1
|
Zhang N, Feng S, Duan S, Yin Y, Ullah H, Li H, Davaasambuu U, Wei S, Nong X, Zhang Z, Tu X, Wang G. LmFKBP24 interacts with LmEaster to inhibit the antifungal immunity of Locusta migratoria. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105515. [PMID: 37666582 DOI: 10.1016/j.pestbp.2023.105515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/27/2023] [Accepted: 07/02/2023] [Indexed: 09/06/2023]
Abstract
Locusta migratoria is one of the most destructive pests that threaten crop growth and food production security in China. Metarhizium anisopliae has been widely used to control locusts around the world. Previous laboratory studies have revealed that LmFKBP24 is significantly upregulated after M. anisopliae infection, suggesting that it may play a role in immune regulation, yet the mechanism remains largely unknown. To gain further insight, we conducted an RNA interference (RNAi) study to investigate the function of LmFKBP24 in the regulation of antifungal immunity and analyzed the expression patterns of immune-induced genes. Our research revealed that LmFKBP24 is activated and upregulated when locusts are infected by M. anisopliae, and it inhibits the expression of antimicrobial peptide (AMP) defensin in the downstream of Toll pathway by combining with LmEaster rather than LmCyPA, thus exerting an immunosuppressive effect. To further investigate this, we conducted yeast two-hybrid (Y2H) and pull down assays to identify the proteins interacting with LmFKBP24. Our results provided compelling evidence for revealing the immune mechanism of L. migratoria and uncovered an innovative target for the development of new biological pesticides. Furthermore, our research indicates that LmFKBP24 interacts with LmEaster through its intact structure, providing a strong foundation for further exploration.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yiting Yin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar-Swabi 23561, Khyber Pakhtunkhwa, Pakistan
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Undarmaa Davaasambuu
- School of Agroecology, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Shuhua Wei
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot 026000, China.
| |
Collapse
|
2
|
Zhang N, Feng S, Tian Y, Zhuang L, Cha G, Duan S, Li H, Nong X, Zhang Z, Tu X, Wang G. Identification, characterization and spatiotemporal expression analysis of the FKBP family genes in Locusta migratoria. Sci Rep 2023; 13:4048. [PMID: 36899085 PMCID: PMC10006077 DOI: 10.1038/s41598-023-30889-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
FK506 binding proteins (FKBPs) are a highly-conserved group of proteins known to bind to FK506, an immunosuppressive drug. They play different physiological roles, including transcription regulation, protein folding, signal transduction and immunosuppression. A number of FKBP genes have been identified in eukaryotes; however, very little information about these genes has been reported in Locusta migratoria. Here, we identified and characterized 10 FKBP genes from L. migratoria. Phylogenetic analysis and comparison of domain architectures indicated that the LmFKBP family can be divided into two subfamilies and five subclasses. Developmental and tissue expression pattern analysis revealed that all LmFKBPs transcripts, including LmFKBP46, LmFKBP12, LmFKBP47, LmFKBP79, LmFKBP16, LmFKBP24, LmFKBP44b, LmFKBP53, were periodically expressed during different developmental stages and mainly expressed in the fat body, hemolymph, testis, and ovary. In brief, our work depicts a outline but panoramic picture of LmFKBP family in L. migratoria, and provides a solid foundation to further investigate the molecular functions of LmFKBPs.
Collapse
Affiliation(s)
- Neng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Shiqian Feng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye Tian
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ling Zhuang
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Gan Cha
- Bayannur Forestry and Grassland Development Center, Bayannur, 015000, China
| | - Saiya Duan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hongmei Li
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xiangqun Nong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zehua Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiongbing Tu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China
| | - Guangjun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China. .,Scientific Observation and Experimental Station of Pests in Xilingol Rangeland, Ministry of Agriculture and Rural Affairs, Xilinhot, 026000, China.
| |
Collapse
|
3
|
Squizani ED, Reuwsaat JC, Motta H, Tavanti A, Kmetzsch L. Calcium: a central player in Cryptococcus biology. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
4
|
Mela A, Momany M. Septins coordinate cell wall integrity and lipid metabolism in a sphingolipid-dependent process. J Cell Sci 2021; 135:256543. [PMID: 33912961 DOI: 10.1242/jcs.258336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 12/31/2020] [Indexed: 01/09/2023] Open
Abstract
Septins colocalize with membrane sterol-rich regions and facilitate recruitment of cell wall synthases during wall remodeling. We show that null mutants missing an Aspergillus nidulans core septin present in hexamers and octamers (ΔaspAcdc11, ΔaspBcdc3 or ΔaspCcdc12) are sensitive to multiple cell wall-disturbing agents that activate the cell wall integrity MAPK pathway. The null mutant missing the octamer-exclusive core septin (ΔaspDcdc10) showed similar sensitivity, but only to a single cell wall-disturbing agent and the null mutant missing the noncore septin (ΔaspE) showed only very mild sensitivity to a different single agent. Core septin mutants showed changes in wall polysaccharide composition and chitin synthase localization. Mutants missing any of the five septins resisted ergosterol-disrupting agents. Hexamer mutants showed increased sensitivity to sphingolipid-disrupting agents. Core septins mislocalized after treatment with sphingolipid-disrupting agents, but not after ergosterol-disrupting agents. Our data suggest that the core septins are involved in cell wall integrity signaling, that all five septins are involved in monitoring ergosterol metabolism, that the hexamer septins are required for sphingolipid metabolism and that septins require sphingolipids to coordinate the cell wall integrity response.
