Chk1 and cell cycle is useful in tumor prevention and therapy.
Collapse
Affiliation(s)
- Xiao-Ming Wang
- Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dong an Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
38
|
Wynne JW, O'Sullivan MG, Stone G, Cook MT, Nowak BF, Lovell DR, Taylor RS, Elliott NG. Resistance to amoebic gill disease (AGD) is characterised by the transcriptional dysregulation of immune and cell cycle pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1539-1560. [PMID: 18621418 DOI: 10.1016/j.dci.2008.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Revised: 05/03/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
Amoebic gill disease (AGD) is a parasite-mediated proliferative gill disease capable of affecting a range of teleost hosts. While a moderate heritability for AGD resistance in Atlantic salmon has been reported previously, the mechanisms by which individuals resist the proliferative effects remain poorly understood. To gain more knowledge of this commercially important trait, we compared gill transcriptomes of two groups of Atlantic salmon, one designated putatively resistant, and one designated putatively susceptible to AGD. Utilising a 17k Atlantic salmon cDNA microarray we identified 196 transcripts that were differentially expressed between the two groups. Expression of 11 transcripts were further examined with real-time quantitative RT-PCR (qPCR) in the AGD-resistant and AGD-susceptible animals, as well as non-infected naïve fish. Gene expression determined by qPCR was in strong agreement with the microarray analysis. A large number of differentially expressed genes were involved in immune and cell cycle responses. Resistant individuals displayed significantly higher expression of genes involved in adaptive immunity and negative regulation of the cell cycle. In contrast, AGD-susceptible individuals showed higher expression of acute phase proteins and positive regulators of the cell cycle. Combined with the gill histopathology, our results suggest AGD resistance is acquired rather than innately present, and that this resistance is for the most part associated with the dysregulation of immune and cell cycle pathways.
Collapse
Affiliation(s)
- James W Wynne
- CSIRO National Food Futures Flagship, CSIRO Marine and Atmospheric Research Hobart, GPO Box 1538, Hobart, Tasmania 7001, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Tornatore L, Marasco D, Dathan N, Vitale RM, Benedetti E, Papa S, Franzoso G, Ruvo M, Monti SM. Gadd45 beta forms a homodimeric complex that binds tightly to MKK7. J Mol Biol 2008; 378:97-111. [PMID: 18343408 DOI: 10.1016/j.jmb.2008.01.074] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 01/22/2008] [Accepted: 01/23/2008] [Indexed: 11/30/2022]
Abstract
Gadd45 alpha, beta, and gamma proteins, also known as growth arrest and DNA damage-inducible factors, have a number of cellular functions, including cell-cycle regulation and propagation of signals produced by a variety of cellular stimuli, maintaining genomic stability and apoptosis. Furthermore, Gadd45 beta has been indicated as a major player in the endogenous NF-kappaB-mediated resistance to apoptosis in a variety of cell lines. In fibroblasts this mechanism involves the inactivation of MKK7, the upstream activator of JNK, by direct binding within the kinase ATP pocket. On the basis of a number of experimental data, the structures of Gadd45 beta and the Gadd45 beta-MKK7 complex have been predicted recently and data show that interactions are mediated by acidic loops 1 and 2, and helices 3 and 4 of Gadd45 beta. Here, we provide further evidence that Gadd45 beta is a prevailingly alpha-helical protein and that in solution it is able to form non covalent dimers but not higher-order oligomers, in contrast to what has been reported for the homologous Gadd45 alpha. We show that the contact region between the two monomers is comprised of the predicted helix 1 (residues Q17-Q33) and helix 5 (residues K131-R146) of the protein, which appear to be antiparallel and to form a large dimerisation surface not involved in MKK7 recognition. The results suggest the occurrence of a large complex containing at least an MKK7-Gadd45 beta:Gadd45 beta-MKK7 tetrameric unit whose complexity could be further increased by the dimeric nature of the isolated MKK7.
