1
|
Alderfer L, Saha S, Fan F, Wu J, Littlepage LE, Hanjaya-Putra D. Multi-parameter tunable synthetic matrix for engineering lymphatic vessels. Commun Biol 2024; 7:1262. [PMID: 39367247 PMCID: PMC11452684 DOI: 10.1038/s42003-024-06935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/20/2024] [Indexed: 10/06/2024] Open
Abstract
Controlling the formation of new lymphatic vessels has been postulated as an innovative therapeutic strategy for various disease phenotypes, including neurodegenerative diseases, metabolic syndrome, cardiovascular disease, and lymphedema. Yet, compared to the blood vascular system, little is known about the molecular regulation that controls lymphatic tube formation in a synthetic matrix. In this study, we utilize hyaluronic acid (HA)-hydrogels to design a novel platform for decoupled investigation into how mechanical and biochemical cues regulate lymphatic vessel formation in a synthetic matrix. Using HA and controlling the degree of modification provides a method to preserve and modulate key lymphatic markers Prox1, LYVE-1, and Pdpn. The chemistry of the system allows for spatial and temporal patterning of specific peptides and substrate stiffnesses, and an MMP-sensitive crosslinker allowed cells to degrade and remodel their matrix. Through systematic optimization of multiple parameters, we have designed a system that allows human lymphatic endothelial cells (LECs) to self-assemble into vessels in vitro within 3 days. These engineered vessels can be cultured for up to 3 weeks and can be used for high-throughput mechanistic studies, or can be implanted into immunodeficient mice where they have demonstrated the ability to integrate and mature. Collectively, these studies report a novel, fully-defined 3D synthetic matrix system capable of generating lymphatic vessels in vitro that provide promise as an in vitro screening platform and as a therapeutic vessel transplant, which to our knowledge, is the first ever 3D lymphatic tissue engineering approach to not require the use of support cells.
Collapse
Affiliation(s)
- Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | - Junmin Wu
- Department of Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Laurie E Littlepage
- Department of Biochemistry, University of Notre Dame, Notre Dame, IN, USA
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
- Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, USA.
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
2
|
Yu D, Lu Z, Chong Y. Integrins as a bridge between bacteria and cells: key targets for therapeutic wound healing. BURNS & TRAUMA 2024; 12:tkae022. [PMID: 39015251 PMCID: PMC11250365 DOI: 10.1093/burnst/tkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 07/18/2024]
Abstract
Integrins are heterodimers composed of α and β subunits that are bonded through non-covalent interactions. Integrins mediate the dynamic connection between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs where these heterodimers participate in diverse physiological and pathological responses at the molecular level in living organisms. Wound healing is a crucial process in the recovery from traumatic diseases and comprises three overlapping phases: inflammation, proliferation and remodeling. Integrins are regulated during the entire wound healing process to enhance processes such as inflammation, angiogenesis and re-epithelialization. Prolonged inflammation may result in failure of wound healing, leading to conditions such as chronic wounds. Bacterial colonization of a wound is one of the primary causes of chronic wounds. Integrins facilitate the infectious effects of bacteria on the host organism, leading to chronic inflammation, bacterial colonization, and ultimately, the failure of wound healing. The present study investigated the role of integrins as bridges for bacteria-cell interactions during wound healing, evaluated the role of integrins as nodes for bacterial inhibition during chronic wound formation, and discussed the challenges and prospects of using integrins as therapeutic targets in wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou 225000, Jiangsu, China
| |
Collapse
|
3
|
Ellergezen P, Coşkun BN, Bozkurt ZY, Çeçen GS, Ağca H, Pehlivan Y, Dalkılıç HE, Çavun S, Yanar YB. α9β1 integrin & its ligands as new potential biomarkers in FMF. Indian J Med Res 2024; 160:102-108. [PMID: 39382510 PMCID: PMC11463857 DOI: 10.25259/ijmr_985_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 10/10/2024] Open
Abstract
Background & objectives Familial Mediterranean Fever (FMF) manifests as a hereditary condition characterized by repeated bouts of fever, abdominal, chest, and joint discomfort, and swelling. Colchicine is the most common form of treatment, but it does not eliminate the disease. The underlying causes of the inflammatory mechanism are still not fully known. Methods A total of 20 healthy controls, 16 individuals with FMF in the attack period, and 14 in the remission period participated in the study. ITGA9, ITGB1, OPN, TNC, VEGF, VCAM-1, TGM2, TSP-1, Emilin-1, and vWF levels were measured by ELISA by obtaining serum from blood samples of individuals. In addition, gene expressions of α9β1 (ITGA9, ITGB1) and its best known ligands (TNC, SPP1) were analyzed by quantitative real-time PCR (qPCR). Results The findings of this study showed that serum levels of α9β1 and its ligands were higher in individuals with FMF in the attack period than in the healthy controls and the FMF group in the remission period (P<0.05). The marker levels of the healthy group were also higher than those in the remission period (p<0.05). In addition, when the gene expressions were compared between the healthy controls and FMF group, no significant difference was found for ITGA9, ITGB1, TNC, and SPP1 genes. Interpretation & conclusions The function of α9β1 and its ligands in FMF disease was investigated for the first time in this study as per our knowledge. Serum levels of these biomarkers may help identify potential new targets for FMF disease diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Pınar Ellergezen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Belkıs Nihan Coşkun
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Zeynep Yılmaz Bozkurt
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Gülce Sevdar Çeçen
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Harun Ağca
- Department of Medical Microbiology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yavuz Pehlivan
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Hüseyin Ediz Dalkılıç
- Department of Rheumatology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Sinan Çavun
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| | - Yusuf Berkcan Yanar
- Department of Medical Pharmacology, Bursa Uludag University Faculty of Medicine, Nilufer-Bursa, Turkey
| |
Collapse
|
4
|
Yu D, Lu Z, Nie F, Chong Y. Integrins regulation of wound healing processes: insights for chronic skin wound therapeutics. Front Cell Infect Microbiol 2024; 14:1324441. [PMID: 38505290 PMCID: PMC10949986 DOI: 10.3389/fcimb.2024.1324441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/21/2024] [Indexed: 03/21/2024] Open
Abstract
Integrins are heterodimers composed of non-covalently associated alpha and beta subunits that mediate the dynamic linkage between extracellular adhesion molecules and the intracellular actin cytoskeleton. Integrins are present in various tissues and organs and are involved in different physiological and pathological molecular responses in vivo. Wound healing is an important process in the recovery from traumatic diseases and consists of three overlapping phases: inflammation, proliferation, and remodeling. Integrin regulation acts throughout the wound healing process to promote wound healing. Prolonged inflammation may lead to failure of wound healing, such as wound chronicity. One of the main causes of chronic wound formation is bacterial colonization of the wound. In this review, we review the role of integrins in the regulation of wound healing processes such as angiogenesis and re-epithelialization, as well as the role of integrins in mediating bacterial infections during wound chronicity, and the challenges and prospects of integrins as therapeutic targets for infected wound healing.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
5
|
Simkin J, Aloysius A, Adam M, Safaee F, Donahue RR, Biswas S, Lakhani Z, Gensel JC, Thybert D, Potter S, Seifert AW. Tissue-resident macrophages specifically express Lactotransferrin and Vegfc during ear pinna regeneration in spiny mice. Dev Cell 2024; 59:496-516.e6. [PMID: 38228141 PMCID: PMC10922778 DOI: 10.1016/j.devcel.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 05/30/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024]
Abstract
The details of how macrophages control different healing trajectories (regeneration vs. scar formation) remain poorly defined. Spiny mice (Acomys spp.) can regenerate external ear pinnae tissue, whereas lab mice (Mus musculus) form scar tissue in response to an identical injury. Here, we used this dual species system to dissect macrophage phenotypes between healing modes. We identified secreted factors from activated Acomys macrophages that induce a pro-regenerative phenotype in fibroblasts from both species. Transcriptional profiling of Acomys macrophages and subsequent in vitro tests identified VEGFC, PDGFA, and Lactotransferrin (LTF) as potential pro-regenerative modulators. Examining macrophages in vivo, we found that Acomys-resident macrophages secreted VEGFC and LTF, whereas Mus macrophages do not. Lastly, we demonstrate the requirement for VEGFC during regeneration and find that interrupting lymphangiogenesis delays blastema and new tissue formation. Together, our results demonstrate that cell-autonomous mechanisms govern how macrophages react to the same stimuli to differentially produce factors that facilitate regeneration.
Collapse
Affiliation(s)
- Jennifer Simkin
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA.
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Mike Adam
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Fatemeh Safaee
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Renée R Donahue
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Shishir Biswas
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Zohaib Lakhani
- Department of Orthopaedic Surgery, LSU Health-New Orleans, New Orleans, LA 70112, USA
| | - John C Gensel
- Department of Physiology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA
| | - David Thybert
- European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
| | - Steven Potter
- Department of Pediatrics, University of Cincinnati Children's Hospital Medical Center, Division of Developmental Biology, Cincinnati, OH 45229, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
6
|
Saha S, Fan F, Alderfer L, Graham F, Hall E, Hanjaya-Putra D. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells. Biomater Sci 2023; 11:7346-7357. [PMID: 37789798 PMCID: PMC10628678 DOI: 10.1039/d3bm00873h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/14/2023] [Indexed: 10/05/2023]
Abstract
Lymphatic endothelial cells (LECs) play a critical role in the formation and maintenance of the lymphatic vasculature, which is essential for the immune system, fluid balance, and tissue repair. However, LECs are often difficult to study in vivo and in vitro models that accurately mimic their behaviors and phenotypes are limited. In particular, LECs have been shown to lose their lymphatic markers over time while being cultured in vitro, which reflect their plasticity and heterogeneity in vivo. Since LECs uniquely express lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), we hypothesized that surface coating with hyaluronic acid (HA) can preserve LEC phenotypes and functionalities. Dopamine conjugated hyaluronic acid (HA-DP) was synthesized with 42% degree of substitution to enable surface modification and conjugation onto standard tissue culture plates. Compared to fibronectin coating and tissue culture plate controls, surface coating with HA-DP was able to preserve lymphatic markers, such as prospero homeobox protein 1 (Prox1), podoplanin (PDPN), and LYVE-1 over several passages in vitro. LECs cultured on HA-DP expressed lower levels of focal adhesion kinase (FAK) and YAP/TAZ, which may be responsible for the maintenance of the lymphatic characteristics. Collectively, the HA-DP coating may provide a novel method for culturing human LECs in vitro toward more representative studies in basic lymphatic biology and lymphatic regeneration.