Collapse
Affiliation(s)
- Alexander Mela
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| | - Michelle Momany
- Fungal Biology Group and Plant Biology Department, University of Georgia, 2502 Miller Plant Science Building, Athens, GA 30602, USA
| |
Collapse
|
5
|
Kanda Y, Satoh R, Takasaki T, Tomimoto N, Tsuchiya K, Tsai CA, Tanaka T, Kyomoto S, Hamada K, Fujiwara T, Sugiura R. Sequestration of the PKC ortholog Pck2 in stress granules as a feedback mechanism of MAPK signaling in fission yeast. J Cell Sci 2021; 134:224095. [PMID: 33277379 DOI: 10.1242/jcs.250191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
Protein kinase C (PKC) signaling is a highly conserved signaling module that plays a central role in a myriad of physiological processes, ranging from cell proliferation to cell death, via various signaling pathways, including MAPK signaling. Stress granules (SGs) are non-membranous cytoplasmic foci that aggregate in cells exposed to environmental stresses. Here, we explored the role of SGs in PKC/MAPK signaling activation in fission yeast. High-heat stress (HHS) induced Pmk1 MAPK activation and Pck2 translocation from the cell tips into poly(A)-binding protein (Pabp)-positive SGs. Pck2 dispersal from the cell tips required Pck2 kinase activity, and constitutively active Pck2 exhibited increased translocation to SGs. Importantly, Pmk1 deletion impaired Pck2 recruitment to SGs, indicating that MAPK activation stimulates Pck2 SG translocation. Consistently, HHS-induced SGs delayed Pck2 relocalization at the cell tips, thereby blocking subsequent Pmk1 reactivation after recovery from HHS. HHS partitioned Pck2 into the Pabp-positive SG-containing fraction, which resulted in reduced Pck2 abundance and kinase activity in the soluble fraction. Taken together, these results indicate that MAPK-dependent Pck2 SG recruitment serves as a feedback mechanism to intercept PKC/MAPK activation induced by HHS, which might underlie PKC-related diseases.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Teruaki Takasaki
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Naofumi Tomimoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Kiko Tsuchiya
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Chun An Tsai
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Taemi Tanaka
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Shu Kyomoto
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Kozo Hamada
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Toshinobu Fujiwara
- Laboratory of Biochemistry, Department of Pharmacy, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Kindai University, Osaka 577-8502, Japan
| |
Collapse
|
6
|
Paxillin-Mediated Recruitment of Calcineurin to the Contractile Ring Is Required for the Correct Progression of Cytokinesis in Fission Yeast. Cell Rep 2019; 25:772-783.e4. [PMID: 30332655 DOI: 10.1016/j.celrep.2018.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/01/2018] [Accepted: 09/19/2018] [Indexed: 11/21/2022] Open
Abstract
Paxillin is a scaffold protein that participates in focal adhesion signaling in mammalian cells. Fission yeast paxillin ortholog, Pxl1, is required for contractile actomyosin ring (CAR) integrity and collaborates with the β-glucan synthase Bgs1 in septum formation. We show here that Pxl1's main function is to recruit calcineurin (CN) phosphatase to the actomyosin ring; and thus the absence of either Pxl1 or calcineurin causes similar cytokinesis defects. In turn, CN participates in the dephosphorylation of the Cdc15 F-BAR protein, which recruits and concentrates Pxl1 at the CAR. Our findings suggest the existence of a positive feedback loop between Pxl1 and CN and establish that Pxl1 is a crucial component of the CN signaling pathway during cytokinesis.
Collapse
|
7
|
Matsuo Y, Kawamukai M. cAMP-dependent protein kinase involves calcium tolerance through the regulation of Prz1 in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2017; 81:231-241. [DOI: 10.1080/09168451.2016.1246171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
The cAMP-dependent protein kinase Pka1 is known as a regulator of glycogenesis, meiosis, and stress responses in Schizosaccharomyces pombe. We demonstrated that Pka1 is responsible for calcium tolerance. Loss of functional components of the PKA pathway such as Git3, Gpa2, Cyr1, and Pka1 yields a CaCl2-sensitive phenotype, while loss of Cgs1, a regulatory subunit of PKA, results in CaCl2 tolerance. Cytoplasmic distribution of Cgs1 and Pka1 is increased by the addition of CaCl2, suggesting that CaCl2 induces dissociation of Cgs1 and Pka1. The expression of Prz1, a transcriptional regulator in calcium homeostasis, is elevated in a pka1∆ strain and in a wild type strain under glucose-limited conditions. Accordingly, higher expression of Prz1 in the wild type strain results in a CaCl2-sensitive phenotype. These findings suggest that Pka1 is essential for tolerance to exogenous CaCl2, probably because the expression level of Prz1 needs to be properly regulated by Pka1.
Collapse
Affiliation(s)
- Yasuhiro Matsuo
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Makoto Kawamukai
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| |
Collapse
|
8
|
Ma N, Ma Y, Nakashima A, Kikkawa U, Furuyashiki T. The Loss of Lam2 and Npr2-Npr3 Diminishes the Vacuolar Localization of Gtr1-Gtr2 and Disinhibits TORC1 Activity in Fission Yeast. PLoS One 2016; 11:e0156239. [PMID: 27227887 PMCID: PMC4881991 DOI: 10.1371/journal.pone.0156239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the loss of Lam2 (SPBC1778.05c), a homolog of a Ragulator component LAMTOR2, as well as the loss of Gtr1 or Gtr2 phenocopies the loss of Npr2 or Npr3, homologs of GATOR components Nprl2 or Nprl3, respectively. These phenotypes were rescued by TORC1 inhibition using pharmacological or genetic means, and the loss of Lam2, Gtr1, Gtr2, Npr2 or Npr3 disinhibited TORC1 activity under nitrogen depletion, as measured by Rps6 phosphorylation. Consistently, overexpression of GDP-locked Gtr1S20L or GTP-locked Gtr2Q60L, which suppress TORC1 activity in budding yeast, rescued the growth defect of Δgtr1 cells or Δgtr2 cells, respectively, and the loss of Lam2, Npr2 or Npr3 similarly diminished the vacuolar localization and the protein levels of Gtr1 and Gtr2. Furthermore, Lam2 physically interacted with Npr2 and Gtr1. These findings suggest that Lam2 and Npr2-Npr3 function together as a tether for GDP-bound Gtr1 to the vacuolar membrane, thereby suppressing TORC1 activity for multiple cellular functions.
Collapse
Affiliation(s)
- Ning Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Yan Ma
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
- * E-mail:
| | | | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, Japan
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Graduate School of Medicine, Kobe University, Kobe, Japan
| |
Collapse
|
9
|
Kanda Y, Satoh R, Matsumoto S, Ikeda C, Inutsuka N, Hagihara K, Matzno S, Tsujimoto S, Kita A, Sugiura R. Skb5, an SH3 adaptor protein, regulates Pmk1 MAPK signaling by controlling the intracellular localization of Mkh1 MAPKKK. J Cell Sci 2016; 129:3189-202. [DOI: 10.1242/jcs.188854] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 07/06/2016] [Indexed: 11/20/2022] Open
Abstract
The MAPK cascade is a highly conserved signaling module composed of MAPK/MAPKK/MAPKKK. MAPKKK Mkh1 is an initiating kinase in Pmk1 MAPK signaling, which regulates cell integrity in fission yeast. Our genetic screen for regulators of Pmk1 signaling identified Skb5 (Shk1 kinase binding protein 5), an SH3 domain-containing adaptor protein. Here, we showed that Skb5 serves as an inhibitor of Pmk1 MAPK signaling activation by downregulating Mkh1 localization to cell tips via its interaction with the SH3 domain. Consistently, the Mkh13PA mutant protein, with impaired Skb5 binding, remained in the cell tips, even when Skb5 was overproduced. Intriguingly, Skb5 needs Mkh1 to localize to the growing ends as Mkh1 deletion and disruption of Mkh1 binding impairs Skb5 localization. Deletion of Pck2, an upstream activator of Mkh1, impaired the cell tip localization of Mkh1 and Skb5 as well as Mkh1/Skb5 interaction. Interestingly, both Pck2 and Mkh1 localized to the cell tips at the G1/S phase, which coincided with Pmk1 MAPK activation. Altogether, Mkh1 localization to cell tips is important for transmitting upstream signaling to Pmk1 and Skb5 spatially regulates this process.