Collapse
Affiliation(s)
- Laura Tornatore
- Dipartimento delle Scienze Biologiche, Istituto di Biostrutture e Bioimmagini (IBB), CNR, via Mezzocannone, 16, 80134, Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yun JP, Miao J, Chen GG, Tian QH, Zhang CQ, Xiang J, Fu J, Lai PBS. Increased expression of nucleophosmin/B23 in hepatocellular carcinoma and correlation with clinicopathological parameters. Br J Cancer 2007; 96:477-84. [PMID: 17245342 PMCID: PMC2360035 DOI: 10.1038/sj.bjc.6603574] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Nucleophosmin (NPM, B23, numatrin, NO38) is an abundant nucleolar phosphoprotein involved in multiple cellular functions. Previous evidence indicates that high-level expression of NPM causes uncontrolled cell growth and suggests that NPM may have oncogenic potential. In this study, we examined NPM expression in 103 paired cases of hepatocellular carcinoma (HCC), 12 cases of hepatic focal nodular hyperplasia, 17 cases of liver tissue adjacent to a hepatic haemangioma, and series of array tissues from normal human organs and malignancies using a monoclonal antibody against NPM and reverse transcription-PCR techniques, Western blot analysis, immunohistochemistry, and immunocytofluorescence. Our data indicated that NPM expression was significantly higher in HCC than in the non-malignant hepatocytes (P<0.001). Nucleophosmin was weakly expressed in hepatocytes from a 5-month-old embryo and in stationary hepatocytes of healthy adults. Moreover, enhanced expression of NPM in HCC correlated with the level of PCNA (R(2)=0.5639) and with the clinical prognostic parameters such as serum alpha fetal protein level, tumour pathological grading, and liver cirrhosis (P<0.05). Our results suggest that NPM may play an important role in the progression of tumorigenesis and that NPM may serve as a potential marker for HCC.
Collapse
Affiliation(s)
- J-P Yun
- State Key Laboratory of Oncology in Southern China, Cancer Center, Sun Yat-Sen University, Guangzhou, China.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Jiang HY, Jiang L, Wek RC. The eukaryotic initiation factor-2 kinase pathway facilitates differential GADD45a expression in response to environmental stress. J Biol Chem 2006; 282:3755-65. [PMID: 17170114 DOI: 10.1074/jbc.m606461200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation of eukaryotic initiation factor-2 (eIF2) regulates general and gene-specific translation in response to diverse environmental stresses. Central to gene expression induced by eIF2 phosphorylation is the preferential translation of ATF4, a basic zipper transcription activator. Phosphorylation of eIF2 and its attendant induction of ATF4 can lead to different patterns of gene expression depending on the environmental stress. This is of fundamental importance because eIF2 kinases can induce the expression of genes involved in survival as well as in apoptosis. In this report, we explore the molecular basis for why there can be differential expression of GADD45a, a stress-responsive protein that regulates genome stability, apoptosis, and immune responses. We find that whereas ATF4 is required for GADD45a transcription during many different environmental stresses, GADD45a protein accumulates only during a limited number of stress arrangements. The basis for this difference between measurable GADD45a mRNA and protein lies in the observation that GADD45a protein is labile. Those stress agents that enhance ATF4-directed GADD45a transcription and impede the turnover of GADD45a protein by blocking ubiquitin/proteasome-mediated degradation elevate GADD45a protein levels. By comparison, those stress arrangements that trigger ATF4 levels and GADD45a transcription, but do not perturb the proteasome pathway, only elevate GADD45a mRNA levels. This study highlights the molecular mechanisms by which environmental stresses can differentially control central regulatory proteins targeted by the eIF2 kinase pathway.
