1
|
Xiang X, Shuya P, Jiamin Z, Zihan Z, Xumei Y, Jingjin L. 3-Phosphoinositide-Dependent Kinase 1 as a Therapeutic Target for Treating Diabetes. Curr Diabetes Rev 2025; 21:47-56. [PMID: 38468518 DOI: 10.2174/0115733998278669240226061329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/09/2024] [Accepted: 01/30/2024] [Indexed: 03/13/2024]
Abstract
The role of 3-phosphoinositide-dependent kinase 1 (PDK1) has been welldocumented in the development of diabetes. This review offers a thorough examination of its composition and associated routes, specifically focusing on insulin signaling and glucose processing. By examining the precise connection between PDK1 and diabetes, various strategies specifically targeting PDK1 were also investigated. Additionally, recent discoveries from mouse models were compiled where PDK1 was knocked out in certain tissues, which demonstrated encouraging outcomes for focused treatments despite the absence of any currently approved clinical PDK1 activators. Moreover, the dual nature of PDK1 activation was discussed, encompassing both anti-diabetic and pro-oncogenic effects. Hence, the development of a PDK1 modifier is of utmost importance, as it can activate anti-diabetic pathways while inhibiting pro-oncogenic pathways, thus aiding in the treatment of diabetes. In general, PDK1 presents a noteworthy opportunity for future therapeutic strategies in the treatment of diabetes.
Collapse
Affiliation(s)
- Xie Xiang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Pan Shuya
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Jiamin
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Zhang Zihan
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejieng, China
| | - Yang Xumei
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Childrens' Hospital of Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
- Key Laboratory of Pediatric Anesthesiology, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejieng 325027, China
| | - Liu Jingjin
- Department of Cardiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| |
Collapse
|
2
|
Xu L, Jang H, Nussinov R. Capturing Autoinhibited PDK1 Reveals the Linker's Regulatory Role, Informing Innovative Inhibitor Design. J Chem Inf Model 2024; 64:7709-7724. [PMID: 39348509 DOI: 10.1021/acs.jcim.4c01392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
PDK1 is crucial for PI3K/AKT/mTOR and Ras/MAPK cancer signaling. It phosphorylates AKT in a PIP3-dependent but S6K, SGK, and RSK kinases in a PIP3-independent manner. Unlike its substrates, its autoinhibited monomeric state has been unclear, likely due to its low population time, and phosphorylation in the absence of PIP3 has been puzzling too. Here, guided by experimental data, we constructed models and performed all-atom molecular dynamics simulations. In the autoinhibited PDK1 conformation that resembles autoinhibited AKT, binding of the linker between the kinase and PH domains to the PIF-binding pocket promotes the formation of the Glu130-Lys111 salt bridge and weakens the association of the kinase domain with the PH domain, shifting the population from the autoinhibited state to states accessible to the membrane and its kinase substrates. The interaction of the substrates' hydrophobic motif and the PDK1 PIF-binding pocket facilitates the release of the autoinhibition even in the absence of PIP3. Phosphorylation of the serine-rich motif within the linker further attenuates the association of the PH domain with the kinase domain. These suggest that while the monomeric autoinhibited state is relatively stable, it can readily shift to its active, catalysis-prone state to phosphorylate its diverse substrates. Our findings reveal the PDK1 activation mechanism and discover the regulatory role of PDK1's linker, which lead to two innovative linker-based inhibitor strategies: (i) locking the autoinhibited PDK1 through optimization of the interactions of AKT inhibitors with the PH domain of PDK1 and (ii) analogs (small molecules or peptidomimetics) that mimic the linker interactions with the PIF-binding pocket.
Collapse
Affiliation(s)
- Liang Xu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
3
|
Fang J, Li R, Zhang Y, Oduro PK, Li S, Leng L, Wang Z, Rao Y, Niu L, Wu HH, Wang Q. Aristolone in Nardostachys jatamansi DC. induces mesenteric vasodilation and ameliorates hypertension via activation of the K ATP channel and PDK1-Akt-eNOS pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154257. [PMID: 35738117 DOI: 10.1016/j.phymed.2022.154257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 05/20/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Nardostachys jatamansi DC. is a common medicinal herb used to treat cardiovascular diseases, particularly hypertension. Previously, our lab characterized the chemical compounds of N. jatamansi. However, the bioactive compounds of N. jatamansi and their mechanisms of action on blood pressure and blood vessels are unknown. PURPOSE The vasorelaxant effects of the methanolic extract (MeOH ext.) of the roots and rhizomes of N. jatamansi, its main compounds, and their underlying mode of action, were investigated. METHODS The main compounds of N. jatamansi were isolated and identified using UHPLC-TOF MS. The antihypertensive effect of N. jatamansi extracts and (-)-aristolone were determined using spontaneously hypertensive rats. The extracts, fractions, and compounds were also evaluated for their vasorelaxant effects on U46619 contractile responses in isolated thoracic aortic and mesenteric arterial rings. The endothelial-dependent relaxation, as well as the regulatory pathways and targets of (-)-aristolone, were studied in-vitro and ex-vivo. Molecular docking and biophysical characterization (Surface plasmon resonance) studies were utilized to investigate the molecular interaction between (-)-aristolone and the target protein. RESULTS MeOH ext. (200 mg/kg) reduces the systolic and diastolic blood pressure in spontaneously hypertensive rats. MeOH ext. and its ethyl acetate fraction (EtOAc Fr.), but not the H2O fraction, had a significant relaxing effect on the thoracic aorta. (-)-aristolone and kanshone H from EtOAc Fr. induced vasorelaxation of the thoracic aorta and mesenteric artery. In human umbilical vein endothelial cells, (-)-aristolone treatment upregulated phosphorylation of Akt (T308) and eNOS. Molecular docking and surface plasmon resonance experiments revealed an interaction between (-)-aristolone and phosphoinositide-dependent protein kinase 1 (PDK1), an upstream protein kinase that phosphorylates Akt at T308. Treatment with PDK1 inhibitor PHT-427 and eNOS inhibitor L-NAME consistently inhibited (-)-aristolone-induced vasorelaxation. In addition, KATP channel inhibitor glibenclamide dramatically inhibited the vasorelaxant effects of (-)-aristolone and kanshone H in the endothelium-denuded thoracic aorta. Finally, (-)-aristolone lowers hypertensive rats' systolic and diastolic blood pressure. CONCLUSIONS The extracts of N. jatamansi promote vasorelaxation and alleviate hypertension. The essential chemicals responsible for producing vasorelaxation effects are (-)-aristolone and kanshone H, which activate the PDK1-Akt-eNOS-NO relaxing pathway and stimulate the opening of the KATP channel. These findings point to N. jatamansi and aristolone as possible antihypertensive agents.