Collapse
Affiliation(s)
- Sanjoy Saha
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Fei Fan
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Laura Alderfer
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Francine Graham
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
| | - Eva Hall
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
| | - Donny Hanjaya-Putra
- Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, IN 46556, USA
- Harper Cancer Research Institute, University of Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
8
|
Lungu CN, Mehedinti MC. Molecular Motifs in Vascular Morphogenesis: Vascular Endothelial Growth Factor A (VEGFA) as the Leading Promoter of Angiogenesis. Int J Mol Sci 2023; 24:12169. [PMID: 37569543 PMCID: PMC10418718 DOI: 10.3390/ijms241512169] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Tissular hypoxia stimulates vascular morphogenesis. Vascular morphogenesis shapes the cell and, consecutively, tissue growth. The development of new blood vessels is intermediated substantially through the tyrosine kinase pathway. There are several types of receptors inferred to be located in the blood vessel structures. Vascular endothelial growth factor A (VEGF-A) is the leading protagonist of angiogenesis. VEGF-A's interactions with its receptors VEGFR1, VEGFR2, and VEGFR3, together with disintegrin and metalloproteinase with thrombospondin motifs 1 (ADAMTS1), connective tissue growth factor (CTGF), and neuropilin-1 (NRP1), independently, are studied computationally. Peripheral artery disease (PAD), which results in tissue ischemia, is more prevalent in the senior population. Presently, medical curatives used to treat cases of PAD-antiplatelet and antithrombotic agents, statins, antihypertensive remedies with ACE (angiotensin-converting enzyme) impediments, angiotensin receptor blockers (ARB) or β- blockers, blood glucose control, and smoking cessation-are not effective. These curatives were largely established from the treatment of complaint cases of coronary disease. However, these medical curatives do not ameliorate lower limb perfusion in cases of PAD. Likewise, surgical or endovascular procedures may be ineffective in relieving symptoms. Eventually, after successful large vessel revascularization, the residual microvascular circulation may well limit the effectiveness of curatives in cases of PAD. It would thus feel rational to attempt to ameliorate perfusion in PAD by enhancing vascular rejuvenescence and function. Likewise, stimulating specific angiogenesis in these cases (PAD) can ameliorate the patient's symptomatology. Also, the quality of life of PAD patients can be improved by developing new vasodilative and angiogenetic molecules that stimulate the tyrosine kinase pathway. In this respect, the VEGFA angiogenetic pathway was explored computationally. Docking methodologies, molecular dynamics, and computational molecular design methodologies were used. VEGFA's interaction with its target was primarily studied. Common motifs in the vascular morphogenesis pathway are suggested using conformational energy and Riemann spaces. The results show that interaction with VEGFR2 and ADAMTS1 is pivotal in the angiogenetic process. Also, the informational content of two VEGFA complexes, VEGFR2 and ADAMTS1, is crucial in the angiogenesis process.
Collapse
Affiliation(s)
- Claudiu N. Lungu
- Departament of Functional and Morphological Science, Faculty of Medicine and Pharamacy, Dunarea de Jos University, 800010 Galati, Romania
| | | |
Collapse
|
9
|
Cho SK, Lee K, Woo JH, Choi JH. Macrophages Promote Ovarian Cancer-Mesothelial Cell Adhesion by Upregulation of ITGA2 and VEGFC in Mesothelial Cells. Cells 2023; 12:384. [PMID: 36766725 PMCID: PMC9913165 DOI: 10.3390/cells12030384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Ovarian cancer is a metastatic disease that frequently exhibits extensive peritoneal dissemination. Recent studies have revealed that noncancerous cells inside the tumor microenvironment, such as macrophages and mesothelial cells, may play a role in ovarian cancer metastasis. In this study, we found that human ovarian cancer cells (A2780 and SKOV3) adhered more to human mesothelial Met5A cells stimulated by macrophages (M-Met5A) in comparison to unstimulated control Met5A cells. The mRNA sequencing revealed that 94 adhesion-related genes, including FMN1, ITGA2, COL13A1, VEGFC, and NRG1, were markedly upregulated in M-Met5A cells. Knockdown of ITGA2 and VEGFC in M-Met5A cells significantly inhibited the adhesion of ovarian cancer cells. Inhibition of the JNK and Akt signaling pathways suppressed ITGA2 and VEGFC expression in M-Met5A cells as well as ovarian cancer-mesothelial cell adhesion. Furthermore, increased production of CC chemokine ligand 2 (CCL2) and CCL5 by macrophages elevated ovarian cancer-mesothelial cell adhesion. These findings imply that macrophages may play a significant role in ovarian cancer-mesothelial cell adhesion by inducing the mesothelial expression of adhesion-related genes via the JNK and Akt pathways.
Collapse
Affiliation(s)
- Seung-Kye Cho
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kijun Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jeong-Hwa Woo
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jung-Hye Choi
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Jung IH, Elenbaas JS, Burks KH, Amrute JM, Xiangyu Z, Alisio A, Stitziel NO. Vascular smooth muscle- and myeloid cell-derived integrin α9β1 does not directly mediate the development of atherosclerosis in mice. Atherosclerosis 2022; 360:15-20. [PMID: 36215801 PMCID: PMC9615102 DOI: 10.1016/j.atherosclerosis.2022.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Sushi, von Willebrand factor type A, EGF pentraxin domain-containing 1 (SVEP1), an extracellular matrix protein, is a human coronary artery disease locus that promotes atherosclerosis. We previously demonstrated that SVEP1 induces vascular smooth muscle cell (VSMC) proliferation and an inflammatory phenotype in the arterial wall to enhance the development of atherosclerotic plaque. The only receptor known to interact with SVEP1 is integrin α9β1, a cell surface receptor that is expressed by VSMCs and myeloid lineage-derived monocytes and macrophages. Our previous in vitro studies suggested that integrin α9β1 was necessary for SVEP1-induced VSMC proliferation and inflammation; however, the underlying mechanisms mediated by integrin α9β1 in these cell types during the development of atherosclerosis remain poorly understood. METHODS AND RESULTS Here, using cell-specific gene targeting, we investigated the effects of the integrin α9β1 receptor on VSMCs and myeloid cells in mouse models of atherosclerosis. Interestingly, we found that depleting integrin α9β1 in either VSMCs or myeloid cells did not affect the formation or complexity of atherosclerotic plaque in vessels after either 8 or 16 weeks of high fat diet feeding. CONCLUSIONS Our results indicate that integrin α9β1 in these two cell types does not mediate the in vivo effect of SVEP1 in the development of atherosclerosis. Instead, our results suggest either the presence of other potential receptor(s) or alternative integrin α9β1-expressing cell types responsible for SVEP1 induced signaling in the development of atherosclerosis.
Collapse
Affiliation(s)
- In-Hyuk Jung
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Jared S Elenbaas
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Kendall H Burks
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Junedh M Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; Medical Scientist Training Program, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Zhang Xiangyu
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Arturo Alisio
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Nathan O Stitziel
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, 63110, USA; McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, 63108, USA; Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA.
| |
Collapse
|
11
|
Korhonen EA, Murtomäki A, Jha SK, Anisimov A, Pink A, Zhang Y, Stritt S, Liaqat I, Stanczuk L, Alderfer L, Sun Z, Kapiainen E, Singh A, Sultan I, Lantta A, Leppänen VM, Eklund L, He Y, Augustin HG, Vaahtomeri K, Saharinen P, Mäkinen T, Alitalo K. Lymphangiogenesis requires Ang2/Tie/PI3K signaling for VEGFR3 cell surface expression. J Clin Invest 2022; 132:155478. [PMID: 35763346 PMCID: PMC9337826 DOI: 10.1172/jci155478] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Vascular endothelial growth factor C (VEGF-C) induces lymphangiogenesis via VEGF receptor 3 (VEGFR3), which is encoded by the most frequently mutated gene in human primary lymphedema. Angiopoietins (Angs) and their Tie receptors regulate lymphatic vessel development, and mutations of the ANGPT2 gene were recently found in human primary lymphedema. However, the mechanistic basis of Ang2 activity in lymphangiogenesis is not fully understood. Here, we used gene deletion, blocking Abs, transgene induction, and gene transfer to study how Ang2, its Tie2 receptor, and Tie1 regulate lymphatic vessels. We discovered that VEGF-C–induced Ang2 secretion from lymphatic endothelial cells (LECs) was involved in full Akt activation downstream of phosphoinositide 3 kinase (PI3K). Neonatal deletion of genes encoding the Tie receptors or Ang2 in LECs, or administration of an Ang2-blocking Ab decreased VEGFR3 presentation on LECs and inhibited lymphangiogenesis. A similar effect was observed in LECs upon deletion of the PI3K catalytic p110α subunit or with small-molecule inhibition of a constitutively active PI3K located downstream of Ang2. Deletion of Tie receptors or blockade of Ang2 decreased VEGF-C–induced lymphangiogenesis also in adult mice. Our results reveal an important crosstalk between the VEGF-C and Ang signaling pathways and suggest new avenues for therapeutic manipulation of lymphangiogenesis by targeting Ang2/Tie/PI3K signaling.
Collapse
Affiliation(s)
- Emilia A Korhonen
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Aino Murtomäki
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Sawan Kumar Jha
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Andrey Anisimov
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Anne Pink
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Yan Zhang
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Inam Liaqat
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Lukas Stanczuk
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Laura Alderfer
- Translational Cancer Biology Program, University of Helsinki, Helsinki, Finland
| | - Zhiliang Sun
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Emmi Kapiainen
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Abhishek Singh
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Ibrahim Sultan
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| | - Anni Lantta
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Leppänen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Lauri Eklund
- Oulu Centre for Cell-Matrix Research, Faculty of Biochemistry and Molecular, University of Oulu, Oulu, Finland
| | - Yulong He
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis, German Cancer Research Center, Heidelberg, Germany
| | - Kari Vaahtomeri
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Pipsa Saharinen
- Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| | - Taija Mäkinen
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Role of tumour-derived exosomes in metastasis. Biomed Pharmacother 2022; 147:112657. [DOI: 10.1016/j.biopha.2022.112657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
|
13
|
Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells 2022; 11:cells11040646. [PMID: 35203297 PMCID: PMC8870356 DOI: 10.3390/cells11040646] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cells (SMCs), present in the media layer of blood vessels, are crucial in maintaining vascular homeostasis. Upon vascular injury, SMCs show a high degree of plasticity, undergo a change from a “contractile” to a “synthetic” phenotype, and play an essential role in the pathophysiology of diseases including atherosclerosis and restenosis. Integrins are cell surface receptors, which are involved in cell-to-cell binding and cell-to-extracellular-matrix interactions. By binding to extracellular matrix components, integrins trigger intracellular signaling and regulate several of the SMC function, including proliferation, migration, and phenotypic switching. Although pharmacological approaches, including antibodies and synthetic peptides, have been effectively utilized to target integrins to limit atherosclerosis and restenosis, none has been commercialized yet. A clear understanding of how integrins modulate SMC biology is essential to facilitate the development of integrin-based interventions to combat atherosclerosis and restenosis. Herein, we highlight the importance of integrins in modulating functional properties of SMCs and their implications for vascular pathology.