Collapse
Affiliation(s)
- Hao-Yuan Jiang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
42
|
Chen W, Rassidakis GZ, Medeiros LJ. Nucleophosmin gene mutations in acute myeloid leukemia. Arch Pathol Lab Med 2006; 130:1687-92. [PMID: 17076533 DOI: 10.5858/2006-130-1687-ngmiam] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2006] [Indexed: 11/06/2022]
Abstract
CONTEXT Heterozygous mutation of the nucleophosmin gene (NPM1) has recently been described as one of the most frequent genetic lesions in acute myeloid leukemia (AML). OBJECTIVE (1) To discuss the clinical, morphologic, immunophenotypic, and genetic features of AML with NPM1 gene mutations, along with various detection methods, (2) To explore the mechanisms by which NPM1 gene mutations contribute to leukemogenesis. DATA SOURCES/EXTRACTION: Data were analyzed from 7 recently published papers. RESULTS NPM1 gene mutations tend to occur more frequently in women, and also tend to be associated with a higher white blood cell count. There is no significant age difference. NPM1-mutated AML is preferentially associated with AML with monocytic differentiation (in particular FAB M5b), lack of CD34, normal cytogenetics, FLT3 gene mutations, and a trend toward favorable clinical outcome, especially in patients without FLT3 gene mutation. NPM1 gene mutations cause a frame shift in the C-terminus of exon 12, disrupting the NPM nucleolar-localization signal or generating a leucine-rich nuclear export motif, resulting in abnormal cytoplasmic accumulation of NPM. Several methods are suitable for detecting NPM1 gene mutation, including molecular and immunohistochemical studies. These mutations may contribute to leukemogenesis, at least in part, through disruption of the p14(ARF) (alternative reading frame) MDM2-p53 pathway and centrosomal duplication. CONCLUSIONS Detection of NPM1 gene mutations may allow dissection of the heterogeneous group of AML with normal karyotype into prognostically different subgroups. Exploring the mechanisms may lead to a better understanding of how mutant NPM protein becomes leukemogenic, thereby providing insights for the development of new chemotherapeutic agents.
Collapse
Affiliation(s)
- Weina Chen
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 72, Houston, TX 77030, USA.
| | | | | |
Collapse
|
43
|
Falini B, Nicoletti I, Martelli MF, Mecucci C. Acute myeloid leukemia carrying cytoplasmic/mutated nucleophosmin (NPMc+ AML): biologic and clinical features. Blood 2006; 109:874-85. [PMID: 17008539 DOI: 10.1182/blood-2006-07-012252] [Citation(s) in RCA: 396] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The nucleophosmin (NPM1) gene encodes for a multifunctional nucleocytoplasmic shuttling protein that is localized mainly in the nucleolus. NPM1 mutations occur in 50% to 60% of adult acute myeloid leukemia with normal karyotype (AML-NK) and generate NPM mutants that localize aberrantly in the leukemic-cell cytoplasm, hence the term NPM-cytoplasmic positive (NPMc+ AML). Cytoplasmic NPM accumulation is caused by the concerted action of 2 alterations at mutant C-terminus, that is, changes of tryptophan(s) 288 and 290 (or only 290) and creation of an additional nuclear export signal (NES) motif. NPMc+ AML shows increased frequency in adults and females, wide morphologic spectrum, multilineage involvement, high frequency of FLT3-ITD, CD34 negativity, and a distinct gene-expression profile. Analysis of mutated NPM has important clinical and pathologic applications. Immunohistochemical detection of cytoplasmic NPM predicts NPM1 mutations and helps rationalize cytogenetic/molecular studies in AML. NPM1 mutations in absence of FLT3-ITD identify a prognostically favorable subgroup in the heterogeneous AML-NK category. Due to their frequency and stability, NPM1 mutations may become a new tool for monitoring minimal residual disease in AML-NK. Future studies should focus on clarifying how NPM mutants promote leukemia, integrating NPMc+ AML in the upcoming World Health Organization leukemia classification, and eventually developing specific antileukemic drugs.