Collapse
Affiliation(s)
- Jingmei Fang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ran Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Sa Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China
| | - Zhimei Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yao Rao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lu Niu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Hong-Hua Wu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617 China.
| |
Collapse
|
4
|
Reducing PDK1/Akt Activity: An Effective Therapeutic Target in the Treatment of Alzheimer's Disease. Cells 2022; 11:cells11111735. [PMID: 35681431 PMCID: PMC9179555 DOI: 10.3390/cells11111735] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is a common age-related neurodegenerative disease that leads to memory loss and cognitive function damage due to intracerebral neurofibrillary tangles (NFTs) and amyloid-β (Aβ) protein deposition. The phosphoinositide-dependent protein kinase (PDK1)/protein kinase B (Akt) signaling pathway plays a significant role in neuronal differentiation, synaptic plasticity, neuronal survival, and neurotransmission via the axon–dendrite axis. The phosphorylation of PDK1 and Akt rises in the brain, resulting in phosphorylation of the TNF-α-converting enzyme (TACE) at its cytoplasmic tail (the C-terminal end), changing its internalization as well as its trafficking. The current review aimed to explain the mechanisms of the PDK1/Akt/TACE signaling axis that exerts its modulatory effect on AD physiopathology. We provide an overview of the neuropathological features, genetics, Aβ aggregation, Tau protein hyperphosphorylation, neuroinflammation, and aging in the AD brain. Additionally, we summarized the phosphoinositide 3-kinase (PI3K)/PDK1/Akt pathway-related features and its molecular mechanism that is dependent on TACE in the pathogenesis of AD. This study reviewed the relationship between the PDK1/Akt signaling pathway and AD, and discussed the role of PDK1/Akt in resisting neuronal toxicity by suppressing TACE expression in the cell membrane. This work also provides a perspective for developing new therapeutics targeting PDK1/Akt and TACE for the treatment of AD.
Collapse
|
5
|
Kim H, Lee J, Cho Y. PDK1 is a negative regulator of axon regeneration. Mol Brain 2021; 14:31. [PMID: 33579325 PMCID: PMC7881570 DOI: 10.1186/s13041-021-00748-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Axon regeneration in the central nervous system is inefficient. However, the neurons in the peripheral nervous system display robust regeneration after injury, indicating that axonal regeneration is differentially controlled under various conditions. To identify those molecules regulating axon regeneration, comparative analysis from dorsal root ganglion neurons at embryonic or adult stages is utilized, which reveals that PDK1 is functions as a negative regulator of axon regeneration. PDK1 is downregulated in embryonic neurons after axotomy. In contrast, sciatic nerve axotomy upregulated PDK1 at protein levels from adult mice. The knockdown of PDK1 or the chemical inhibition of PDK1 promotes axon regeneration in vitro and in vivo. Here we present PDK1 as a new player to negatively regulate axon regeneration and as a potential target in the development of therapeutic applications.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jinyoung Lee
- Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongcheol Cho
- Department of Life Sciences, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Furlong RM, Lindsay A, Anderson KE, Hawkins PT, Sullivan AM, O'Neill C. The Parkinson's disease gene PINK1 activates Akt via PINK1 kinase-dependent regulation of the phospholipid PI(3,4,5)P 3. J Cell Sci 2019; 132:jcs.233221. [PMID: 31540955 DOI: 10.1242/jcs.233221] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease (PD). Akt activation is reduced in the brain in PD, and by many PD-causing genes, including PINK1 This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1-modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to PINK1 kinase-dependent increases in PI(3,4,5)P3 at both plasma membrane and Golgi being significantly impaired. In the absence of PINK1, PI(3,4,5)P3 levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P3, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Rachel M Furlong
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland.,Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Andrew Lindsay
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aideen M Sullivan
- Department of Anatomy and Neuroscience, Western Gateway Building, University College Cork, Cork City T12 XF62, Ireland.,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| | - Cora O'Neill
- School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork City T12 YT20, Ireland .,Cork NeuroScience Centre, University College Cork, Cork City T12 YT20, Ireland
| |
Collapse
|
7
|
Ahiri A, Garmes H, Podlipnik C, Aboulmouhajir A. Insights into evolutionary interaction patterns of the 'Phosphorylation Activation Segment' in kinase. Bioinformation 2019; 15:666-677. [PMID: 31787816 PMCID: PMC6859708 DOI: 10.6026/97320630015666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/17/2022] Open
Abstract
We are interested in studying the phosphorylation of the kinase activation loop, distinguishing the passage from the unphosphorylated to the phosphorylated form without allostery. We performed an interaction study to trace the change of interactions between the activation segment and the kinase catalytic core, before and after phosphorylation. Results show that the structural changes are mainly due to the attraction between the phosphate group and guanidine groups of the arginine side chains of RD-pocket, which are constituted mainly of guanidine groups of the catalytic loop, the β9, and the αC helix. This attraction causes propagation of structural variation of the activation segment, principally towards the N-terminal. The structural variations are not made on all the amino acids of the activation segment; they are conditioned by the existence of two beta sheets stabilizing the loop during phosphorylation. The first,β6-β9 sheet is usually present in most of the kinases; the second, β10-β11 is formed due to the interaction between the main chain amino acids of the activation loop and the αEF/αF loop.