Collapse
|
14
|
Wang CA, Tsai SJ. Regulation of lymphangiogenesis by extracellular vesicles in cancer metastasis. Exp Biol Med (Maywood) 2021; 246:2048-2056. [PMID: 34139872 DOI: 10.1177/15353702211021022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Metastasis is not only one of the hallmarks of cancer but, unfortunately, it also is the most accurate biomarker for poor prognosis. Cancer cells metastasize through two different but eventually merged routes, the vasculature and lymphatic systems. The processes of cancer metastasis through blood vessel have been extensively studied and are well documented in the literature. In contrast, metastasis through the lymphatic system is less studied. Most people believe that cancer cells metastasize through lymphatic vessel are passive because the lymphatic system is thought to be a sewage draining system that collects whatever appears in the tissue fluid. It was recently found that cancer cells disseminated from lymphatic vessels are protected from being destroyed by our body's defense system. Furthermore, some cancer cells or cancer-associated immune cells secrete lymphangiogenic factors to recruit lymphatic vessel infiltration to the tumor region, a process known as lymphangiogenesis. To ensure the efficiency of lymphangiogenesis, the lymphangiogenic mediators are carried or packed by nanometer-sized particles named extracellular vesicles. Extracellular vesicles are lipid bilayer particles released from eventually every single cell, including bacterium, with diameters ranging from 30 nm (exosome) to several micrometers (apoptotic body). Components carried by extracellular vesicles include but are not limited to DNA, RNA, protein, fatty acid, and other metabolites. Recent studies suggest that cancer cells not only secrete more extracellular vesicles but also upload critical mediators required for lymphatic metastasis onto extracellular vesicles. This review will summarize recent advances in cancer lymphatic metastasis and how cancer cells regulate this process via extracellular vesicle-dependent lymphangiogenesis.
Collapse
Affiliation(s)
- Chu-An Wang
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701
| | - Shaw-Jenq Tsai
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan 701.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701
| |
Collapse
|
15
|
Jain M, Dev R, Doddapattar P, Kon S, Dhanesha N, Chauhan AK. Integrin α9 regulates smooth muscle cell phenotype switching and vascular remodeling. JCI Insight 2021; 6:147134. [PMID: 34027892 PMCID: PMC8262341 DOI: 10.1172/jci.insight.147134] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/01/2021] [Indexed: 11/17/2022] Open
Abstract
Excessive proliferation of vascular smooth muscle cells (SMCs) remains a significant cause of in-stent restenosis. Integrins, which are heterodimeric transmembrane receptors, play a crucial role in SMC biology by binding to the extracellular matrix protein with the actin cytoskeleton within the SMC. Integrin α9 plays an important role in cell motility and autoimmune diseases; however, its role in SMC biology and remodeling remains unclear. Herein, we demonstrate that stimulated human coronary SMCs upregulate α9 expression. Targeting α9 in stimulated human coronary SMCs, using anti-integrin α9 antibody, suppresses synthetic phenotype and inhibits SMC proliferation and migration. To provide definitive evidence, we generated an SMC-specific α9-deficient mouse strain. Genetic ablation of α9 in SMCs suppressed synthetic phenotype and reduced proliferation and migration in vitro. Mechanistically, suppressed synthetic phenotype and reduced proliferation were associated with decreased focal adhesion kinase/steroid receptor coactivator signaling and downstream targets, including phosphorylated ERK, p38 MAPK, glycogen synthase kinase 3β, and nuclear β-catenin, with reduced transcriptional activation of β-catenin target genes. Following vascular injury, SMC-specific α9-deficient mice or wild-type mice treated with murine anti-integrin α9 antibody exhibited reduced injury-induced neointimal hyperplasia at day 28 by limiting SMC migration and proliferation. Our findings suggest that integrin α9 regulates SMC biology, suggesting its potential therapeutic application in vascular remodeling.
Collapse
Affiliation(s)
- Manish Jain
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Rishabh Dev
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Prakash Doddapattar
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Shigeyuki Kon
- Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Hiroshima, Japan
| | - Nirav Dhanesha
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Anil K Chauhan
- Division of Hematology-Oncology and Blood & Marrow Transplantation, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
16
|
He M, He Q, Cai X, Chen Z, Lao S, Deng H, Liu X, Zheng Y, Liu X, Liu J, Xie Z, Yao M, Liang W, He J. Role of lymphatic endothelial cells in the tumor microenvironment-a narrative review of recent advances. Transl Lung Cancer Res 2021; 10:2252-2277. [PMID: 34164274 PMCID: PMC8182726 DOI: 10.21037/tlcr-21-40] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background As lymphatic vessel is a major route for solid tumor metastasis, they are considered an essential part of tumor drainage conduits. Apart from forming the walls of lymphatic vessels, lymphatic endothelial cells (LECs) have been found to play multiple other roles in the tumor microenvironment, calling for a more in-depth review. We hope that this review may help researchers gain a detailed understanding of this fast-developing field and shed some light upon future research. Methods To achieve an informative review of recent advance, we carefully searched the Medline database for English literature that are openly published from the January 1995 to December 2020 and covered the topic of LEC or lymphangiogenesis in tumor progression and therapies. Two different authors independently examined the literature abstracts to exclude possible unqualified ones, and 310 papers with full texts were finally retrieved. Results In this paper, we discussed the structural and molecular basis of tumor-associated LECs, together with their roles in tumor metastasis and drug therapy. We then focused on their impacts on tumor cells, tumor stroma, and anti-tumor immunity, and the molecular and cellular mechanisms involved. Special emphasis on lung cancer and possible therapeutic targets based on LECs were also discussed. Conclusions LECs can play a much more complex role than simply forming conduits for tumor cell dissemination. Therapies targeting tumor-associated lymphatics for lung cancer and other tumors are promising, but more research is needed to clarify the mechanisms involved.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qihua He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiuyu Cai
- Department of VIP Region, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Zisheng Chen
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Shen Lao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongsheng Deng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiwen Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yongmei Zheng
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyan Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Liu
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Maojin Yao
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenhua Liang
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,The First People Hospital of Zhaoqing, Zhaoqing, China
| | - Jianxing He
- Department of Thoracic Surgery, China State Key Laboratory of Respiratory Disease and National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Isolation and characterisation of lymphatic endothelial cells from lung tissues affected by lymphangioleiomyomatosis. Sci Rep 2021; 11:8406. [PMID: 33863980 PMCID: PMC8052438 DOI: 10.1038/s41598-021-88064-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/06/2021] [Indexed: 01/25/2023] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare pulmonary disease characterised by the proliferation of smooth muscle-like cells (LAM cells), and an abundance of lymphatic vessels in LAM lesions. Studies reported that vascular endothelial growth factor-D (VEGF-D) secreted by LAM cells contributes to LAM-associated lymphangiogenesis, however, the precise mechanisms of lymphangiogenesis and characteristics of lymphatic endothelial cells (LECs) in LAM lesions have not yet been elucidated. In this study, human primary-cultured LECs were obtained both from LAM-affected lung tissues (LAM-LECs) and normal lung tissues (control LECs) using fluorescence-activated cell sorting (FACS). We found that LAM-LECs had significantly higher ability of proliferation and migration compared to control LECs. VEGF-D significantly promoted migration of LECs but not proliferation of LECs in vitro. cDNA microarray and FACS analysis revealed the expression of vascular endothelial growth factor receptor (VEGFR)-3 and integrin α9 were elevated in LAM-LECs. Inhibition of VEGFR-3 suppressed proliferation and migration of LECs, and blockade of integrin α9 reduced VEGF-D-induced migration of LECs. Our data uncovered the distinct features of LAM-associated LECs, increased proliferation and migration, which may be due to higher expression of VEGFR-3 and integrin α9. Furthermore, we also found VEGF-D/VEGFR-3 and VEGF-D/ integrin α9 signaling play an important role in LAM-associated lymphangiogenesis.
Collapse
|
18
|
Xu S, Zhang T, Cao Z, Zhong W, Zhang C, Li H, Song J. Integrin-α9β1 as a Novel Therapeutic Target for Refractory Diseases: Recent Progress and Insights. Front Immunol 2021; 12:638400. [PMID: 33790909 PMCID: PMC8005531 DOI: 10.3389/fimmu.2021.638400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/26/2021] [Indexed: 12/12/2022] Open
Abstract
Integrins refer to heterodimers consisting of subunits α and β. They serve as receptors on cell membranes and interact with extracellular ligands to mediate intracellular molecular signals. One of the least-studied members of the integrin family is integrin-α9β1, which is widely distributed in various human tissues and organs. Integrin-α9β1 regulates the physiological state of cells through a variety of complex signaling pathways to participate in the specific pathological processes of some intractable diseases. In recent years, an increasing amount of research has focused on the role of α9β1 in the molecular mechanisms of different refractory diseases and its promising potential as a therapeutic target. Accordingly, this review introduces and summarizes recent research related to integrin-α9β1, describes the synergistic functions of α9β1 and its corresponding ligands in cancer, autoimmune diseases, nerve injury and thrombosis and, more importantly, highlights the potential of α9β1 as a distinctive target for the treatment of these intractable diseases.
Collapse
Affiliation(s)
- Shihan Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Chuangwei Zhang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Han Li
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
19
|
Stevenson J, Barrow-McGee R, Yu L, Paul A, Mansfield D, Owen J, Woodman N, Natrajan R, Haider S, Gillett C, Tutt A, Pinder SE, Choudary J, Naidoo K. Proteomics of REPLICANT perfusate detects changes in the metastatic lymph node microenvironment. NPJ Breast Cancer 2021; 7:24. [PMID: 33674617 PMCID: PMC7935848 DOI: 10.1038/s41523-021-00227-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
In breast cancer (BC), detecting low volumes of axillary lymph node (ALN) metastasis pre-operatively is difficult and novel biomarkers are needed. We recently showed that patient-derived ALNs can be sustained ex-vivo using normothermic perfusion. We now compare reactive (tumour-free; n = 5) and macrometastatic (containing tumour deposits >2 mm; n = 4) ALNs by combining whole section multiplex immunofluorescence with TMT-labelled LC-MS/MS of the circulating perfusate. Macrometastases contained significantly fewer B cells and T cells (CD4+/CD8+/regulatory) than reactive nodes (p = 0.02). Similarly, pathway analysis of the perfusate proteome (119/1453 proteins significantly differentially expressed) showed that immune function was diminished in macrometastases in favour of ‘extracellular matrix degradation’; only ‘neutrophil degranulation’ was preserved. Qualitative comparison of the perfusate proteome to that of node-positive pancreatic and prostatic adenocarcinoma also highlighted ‘neutrophil degranulation’ as a contributing factor to nodal metastasis. Thus, metastasis-induced changes in the REPLICANT perfusate proteome are detectable, and could facilitate biomarker discovery.