Collapse
Affiliation(s)
- Yuki Kanda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Saki Matsumoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Chisato Ikeda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Natsumi Inutsuka
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Kanako Hagihara
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Sumio Matzno
- Division of Pharmaceutical Education, Faculty of Pharmacy, Kinki University, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Japan
| |
Collapse
|
10
|
Casein kinase 1γ ensures monopolar growth polarity under incomplete DNA replication downstream of Cds1 and calcineurin in fission yeast. Mol Cell Biol 2015; 35:1533-42. [PMID: 25691662 DOI: 10.1128/mcb.01465-14] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Cell polarity is essential for various cellular functions during both proliferative and developmental stages, and it displays dynamic alterations in response to intracellular and extracellular cues. However, the molecular mechanisms underlying spatiotemporal control of polarity transition are poorly understood. Here, we show that fission yeast Cki3 (a casein kinase 1γ homolog) is a critical regulator to ensure persistent monopolar growth during S phase. Unlike the wild type, cki3 mutant cells undergo bipolar growth when S phase is blocked, a condition known to delay transition from monopolar to bipolar growth (termed NETO [new end takeoff]). Consistent with this role, Cki3 kinase activity is substantially increased, and cells lose their viability in the absence of Cki3 upon an S-phase block. Cki3 acts downstream of the checkpoint kinase Cds1/Chk2 and calcineurin, and the latter physically interacts with Cki3. Autophosphorylation in the C terminus is inhibitory toward Cki3 kinase activity, and calcineurin is responsible for its dephosphorylation. Cki3 localizes to the plasma membrane, and this localization requires the palmitoyltransferase complex Erf2-Erf4. Membrane localization is needed not only for proper NETO timing but also for Cki3 kinase activity. We propose that Cki3 acts as a critical inhibitor of cell polarity transition under S-phase arrest.
Collapse
|
11
|
Brezovich A, Schuschnig M, Ammerer G, Kraft C. An in vivo detection system for transient and low-abundant protein interactions and their kinetics in budding yeast. Yeast 2015; 32:355-65. [PMID: 25582094 PMCID: PMC4949564 DOI: 10.1002/yea.3063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/20/2022] Open
Abstract
Methylation tracking (M‐Track) is a protein‐proximity assay in Saccharomyces cerevisiae, allowing the detection of transient protein–protein interactions in living cells. The bait protein is fused to a histone lysine methyl transferase and the prey protein to a methylation acceptor peptide derived from histone 3. Upon interaction, the histone 3 fragment is stably methylated on lysine 9 and can be detected by methylation‐specific antibodies. Since methylation marking is irreversible in budding yeast and only takes place in living cells, the occurrence of artifacts during cell lysate preparation is greatly reduced, leading to a more accurate representation of native interactions. So far, this method has been limited to highly abundant or overexpressed proteins. However, many proteins of interest are low‐abundant, and overexpression of proteins may interfere with their function, leading to an artificial situation. Here we report the generation of a toolbox including a novel cleavage‐enrichment system for the analysis of very low‐abundant proteins at their native expression levels. In addition, we developed a system for the parallel analysis of two prey proteins in a single cell, as well as an inducible methylation system. The inducible system allows precise control over the time during which the interaction is detected and can be used to determine interaction kinetics. Furthermore, we generated a set of constructs facilitating the cloning‐free genomic tagging of proteins at their endogenous locus by homologous recombination, and their expression from centromeric plasmids. GenBank submissions: pCK900; KM407502, pCK901; KM407503, pCK902; KM407504, pCK903; KM407505, pCK904; KM407506, pCK905; KM407507, pCK906; KM407508, pCK907; KM407509, pCK908; KM407510, pCK909; KM407511, pCK910; KM407512, pCK911; KM407513. © 2015 The Authors. Yeast published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Andrea Brezovich
- Max F. Perutz Laboratories, University of Vienna, Vienna, A-1030, Austria
| | | | | | | |
Collapse
|
12
|
Cisneros-Barroso E, Yance-Chávez T, Kito A, Sugiura R, Gómez-Hierro A, Giménez-Zaragoza D, Aligue R. Negative feedback regulation of calcineurin-dependent Prz1 transcription factor by the CaMKK-CaMK1 axis in fission yeast. Nucleic Acids Res 2014; 42:9573-87. [PMID: 25081204 PMCID: PMC4150787 DOI: 10.1093/nar/gku684] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calcium signals trigger the translocation of the Prz1 transcription factor from the cytoplasm to the nucleus. The process is regulated by the calcium-activated phosphatase calcineurin, which activates Prz1 thereby maintaining active transcription during calcium signalling. When calcium signalling ceases, Prz1 is inactivated by phosphorylation and exported to the cytoplasm. In budding yeast and mammalian cells, different kinases have been reported to counter calcineurin activity and regulate nuclear export. Here, we show that the Ca(2+)/calmodulin-dependent kinase Cmk1 is first phosphorylated and activated by the newly identified kinase CaMKK2 homologue, Ckk2, in response to Ca(2+). Then, active Cmk1 binds, phosphorylates and inactivates Prz1 transcription activity whilst at the same time cmk1 expression is enhanced by Prz1 in response to Ca(2+). Furthermore, Cdc25 phosphatase is also phosphorylated by Cmk1, inducing cell cycle arrest in response to an increase in Ca(2+). Moreover, cmk1 deletion shows a high tolerance to chronic exposure to Ca(2+), due to the lack of cell cycle inhibition and elevated Prz1 activity. This work reveals that Cmk1 kinase activated by the newly identified Ckk2 counteracts calcineurin function by negatively regulating Prz1 activity which in turn is involved in activating cmk1 gene transcription. These results are the first insights into Cmk1 and Ckk2 function in Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Eugenia Cisneros-Barroso
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Tula Yance-Chávez
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Ayako Kito
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Alba Gómez-Hierro
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - David Giménez-Zaragoza
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Departament de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona 08036, Catalunya, Spain
| |
Collapse
|
13
|
Abstract
The target of rapamycin (TOR) is a highly conserved protein kinase that regulates cell growth and metabolism. Here we performed a genome-wide screen to identify negative regulators of TOR complex 1 (TORC1) in Schizosaccharomyces pombe by isolating mutants that phenocopy Δtsc2, in which TORC1 signaling is known to be up-regulated. We discovered that Δnpr2 displayed similar phenotypes to Δtsc2 in terms of amino acid uptake defects and mislocalization of the Cat1 permease. However, Δnpr2 and Δtsc2 clearly showed different phenotypes in terms of rapamycin supersensitivity and Isp5 transcription upon various treatments. Furthermore, we showed that Tor2 controls amino acid homeostasis at the transcriptional and post-transcriptional levels. Our data reveal that both Npr2 and Tsc2 negatively regulate TORC1 signaling, and Npr2, but not Tsc2, may be involved in the feedback loop of a nutrient-sensing pathway.