Collapse
Affiliation(s)
- Adil Ahiri
- Modeling and Molecular Spectroscopy Team, Faculty of Sciences, University Chouaib Doukkali, El-Jadida, Morroco
| | - Hocine Garmes
- Analytical Chemistry and Environmental Sciences Team, Department of chemistry, Faculty of Science, University Chouaib Doukkali, El Jadida, Morroco
| | - Crtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Aziz Aboulmouhajir
- Modeling and Molecular Spectroscopy Team, Faculty of Sciences, University Chouaib Doukkali, El-Jadida, Morroco
- Extraction, Spectroscopy and Valorization Team, Organic synthesis, Extraction and Valorization Laboratory, Faculty of Sciences of Ain Chock, Hassan II University, Casablanca, Morocco
| |
Collapse
|
8
|
The Stress-Sensing TORC2 Complex Activates Yeast AGC-Family Protein Kinase Ypk1 at Multiple Novel Sites. Genetics 2017; 207:179-195. [PMID: 28739659 PMCID: PMC5586371 DOI: 10.1534/genetics.117.1124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
Yeast (Saccharomyces cerevisiae) target of rapamycin (TOR) complex 2 (TORC2) is a multi-subunit plasma membrane-associated protein kinase and vital growth regulator. Its essential functions are exerted via phosphorylation and stimulation of downstream protein kinase Ypk1 (and its paralog Ypk2). Ypk1 phosphorylates multiple substrates to regulate plasma membrane lipid and protein composition. Ypk1 function requires phosphorylation of Thr504 in its activation loop by eisosome-associated Pkh1 (and its paralog Pkh2). For cell survival under certain stresses, however, Ypk1 activity requires further stimulation by TORC2-mediated phosphorylation at C-terminal sites, dubbed the “turn” (Ser644) and “hydrophobic” (Thr662) motifs. Here we show that four additional C-terminal sites are phosphorylated in a TORC2-dependent manner, collectively defining a minimal consensus. We found that the newly identified sites are as important for Ypk1 activity, stability, and biological function as Ser644 and Thr662. Ala substitutions at the four new sites abrogated the ability of Ypk1 to rescue the phenotypes of Ypk1 deficiency, whereas Glu substitutions had no ill effect. Combining the Ala substitutions with an N-terminal mutation (D242A), which has been demonstrated to bypass the need for TORC2-mediated phosphorylation, restored the ability to complement a Ypk1-deficient cell. These findings provide new insights about the molecular basis for TORC2-dependent activation of Ypk1.
Collapse
|
9
|
Thompson JA, Carlson GM. The regulatory α and β subunits of phosphorylase kinase directly interact with its substrate, glycogen phosphorylase. Biochem Biophys Res Commun 2017; 482:221-225. [PMID: 27845042 DOI: 10.1016/j.bbrc.2016.11.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 11/17/2022]
Abstract
The selective phosphorylation of glycogen phosphorylase (GP) by its only known kinase, phosphorylase kinase (PhK), keeps glycogen catabolism tightly regulated. In addition to the obligatory interaction between the catalytic γ subunit of PhK and the phosphorylatable region of GP, previous studies have suggested additional sites of interaction between this kinase and its protein substrate. Using short chemical crosslinkers, we have identified direct interactions of GP with the large regulatory α and β subunits of PhK. These newfound interactions were found to be sensitive to ligands that bind PhK.
Collapse
Affiliation(s)
- Jackie A Thompson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Gerald M Carlson
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
10
|
Wei Q, Yang S, Li D, Zhang X, Zheng J, Jia Z. A new autoinhibited kinase conformation reveals a salt-bridge switch in kinase activation. Sci Rep 2016; 6:28437. [PMID: 27324091 PMCID: PMC4914941 DOI: 10.1038/srep28437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/06/2016] [Indexed: 11/09/2022] Open
Abstract
In the structure of autoinhibited EphA2 tyrosine kinase reported herein, we have captured the entire activation segment, revealing a previously unknown role of the conserved Arg762 in kinase autoinhibition by interacting with the essential Mg2+-chelating Asp757. While it is well known that this Arg residue is involved in an electrostatic interaction with the phospho-residue of the activation loop to stabilize the active conformation, our structure determination revealed a new role for the Arg, acting as a switch between the autoinhibited and activated conformations. Mutation of Arg762 to Ala in EphA2 sensitized Mg2+ response, resulting in enhanced kinase catalytic activity and Mg2+ cooperativity. Furthermore, mutation of the corresponding Arg/Lys to Ala in PKA and p38MAPK also exhibited similar behavior. This new salt bridge-mediated switch may thus be an important mechanism of activation on a broader scope for kinases which utilize autophosphorylation.
Collapse
Affiliation(s)
- Qiang Wei
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Shaoyuan Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Dan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xiaoying Zhang
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Jimin Zheng
- College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zongchao Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, China.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
11
|
King CC, Obonyo M. Helicobacter pylori modulates host cell survival regulation through the serine-threonine kinase, 3-phosphoinositide dependent kinase 1 (PDK-1). BMC Microbiol 2015; 15:222. [PMID: 26487493 PMCID: PMC4618363 DOI: 10.1186/s12866-015-0543-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 10/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection affects cell survival signaling pathways including cell apoptosis and proliferation, which are considered risk factors for the development of gastric cancer when unregulated. In the present study, we investigated the effect of H. pylori infection on the phosphorylation state of 3-phosphoinositide-dependent kinase-1 (PDK-1), a master kinase that regulates phosphorylation of Akt (also known as protein kinase B, PKB) and cell survival. METHODS The activity of PDK-1 was examined in human gastric epithelial cells incubated in the presence or absence of different H. pylori strains. In addition, the role of H. pylori type IV secretion system and the mechanism of H. pylori effect on PDK-1 activity was examined. RESULTS In the presence of H. pylori, phosphorylation of the activation loop (serine 241) PDK-1 was rapidly lost suggesting that dephosphorylation of PDK-1 is a target for H. pylori to modulate cell survival. The extent of dephosphorylation was strain dependent with H. pylori 60190 being the most effective. H. pylori infection of gastric epithelial cells resulted in altered phosphorylation and degradation of Akt, suggesting that PDK-1 dephosphorylation affects cell survival pathways and thereby may contribute to disease pathogenesis. CONCLUSION We propose that dephosphorylation of PDK-1 and the resulting changes to Akt phosphorylation is one of the mechanisms by which infection with H. pylori alter the balance between apoptosis and cell proliferation and identify a host molecular mechanism regulated by H. pylori that ultimately contributes to carcinogenesis. Our studies therefore provide insights into one of the mechanisms by which H. pylori infection contributes to gastric cancer by regulating the activity of a cell survival signaling pathway.