Collapse
Affiliation(s)
- Julia Stevenson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Rachel Barrow-McGee
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Angela Paul
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Julie Owen
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Natalie Woodman
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Syed Haider
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Cheryl Gillett
- King's Health Partners Cancer Biobank, Guy's Comprehensive Cancer Centre, London, UK
| | - Andrew Tutt
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Sarah E Pinder
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Comprehensive Cancer Centre, London, UK
| | - Jyoti Choudary
- Division of Cancer Biology, The Institute of Cancer Research, London, UK
| | - Kalnisha Naidoo
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. .,Department of Cellular Pathology, Imperial College Healthcare NHS Trust, Charing Cross Hospital, London, UK.
| |
Collapse
|
20
|
Prostaglandin E2 Receptor 4 (EP4) as a Therapeutic Target to Impede Breast Cancer-Associated Angiogenesis and Lymphangiogenesis. Cancers (Basel) 2021; 13:cancers13050942. [PMID: 33668160 PMCID: PMC7956318 DOI: 10.3390/cancers13050942] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of new blood (angiogenesis) and lymphatic (lymphangiogenesis) vessels are major events associated with most epithelial malignancies, including breast cancer. Angiogenesis is essential for cancer cell survival. Lymphangiogenesis is critical in maintaining tumoral interstitial fluid balance and importing tumor-facilitatory immune cells. Both vascular routes also serve as conduits for cancer metastasis. Intratumoral hypoxia promotes both events by stimulating multiple angiogenic/lymphangiogenic growth factors. Studies on tumor-associated lymphangiogenesis and its exploitation for therapy have received less attention from the research community than those on angiogenesis. Inflammation is a key mediator of both processes, hijacked by many cancers by the aberrant expression of the inflammation-associated enzyme cyclo-oxygenase (COX)-2. In this review, we focus on breast cancer and showed that COX-2 is a major promoter of both events, primarily resulting from the activation of prostaglandin (PG) E receptor EP4 on tumor cells, tumor-infiltrating immune cells, and endothelial cells; and the induction of oncogenic microRNAs. The COX-2/EP4 pathway also promotes additional events in breast cancer progression, such as cancer cell migration, invasion, and the stimulation of stem-like cells. Based on a combination of studies using multiple breast cancer models, we show that EP4 antagonists hold a major promise in breast cancer therapy in combination with other modalities including immune check-point inhibitors.
Collapse
|
21
|
Cai C, Sun H, Hu L, Fan Z. Visualization of integrin molecules by fluorescence imaging and techniques. ACTA ACUST UNITED AC 2021; 45:229-257. [PMID: 34219865 PMCID: PMC8249084 DOI: 10.32604/biocell.2021.014338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Integrin molecules are transmembrane αβ heterodimers involved in cell adhesion, trafficking, and signaling. Upon activation, integrins undergo dynamic conformational changes that regulate their affinity to ligands. The physiological functions and activation mechanisms of integrins have been heavily discussed in previous studies and reviews, but the fluorescence imaging techniques -which are powerful tools for biological studies- have not. Here we review the fluorescence labeling methods, imaging techniques, as well as Förster resonance energy transfer assays used to study integrin expression, localization, activation, and functions.
Collapse
Affiliation(s)
- Chen Cai
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| | - Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, 92093, USA
| | - Liang Hu
- Cardiovascular Institute of Zhengzhou University, Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450051, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, 06030, USA
| |
Collapse
|
22
|
Kumaravel S, Abbey CA, Bayless KJ, Chakraborty S. The β 1-integrin plays a key role in LEC invasion in an optimized 3-D collagen matrix model. Am J Physiol Cell Physiol 2020; 319:C1045-C1058. [PMID: 33052069 DOI: 10.1152/ajpcell.00299.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lymphangiogenesis, or formation of new lymphatic vessels, is a tightly regulated process that is controlled by growth factor signaling and biomechanical cues. Lymphatic endothelial cells (LECs) undergo remodeling, migration, and proliferation to invade the surrounding extracellular matrix (ECM) during both physiological and pathological lymphangiogenesis. This study optimized conditions for an in vitro three-dimensional (3-D) collagen-based model that induced LEC invasion and recapitulated physiological formation of lymphatic capillaries with lumens. Invasion of LECs was enhanced in the presence of sphingosine 1-phosphate (S1P). Effects of various known lymphangiogenic factors, vascular endothelial growth factor (VEGF)-A, basic fibroblast growth factor (bFGF), interleukin (IL)-8, and hepatocyte growth factor (HGF), were tested on LEC sprout formation synergistically with VEGF-C. Several of these growth factors significantly enhanced LEC invasion, and synergistic effects of some of these further enhanced the sprouting density and lumen volume. To determine the contribution of specific ECM components, we analyzed the expression of different integrin subunits. Basal expressions of the integrin α5- and integrin β1-subunits were high in LECs. The addition of fibronectin, which mediates cellular responses through these integrins, enhanced LEC sprouting density and sprout length dose-dependently. siRNA-mediated knockdown of the integrin β1-subunit suppressed LEC invasion and also inhibited VEGF receptor (VEGFR)3 and ERK activation. Furthermore, exposing LECs to the inflammatory mediator lipopolysaccharide (LPS) inhibited sprouting. This optimized model for LEC invasion includes S1P, VEGF-C, and fibronectin within a 3-D collagen matrix, along with VEGF-C, VEGF-A, bFGF, and HGF in the culture medium, and provides a useful tool to investigate the functional effect of various lymphangiogenic factors and inhibitors.
Collapse
Affiliation(s)
- Subhashree Kumaravel
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| | - Colette A Abbey
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M Health Science Center, College of Medicine, Bryan, Texas
| |
Collapse
|
23
|
Ciechanowska A, Popiolek-Barczyk K, Ciapała K, Pawlik K, Oggioni M, Mercurio D, de Simoni MG, Mika J. Traumatic brain injury in mice induces changes in the expression of the XCL1/XCR1 and XCL1/ITGA9 axes. Pharmacol Rep 2020; 72:1579-1592. [PMID: 33185818 PMCID: PMC7704520 DOI: 10.1007/s43440-020-00187-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022]
Abstract
Background Every year, millions of people suffer from various forms of traumatic brain injury (TBI), and new approaches with therapeutic potential are required. Although chemokines are known to be involved in brain injury, the importance of X-C motif chemokine ligand 1 (XCL1) and its receptors, X-C motif chemokine receptor 1 (XCR1) and alpha-9 integrin (ITGA9), in the progression of TBI remain unknown. Methods Using RT-qPCR/Western blot/ELISA techniques, changes in the mRNA/protein levels of XCL1 and its two receptors, in brain areas at different time points were measured in a mouse model of TBI. Moreover, their cellular origin and possible changes in expression were evaluated in primary glial cell cultures. Results Studies revealed the spatiotemporal upregulation of the mRNA expression of XCL1, XCR1 and ITGA9 in all the examined brain areas (cortex, thalamus, and hippocampus) and at most of the evaluated stages after brain injury (24 h; 4, 7 days; 2, 5 weeks), except for ITGA9 in the thalamus. Moreover, changes in XCL1 protein levels occurred in all the studied brain structures; the strongest upregulation was observed 24 h after trauma. Our in vitro experiments proved that primary murine microglial and astroglial cells expressed XCR1 and ITGA9, however they seemed not to be a main source of XCL1. Conclusions These findings indicate that the XCL1/XCR1 and XCL1/ITGA9 axes may participate in the development of TBI. The XCL1 can be considered as one of the triggers of secondary injury, therefore XCR1 and ITGA9 may be important targets for pharmacological intervention after traumatic brain injury. Graphic abstract ![]()
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Popiolek-Barczyk
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland
| | - Marco Oggioni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Domenico Mercurio
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Maria-Grazia de Simoni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri, 2, 20156, Milan, Italy
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Str., 31-343, Kraków, Poland.
| |
Collapse
|
24
|
Role of Endogenous Regulators of Hem- And Lymphangiogenesis in Corneal Transplantation. J Clin Med 2020; 9:jcm9020479. [PMID: 32050484 PMCID: PMC7073692 DOI: 10.3390/jcm9020479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the cornea, being the transparent “windscreen” of the eye, is free of both blood and lymphatic vessels. However, various diseases of the eye, like infections, can interfere with the balance between promoting and inhibiting factors, which leads to ingrowth of blood and lymphatic vessels. The newly formed lymphatic vessels increase the risk of graft rejection after subsequent corneal transplantation. Corneal transplantation is one of the most commonly performed transplantations worldwide, with more than 40,000 surgeries per year in Europe. To date, various anti-hem- and anti-lymphangiogenic treatment strategies have been developed specifically for the corneal vascular endothelial growth factor (VEGF) pathway. Currently, however, no treatment strategies are clinically available to specifically modulate lymphangiogenesis. In this review, we will give an overview about endogenous regulators of hem- and lymphangiogenesis and discuss potential new strategies for targeting pathological lymphangiogenesis. Furthermore, we will review recently identified modulators and demonstrate that the cornea is a suitable model for the identification of novel endogenous modulators of lymphangiogenesis. The identification of novel modulators of lymphangiogenesis and a better understanding of the signaling pathways involved will contribute to the development of new therapeutic targets for the treatment of pathological lymphangiogenesis. This, in turn, will improve graft rejection, not only for the cornea.
Collapse
|
25
|
Morfoisse F, Noel A. Lymphatic and blood systems: Identical or fraternal twins? Int J Biochem Cell Biol 2019; 114:105562. [PMID: 31278994 DOI: 10.1016/j.biocel.2019.105562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Blood and lymphatic systems work in close collaboration to ensure their respective physiological functions. The lymphatic vessel network is being extensively studied, but has been overlooked as compared to the blood vasculature mainly due to the problematic discrimination of lymphatic vessels from the blood ones. This issue has been fortunately resolved in the past decade leading to the emergence of a huge amount of data in lymphatic biology revealing many shared features with the blood vasculature. However, this likeliness between the two vascular systems may lead to a simplistic view of lymphatics and a direct transcription of what is known for the blood system to the lymphatic one, thereby neglecting the lymphatic specificities. In this context, this review aims to clarify the main differences between the two vascular systems focusing on recently discovered lymphatic features.