Collapse
|
14
|
Zhang L, Ma N, Liu Q, Ma Y. Genome-wide screening for genes associated with valproic acid sensitivity in fission yeast. PLoS One 2013; 8:e68738. [PMID: 23861937 PMCID: PMC3702616 DOI: 10.1371/journal.pone.0068738] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 06/03/2013] [Indexed: 11/22/2022] Open
Abstract
We have been studying the action mechanisms of valproic acid (VPA) in fission yeast Schizosaccharomyces pombe by developing a genetic screen for mutants that show hypersensitivity to VPA. In the present study, we performed a genome-wide screen of 3004 haploid deletion strains and confirmed 148 deletion strains to be VPA sensitive. Of the 148 strains, 93 strains also showed sensitivity to another aliphatic acids HDAC inhibitor, sodium butyrate (SB), and 55 strains showed sensitivity to VPA but not to SB. Interestingly, we found that both VPA and SB treatment induced a marked increase in the transcription activity of Atf1 in wild-type cells. However, in clr6-1, a mutant allele the clr6+ gene encoding class I HDAC, neither VPA- nor SB induced the activation of Atf1 transcription activity. We also found that VPA, but not SB, caused an increase in cytoplasmic Ca2+ level. We further found that the cytoplasmic Ca2+ increase was caused by Ca2+ influx from extracellular medium via Cch1-Yam8 channel complex. Altogether, our present study indicates that VPA and SB play similar but distinct roles in multiple physiological processes in fission yeast.
Collapse
Affiliation(s)
- Lili Zhang
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ning Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Qingbin Liu
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
- * E-mail:
| |
Collapse
|
15
|
Studies on the roles of clathrin-mediated membrane trafficking and zinc transporter Cis4 in the transport of GPI-anchored proteins in fission yeast. PLoS One 2012; 7:e41946. [PMID: 22848669 PMCID: PMC3405024 DOI: 10.1371/journal.pone.0041946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
We previously identified Cis4, a zinc transporter belonging to the cation diffusion facilitator protein family, and we demonstrated that Cis4 is implicated in Golgi membrane trafficking in fission yeast. Here, we identified three glycosylphosphatidylinositol (GPI)-anchored proteins, namely Ecm33, Aah3, and Gaz2, as multicopy suppressors of the MgCl2-sensitive phenotype of cis4-1 mutant. The phenotypes of ecm33, aah3 and gaz2 deletion cells were distinct from each other, and Cis4 overexpression suppressed Δecm33 phenotypes but did not suppress Δaah3 defects. Notably, green fluorescent protein-tagged Ecm33, which was observed at the cell surface in wild-type cells, mostly localized as intracellular dots that are presumed to be the Golgi and endosomes in membrane-trafficking mutants, including Δapm1, ypt3-i5, and chc1-1 mutants. Interestingly, all these membrane-trafficking mutants showed hypersensitivity to BE49385A, an inhibitor of Its8 that is involved in GPI-anchored protein synthesis. Taken together, these results suggest that GPI-anchored proteins are transported through a clathrin-mediated post-Golgi membrane trafficking pathway and that zinc transporter Cis4 may play roles in membrane trafficking of GPI-anchored proteins in fission yeast.
Collapse
|
16
|
Koike A, Kato T, Sugiura R, Ma Y, Tabata Y, Ohmoto K, Sio SO, Kuno T. Genetic screening for regulators of Prz1, a transcriptional factor acting downstream of calcineurin in fission yeast. J Biol Chem 2012; 287:19294-303. [PMID: 22496451 PMCID: PMC3365961 DOI: 10.1074/jbc.m111.310615] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 04/03/2012] [Indexed: 12/18/2022] Open
Abstract
Calcineurin phosphatase plays crucial roles in a wide variety of cell types and organisms. Dephosphorylation of the nuclear factor of activated T-cell (NFAT) family of transcriptional factors by calcineurin is essential for activating immune-responsive genes in mammals. NFAT activity is also regulated by diverse signaling pathways, which affect NFAT kinases and nuclear partner proteins. In fission yeast, calcineurin dephosphorylates and activates Prz1, a C2H2-type zinc finger transcriptional factor. Calcineurin-Prz1 signaling regulates the expression of the Pmc1 Ca(2+) pump. Prz1-overexpressing cells showed extremely slow growth and high transcriptional activity of Prz1 in the absence of stimulation. Here, we isolated seven genes as dosage-dependent suppressors of this slow growth phenotype. These seven genes encode Rad24, Rad25, Pka1, Msn5 (SPAC328.01c), Pac1, Ape2, and Tfs1. All of them decreased the high transcriptional activity caused by Prz1 overexpression. Overexpression of Pka1, Rad24, and Rad25 also repressed the Ca(2+)-induced transcriptional activity in cells with Prz1 expressed at wild-type levels. Knock-out of rad24 or rad25 significantly enhanced the transcriptional activity of Prz1, whereas knock-out or mutation of other genes did not enhance the activity. The 14-3-3 proteins, Rad24 and Rad25, bound Prz1 and the Rad24-binding site located at residues 421-426 of Prz1. In msn5 deletion mutants, GFP-Prz1 localized at nucleus in the absence of Ca(2+) stimulation, suggesting that Msn5 functions as an exportin for Prz1. In summary, our data suggest that Rad24 and Rad25 negatively regulate Prz1 and that Pka1, Msn5, Pac1, Tfs1, and Ape2 also regulate Prz1.
Collapse
Affiliation(s)
- Atsushi Koike
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho 6-5-1, Chuo-ku, Kobe 650-0017, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Satoh R, Tanaka A, Kita A, Morita T, Matsumura Y, Umeda N, Takada M, Hayashi S, Tani T, Shinmyozu K, Sugiura R. Role of the RNA-binding protein Nrd1 in stress granule formation and its implication in the stress response in fission yeast. PLoS One 2012; 7:e29683. [PMID: 22276125 PMCID: PMC3261880 DOI: 10.1371/journal.pone.0029683] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/02/2011] [Indexed: 01/20/2023] Open
Abstract
We have previously identified the RNA recognition motif (RRM)-type RNA-binding protein Nrd1 as an important regulator of the posttranscriptional expression of myosin in fission yeast. Pmk1 MAPK-dependent phosphorylation negatively regulates the RNA-binding activity of Nrd1. Here, we report the role of Nrd1 in stress-induced RNA granules. Nrd1 can localize to poly(A)-binding protein (Pabp)-positive RNA granules in response to various stress stimuli, including heat shock, arsenite treatment, and oxidative stress. Interestingly, compared with the unphosphorylatable Nrd1, Nrd1DD (phosphorylation-mimic version of Nrd1) translocates more quickly from the cytoplasm to the stress granules in response to various stimuli; this suggests that the phosphorylation of Nrd1 by MAPK enhances its localization to stress-induced cytoplasmic granules. Nrd1 binds to Cpc2 (fission yeast RACK) in a phosphorylation-dependent manner and deletion of Cpc2 affects the formation of Nrd1-positive granules upon arsenite treatment. Moreover, the depletion of Nrd1 leads to a delay in Pabp-positive RNA granule formation, and overexpression of Nrd1 results in an increased size and number of Pabp-positive granules. Interestingly, Nrd1 deletion induced resistance to sustained stresses and enhanced sensitivity to transient stresses. In conclusion, our results indicate that Nrd1 plays a role in stress-induced granule formation, which affects stress resistance in fission yeast.