Collapse
Affiliation(s)
- Charles C King
- Pediatric Diabetes Research Center, University of California, La Jolla, San Diego, CA, 92093, USA.
| | - Marygorret Obonyo
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
12
|
Pharmacophore modeling, 3D-QSAR, and molecular docking study on naphthyridine derivatives as inhibitors of 3-phosphoinositide-dependent protein kinase-1. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0383-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Yang W, AbdulHameed MDM, Hamza A, Zhan CG. New inhibitor of 3-phosphoinositide dependent protein kinase-1 identified from virtual screening. Bioorg Med Chem Lett 2012; 22:1629-32. [PMID: 22266037 PMCID: PMC4371734 DOI: 10.1016/j.bmcl.2011.12.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/23/2011] [Accepted: 12/27/2011] [Indexed: 11/16/2022]
Abstract
3-Phosphoinositide-dependent protein kinase-1 (PDK1) has been recognized as a promising anticancer target. Thus, it is interesting to identify new inhibitors of PDK1 for anticancer drug discovery. Through a combined use of virtual screening and wet experimental activity assays, we have identified a new PDK1 inhibitor with IC(50)=~200 nM. The anticancer activities of this compound have been confirmed by the anticancer activity assays using 60 cancer cell lines. The obtained new PDK1 inhibitor and its PDK1-inhibitor binding mode should be valuable in future de novo design of novel, more potent and selective PDK1 inhibitors for future development of anticancer therapeutics.
Collapse
Affiliation(s)
- Wenchao Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Mohamed Diwan M. AbdulHameed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Adel Hamza
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
14
|
Steichen JM, Kuchinskas M, Keshwani MM, Yang J, Adams JA, Taylor SS. Structural basis for the regulation of protein kinase A by activation loop phosphorylation. J Biol Chem 2012; 287:14672-80. [PMID: 22334660 PMCID: PMC3340281 DOI: 10.1074/jbc.m111.335091] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The catalytic subunit of cAMP-dependent protein kinase (PKA) is a member of the AGC group of protein kinases. Whereas PKA has served as a structural model for the protein kinase superfamily, all previous structures of the catalytic subunit contain a phosphorylated activation loop. To understand the structural effects of activation loop phosphorylation at Thr-197 we used a PKA mutant that does not autophosphorylate at Thr-197. The enzyme crystallized in the apo-state, and the structure was solved to 3.0 Å. The N-lobe is rotated by 18° relative to the wild-type apoenzyme, which illustrates that the enzyme likely exists in a wide range of conformations in solution due to the uncoupling of the N- and C-lobes. Several regions of the protein including the activation loop are disordered in the structure, and there are alternate main chain conformations for the magnesium positioning loop and catalytic loop causing a complete loss of hydrogen bonding between these two active site structural elements. These alterations are reflected in a 20-fold decrease in the apparent phosphoryl transfer rate as measured by pre-steady-state kinetic methods.
Collapse
Affiliation(s)
- Jon M Steichen
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
15
|
Park YI, Do KH, Kim IS, Park HH. Structural and functional studies of casein kinase I-like protein from rice. PLANT & CELL PHYSIOLOGY 2012; 53:304-311. [PMID: 22199373 DOI: 10.1093/pcp/pcr175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Casein kinase I (CKI) is a protein serine/threonine kinase that is highly conserved from plants to animals. It performs various functions in both the cytoplasm and nucleus, such as DNA repair, cell cycle, cytokinesis, vesicular trafficking, morphogenesis and circadian rhythm. CKI proteins contain a highly conserved kinase domain responsible for catalytic activity at the N-terminus and a highly diverse regulatory domain responsible for determining substrate specificity at the C-terminus. CKI-like protein has been identified in plants, including in rice, but its function and structure have not been reported. Here, we report the 2.0 Å crystal structure of the kinase domain of CKI-like protein from rice. Although the structure adopts the typical bi-lobal kinase architecture, the length and orientation of the glycine-rich ATP-binding motif are dynamic within the CKI family. A loop between α5 and α6 (the α5-α6 loop), which was previously not detected in the CKI family because of flexibility, was clearly detected in our structure. In addition, we identified a lipase as a substrate of CKI-like protein from rice. Phosphorylation of the lipase dramatically reduced its catalytic activity, suggesting that CKI may play a role in the regulation of lipase activity.
Collapse
Affiliation(s)
- Young-Il Park
- School of Life Science and Biotechnology at Kyungpook National University, Daegu, South Korea
| | | | | | | |
Collapse
|
16
|
Seco J, Ferrer-Costa C, Campanera JM, Soliva R, Barril X. Allosteric regulation of PKCθ: understanding multistep phosphorylation and priming by ligands in AGC kinases. Proteins 2011; 80:269-80. [PMID: 22072623 DOI: 10.1002/prot.23205] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 09/12/2011] [Accepted: 09/18/2011] [Indexed: 01/13/2023]
Abstract
Protein kinases play critical roles in cellular activation and differentiation, and are involved in numerous pathophysiological processes. As a critical component of the regulatory circuitry of the cell, the kinase domain has the ability to integrate multiple signals, yielding a predetermined output. In PKC and other protein kinases of the AGC family, several phosphorylation sites control the activity, but these are in turn influenced by the presence of ligands in the binding pocket, which promotes phosphorylation. Here, we take PKC-theta as a prototypical member of the family and use molecular dynamics simulations to investigate the cross-talk that exists between regulatory and functional sites. We first show how the apo-unphosphorylated form of the kinase is populating a conformational space in which access to the ATP binding site and to the activation loop (AL) are simultaneously hindered. This could explain why the inactive state is not only catalytically incompetent but also resistant to activation. AL phosphorylation induces ATP binding site opening, which can then readily accept the cofactor. But the signal transmission mechanism works both ways, and if ligand binding to the unphosphorylated form occurs first, the AL is de-protected and becomes exposed to phosphorylation, thus providing an explanation for the paradoxical activation of PKCs by their inhibitors.