Collapse
Affiliation(s)
- Florent Morfoisse
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA (GIGA-Cancer), Liege University, B23, Avenue Hippocrate 13, 4000, Liege, Belgium.
| |
Collapse
|
26
|
Tamura R, Yoshida K, Toda M. Current understanding of lymphatic vessels in the central nervous system. Neurosurg Rev 2019; 43:1055-1064. [PMID: 31209659 DOI: 10.1007/s10143-019-01133-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/29/2019] [Accepted: 06/05/2019] [Indexed: 12/18/2022]
Abstract
Lymphangiogenesis is associated with some pathological conditions such as inflammation, tissue repair, and tumor growth. Recently, a paradigm shift occurred following the discovery of meningeal lymphatic structures in the human central nervous system (CNS); these structures may be a key drainage route for cerebrospinal fluid (CSF) into the peripheral blood and may also contribute to inflammatory reaction and immune surveillance of the CNS. Lymphatic vessels located along the dural sinuses absorb CSF from the adjacent subarachnoid space and brain interstitial fluid via the glymphatic system, which is composed of aquaporin-4 water channels expressed on perivascular astrocytic end-feet membranes. Magnetic resonance imaging (MRI) clearly visualized these lymphatic vessels in the human dura mater. The conception of some neurological disorders, such as multiple sclerosis and Alzheimer's disease, has been changed by this paradigm shift. Meningeal lymphatic vessels could be a promising therapeutic target for the prevention of neurological disorders. However, the involvement of meningeal lymphatic vessels in the pathophysiology has not been fully elucidated and is the subject of future investigations. In this article, to understand the involvement of meningeal lymphatic vessels in neurological disorders, we review the differences between lymphangiogenesis in the CNS and in other tissues during both developmental and adulthood stages, and pathological conditions that may be associated with meningeal lymphatic vessels in the CNS.
Collapse
Affiliation(s)
- Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
27
|
Roles of prostaglandins in tumor-associated lymphangiogenesis with special reference to breast cancer. Cancer Metastasis Rev 2019; 37:369-384. [PMID: 29858743 DOI: 10.1007/s10555-018-9734-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Lymphangiogenesis (formation of new lymphatic vessels), unlike angiogenesis, has been a lesser-focused field in cancer biology, because of earlier controversy regarding whether lymphatic metastasis occurs via pre-existing or newly formed lymphatics. Recent evidence reveals that peri-tumoral or intra-tumoral lymphangiogenesis is a precursor for lymphatic metastasis in most carcinomas and melanomas. Two major lymphangiogenic factors, vascular endothelial growth factor (VEGF)-C and VEGF-D, are produced by cancer cells or immune cells such as macrophages in the tumor-stroma to promote sprouting of lymphatics from lymphatic endothelial cells (LEC) or LEC precursors (LECP) by binding to their primary (high affinity) receptor VEGF-R3 or secondary receptors VEGF-R2, neuropilin (NRP)2 and α9/β1 integrin. Many other growth factors/receptors such as VEGF-A/VEGF-R2, fibroblast growth factor (FGF)2/FGF-R, platelet-derived growth factor (PDGF)/PDGF-R, hepatocyte growth factor (HGF)/C-Met, angiopoietins (Ang)1, 2/Tie2, and chemokines/ chemokine receptors (CCL21/CCR7, CCL12/CCR4) can also stimulate LEC sprouting directly or indirectly. This review deals with the roles of prostaglandins (PG), in particular PGE2, in cancer-associated lymphangiogenesis, with special emphasis on breast cancer. We show that cyclooxygenase (COX)-2 expression by breast cancer cells or tumor stroma leading to high PGE2 levels in the tumor milieu promotes lymphangiogenesis and lymphatic metastases, resulting from binding of PGE2 to PGE receptors (EP, in particular EP4) on multiple cell types: tumor cells, tumor-infiltrating immune cells, and LEC. EP4 activation on cancer cells and macrophages upregulated VEGF-C/D production to stimulate LEC sprouting. Furthermore, ligation of EP4 with PGE2 on cancer or host cells can initiate a new cascade of molecular events leading to cross-talk between cancer cells and LEC, facilitating lymphangiogenesis and lympho-vascular transport of cancer cells. We make a case for EP4 as a potential therapeutic target for breast cancer.
Collapse
|
28
|
The urokinase plasminogen activator system components are regulated by vascular endothelial growth factor D in bovine oviduct. ZYGOTE 2018; 26:242-249. [PMID: 29880066 DOI: 10.1017/s0967199418000151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SummaryThe mammalian oviduct plays a pivotal role in the success of early reproductive events. The urokinase plasminogen activator system (uPAS) is present in the bovine oviduct and is involved in extracellular matrix remodelling through plasmin generation. This system can be regulated by several members of the vascular endothelial growth factors (VEGF) and their receptors. In this study, the VEGF-D effect on the regulation of uPAS was evaluated. First, RT-polymerase chain reaction (PCR) analyses were used to evidence the expression of VEGF-D and its receptors in oviductal epithelial cells (BOEC). VEGF-D, VEGFR2 and VEGFR3 transcripts were found in ex vivo and in vitro BOEC, while only VEGFR2 mRNA was present after in vitro conditions. VEGF-D showed a regulatory effect on uPAS gene expression in a dose-dependent manner, inducing an increase in the expression of both uPA and its receptor (uPAR) at 24 h post-induction and decreases in the expression of its inhibitor (PAI-1). In addition, the regulation of cell migration induced by VEGF-D and uPA in BOEC monolayer cultures was analyzed. The wound areas of monolayer cultures incubated with VEGF-D 10 ng/ml or uPA 10 nM were modified and significant differences were found at 24 h for both stimulations. These results indicated that uPAS and VEGF-D systems can modify the arrangement of the bovine oviductal epithelium and contribute to the correct maintenance of the oviductal microenvironment.
Collapse
|
29
|
Integrin α9 Suppresses Hepatocellular Carcinoma Metastasis by Rho GTPase Signaling. J Immunol Res 2018; 2018:4602570. [PMID: 29951557 PMCID: PMC5989280 DOI: 10.1155/2018/4602570] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 04/10/2018] [Indexed: 12/12/2022] Open
Abstract
Integrin subunit alpha 9 (ITGA9) mediates cell-cell and cell-matrix adhesion, cell migration, and invasion through binding different kinds of extracellular matrix (ECM) components. However, its potential role and underlying molecular mechanisms remain unclear in hepatocellular carcinoma (HCC). Here, we found that ITGA9 expression was obviously decreased in patients with HCC, which was negatively correlated with HCC growth and metastasis. ITGA9 overexpression significantly inhibited cell proliferation and migration in vitro as well as tumor growth and metastasis in vivo. Our data demonstrated that the inhibitory effect of ITGA9 on HCC cell motility was associated with reduced phosphorylation of focal adhesion kinase (FAK) and c-Src tyrosine kinase (Src), disrupted focal adhesion reorganization, and decreased Rac1 and RhoA activity. Our data suggest ITGA9, as a suppressor of HCC, prevents tumor cell migration and invasiveness through FAK/Src-Rac1/RhoA signaling.
Collapse
|
30
|
Huang R, Rofstad EK. Integrins as therapeutic targets in the organ-specific metastasis of human malignant melanoma. J Exp Clin Cancer Res 2018; 37:92. [PMID: 29703238 PMCID: PMC5924434 DOI: 10.1186/s13046-018-0763-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Integrins are a large family of adhesion molecules that mediate cell-cell and cell-extracellular matrix interactions. Among the 24 integrin isoforms, many have been found to be associated with tumor angiogenesis, tumor cell migration and proliferation, and metastasis. Integrins, especially αvβ3, αvβ5 and α5β1, participate in mediating tumor angiogenesis by interacting with the vascular endothelial growth factor and angiopoietin-Tie signaling pathways. Melanoma patients have a poor prognosis when the primary tumor has generated distant metastases, and the melanoma metastatic site is an independent predictor of the survival of these patients. Different integrins on the melanoma cell surface preferentially direct circulating melanoma cells to different organs and promote the development of metastases at specific organ sites. For instance, melanoma cells expressing integrin β3 tend to metastasize to the lungs, whereas those expressing integrin β1 preferentially generate lymph node metastases. Moreover, tumor cell-derived exosomes which contain different integrins may prepare a pre-metastatic niche in specific organs and promote organ-specific metastases. Because of the important role that integrins play in tumor angiogenesis and metastasis, they have become promising targets for the treatment of advanced cancer. In this paper, we review the integrin isoforms responsible for angiogenesis and organ-specific metastasis in malignant melanoma and the inhibitors that have been considered for the future treatment of metastatic disease.
Collapse
Affiliation(s)
- Ruixia Huang
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway.
| | - Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Ullernchausseen 70, 0379, Oslo, Norway
| |
Collapse
|
31
|
Beyond the Matrix: The Many Non-ECM Ligands for Integrins. Int J Mol Sci 2018; 19:ijms19020449. [PMID: 29393909 PMCID: PMC5855671 DOI: 10.3390/ijms19020449] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/21/2018] [Accepted: 01/30/2018] [Indexed: 12/17/2022] Open
Abstract
The traditional view of integrins portrays these highly conserved cell surface receptors as mediators of cellular attachment to the extracellular matrix (ECM), and to a lesser degree, as coordinators of leukocyte adhesion to the endothelium. These canonical activities are indispensable; however, there is also a wide variety of integrin functions mediated by non-ECM ligands that transcend the traditional roles of integrins. Some of these unorthodox roles involve cell-cell interactions and are engaged to support immune functions such as leukocyte transmigration, recognition of opsonization factors, and stimulation of neutrophil extracellular traps. Other cell-cell interactions mediated by integrins include hematopoietic stem cell and tumor cell homing to target tissues. Integrins also serve as cell-surface receptors for various growth factors, hormones, and small molecules. Interestingly, integrins have also been exploited by a wide variety of organisms including viruses and bacteria to support infectious activities such as cellular adhesion and/or cellular internalization. Additionally, the disruption of integrin function through the use of soluble integrin ligands is a common strategy adopted by several parasites in order to inhibit blood clotting during hematophagy, or by venomous snakes to kill prey. In this review, we strive to go beyond the matrix and summarize non-ECM ligands that interact with integrins in order to highlight these non-traditional functions of integrins.