Collapse
|
44
|
Wang BB, Lu R, Wang WC, Jin Y. Inducible and reversible suppression of Npm1 gene expression using stably integrated small interfering RNA vector in mouse embryonic stem cells. Biochem Biophys Res Commun 2006; 347:1129-37. [PMID: 16870143 DOI: 10.1016/j.bbrc.2006.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 11/19/2022]
Abstract
The tetracycline (Tc)-inducible small interference RNA (siRNA) is a powerful tool for studying gene function in mammalian cells. However, the system is infrequently utilized in embryonic stem (ES) cells. Here, we present the first application of the Tc-inducible, stably integrated plasmid-based siRNA system in mouse ES cells to down-regulate expression of Npm1, an essential gene for embryonic development. The physiological role of Npm1 in ES cells has not been defined. Our data show that the knock-down of Npm1 expression by this siRNA system was not only highly efficient, but also Tc- dose- and induction time-dependent. Particularly, the down-regulation of Npm1 expression was reversible. Importantly, suppression of Npm1 expression in ES cells resulted in reduced cell proliferation. Taken together, this system allows for studying gene function in a highly controlled manner, otherwise difficult to achieve in ES cells. Moreover, our results demonstrate that Npm1 is essential for ES cell proliferation.
Collapse
Affiliation(s)
- Bei Bei Wang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, 225 South Chongqing Road, Shanghai 200025, China
| | | | | | | |
Collapse
|
45
|
Abstract
NPM1 is a crucial gene to consider in the context of the genetics and biology of cancer. NPM1 is frequently overexpressed, mutated, rearranged and deleted in human cancer. Traditionally regarded as a tumour marker and a putative proto-oncogene, it has now also been attributed with tumour-suppressor functions. Therefore, NPM can contribute to oncogenesis through many mechanisms. The aim of this review is to analyse the role of NPM in cancer, and examine how deregulated NPM activity (either gain or loss of function) can contribute to tumorigenesis.
Collapse
Affiliation(s)
- Silvia Grisendi
- Cancer Biology & Genetics Program, Department of Pathology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | |
Collapse
|
46
|
Cathelin S, Rébé C, Haddaoui L, Simioni N, Verdier F, Fontenay M, Launay S, Mayeux P, Solary E. Identification of proteins cleaved downstream of caspase activation in monocytes undergoing macrophage differentiation. J Biol Chem 2006; 281:17779-88. [PMID: 16636047 DOI: 10.1074/jbc.m600537200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We have shown previously that caspases were specifically involved in the differentiation of peripheral blood monocytes into macrophages while not required for monocyte differentiation into dendritic cells. To identify caspase targets in monocytes undergoing macrophagic differentiation, we used the human monocytic leukemic cell line U937, whose macrophagic differentiation induced by exposure to 12-O-tetradecanoylphorbol 13-acetate (TPA) can be prevented by expression of the baculovirus caspase-inhibitory protein p35. A comparative two-dimensional gel proteomic analysis of empty vector- and p35-transfected cells after 12 h of exposure to 20 nm TPA, followed by mass spectrometry analysis, identified 38 differentially expressed proteins. Those overexpressed in p35-expressing cells (n = 16) were all full-length, whereas half of those overexpressed in control cells (n = 22) were N- or C-terminal cleavage fragments. The cleavage or degradation of seven of these proteins was confirmed in peripheral blood monocytes undergoing macrophage colony-stimulating factor-induced macrophagic differentiation. In U937 cells exposed to TPA, these proteolytic events can be inhibited by expression of a caspase-8 dominant negative mutant or the cowpox virus CrmA caspase inhibitor. These cleavages provide new insights to analyze the role of caspases in this specific differentiation program.
Collapse
Affiliation(s)
- Séverine Cathelin
- INSERM UMR 517, IFR 100, Faculty of Medicine, 7 Boulevard Jeanne d'Arc, F-21079 Dijon Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalousek I, Otevřelová P, Röselová P. Expression and translocation of major nucleolar proteins in relation to the transcriptional activity of the nucleolus. J Appl Biomed 2005. [DOI: 10.32725/jab.2005.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|