Collapse
Affiliation(s)
- Jesus Seco
- Departament de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
17
|
Yunta C, Martínez-Ripoll M, Zhu JK, Albert A. The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. J Mol Biol 2011; 414:135-44. [PMID: 21983340 DOI: 10.1016/j.jmb.2011.09.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/16/2022]
Abstract
SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.
Collapse
Affiliation(s)
- Cristina Yunta
- Departamento de Cristalografía y Biología Estructural, Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, Madrid E-28006, Spain
| | | | | | | |
Collapse
|
18
|
Abstract
Here we investigate the mechanisms regulating Greatwall (Gwl), a serine/threonine kinase essential for promoting the correct timing of mitosis. We identify Gwl as a unique AGC kinase that, unlike most AGC members, appears to be devoid of a hydrophobic motif despite the presence of a functional hydrophobic pocket. Our results suggest that Gwl activation could be mediated by the binding of its hydrophobic pocket to the hydrophobic motif of another AGC kinase. Our molecular modeling and mutagenic analysis also indicate that Gwl displays a conserved tail/linker site whose phosphorylation mediates kinase activation by promoting the interaction of this phosphorylated residue with two lysines at the N terminus. This interaction could stabilize the αC-helix and maintain kinase activity. Finally, the different phosphorylation sites on Gwl are identified, and the role of each one in the regulation of Gwl kinase activity is determined. Our data suggest that only the phosphorylation of the tail/linker site, located outside the putative T loop, appears to be essential for Gwl activation. In summary, our results identify Gwl as a member of the AGC family of kinases that appears to be regulated by unique mechanisms and that differs from the other members of this family.
Collapse
|
19
|
Bayascas JR. PDK1: the major transducer of PI 3-kinase actions. Curr Top Microbiol Immunol 2011; 346:9-29. [PMID: 20563709 DOI: 10.1007/82_2010_43] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most of the cellular responses to phosphatidylinositol 3-kinase activation and phosphatidylinositol 3,4,5-trisphosphate production are mediated by the activation of a group of AGC kinases comprising PKB, S6K, RSK, SGK and PKC isoforms, which play essential roles in regulating physiological processes related to cell growth, proliferation, survival and metabolism. All these growth-factor-stimulated AGC kinases possess a common upstream activator, namely PDK1, a master kinase, which, being constitutively active, is still able to phosphorylate and activate its AGC substrates in response to rises in the levels of the PtdIns(3,4,5)P(3) second messenger. In this chapter, the biochemical, structural and genetic data on the mechanism of action and physiological roles of PDK1 are reviewed, and its potential as a pharmaceutical target for the design of drugs therapeutically beneficial to treat human disease such us diabetes and cancer is discussed.
Collapse
Affiliation(s)
- José Ramón Bayascas
- Institut de Neurociències & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain.
| |
Collapse
|
20
|
Masters TA, Calleja V, Armoogum DA, Marsh RJ, Applebee CJ, Laguerre M, Bain AJ, Larijani B. Regulation of 3-phosphoinositide-dependent protein kinase 1 activity by homodimerization in live cells. Sci Signal 2010; 3:ra78. [PMID: 20978239 DOI: 10.1126/scisignal.2000738] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
3-Phosphoinositide-dependent kinase 1 (PDK1) plays a central role in regulating the activity of protein kinases that are essential for signaling; however, how PDK1 itself is regulated is largely unknown. We found that homodimerization of PDK1 is a spatially and temporally regulated mechanism for controlling PDK1 activity. We used Förster resonance energy transfer monitored by fluorescence lifetime imaging microscopy to observe PDK1 homodimerization in live cells. A pleckstrin homology (PH) domain-dependent, basal dimeric association of PDK1 was increased upon cell stimulation with growth factors; this association was prevented by a phosphatidylinositol 3-kinase inhibitor and by a mutation in, or a complete deletion of, the PH domain of PDK1. The distinct spatial distribution of PDK1 homodimers relative to that of heterodimers of PDK1 and protein kinase B (PKB), and the ability of monomeric mutants of PDK1 to phosphorylate PKB, suggested that the monomer was the active conformation. Mutation of the autophosphorylation residue threonine-513 to glutamate, which was predicted to destabilize the homodimer interface, enhanced the interaction between PDK1 and PKB and the activity of PKB. Through in vitro, time-resolved fluorescence intensity and anisotropy measurements, combined with existing crystal structures and computational molecular modeling, we determined the geometrical arrangement of the PDK1 homodimer. With this approach, we calculated the size of the population of PDK1 dimers in cells. This description of a previously uncharacterized regulatory mechanism for the activation of PDK1 offers possibilities for controlling PDK1 activity therapeutically.
Collapse
Affiliation(s)
- Thomas A Masters
- Cell Biophysics Laboratory, Cancer Research UK, London WC2A 3LY, UK
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kikani CK, Antonysamy SA, Bonanno JB, Romero R, Zhang FF, Russell M, Gheyi T, Iizuka M, Emtage S, Sauder JM, Turk BE, Burley SK, Rutter J. Structural bases of PAS domain-regulated kinase (PASK) activation in the absence of activation loop phosphorylation. J Biol Chem 2010; 285:41034-43. [PMID: 20943661 DOI: 10.1074/jbc.m110.157594] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Per-Arnt-Sim (PAS) domain-containing protein kinase (PASK) is an evolutionary conserved protein kinase that coordinates cellular metabolism with metabolic demand in yeast and mammals. The molecular mechanisms underlying PASK regulation, however, remain unknown. Herein, we describe a crystal structure of the kinase domain of human PASK, which provides insights into the regulatory mechanisms governing catalysis. We show that the kinase domain adopts an active conformation and has catalytic activity in vivo and in vitro in the absence of activation loop phosphorylation. Using site-directed mutagenesis and structural comparison with active and inactive kinases, we identified several key structural features in PASK that enable activation loop phosphorylation-independent activity. Finally, we used combinatorial peptide library screening to determine that PASK prefers basic residues at the P-3 and P-5 positions in substrate peptides. Our results describe the key features of the PASK structure and how those features are important for PASK activity and substrate selection.