Collapse
Affiliation(s)
- Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
- Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akitomo Tanaka
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Takahiro Morita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Yasuhiro Matsumura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Nanae Umeda
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Makoto Takada
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
| | - Sachiko Hayashi
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Tokio Tani
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Osaka, Japan
- * E-mail:
| |
Collapse
|
18
|
Morita T, Satoh R, Umeda N, Kita A, Sugiura R. The stress granule protein Vgl1 and poly(A)-binding protein Pab1 are required for doxorubicin resistance in the fission yeast Schizosaccharomyces pombe. Biochem Biophys Res Commun 2011; 417:399-403. [PMID: 22172946 DOI: 10.1016/j.bbrc.2011.11.127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
Doxorubicin is an anthracycline antibiotic widely used for chemotherapy. Although doxorubicin is effective in the treatment of several cancers, including solid tumors and leukemias, the basis of its mechanism of action is not completely understood. Here, we describe the effects of doxorubicin and its relationship with stress granules formation in the fission yeast, Schizosaccharomyces pombe. We show that disruption of genes encoding the components of stress granules, including vgl1(+), which encodes a multi-KH type RNA-binding protein, and pab1(+), which encodes a poly(A)-binding protein, resulted in greater sensitivity to doxorubicin than seen in wild-type cells. Disruption of the vgl1(+) and pab1(+) genes did not confer sensitivity to other anti-cancer drugs such as cisplatin, 5-fluorouracil, and paclitaxel. We also showed that doxorubicin treatment promoted stress granule formation when combined with heat shock. Notably, doxorubicin treatment did not induce hyperphosphorylation of eIF2α, suggesting that doxorubicin is involved in stress granule assembly independent of eIF2α phosphorylation. Our results demonstrate the usefulness of fission yeast for elucidating the molecular targets of doxorubicin toxicity and suggest a novel drug-resistance mechanism involving stress granule assembly.
Collapse
Affiliation(s)
- Takahiro Morita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, Japan
| | | | | | | | | |
Collapse
|
19
|
Ma Y, Sugiura R, Koike A, Ebina H, Sio SO, Kuno T. Transient receptor potential (TRP) and Cch1-Yam8 channels play key roles in the regulation of cytoplasmic Ca2+ in fission yeast. PLoS One 2011; 6:e22421. [PMID: 21811607 PMCID: PMC3139647 DOI: 10.1371/journal.pone.0022421] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 06/23/2011] [Indexed: 12/02/2022] Open
Abstract
The regulation of cytoplasmic Ca2+ is crucial for various cellular processes. Here, we examined the cytoplasmic Ca2+ levels in living fission yeast cells by a highly sensitive bioluminescence resonance energy transfer-based assay using GFP-aequorin fusion protein linked by 19 amino acid. We monitored the cytoplasmic Ca2+ level and its change caused by extracellular stimulants such as CaCl2 or NaCl plus FK506 (calcineurin inhibitor). We found that the extracellularly added Ca2+ caused a dose-dependent increase in the cytoplasmic Ca2+ level and resulted in a burst-like peak. The overexpression of two transient receptor potential (TRP) channel homologues, Trp1322 or Pkd2, markedly enhanced this response. Interestingly, the burst-like peak upon TRP overexpression was completely abolished by gene deletion of calcineurin and was dramatically decreased by gene deletion of Prz1, a downstream transcription factor activated by calcineurin. Furthermore, 1 hour treatment with FK506 failed to suppress the burst-like peak. These results suggest that the burst-like Ca2+ peak is dependent on the transcriptional activity of Prz1, but not on the direct TRP dephosphorylation. We also found that extracellularly added NaCl plus FK506 caused a synergistic cytosolic Ca2+ increase that is dependent on the inhibition of calcineurin activity, but not on the inhibition of Prz1. The synergistic Ca2+ increase is abolished by the addition of the Ca2+ chelator BAPTA into the media, and is also abolished by deletion of the gene encoding a subunit of the Cch1-Yam8 Ca2+ channel complex, indicating that the synergistic increase is caused by the Ca2+ influx from the extracellular medium via the Cch1-Yam8 complex. Furthermore, deletion of Pmk1 MAPK abolished the Ca2+ influx, and overexpression of the constitutively active Pek1 MAPKK enhanced the influx. These results suggest that Pmk1 MAPK and calcineurin positively and negatively regulate the Cch1-Yam8 complex, respectively, via modulating the balance between phosphorylation and dyphosphorylation state.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Ma Y, Sugiura R, Zhang L, Zhou X, Takeuchi M, He Y, Kuno T. Isolation of a fission yeast mutant that is sensitive to valproic acid and defective in the gene encoding Ric1, a putative component of Ypt/Rab-specific GEF for Ryh1 GTPase. Mol Genet Genomics 2010; 284:161-71. [PMID: 20623139 DOI: 10.1007/s00438-010-0550-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 06/10/2010] [Indexed: 01/08/2023]
Abstract
Valproic acid (VPA) causes various therapeutic and biological effects, but the exact mechanisms underlying these effects, however, remain elusive. To gain insights into the molecular mechanisms of VPA action, we performed in fission yeast a genetic screen for mutants that show VPA hypersensitivity and have identified several membrane-trafficking mutants including vas1-1/vps45 and vas2-1/aps1. Here, we describe the isolation and characterization of vas3-1/ric1-v3, a mutant allele of the ric1 (+) gene encoding a fission yeast homolog of the budding yeast Ric1p, a component of Ypt/Rab-specific guanyl-nucleotide exchange factor (GEF). The Rab GTPase Ryh1 knockout (Deltaryh1) cells and Deltaric1 cells exhibited similar phenotypes. The double knockout Deltaric1Deltaryh1 cells did not display synthetic growth defects. These results are consistent with the notion that Ric1 may be a component of the GEF complex for Ryh1. Overexpression of wild-type Ryh1 and the constitutively active Ryh1Q70L only partially suppressed the phenotypes of ric1-v3 and Deltaric1 cells, and they failed to localize to the Golgi/endosomes in ric1-v3 and Deltaric1 cells. Furthermore, we isolated vps15 (+) gene, encoding a serine/threonine protein kinase, as a dosage-dependent suppressor of the temperature-sensitive phenotype of ric1-v3 mutant, but not that of Deltaric1 cells. Our results showed that the ric1-v3 mutant allele has some residual functional activity and suggest that Vps15 plays a role in the regulation of Ric1 function. In conclusion, Ric1 is a putative component of GEF for Ryh1 and might be regulated by Vps15. Further studies are needed to reveal the mechanism underlying the regulation.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | | | | | | | | | | | | |
Collapse
|
21
|
Takada H, Nishida A, Domae M, Kita A, Yamano Y, Uchida A, Ishiwata S, Fang Y, Zhou X, Masuko T, Kinoshita M, Kakehi K, Sugiura R. The cell surface protein gene ecm33+ is a target of the two transcription factors Atf1 and Mbx1 and negatively regulates Pmk1 MAPK cell integrity signaling in fission yeast. Mol Biol Cell 2009; 21:674-85. [PMID: 20032302 PMCID: PMC2820430 DOI: 10.1091/mbc.e09-09-0810] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The highly conserved fission yeast Pmk1 MAPK pathway plays a key role in cell integrity by regulating Atf1, which belongs to the ATF/cAMP-responsive element-binding (CREB) protein family. We identified and characterized ecm33(+), which encodes a glycosyl-phosphatidylinositol (GPI)-anchored cell surface protein as a transcriptional target of Pmk1 and Atf1. We demonstrated that the gene expression of Ecm33 is regulated by two transcription factors Atf1 and a MADS-box-type transcription factor Mbx1. We identified a putative ATF/CREB-binding site and an RLM1-binding site in the ecm33(+) promoter region and monitored the transcriptional activity of Atf1 or Mbx1 in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of the CRE and six tandem repeats of the Rlm1-binding sequence, respectively. These reporter genes reflect the activation of the Pmk1 pathway by various stimuli, thereby enabling the real-time monitoring of the Pmk1 cell integrity pathway. Notably, the Deltaecm33 cells displayed hyperactivation of the Pmk1 signaling together with hypersensitivity to Ca(2+) and an abnormal morphology, which were almost abolished by simultaneous deletion of the components of the Rho2/Pck2/Pmk1 pathway. Our results suggest that Ecm33 is involved in the negative feedback regulation of Pmk1 cell integrity signaling and is linked to cellular Ca(2+) signaling.