Collapse
|
32
|
Emori T, Hirose J, Ise K, Yomoda JI, Kasahara M, Shinkuma T, Yoshitomi H, Ito H, Hashimoto M, Sugahara S, Fujita H, Yamamoto N, Morita Y, Narumiya S, Aramori I. Constitutive Activation of Integrin α9 Augments Self-Directed Hyperplastic and Proinflammatory Properties of Fibroblast-like Synoviocytes of Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2017; 199:3427-3436. [PMID: 29038247 DOI: 10.4049/jimmunol.1700941] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/16/2017] [Indexed: 01/23/2023]
Abstract
Despite advances in the treatment of rheumatoid arthritis (RA), currently approved medications can have significant side effects due to their direct immunosuppressive activities. Additionally, current therapies do not address residual synovial inflammation. In this study, we evaluated the role of integrin α9 and its ligand, tenascin-C (Tn-C), on the proliferative and inflammatory response of fibroblast-like synoviocytes (FLSs) from RA patients grown in three-dimensional (3D)-micromass culture. FLSs from osteoarthritis patients, when grown in the 3D-culture system, formed self-directed lining-like structures, whereas FLSs from RA tissues (RA-FLSs) developed an abnormal structure of condensed cellular accumulation reflective of the pathogenic features of RA synovial tissues. Additionally, RA-FLSs grown in 3D culture showed autonomous production of proinflammatory mediators. Predominant expression of α9 and Tn-C was observed in the condensed lining, and knockdown of these molecules abrogated the abnormal lining-like structure formation and suppressed the spontaneous expression of matrix metalloproteinases, IL-6, TNFSF11/RANKL, and cadherin-11. Disruption of α9 also inhibited expression of Tn-C, suggesting existence of a positive feedback loop in which the engagement of α9 with Tn-C self-amplifies its own signaling and promotes progression of synovial hyperplasia. Depletion of α9 also suppressed the platelet-derived growth factor-induced hyperplastic response of RA-FLSs and blunted the TNF-α-induced expression of matrix metalloproteinases and IL-6. Finally, α9-blocking Ab also suppressed the formation of the condensed cellular lining by RA-FLSs in 3D cultures in a concentration-related manner. This study demonstrates the central role of α9 in pathogenic behaviors of RA-FLSs and highlights the potential of α9-blocking agents as a nonimmunosuppressive treatment for RA-associated synovitis.
Collapse
Affiliation(s)
- Takashi Emori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Jun Hirose
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Kotoko Ise
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Jun-Ichiro Yomoda
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Michiko Kasahara
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Tadanobu Shinkuma
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Hiroyuki Yoshitomi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromu Ito
- Department of Orthopedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan; and
| | - Motomu Hashimoto
- Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Shingo Sugahara
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Hirotada Fujita
- Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | | | - Yoshiaki Morita
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| | - Shuh Narumiya
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Ichiro Aramori
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan; .,Drug Discovery Research, Astellas Pharma Inc., Ibaraki 305-8585, Japan
| |
Collapse
|
33
|
The role of α9β1 integrin and its ligands in the development of autoimmune diseases. J Cell Commun Signal 2017; 12:333-342. [PMID: 28975544 DOI: 10.1007/s12079-017-0413-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023] Open
Abstract
Adhesion of cells to extracellular matrix proteins through integrins expressed on the cell surface is important for cell adhesion/motility, survival, and differentiation. Recently, α9β1 integrin was reported to be important for the development of autoimmune diseases including rheumatoid arthritis, multiple sclerosis, and their murine models. In addition, ligands for α9β1 integrin, such as osteopontin and tenascin-C, are well established as key regulators of autoimmune diseases. Therefore, this review focused on the role of interactions between α9β1 integrin and its ligands in the development of autoimmune diseases.
Collapse
|
34
|
Sulfuretin has therapeutic activity against acquired lymphedema by reducing adipogenesis. Pharmacol Res 2017; 121:230-239. [DOI: 10.1016/j.phrs.2017.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 01/30/2023]
|
35
|
Matsumoto N, Kon S, Nakatsuru T, Miyashita T, Inui K, Saitoh K, Kitai Y, Muromoto R, Kashiwakura JI, Uede T, Matsuda T. A Novel α9 Integrin Ligand, XCL1/Lymphotactin, Is Involved in the Development of Murine Models of Autoimmune Diseases. THE JOURNAL OF IMMUNOLOGY 2017; 199:82-90. [PMID: 28550205 DOI: 10.4049/jimmunol.1601329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 04/27/2017] [Indexed: 11/19/2022]
Abstract
The integrin α9β1 is a key receptor involved in the development of autoimmune diseases. However, the detailed mechanism for the association of α9β1 integrin with its ligands remains unclear. In this study, we introduce XCL1/lymphotactin, a member of the chemokine family, as a novel ligand for α9 integrin. Using α9 integrin-overexpressing NIH3T3 cells and endogenously α9 integrin-expressing human rhabdomyosarcoma cells, the interaction between XCL1 and α9 integrin was confirmed by pull-down assays. XCL1 enhanced α9 integrin-dependent cell migration of these cells, thus acting on α9 integrin as a chemoattractant. We also analyzed the in vivo function of XCL1 in the development of anti-type II collagen Ab-induced inflammatory arthritis (CAIA) in BALB/c mice and experimental autoimmune encephalomyelitis in C57BL/6 mice, because α9 integrin is involved in these autoimmune disease models. In CAIA, recombinant XCL1 aggravated the disease and this exacerbation was inhibited by an anti-α9 integrin Ab. An XCL1-neutralizing Ab produced in this study also ameliorated CAIA. Furthermore, the XCL1-neutralizing Ab abrogated the disease progression in experimental autoimmune encephalomyelitis. Therefore, to our knowledge this study provides the first in vitro and in vivo evidence that the interaction between XCL1 and α9 integrin has an important role for autoimmune diseases.
Collapse
Affiliation(s)
- Naoki Matsumoto
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Shigeyuki Kon
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan; .,Department of Molecular Immunology, Faculty of Pharmaceutical Sciences, Fukuyama University, Fukuyama 729-0292, Japan; and
| | - Takuya Nakatsuru
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Tomoe Miyashita
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Kyosuke Inui
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Kodai Saitoh
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Yuichi Kitai
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Ryuta Muromoto
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Jun-Ichi Kashiwakura
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| | - Toshimitsu Uede
- Division of Molecular Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0817, Japan
| | - Tadashi Matsuda
- Department of Immunology, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
36
|
Samuelov L, Li Q, Bochner R, Najor NA, Albrecht L, Malchin N, Goldsmith T, Grafi-Cohen M, Vodo D, Fainberg G, Meilik B, Goldberg I, Warshauer E, Rogers T, Edie S, Ishida-Yamamoto A, Burzenski L, Erez N, Murray SA, Irvine AD, Shultz L, Green KJ, Uitto J, Sprecher E, Sarig O. SVEP1 plays a crucial role in epidermal differentiation. Exp Dermatol 2017; 26:423-430. [PMID: 27892606 PMCID: PMC5543306 DOI: 10.1111/exd.13256] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2016] [Indexed: 12/28/2022]
Abstract
SVEP1 is a recently identified multidomain cell adhesion protein, homologous to the mouse polydom protein, which has been shown to mediate cell-cell adhesion in an integrin-dependent manner in osteogenic cells. In this study, we characterized SVEP1 function in the epidermis. SVEP1 was found by qRT-PCR to be ubiquitously expressed in human tissues, including the skin. Confocal microscopy revealed that SVEP1 is normally mostly expressed in the cytoplasm of basal and suprabasal epidermal cells. Downregulation of SVEP1 expression in primary keratinocytes resulted in decreased expression of major epidermal differentiation markers. Similarly, SVEP1 downregulation was associated with disturbed differentiation and marked epidermal acanthosis in three-dimensional skin equivalents. In contrast, the dispase assay failed to demonstrate significant differences in adhesion between keratinocytes expressing normal vs low levels of SVEP1. Homozygous Svep1 knockout mice were embryonic lethal. Thus, to assess the importance of SVEP1 for normal skin homoeostasis in vivo, we downregulated SVEP1 in zebrafish embryos with a Svep1-specific splice morpholino. Scanning electron microscopy revealed a rugged epidermis with perturbed microridge formation in the centre of the keratinocytes of morphant larvae. Transmission electron microscopy analysis demonstrated abnormal epidermal cell-cell adhesion with disadhesion between cells in Svep1-deficient morphant larvae compared to controls. In summary, our results indicate that SVEP1 plays a critical role during epidermal differentiation.
Collapse
Affiliation(s)
- Liat Samuelov
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Qiaoli Li
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ron Bochner
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Nicole A Najor
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lauren Albrecht
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Natalia Malchin
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tomer Goldsmith
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Meital Grafi-Cohen
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Dan Vodo
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Gilad Fainberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Benjamin Meilik
- Department of Plastic and Reconstructive Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Ilan Goldberg
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Emily Warshauer
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Tova Rogers
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Sarah Edie
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | | - Noam Erez
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | | | - Alan D Irvine
- Department of Clinical Medicine, Trinity College, Dublin, Ireland
| | | | - Kathleen J Green
- Departments of Pathology and Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eli Sprecher
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Human Molecular Genetics & Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - Ofer Sarig
- Department of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
37
|
Roh K, Cho S, Park JH, Yoo BC, Kim WK, Kim SK, Park K, Kang H, Ku JM, Yeom CH, Lee K, Lee S. Therapeutic effects of hyaluronidase on acquired lymphedema using a newly developed mouse limb model. Exp Biol Med (Maywood) 2017; 242:584-592. [PMID: 28092183 DOI: 10.1177/1535370216688570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acquired lymphedema is one of the most dreaded side effects of cancer treatment, such as surgical treatment or irradiation. However, due to the lack of appropriate animal models, there is no effective therapeutic method to cure acquired lymphedema. To develop a reproducible acquired lymphedema animal model, we devised a mouse hind limb model by removing a superficial inguinal lymph node, a popliteal lymph node, a deep inguinal lymph node, and the femoral lymphatic vessel. We measured the volume of lymphedematous leg and observed the change in level of hyaluronic acid (HA) and lymphangiogenic factors after injecting hyaluronidase. Our model showed the distinguishable swelling and the reliable symptoms compared to previously reported models. In the lymphedematous regions of our model, we confirmed that HA, a major component of extracellular matrix, accumulated to higher levels than in a normal mouse. This lymphedema volume was rapidly reduced by treating hyaluronidase. Following hyaluronidase injection, the lymphedematous region of our model resembled a normal hind limb. Our findings indicated that hyaluronidase promoted lymphangiogenesis on the lymphedematous limb. Based on hyaluronidase treatment in the lymphedematous region, this could potentially be a new therapeutic approach for acquired lymphedema mediated through the modification of the size of HA fragments. Impact statement In this manuscript, the essence of the work described in this manuscript involves the development of (1) a mouse limb model showing acquired lymphedema and (2) a potent therapeutic treatment using hyaluronidase to remedy acquired lymphedema in our model. In order to develop a reproducible acquired lymphedema animal model that reflects the most common symptoms experienced by lymphedema patients, we devised a mouse hind limb model by removing lymph nodes and lymphatics. Our model showed the distinguishable swelling and the reliable symptoms compared to previously reported models. In the lymphedematous regions of our model, we confirmed that hyaluronic acid (HA) accumulated to higher levels than in a normal mouse. This lymphedema volume was rapidly reduced by treating the lymphedematous leg with hyaluronidase, which also degraded high molecular weight HA to low molecular weight HA. Immunohistochemical analysis, quantitative real-time PCR analysis and lymphangioscintigraphy showed that hyaluronidase enhanced lymphangiogenesis in the lymphedematous limb.