Collapse
Affiliation(s)
- Chintan K Kikani
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li Y, Yang KJ, Park J. Multiple implications of 3-phosphoinositide-dependent protein kinase 1 in human cancer. World J Biol Chem 2010; 1:239-47. [PMID: 21537480 PMCID: PMC3083972 DOI: 10.4331/wjbc.v1.i8.239] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/13/2010] [Accepted: 07/20/2010] [Indexed: 02/05/2023] Open
Abstract
3-phosphoinositide-dependent protein kinase-1 (PDK1) is a central mediator of cellular signaling between phosphoinositide-3 kinase and various intracellular serine/threonine kinases, including protein kinase B, p70 ribosomal S6 kinase, serum and glucocorticoid-inducible kinase, and protein kinase C. PDK1 activates members of the AGC family of protein kinases by phosphorylating serine/threonine residues in the activation loop. Here, we review the regulatory mechanisms of PDK1 and its roles in cancer. PDK1 is activated by autophosphorylation in the activation loop and other serine residues, as well as by phosphorylation of Tyr-9 and Tyr-373/376. Src appears to recognize PDK1 following tyrosine phosphorylation. The role of heat shock protein 90 in regulating PDK1 stability and PDK1-Src complex formation are also discussed. Furthermore, we summarize the subcellular distribution of PDK1. Finally, an important role for PDK1 in cancer chemotherapy is proposed. In conclusion, a better understanding of its molecular regulatory mechanisms in various signaling pathways will help to explain how PDK1 acts as an oncogenic kinase in various cancers, and will contribute to the development of novel cancer chemotherapies.
Collapse
Affiliation(s)
- Yuwen Li
- Yuwen Li, Keum-Jin Yang, Jongsun Park, Department of Pharmacology, Metabolic Diseases and Cell Signaling Laboratory, Cancer Research Institute, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 301-131, South Korea
| | | | | |
Collapse
|
23
|
|
24
|
Steichen JM, Iyer GH, Li S, Saldanha SA, Deal MS, Woods VL, Taylor SS. Global consequences of activation loop phosphorylation on protein kinase A. J Biol Chem 2009; 285:3825-3832. [PMID: 19965870 PMCID: PMC2823524 DOI: 10.1074/jbc.m109.061820] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Phosphorylation of the activation loop is one of the most common mechanisms for regulating protein kinase activity. The catalytic subunit of cAMP-dependent protein kinase autophosphorylates Thr(197) in the activation loop when expressed in Escherichia coli. Although mutation of Arg(194) to Ala prevents autophosphorylation, phosphorylation of Thr(197) can still be achieved by a heterologous protein kinase, phosphoinositide-dependent protein kinase (PDK1), in vitro. In this study, we examined the structural and functional consequences of adding a single phosphate to the activation loop of cAMP-dependent protein kinase by comparing the wild type C-subunit to the R194A mutant either in the presence or the absence of activation loop phosphorylation. Phosphorylation of Thr(197) decreased the K(m) by approximately 15- and 7-fold for kemptide and ATP, respectively, increased the stability of the enzyme as measured by fluorescence and circular dichroism, and enhanced the binding between the C-subunit and IP20, a protein kinase inhibitor peptide. Additionally, deuterium exchange coupled to mass spectrometry was used to compare the structural dynamics of these proteins. All of the regions of the C-subunit analyzed underwent amide hydrogen exchange at a higher or equal rate in the unphosphorylated enzyme compared with the phosphorylated enzyme. The largest changes occurred at the C terminus of the activation segment in the p + 1 loop/APE regions and the alphaH-alphaI loop motifs and leads to the prediction of a coordinated phosphorylation-induced salt bridge between two conserved residues, Glu(208) and Arg(280).
Collapse
Affiliation(s)
- Jon M Steichen
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Ganesh H Iyer
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Sheng Li
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - S Adrian Saldanha
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Michael S Deal
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093
| | - Virgil L Woods
- the Department of Medicine and Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093
| | - Susan S Taylor
- From the Departments of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093; Departments of Pharmacology, University of California, San Diego, La Jolla, California 92093; the Departments of Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093.
| |
Collapse
|
25
|
Structural diversity of the active N-terminal kinase domain of p90 ribosomal S6 kinase 2. PLoS One 2009; 4:e8044. [PMID: 19956600 PMCID: PMC2779450 DOI: 10.1371/journal.pone.0008044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 10/19/2009] [Indexed: 11/19/2022] Open
Abstract
The p90 ribosomal protein kinase 2 (RSK2) is a highly expressed Ser/Thr kinase activated by growth factors and is involved in cancer cell proliferation and tumor promoter-induced cell transformation. RSK2 possesses two non-identical kinase domains, and the structure of its N-terminal domain (NTD), which is responsible for phosphorylation of a variety of substrates, is unknown. The crystal structure of the NTD RSK2 was determined at 1.8 Å resolution in complex with AMP-PNP. The N-terminal kinase domain adopted a unique active conformation showing a significant structural diversity of the kinase domain compared to other kinases. The NTD RSK2 possesses a three-stranded βB-sheet inserted in the N-terminal lobe, resulting in displacement of the αC-helix and disruption of the Lys-Glu interaction, classifying the kinase conformation as inactive. The purified protein was phosphorylated at Ser227 in the T-activation loop and exhibited in vitro kinase activity. A key characteristic is the appearance of a new contact between Lys216 (βB-sheet) and the β-phosphate of AMP-PNP. Mutation of this lysine to alanine impaired both NTDs in vitro and full length RSK2 ex vivo activity, emphasizing the importance of this interaction. Even though the N-terminal lobe undergoes structural re-arrangement, it possesses an intact hydrophobic groove formed between the αC-helix, the β4-strand, and the βB-sheet junction, which is occupied by the N-terminal tail. The presence of a unique βB-sheet insert in the N-lobe suggests a different type of activation mechanism for RSK2.