Collapse
Affiliation(s)
- Hirofumi Takada
- Laboratory of Molecular Pharmacogenomics, Laboratory of Molecular and Cellular Biology, and Laboratory of Bioinformatics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Hamasaki-Katagiri N, Ames JB. Neuronal calcium sensor-1 (Ncs1p) is up-regulated by calcineurin to promote Ca2+ tolerance in fission yeast. J Biol Chem 2009; 285:4405-14. [PMID: 20018864 DOI: 10.1074/jbc.m109.058594] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neuronal calcium sensor (NCS) proteins regulate signal transduction and are highly conserved from yeast to humans. NCS homolog in fission yeast (Ncs1p) is essential for cell growth under extreme Ca(2+) conditions. Ncs1p expression increases approximately 100-fold when fission yeast grows in high extracellular Ca(2+) (>0.1 M). Here, we show that Ca(2+)-induced expression of Ncs1p is controlled at the level of transcription. Transcriptional reporter assays show that ncs1 promoter activity increased 30-fold when extracellular Ca(2+) was raised to 0.1 M and was highly Ca(2+)-specific. Ca(2+)-dependent transcription of ncs1 is abolished by the calcineurin inhibitor (FK506) and by knocking out the calcineurin target, prz1. Thus, Ca(2+)-induced expression of Ncs1p is linked to the calcineurin/prz1 stress response. The Ca(2+)-responsive ncs1 promoter region consists of 130 nucleotides directly upstream from the start codon and contains tandem repeats of the sequence, 5'-caact-3', that binds to Prz1p. The Ca(2+)-sensitive ncs1Delta phenotype is rescued by a yam8 null mutation, suggesting a possible interaction between Ncs1p and the Ca(2+) channel, Yam8p. Ca(2+) uptake and Ncs1p binding to yeast membranes are both decreased in yam8Delta, suggesting Ca(2+)-induced binding of Ncs1p to Yam8p results in channel closure. We propose that Ncs1p promotes Ca(2+) tolerance in fission yeast, in part by cytosolic Ca(2+) buffering and perhaps by negatively regulating the Yam8p Ca(2+) channel.
Collapse
Affiliation(s)
- Nobuko Hamasaki-Katagiri
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, Maryland 20850, USA
| | | |
Collapse
|
23
|
Ma Y, Takeuchi M, Sugiura R, Sio SO, Kuno T. Deletion mutants of AP-1 adaptin subunits display distinct phenotypes in fission yeast. Genes Cells 2009; 14:1015-28. [PMID: 19624755 DOI: 10.1111/j.1365-2443.2009.01327.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Adaptins are subunits of the heterotetrameric (beta/mu/gamma/sigma) adaptor protein (AP) complexes that are involved in clathrin-mediated membrane trafficking. Here, we show that in Schizosaccharomyces pombe the deletion strains of each individual subunit of the AP-1 complex [Apl2 (beta), Apl4 (gamma), Apm1 (mu) and Aps1 (sigma)] caused distinct phenotypes on growth sensitivity to temperature or drugs. We also show that the Deltaapm1 and Deltaapl2 mutants displayed similar but more severe phenotypes than those of Deltaaps1 or Deltaapl4 mutants. Furthermore, the Deltaapl2Deltaaps1 and Deltaapl2Deltaapl4 double mutants displayed synthetic growth defects, whereas the Deltaaps1Deltaapl4 and Deltaapl2Deltaapm1 double mutants did not. In pull-down assay, Apm1 binds Apl2 even in the absence of Aps1 and Apl4, and Apl4 binds Aps1 even in the absence of Apm1 and Apl2. Consistently, the deletion of any subunit generally caused the disassociation of the heterotetrameric complex from endosomes, although some subunits weakly localized to endosomes. In addition, the deletion of individual subunits caused similar endosomal accumulation of v-SNARE synaptobrevin Syb1. Altogether, results suggest that the four subunits are all essential for the heterotetrameric complex formation and for the AP-1 function in exit transport from endosomes.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | | | | | |
Collapse
|
24
|
Meléndez HG, Billon-Grand G, Fèvre M, Mey G. Role of the Botrytis cinerea FKBP12 ortholog in pathogenic development and in sulfur regulation. Fungal Genet Biol 2008; 46:308-20. [PMID: 19116175 DOI: 10.1016/j.fgb.2008.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/12/2008] [Accepted: 11/14/2008] [Indexed: 01/06/2023]
Abstract
The functional characterization of the FKBP12 encoding gene from the phytopathogenic fungus Botrytis cinerea was carried out. B. cinerea genome sequence owns a single ortholog, named BcFKBP12, encoding a FK506-binding protein of 12kDa. BcFKBP12 mediates rapamycin sensitivity both in B. cinerea and in Saccharomyces cerevisiae, a property unique to FKBP12 proteins, probably via the inhibition of the protein kinase TOR (target of rapamycin). The relative abundance of the prolyl isomerase appeared to be regulated and increased in response to the presence of extracellular nutrients. Surprisingly, the BcFKBP12 deletion did not affect the pathogenic development of the strain B05.10, while it was reported to cause a reduction of the virulence of the strain T4. We report for the first time the BcFKBP12 involvement in the sulfur repression of the synthesis of a secreted serine protease. Rapamycin treatment did not relieve the sulfur repression of the reporter system in the wild-type strain. Thus BcFKBP12 may participate in sulfur regulation and its contribution seems to be independent of TOR.