Collapse
Affiliation(s)
- Kangsan Roh
- 1 Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sungrae Cho
- 1 Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae-Hyun Park
- 1 Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Byong Chul Yoo
- 2 Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Goyang 410-769, Republic of Korea
| | - Won-Ki Kim
- 2 Colorectal Cancer Branch, Division of Translational and Clinical Research I, Research Institute, National Cancer Center, Goyang 410-769, Republic of Korea
| | - Seok-Ki Kim
- 3 Molecular Imaging & Therapy Branch, National Cancer Center, Goyang 410-769, Republic of Korea
| | - Kyewon Park
- 4 Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Hee Kang
- 5 Department of Oriental Medical Science, Graduate School of East-West Medicine, Kyunghee University, Secheondong, Yongin 446-701, Republic of Korea
| | - Jin-Mo Ku
- 6 Natural Products Research Department, Gyeonggi Institute of Science & Technology, Suwon 443-270, Republic of Korea
| | | | - Kyunghoon Lee
- 8 Department of Anatomy, School of Medicine, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sukchan Lee
- 1 Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|
38
|
Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp Cell Res 2016; 345:180-9. [PMID: 27312995 DOI: 10.1016/j.yexcr.2016.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 06/10/2016] [Accepted: 06/10/2016] [Indexed: 01/13/2023]
Abstract
Local acidosis is one of the characteristic features of the cancer microenvironment. Many reports indicate that acidosis accelerates the proliferation and invasiveness of cancer cells. However, whether acidic conditions affect lymphatic metastasis is currently unknown. In the present study, we focused on the effects of acidosis on lymphatic endothelial cells (LECs) to assess the relationship between acidic microenvironments and lymph node metastasis. We demonstrated that normal human LECs express various acid receptors by immunohistochemistry and reverse transcriptase-polymerase chain reaction (PCR). Acidic stimulation with low pH medium induced morphological changes in LECs to a spindle shape, and significantly promoted cellular growth and tube formation. Moreover, real-time PCR revealed that acidic conditions increased the mRNA expression of interleukin (IL)-8. Acidic stimulation increased IL-8 production in LECs, whereas a selective transient receptor potential vanilloid subtype 1 (TRPV1) antagonist, 5'-iodoresiniferatoxin, decreased IL-8 production. IL-8 accelerated the proliferation of LECs, and inhibition of IL-8 diminished tube formation and cell migration. In addition, phosphorylation of nuclear factor (NF)-κB was induced by acidic conditions, and inhibition of NF-κB activation reduced acid-induced IL-8 expression. These results suggest that acidic microenvironments in tumors induce lymphangiogenesis via TRPV1 activation in LECs, which in turn may promote lymphatic metastasis.
Collapse
|
39
|
Pathological lymphangiogenesis is modulated by galectin-8-dependent crosstalk between podoplanin and integrin-associated VEGFR-3. Nat Commun 2016; 7:11302. [PMID: 27066737 PMCID: PMC4832077 DOI: 10.1038/ncomms11302] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/10/2016] [Indexed: 02/06/2023] Open
Abstract
Lymphangiogenesis plays a pivotal role in diverse pathological conditions. Here, we demonstrate that a carbohydrate-binding protein, galectin-8, promotes pathological lymphangiogenesis. Galectin-8 is markedly upregulated in inflamed human and mouse corneas, and galectin-8 inhibitors reduce inflammatory lymphangiogenesis. In the mouse model of corneal allogeneic transplantation, galectin-8-induced lymphangiogenesis is associated with an increased rate of corneal graft rejection. Further, in the murine model of herpes simplex virus keratitis, corneal pathology and lymphangiogenesis are ameliorated in Lgals8(-/-) mice. Mechanistically, VEGF-C-induced lymphangiogenesis is significantly reduced in the Lgals8(-/-) and Pdpn(-/-) mice; likewise, galectin-8-induced lymphangiogenesis is reduced in Pdpn(-/-) mice. Interestingly, knockdown of VEGFR-3 does not affect galectin-8-mediated lymphatic endothelial cell (LEC) sprouting. Instead, inhibiting integrins α1β1 and α5β1 curtails both galectin-8- and VEGF-C-mediated LEC sprouting. Together, this study uncovers a unique molecular mechanism of lymphangiogenesis in which galectin-8-dependent crosstalk among VEGF-C, podoplanin and integrin pathways plays a key role.
Collapse
|
40
|
Fink DM, Steele MM, Hollingsworth MA. The lymphatic system and pancreatic cancer. Cancer Lett 2015; 381:217-36. [PMID: 26742462 DOI: 10.1016/j.canlet.2015.11.048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 02/06/2023]
Abstract
This review summarizes current knowledge of the biology, pathology and clinical understanding of lymphatic invasion and metastasis in pancreatic cancer. We discuss the clinical and biological consequences of lymphatic invasion and metastasis, including paraneoplastic effects on immune responses and consider the possible benefit of therapies to treat tumors that are localized to lymphatics. A review of current techniques and methods to study interactions between tumors and lymphatics is presented.
Collapse
Affiliation(s)
- Darci M Fink
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Maria M Steele
- Eppley Institute, University of Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | | |
Collapse
|
41
|
Yang JF, Walia A, Huang YH, Han KY, Rosenblatt MI, Azar DT, Chang JH. Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv Ophthalmol 2015; 61:272-96. [PMID: 26706194 DOI: 10.1016/j.survophthal.2015.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 01/05/2023]
Abstract
A major focus of cancer research for several decades has been understand the ability of tumors to induce new blood vessel formation, a process known as angiogenesis. Unfortunately, only limited success has been achieved in the clinical application of angiogenesis inhibitors. We now know that lymphangiogenesis, the growth of lymphatic vessels, likely also plays a major role in tumor progression. Thus, therapeutic strategies targeting lymphangiogenesis or both lymphangiogenesis and angiogenesis may represent promising approaches for treating cancer and other diseases. Importantly, research progress toward understanding lymphangiogenesis is significantly behind that related to angiogenesis. A PubMed search of "angiogenesis" returns nearly 80,000 articles, whereas a search of "lymphangiogenesis" returns 2,635 articles. This stark contrast can be explained by the lack of molecular markers for identifying the invisible lymphatic vasculature that persisted until less than 2 decades ago, combined with the intensity of research interest in angiogenesis during the past half century. Still, significant strides have been made in developing strategies to modulate lymphangiogenesis, largely using ocular disease models. Here we review the current knowledge of lymphangiogenesis in the context of knockout models, ocular diseases, the biology of activators and inhibitors, and the potential for therapeutic interventions targeting this process.
Collapse
Affiliation(s)
- Jessica F Yang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Amit Walia
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Yu-hui Huang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyu-yeon Han
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Dimitri T Azar
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Jin-Hong Chang
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, Illinois, USA.
| |
Collapse
|
42
|
Blandin AF, Renner G, Lehmann M, Lelong-Rebel I, Martin S, Dontenwill M. β1 Integrins as Therapeutic Targets to Disrupt Hallmarks of Cancer. Front Pharmacol 2015; 6:279. [PMID: 26635609 PMCID: PMC4656837 DOI: 10.3389/fphar.2015.00279] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 11/05/2015] [Indexed: 01/11/2023] Open
Abstract
Integrins belong to a large family of αβ heterodimeric transmembrane proteins first recognized as adhesion molecules that bind to dedicated elements of the extracellular matrix and also to other surrounding cells. As important sensors of the cell microenvironment, they regulate numerous signaling pathways in response to structural variations of the extracellular matrix. Biochemical and biomechanical cues provided by this matrix and transmitted to cells via integrins are critically modified in tumoral settings. Integrins repertoire are subjected to expression level modifications, in tumor cells, and in surrounding cancer-associated cells, implicated in tumor initiation and progression as well. As critical players in numerous cancer hallmarks, defined by Hanahan and Weinberg (2011), integrins represent pertinent therapeutic targets. We will briefly summarize here our current knowledge about integrin implications in those different hallmarks focusing primarily on β1 integrins.
Collapse
Affiliation(s)
- Anne-Florence Blandin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Guillaume Renner
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Maxime Lehmann
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Isabelle Lelong-Rebel
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Sophie Martin
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| | - Monique Dontenwill
- Department "Tumoral Signaling and Therapeutic Targets," Faculty of Pharmacy, UMR7213 Centre National de la Recherche Scientifique, University of Strasbourg Illkirch, France
| |
Collapse
|
43
|
Ventresca EM, Lecht S, Jakubowski P, Chiaverelli RA, Weaver M, Del Valle L, Ettinger K, Gincberg G, Priel A, Braiman A, Lazarovici P, Lelkes PI, Marcinkiewicz C. Association of p75(NTR) and α9β1 integrin modulates NGF-dependent cellular responses. Cell Signal 2015; 27:1225-36. [PMID: 25748048 DOI: 10.1016/j.cellsig.2015.02.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 01/10/2023]
Abstract
Direct interaction of α9β1 integrin with nerve growth factor (NGF) has been previously reported to induce pro-proliferative and pro-survival activities of non-neuronal cells. We investigated participation of p75(NTR) in α9β1 integrin-dependent cellular response to NGF stimulation. Using selective transfection of glioma cell lines with these receptors, we showed a strong, cation-independent association of α9 integrin subunit with p75(NTR) on the cellular membrane by selective immunoprecipitation experiments. The presence of the α9/p75(NTR) complex increases NGF-dependent cell adhesion, proliferation and migration. Other integrin subunits including β1 were not found in complex with p75(NTR). FRET analysis indicated that p75(NTR) and α9 integrin subunit are not closely associated through their cytoplasmic domains, most probably because of the molecular interference with other cytoplasmic proteins such as paxillin. Interaction of α9β1 integrin with another ligand, VCAM-1 was not modulated by the p75(NTR). α9/p75(NTR) complex elevated NGF-dependent activation of MAPK Erk1/2 arty for integrin that may create active complexes with other types of receptors belonging to the TNF superfamily.