Collapse
|
26
|
Stockman BJ, Kothe M, Kohls D, Weibley L, Connolly BJ, Sheils AL, Cao Q, Cheng AC, Yang L, Kamath AV, Ding YH, Charlton ME. Identification of allosteric PIF-pocket ligands for PDK1 using NMR-based fragment screening and 1H-15N TROSY experiments. Chem Biol Drug Des 2009; 73:179-88. [PMID: 19207420 DOI: 10.1111/j.1747-0285.2008.00768.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aberrant activation of the phosphoinositide 3-kinase pathway because of genetic mutations of essential signalling proteins has been associated with human diseases including cancer and diabetes. The pivotal role of 3-phosphoinositide-dependent kinase-1 in the PI3K signalling cascade has made it an attractive target for therapeutic intervention. The N-terminal lobe of the 3-phosphoinositide-dependent kinase-1 catalytic domain contains a docking site which recognizes the non-catalytic C-terminal hydrophobic motifs of certain substrate kinases. The binding of substrate in this so-called PDK1 Interacting Fragment pocket allows interaction with 3-phosphoinositide-dependent kinase-1 and enhanced phosphorylation of downstream kinases. NMR spectroscopy was used to a screen 3-phosphoinositide-dependent kinase-1 domain construct against a library of chemically diverse fragments in order to identify small, ligand-efficient fragments that might interact at either the ATP site or the allosteric PDK1 Interacting Fragment pocket. While majority of the fragment hits were determined to be ATP-site binders, several fragments appeared to interact with the PDK1 Interacting Fragment pocket. Ligand-induced changes in 1H-15N TROSY spectra acquired using uniformly 15N-enriched PDK1 provided evidence to distinguish ATP-site from PDK1 Interacting Fragment-site binding. Caliper assay data and 19F NMR assay data on the PDK1 Interacting Fragment pocket fragments and structurally related compounds identified them as potential allosteric activators of PDK1 function.
Collapse
|
27
|
Villa NY, Kupchak BR, Garitaonandia I, Smith JL, Alonso E, Alford C, Cowart LA, Hannun YA, Lyons TJ. Sphingolipids function as downstream effectors of a fungal PAQR. Mol Pharmacol 2009; 75:866-75. [PMID: 19066337 PMCID: PMC2684929 DOI: 10.1124/mol.108.049809] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 12/08/2008] [Indexed: 02/01/2023] Open
Abstract
The Izh2p protein from Saccharomyces cerevisiae belongs to the newly characterized progestin and adipoQ receptor (PAQR) superfamily of receptors whose mechanism of signal transduction is still unknown. Izh2p functions as a receptor for the plant PR-5 defensin osmotin and has pleiotropic effects on cellular biochemistry. One example of this pleiotropy is the Izh2p-dependent repression of FET3, a gene involved in iron-uptake. Although the physiological purpose of FET3 repression by Izh2p is a matter of speculation, it provides a reporter with which to probe the mechanism of signal transduction by this novel class of receptor. Receptors in the PAQR family share sequence similarity with enzymes involved in ceramide metabolism, which led to the hypothesis that sphingolipids are involved in Izh2p-dependent signaling. In this study, we demonstrate that drugs affecting sphingolipid metabolism, such as d-erythro-MAPP and myriocin, inhibit the effect of Izh2p on FET3. We also show that Izh2p causes an increase in steady-state levels of sphingoid base. Moreover, we show that Izh2p-independent increases in sphingoid bases recapitulate the effect of Izh2p on FET3. Finally, our data indicate that the Pkh1p and Pkh2p sphingoid base-sensing kinases are essential components of the Izh2p-dependent signaling pathway. In conclusion, our data indicate that Izh2p produces sphingoid bases and that these bioactive lipids probably function as the second messenger responsible for the effect of Izh2p on FET3.
Collapse
Affiliation(s)
- Nancy Y Villa
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Goldsmith EJ, Akella R, Min X, Zhou T, Humphreys JM. Substrate and docking interactions in serine/threonine protein kinases. Chem Rev 2007; 107:5065-81. [PMID: 17949044 PMCID: PMC4012561 DOI: 10.1021/cr068221w] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Elizabeth J Goldsmith
- Department of Biochemistry, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8816, USA.
| | | | | | | | | |
Collapse
|
29
|
Abdulhameed MDM, Hamza A, Zhan CG. Microscopic Modes and Free Energies of 3-Phosphoinositide-Dependent Kinase-1 (PDK1) Binding with Celecoxib and Other Inhibitors. J Phys Chem B 2006; 110:26365-74. [PMID: 17181296 DOI: 10.1021/jp065207e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Celecoxib, also known as Celebrex (approved by FDA in 1998) and remembered as the fastest-selling drug in history, was used as a cyclooxygenase-2 (COX-2) selective inhibitor having both anti-inflammatory and anticancer activities. Most recent studies have revealed that the apoptotic activity of celecoxib (and its derivatives) is actually independent of the COX-2 inhibitory activity and that celecoxib also inhibits the kinase activity of 3-phosphoinositide-dependent protein kinase-1 (PDK1), suggesting that the well-known anticancer activity of celecoxib is not due to the inhibition of COX-2, but possibly is due to the inhibition of PDK1. It is highly desirable to develop new celecoxib derivatives as PDK1-specifc inhibitors to avoid the side effects of COX-2 inhibitors. To understand how PDK1 binds with celecoxib and its derivatives, we have performed extensive molecular docking and combined molecular dynamics (MD) simulations and molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations on eight representative PDK1 inhibitors, leading to the finding of a new, more favorable binding mode which is remarkably different from the previously proposed binding mode. Based on the determined most stable binding structures, the calculated binding free energies are all in good agreement with the corresponding experimental data, and the biological activity data available for celecoxib and its derivatives can be better interpreted. The obtained new insights, concerning both the binding mode and computational protocol, will be valuable not only for future rational design of novel, more potent PDK1-specific inhibitors as promising anticancer therapeutics, but also for rational design of drugs targeting other proteins.