Collapse
Affiliation(s)
- Heber Gamboa Meléndez
- Laboratoire de Génomique Fonctionnelle des Champignons Pathogènes des Plantes, UMR 5240 CNRS-UCB-INSA-Bayer CropScience, Domaine Scientifique de la Doua, Université Lyon I, Bât Lwoff, RDC, Villeurbanne, France
| | | | | | | |
Collapse
|
25
|
Takada H, Nishimura M, Asayama Y, Mannse Y, Ishiwata S, Kita A, Doi A, Nishida A, Kai N, Moriuchi S, Tohda H, Giga-Hama Y, Kuno T, Sugiura R. Atf1 is a target of the mitogen-activated protein kinase Pmk1 and regulates cell integrity in fission yeast. Mol Biol Cell 2007; 18:4794-802. [PMID: 17881729 PMCID: PMC2096581 DOI: 10.1091/mbc.e07-03-0282] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In fission yeast, knockout of the calcineurin gene resulted in hypersensitivity to Cl(-), and the overexpression of pmp1(+) encoding a dual-specificity phosphatase for Pmk1 mitogen-activated protein kinase (MAPK) or the knockout of the components of the Pmk1 pathway complemented the Cl(-) hypersensitivity of calcineurin deletion. Here, we showed that the overexpression of ptc1(+) and ptc3(+), both encoding type 2C protein phosphatase (PP2C), previously known to inactivate the Wis1-Spc1-Atf1 stress-activated MAPK signaling pathway, suppressed the Cl(-) hypersensitivity of calcineurin deletion. We also demonstrated that the mRNA levels of these two PP2Cs and pyp2(+), another negative regulator of Spc1, are dependent on Pmk1. Notably, the deletion of Atf1, but not that of Spc1, displayed hypersensitivity to the cell wall-damaging agents and also suppressed the Cl(-) hypersensitivity of calcineurin deletion, both of which are characteristic phenotypes shared by the mutation of the components of the Pmk1 MAPK pathway. Moreover, micafungin treatment induced Pmk1 hyperactivation that resulted in Atf1 hyperphosphorylation. Together, our results suggest that PP2C is involved in a negative feedback loop of the Pmk1 signaling, and results also demonstrate that Atf1 is a key component of the cell integrity signaling downstream of Pmk1 MAPK.
Collapse
Affiliation(s)
- Hirofumi Takada
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Masayuki Nishimura
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Yuta Asayama
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Yoshiaki Mannse
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Shunji Ishiwata
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Ayako Kita
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Akira Doi
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Aiko Nishida
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Naoyuki Kai
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Sayako Moriuchi
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| | - Hideki Tohda
- Asahi Glass Schizosaccharomyces pombe Expression System Division, Research Center, Asahi Glass Co., Ltd., Yokohama, 221-8755, Japan; and
| | - Yuko Giga-Hama
- Asahi Glass Schizosaccharomyces pombe Expression System Division, Research Center, Asahi Glass Co., Ltd., Yokohama, 221-8755, Japan; and
| | - Takayoshi Kuno
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Reiko Sugiura
- *Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka, 577-8502, Japan
| |
Collapse
|
26
|
Somarelli JA, Coll JL, Velandia A, Martinez L, Herrera RJ. Characterization of immunophilins in the silkmoth Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2007; 65:195-209. [PMID: 17630656 DOI: 10.1002/arch.20177] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The FK506-binding proteins (FKBPs) perform an extensive variety of functions in numerous organisms from archaea to humans. The FKBPs are distinguished by their peptidyl-prolyl cis-trans isomerase (PPIase) activity and ability to bind the immunosuppressive drugs FK506 and rapamycin. Here, we report the isolation and characterization of FKBP45, a novel member of the FKBP family obtained from U1 small nuclear RNA (snRNA) binding assays using Bombyx mori nuclear extracts. The protein, an apparent orthologue of FKBP46 from the armyworm, Spodoptera frugiperda, was found to associate with U1 stem-loop I RNA in vitro. The FKBP45 cDNA was isolated and the genomic sequence was characterized, including the positions of exon/intron junctions and consensus splice sites. Using bioinformatics, transcription factor consensus binding sites were identified and subsequent Western blotting from developing eggs indicate that FKBP45 is differentially expressed during embryogenesis. A database was assembled using more than 1,800 available FKBP amino acid sequences and pairwise sequence alignments revealed several putative FKBP45 orthologues in various species. Analysis of these sequences revealed the position of an RNA binding domain within this new protein. In addition, FKBP45 possesses similar characteristics to several potential orthologues, including the presence of bipartite nuclear localization signals (NLSs) and phosphorylation sites.
Collapse
Affiliation(s)
- J A Somarelli
- Department of Biological Sciences, OE304, Florida International University, Miami, Florida 33199, USA
| | | | | | | | | |
Collapse
|
27
|
Ma Y, Kuno T, Kita A, Asayama Y, Sugiura R. Rho2 is a target of the farnesyltransferase Cpp1 and acts upstream of Pmk1 mitogen-activated protein kinase signaling in fission yeast. Mol Biol Cell 2006; 17:5028-37. [PMID: 17005909 PMCID: PMC1679671 DOI: 10.1091/mbc.e06-08-0688] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We have previously demonstrated that knockout of the calcineurin gene or inhibition of calcineurin activity by immunosuppressants resulted in hypersensitivity to Cl- in fission yeast. We also demonstrated that knockout of the components of the Pmk1 mitogen-activated protein kinase (MAPK) pathway, such as Pmk1 or Pek1 complemented the hypersensitivity to Cl-. Using this interaction between calcineurin and Pmk1 MAPK, here we developed a genetic screen that aims to identify new regulators of the Pmk1 signaling and isolated vic (viable in the presence of immunosuppressant and chloride ion) mutants. One of the mutants, vic1-1, carried a missense mutation in the cpp1+ gene encoding a beta subunit of the protein farnesyltransferase, which caused an amino acid substitution of aspartate 155 of Cpp1 to asparagine (Cpp1(D155N)). Analysis of the mutant strain revealed that Rho2 is a novel target of Cpp1. Moreover, Cpp1 and Rho2 act upstream of Pck2-Pmk1 MAPK signaling pathway, thereby resulting in the vic phenotype upon their mutations. Interestingly, compared with other substrates of Cpp1, defects of Rho2 function were more phenotypically manifested by the Cpp1(D155N) mutation. Together, our results demonstrate that Cpp1 is a key component of the Pck2-Pmk1 signaling through the spatial control of the small GTPase Rho2.
Collapse
Affiliation(s)
- Yan Ma
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Takayoshi Kuno
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Ayako Kita
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | - Yuta Asayama
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| |
Collapse
|
28
|
Ma Y, Kuno T, Kita A, Nabata T, Uno S, Sugiura R. Genetic evidence for phospholipid-mediated regulation of the Rab GDP-dissociation inhibitor in fission yeast. Genetics 2006; 174:1259-71. [PMID: 16980382 PMCID: PMC1667090 DOI: 10.1534/genetics.106.064709] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We have previously identified mutant alleles of genes encoding two Rab proteins, Ypt3 and Ryh1, through a genetic screen using the immunosuppressant drug FK506 in fission yeast. In the same screen, we isolated gdi1-i11, a mutant allele of the essential gdi1+ gene encoding Rab GDP-dissociation inhibitor. In gdi1-i11, a conserved Gly267 was substituted by Asp. The Gdi1G267D protein failed to extract Rabs from membrane and Rabs were depleted from the cytosolic fraction in the gdi1-i11 mutant cells. Consistently, the Gdi1G267D protein was found mostly in the membrane fraction, whereas wild-type Gdi1 was found in both the cytosolic and the membrane fraction. Notably, overexpression of spo20+, encoding a phosphatidylcholine/phosphatidylinositol transfer protein, rescued gdi1-i11 mutation, but not ypt3-i5 or ryh1-i6. The gdi1-i11 and spo20-KC104 mutations are synthetically lethal, and the wild-type Gdi1 failed to extract Rabs from the membrane in the spo20-KC104 mutant. The phosphatidylinositol-transfer activity of Spo20 is dispensable for the suppression of the gdi1-i11 mutation, suggesting that the phosphatidylcholine-transfer activity is important for the suppression. Furthermore, knockout of the pct1+ gene encoding a choline phosphate cytidyltransferase rescued the gdi1-i11 mutation. Together, our findings suggest that Spo20 modulates Gdi1 function via regulation of phospholipid metabolism of the membranes.