Collapse
Affiliation(s)
- Erin M Ventresca
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Shimon Lecht
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Piotr Jakubowski
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | | - Michael Weaver
- Department of Neurosurgery, Temple University Hospital, Philadelphia, PA, USA
| | - Luis Del Valle
- Department of Medicine and Pathology, Stanley Scott Cancer Center, Louisiana State University, New Orleans, LA, USA
| | - Keren Ettinger
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Galit Gincberg
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avi Priel
- School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, The Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Philip Lazarovici
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA; School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Peter I Lelkes
- CoE Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | | |
Collapse
|
44
|
Duval C, Zaniolo K, Leclerc S, Salesse C, Guérin SL. Characterization of the human α9 integrin subunit gene: Promoter analysis and transcriptional regulation in ocular cells. Exp Eye Res 2015; 135:146-63. [PMID: 25746835 DOI: 10.1016/j.exer.2015.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/26/2015] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
Abstract
α9β1 is the most recent addition to the integrin family of membrane receptors and consequently remains the one that is the least characterized. To better understand how transcription of the human gene encoding the α9 subunit is regulated, we cloned the α9 promoter and characterized the regulatory elements that are required to ensure its transcription. Transfection of α9 promoter/CAT plasmids in primary cultured human corneal epithelial cells (HCECs) and uveal melanoma cell lines demonstrated the presence of both negative and positive regulatory elements along the α9 promoter and positioned the basal α9 promoter to within 118 bp from the α9 mRNA start site. In vitro DNaseI footprinting and in vivo ChIP analyses demonstrated the binding of the transcription factors Sp1, c-Myb and NFI to the most upstream α9 negative regulatory element. The transcription factors Sp1 and NFI were found to bind the basal α9 promoter individually but Sp1 binding clearly predominates when both transcription factors are present in the same extract. Suppression of Sp1 expression through RNAi also caused a dramatic reduction in the expression of the α9 gene. Most of all, addition of tenascin-C (TNC), the ligand of α9β1, to the tissue culture plates prior to seeding HCECs increased α9 transcription whereas it simultaneously decreased expression of the α5 integrin subunit gene. This dual regulatory action of TNC on the transcription of the α9 and α5 genes suggests that both these integrins must work together to appropriately regulate cell adhesion, migration and differentiation that are hallmarks of tissue wound healing.
Collapse
Affiliation(s)
- Céline Duval
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Karine Zaniolo
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Steeve Leclerc
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada
| | - Christian Salesse
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche, Axe Médecine Régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Québec, Canada; Département d'Ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
45
|
Ou JJ, Wei X, Peng Y, Zha L, Zhou RB, Shi H, Zhou Q, Liang HJ. Neuropilin-2 mediates lymphangiogenesis of colorectal carcinoma via a VEGFC/VEGFR3 independent signaling. Cancer Lett 2014; 358:200-209. [PMID: 25543087 DOI: 10.1016/j.canlet.2014.12.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
Lymphangiogenesis critically contributes to the lymphatic metastasis of colorectal carcinomas (CRCs), but the underlying mechanism of CRC lymphangiogenesis remains largely elusive. We have previously demonstrated that Semaphorin-3F (SEMA3F) is critically involved in CRC metastasis, and the receptor of SEMA3F, neuropilin-2 (NRP2), originally described as an axon guiding chemorepulsant implicated in nerve development, has been suggested in promoting lymphangiogenesis via acting as an obligate co-receptor of VEGFR3 cooperatively enhancing the activity of VEGF-C. Our present study revealed that in colorectal carcinomas, NRP2 expression levels of tumor-associated lymphatic endothelial cells (LECs) are significantly correlated with the density of tumor lymphatic vessels. In vitro, activation of NRP2 in LECs substantially facilitates their migration, sprouting, and tubulogenesis capacity via regulating the rearrangement of cytoskeleton polarity. In vivo model further showed that in the xenografts generated from SEMA3F knockdown CRC cells, NRP2 is substantially activated in tumor-associated LECs, resulting in a significantly increased tumor lymphangiogenesis. Further evidence demonstrated that CRC cell induces the activation of NRP2 in LECs to promote tumor lymphangiogenesis via integrinα9β1/FAK/Erk pathway independent VEGF-C/VEGFR3 signaling. Our study for the first time revealed the novel molecular mechanism of NRP2-mediated-lymphangiogenesis in CRCs, suggesting NRP2 as a potential therapeutic target in preventing lymphatic metastasis of CRCs.
Collapse
Affiliation(s)
- Juan-Juan Ou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Xing Wei
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Yuan Peng
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Lin Zha
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Rong-Bin Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Qi Zhou
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China; Department of oncology, FuLing Central Hospital, Chongqing 408000, China.
| | - Hou-Jie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
46
|
Secker GA, Harvey NL. VEGFR signaling during lymphatic vascular development: From progenitor cells to functional vessels. Dev Dyn 2014; 244:323-31. [DOI: 10.1002/dvdy.24227] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 01/09/2023] Open
Affiliation(s)
- Genevieve A. Secker
- Centre for Cancer Biology; University of South Australia, and SA Pathology; Adelaide Australia
| | - Natasha L. Harvey
- Centre for Cancer Biology; University of South Australia, and SA Pathology; Adelaide Australia
- School of Medicine; University of Adelaide; Adelaide Australia
| |
Collapse
|
47
|
Caralt M, Velasco E, Lanas A, Baptista PM. Liver bioengineering: from the stage of liver decellularized matrix to the multiple cellular actors and bioreactor special effects. Organogenesis 2014; 10:250-9. [PMID: 25102189 DOI: 10.4161/org.29892] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Liver bioengineering has been a field of intense research and popular excitement in the past decades. It experiences great interest since the introduction of whole liver acellular scaffolds generated by perfusion decellularization (1-3). Nevertheless, the different strategies developed so far have failed to generate hepatic tissue in vitro bioequivalent to native liver tissue. Even notable novel strategies that rely on iPSC-derived liver progenitor cells potential to self-organize in association with endothelial cells in hepatic organoids are lacking critical components of the native tissue (e.g., bile ducts, functional vascular network, hepatic microarchitecture, etc) (4). Hence, it is vital to understand the strengths and short comes of our current strategies in this quest to re-create liver organogenesis in vitro. To shed some light into these issues, this review describes the different actors that play crucial roles in liver organogenesis and highlights the steps still missing to successfully generate whole livers and hepatic organoids in vitro for multiple applications.
Collapse
Affiliation(s)
- Mireia Caralt
- Vall d'Hebron University Hospital; Universitat Autònoma de Barcelona; Barcelona, Spain
| | | | - Angel Lanas
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| | - Pedro M Baptista
- University of Zaragoza; Zaragoza, Spain; IIS Aragón; CIBERehd; Zaragoza, Spain; Aragon Health Sciences Institute (IACS); Zaragoza, Spain
| |
Collapse
|
48
|
Tumor-α9β1 integrin-mediated signaling induces breast cancer growth and lymphatic metastasis via the recruitment of cancer-associated fibroblasts. J Mol Med (Berl) 2014; 92:1271-81. [PMID: 25099519 DOI: 10.1007/s00109-014-1183-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 02/06/2023]
Abstract
UNLABELLED Tumor-derived matricellular proteins such as osteopontin (OPN) and tenascin-C (TN-C) have been implicated in tumor growth and metastasis. However, the molecular basis of how these proteins contribute to tumor progression remains to be elucidated. Importantly, these matricellular proteins are known to interact with α9β1 integrin. Therefore, we hypothesized that tumor-derived α9β1 integrin may contribute to tumor progression. To clarify the roles of α9β1 integrin in tumor growth and lymphatic metastasis, we used an inhibitory anti-human α9β1 integrin antibody (anti-hα9β1 antibody) and a α9β1 integrin-positive human breast cancer cell line, MDA-MB-231 luc-D3H2LN (D3H2LN), in vitro functional assays, and an in vivo orthotopic xenotransplantation model. In this study, we demonstrated that tumor, but not host α9β1 integrin, contributes to tumor growth, lymphatic metastasis, recruitment of cancer-associated fibroblasts (CAFs), and host-derived OPN production. We also found that CAFs contributed to tumor growth, lymphatic metastasis, and host-derived OPN levels. Consistent with those findings, tumor volume was well-correlated with numbers of CAFs and levels of host-derived OPN. Furthermore, it was shown that the inoculation of D3H2LN cells into mammary fat pads with mouse embryonic fibroblasts (MEFs), obtained from wild type, but not OPN knock-out mice, resulted in enhancement of tumor growth, thus indicating that CAF-derived OPN enhanced tumor growth. These results suggested that tumor α9β1-mediated signaling plays a pivotal role in generating unique primary tumor tissue microenvironments, which favor lymphatic metastasis and tumor growth. KEY MESSAGES Tumor α9β1 integrin promotes lymphatic metastasis through enhancing invasion. Tumor α9β1 integrin promotes tumor growth through CAFs. Tumor α9β1 integrin enhances the recruitment of CAFs into the primary tumor. Tumor cells induce the production of OPN by CAFs in the primary tumor. CAF-derived OPN promotes tumor growth.
Collapse
|
49
|
Anderson LR, Owens TW, Naylor MJ. Structural and mechanical functions of integrins. Biophys Rev 2014; 6:203-213. [PMID: 28510180 PMCID: PMC5418412 DOI: 10.1007/s12551-013-0124-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/28/2013] [Indexed: 01/09/2023] Open
Abstract
Integrins are ubiquitously expressed cell surface receptors that play a critical role in regulating the interaction between a cell and its microenvironment to control cell fate. These molecules are regulated either via their expression on the cell surface or through a unique bidirectional signalling mechanism. However, integrins are just the tip of the adhesome iceberg, initiating the assembly of a large range of adaptor and signalling proteins that mediate the structural and signalling functions of integrin. In this review, we summarise the structure of integrins and mechanisms by which integrin activation is controlled. The different adhesion structures formed by integrins are discussed, as well as the mechanical and structural roles integrins play during cell migration. As the function of integrin signalling can be quite varied based on cell type and context, an in depth understanding of these processes will aid our understanding of aberrant adhesion and migration, which is often associated with human pathologies such as cancer.
Collapse
Affiliation(s)
- Luke R Anderson
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Thomas W Owens
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Matthew J Naylor
- Discipline of Physiology & Bosch Institute, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.
- The University of Sydney, Room E212, Anderson Stuart Building (F13), Sydney, NSW, 2006, Australia.
| |
Collapse
|
50
|
Kim JW. Invasion and metastasis in the viewpoint of cell adhesive molecules. Ann Coloproctol 2014; 30:57-8. [PMID: 24851212 PMCID: PMC4022751 DOI: 10.3393/ac.2014.30.2.57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jong-Woo Kim
- Department of Surgery, CHA University College of Medicine, Seongnam, Korea
| |
Collapse
|