Collapse
Affiliation(s)
- Mohamed Diwan M Abdulhameed
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 725 Rose Street, Lexington, Kentucky 40536, USA
| | | | | |
Collapse
|
30
|
Engel M, Hindie V, Lopez-Garcia LA, Stroba A, Schaeffer F, Adrian I, Imig J, Idrissova L, Nastainczyk W, Zeuzem S, Alzari PM, Hartmann RW, Piiper A, Biondi RM. Allosteric activation of the protein kinase PDK1 with low molecular weight compounds. EMBO J 2006; 25:5469-80. [PMID: 17110931 PMCID: PMC1679772 DOI: 10.1038/sj.emboj.7601416] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 10/10/2006] [Indexed: 12/12/2022] Open
Abstract
Organisms rely heavily on protein phosphorylation to transduce intracellular signals. The phosphorylation of a protein often induces conformational changes, which are responsible for triggering downstream cellular events. Protein kinases are themselves frequently regulated by phosphorylation. Recently, we and others proposed the molecular mechanism by which phosphorylation at a hydrophobic motif (HM) regulates the conformation and activity of many members of the AGC group of protein kinases. Here we have developed specific, low molecular weight compounds, which target the HM/PIF-pocket and have the ability to allosterically activate phosphoinositide-dependent protein kinase 1 (PDK1) by modulating the phosphorylation-dependent conformational transition. The mechanism of action of these compounds was characterized by mutagenesis of PDK1, synthesis of compound analogs, interaction-displacement studies and isothermal titration calorimetry experiments. Our results raise the possibility of developing drugs that target the AGC kinases via a novel mode of action and may inspire future rational development of compounds with the ability to modulate phosphorylation-dependent conformational transitions in other proteins.
Collapse
Affiliation(s)
- Matthias Engel
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Valerie Hindie
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
- Structural Biochemistry Unit, Pasteur Institute, Paris, France
| | - Laura A Lopez-Garcia
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Adriana Stroba
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | | | - Iris Adrian
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Jochen Imig
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Leila Idrissova
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | | | - Stefan Zeuzem
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Pedro M Alzari
- Structural Biochemistry Unit, Pasteur Institute, Paris, France
| | - Rolf W Hartmann
- Research Group PhosphoSites, Department of Pharmaceutical and Medicinal Chemistry, University of Saarland, Saarbrücken, Germany
| | - Albrecht Piiper
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
| | - Ricardo M Biondi
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Homburg, Germany
- Research Group PhosphoSites, Department of Internal Medicine II, University of Saarland, Kirrbergerstr., Homburg 66421, Germany. Tel.: +49 6841 16 23263; Fax: +49 6841 16 23570; E-mail:
| |
Collapse
|
31
|
Gold MG, Barford D, Komander D. Lining the pockets of kinases and phosphatases. Curr Opin Struct Biol 2006; 16:693-701. [PMID: 17084073 DOI: 10.1016/j.sbi.2006.10.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2006] [Revised: 10/06/2006] [Accepted: 10/19/2006] [Indexed: 01/02/2023]
Abstract
The regulation of the activity of kinases and phosphatases is an essential aspect of intracellular signal transduction. Recently determined structures of AGC protein kinases, including isoforms of PKB, PKC, GRK and ROCK, indicate that occupancy of a hydrophobic pocket in the kinase N-lobe by a segment of the protein immediately C terminal to the kinase domain provides a mechanism for regulating kinase activity. In addition, crystal structures of Aurora-A and Aurora-B, which are closely related to AGC family kinases, in complex with their activators, TPX2 and INCENP, respectively, show how allosteric kinase activation is achieved by the binding of the activator protein to an equivalent hydrophobic pocket. Hence, regulation of kinase activity by analogous interactions is a shared regulatory mechanism of these kinases. Two crystal structures have explained the molecular basis of PKA anchoring through its regulatory subunits by members of the AKAP family of scaffold proteins. AKAPs can also interact directly with protein kinase and phosphatase catalytic domains. The crystal structure of the PP1 catalytic subunit in complex with the targeting subunit MYPT1 indicates that there is also scope for intimate phosphatase regulation by scaffold proteins.
Collapse
Affiliation(s)
- Matthew G Gold
- Section of Structural Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
32
|
Gao X, Harris TK. Role of the PH domain in regulating in vitro autophosphorylation events required for reconstitution of PDK1 catalytic activity. Bioorg Chem 2006; 34:200-23. [PMID: 16780920 DOI: 10.1016/j.bioorg.2006.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2006] [Accepted: 05/09/2006] [Indexed: 01/17/2023]
Abstract
In addition to its catalytic domain, phosphoinsositide-dependent protein kinase-1 (PDK1) contains a C-terminal pleckstrin homology (PH) domain, which binds the membrane-bound phosphatidylinositol (3,4,5)-triphosphate [PI(3,4,5)P3] second messenger. Here, we report in vitro kinetic, phosphopeptide mapping, and oligomerization studies that address the role of the PH domain in regulating specific autophosphorylation events, which are required for PDK1 catalytic activation. First, 'inactive' unphosphorylated forms of N-terminal His6 tagged full length (His6-PDK1) and catalytic domain constructs [His6-PDK1(Delta PH)] were generated by treatment with Lambda protein phosphatase (lambda PP). Reconstitution of lambda PP-treated His6-PDK1(Delta PH) catalytic activity required activation loop Ser-241 phosphorylation, which occurred only upon trans-addition of 'active' PDK1 with an apparent bimolecular rate constant of (app)k1(S241) = 374+/-29 M(-1) s(-1). In contrast, full length lambda PP-treated His6-PDK1 catalyzed Ser-241 cis-autophosphorylation with an apparent first-order rate constant of (app)k1(S241) = (5.0+/-1.5) x 10(-4) s(-1) but remained 'inactive'. Reconstitution of lambda PP-treated His(6)-PDK1 catalytic activity occurred only when autophosphorylated in the presence of PI(3,4,5)P3 containing vesicles. PI(3,4,5)P3 binding to the PH domain activated apparent first-order Ser-241 autophosphorylation by 20-fold [(app)k1(S241) = (1.1+/-0.1) x 10(-2) s(-1)] and also promoted biphasic Thr-513 trans-autophosphorylation [(app)k2(T513) = (4.9+/-1.1) x 10(2) M(-1) s(-1) and(app)k3(T513) = (1.5+/-0.2) x 10(3) M(-1) s(-1)]. The results of mutagenesis studies suggest that Thr-513 phosphorylation may cause dissociation of autoinhibitory contacts formed between the contiguous regulatory PH and catalytic kinase domains.
Collapse
Affiliation(s)
- Xinxin Gao
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, P.O. Box 016129, Miami, FL 33101-6129, USA
| | | |
Collapse
|
33
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|