Collapse
Affiliation(s)
- Yan Ma
- Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Deng L, Sugiura R, Takeuchi M, Suzuki M, Ebina H, Takami T, Koike A, Iba S, Kuno T. Real-time monitoring of calcineurin activity in living cells: evidence for two distinct Ca2+-dependent pathways in fission yeast. Mol Biol Cell 2006; 17:4790-800. [PMID: 16928959 PMCID: PMC1635391 DOI: 10.1091/mbc.e06-06-0526] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In fission yeast, calcineurin dephosphorylates and activates the Prz1 transcription factor. Here, we identified the calcineurin-dependent response element (CDRE) in the promoter region of prz1(+) gene and monitored the calcineurin activity in living cells using a destabilized luciferase reporter gene fused to three tandem repeats of CDRE. Elevated extracellular CaCl(2) caused an increase in calcineurin activity with an initial peak and then approached a sustained constant level in a concentration-dependent manner. In CaCl(2)-sensitive mutants such as Deltapmc1, the response was markedly enhanced, reflecting its high intracellular Ca(2+). Agents expected to induce Ca(2+) influx showed distinct patterns of the CDRE-reporter activity, suggesting different mechanisms of calcineurin activation. Knockout of yam8(+) or cch1(+) encoding putative subunits of a Ca(2+) channel abolished the activation of calcineurin upon exposure to various stimuli, including high extracellular NaCl and cell wall-damaging agents. However, knockout of yam8(+) or cch1(+) did not affect the activation of calcineurin upon stimulation by elevated extracellular Ca(2+). The Pck2 protein kinase C-Pmk1 mitogen-activate protein kinase pathway was required for the stimulation of calcineurin via Yam8/Cch1-mediated Ca(2+) influx, but it was not required for the stimulation by elevated extracellular Ca(2+), suggesting two distinct pathways for calcineurin activation.
Collapse
Affiliation(s)
- Lu Deng
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Reiko Sugiura
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, Higashi-Osaka 577-8502, Japan
| | - Mai Takeuchi
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Masahiro Suzuki
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Hidemine Ebina
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Tomonori Takami
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Atsushi Koike
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Shiori Iba
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| | - Takayoshi Kuno
- *Division of Molecular Pharmacology and Pharmacogenomics, Department of Genome Sciences, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; and
| |
Collapse
|
30
|
Gioti A, Simon A, Le Pêcheur P, Giraud C, Pradier JM, Viaud M, Levis C. Expression profiling of Botrytis cinerea genes identifies three patterns of up-regulation in planta and an FKBP12 protein affecting pathogenicity. J Mol Biol 2006; 358:372-86. [PMID: 16497329 DOI: 10.1016/j.jmb.2006.01.076] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Revised: 01/15/2006] [Accepted: 01/17/2006] [Indexed: 11/22/2022]
Abstract
The ascomycete Botrytis cinerea is a broad-spectrum plant pathogen. Here, we describe the first macroarray transcriptomic study of the fungus in real-time infection conditions. Infection of Arabidopsis thaliana leaves by B.cinerea was monitored using macroarrays, containing 3032 genes. Variance analysis revealed that 7% of B.cinerea genes are differentially expressed during infection and allowed us to identify 27 genes significantly up-regulated in planta. Among them, two genes have already been associated with fungal pathogenicity, while eight genes have unidentified functions. The 27 genes were separated into three groups according to their expression profile. The first group showed maximal expression at the early stage following fungal penetration, the second one showed maximal expression at the outset of the colonization of plant leaves and the third group showed maximal expression when the colonization of plant leaves was completed. A gene of the last group (BcPIC5), which is homologous to FKBP12 proteins, was disrupted in order to determine its role in pathogenicity. At seven days post-inoculation, the lesions caused by the DeltaBcPIC5 mutant on bean leaves were reduced by 69% and did not further expand compared to the wild-type. These results confirm that transcriptomic analysis under infection conditions can be very valuable for the identification of fungal genes related to pathogenicity.
Collapse
Affiliation(s)
- A Gioti
- Unité P.M.D.V, I.N.R.A, Route de St-Cyr, 78026 Versailles, France.
| | | | | | | | | | | | | |
Collapse
|
31
|
Meyer V, Spielvogel A, Funk L, Tilburn J, Arst HN, Stahl U. Alkaline pH-induced up-regulation of the afp gene encoding the antifungal protein (AFP) of Aspergillus giganteus is not mediated by the transcription factor PacC: possible involvement of calcineurin. Mol Genet Genomics 2005; 274:295-306. [PMID: 16133167 DOI: 10.1007/s00438-005-0002-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 04/22/2005] [Indexed: 10/25/2022]
Abstract
The afp gene encoding the antifungal protein (AFP) of Aspergillus giganteus has a prototypical alkaline gene expression pattern, which suggests that the gene might be under the control of the ambient pH-dependent zinc-finger transcription factor PacC. This notion is corroborated by the presence in the upstream region of afp of two putative PacC binding sites, afpP1 and afpP2, which are specifically recognised by the PacC protein of A. nidulans in vitro. However, in this report we provide several lines of evidence to show that pH-dependent up-regulation of afp is not mediated by transcriptional activation through PacC. (1) The temporal expression pattern of the A. giganteus pacC gene does not parallel the accumulation of the afp mRNA during cultivation. (2) Inactivation of afpP1 and afpP2 did not reduce promoter activity under alkaline conditions, as determined from the relative wild-type and mutant afp::lacZ reporter activities in A. nidulans. (3) Reporter activities in acidity- and alkalinity-mimicking mutant strains are inconsistent with a positive role for PacC in afp expression. (4) In A. giganteus, the pH-dependent increase in afp mRNA and AFP levels can be completely prevented by the calcineurin inhibitor FK506, suggesting that the calcineurin signalling pathway might control the in vivo activation of the afp promoter by alkaline pH.
Collapse
Affiliation(s)
- Vera Meyer
- Institut für Biotechnologie, Fachgebiet Mikrobiologie und Genetik, Technische Universität Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
32
|
Current awareness on yeast. Yeast 2005. [DOI: 10.1002/yea.1169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|